
i

Savitri Bevinakoppa,
Luís Ferreira Pires and
Slimane Hammoudi (Eds.)

Web Services and Model-Driven
Enterprise Information Services

Proceedings of the Joint Workshop on
Web Services and Model-Driven
Enterprise Information Services,
WSMDEIS 2005
In conjunction with ICEIS 2005
Miami, U.S.A., May 2005

INSTICC PRESS
Portugal

ii

Volume Editors

Savitri Bevinakoppa
Royal Melbourne Institute of Technology,
Australia

Luís Ferreira Pires
CTIT, University of Twente,
The Netherlands

and

Slimane Hammoudi
ESEO, Angers ,
France

Proceedings of the Joint Workshop on
Web Services and Model-Driven
Enterprise Information Services
WSMDEIS 2005
Miami, U.S.A., May 2005.
Savitri Bevinakoppa
Luís Ferreira Pires
and Slimane Hammoudi (Eds.)

Copyright © 2005
INSTICC PRESS
All rights reserved

Printed in Portugal

ISBN 972-8865-27-9
Depósito Legal: 224491/05

iii

Foreword

Web services and Model-driven development are two emerging research fields
and have been receiving a lot of attention in the recent years. New
approaches on these two areas can bring many benefits to the
development of information systems, distribution flexibility,
interoperability, maintainability and portability. Nevertheless, these
emerging fields pose new promising challenges to the research
community. Some of the current challenges in the web services field are
service composition, support for quality of service, security and
integration of legacy systems; in the model-driven development field are
the mappings between metamodels, model transformations, semantic
distance and traceability.

This volume contains the Proceedings of the 3rd International Workshop on Web
Services: Modeling, Architecture and Infrastructure (WSMAI 2005), and the
Proceedings of the First International Workshop on Model-Driven Enterprise
Information Systems (MDEIS 2005).

WSMAI 2005 and MDEIS 2005 aim at serving as a forum for researchers
and practitioners to meet and share expertise in the fields of Web services
and Model-driven development, respectively. WSMAI 2005 has received
fifteen papers; nine papers were accepted for regular oral presentation and
three papers were accepted as posters. MDEIS 2005 has received ten
papers; five papers were accepted for regular oral presentation and three
papers were accepted as posters.

We would like to take this opportunity to thank the people who have
contributed to WSMAI 2005 and MDEIS 2005. We would like to thank
the members of the WSMAI 2005 and MDEIS 2005 Program
Committees for the terrific job they did in evaluating papers and the
authors for their paper contributions in shaping the final programs.
Finally, special thanks to Joachim Filipe and Vitor Pedrosa for their hard
work in making the workshops and this volume possible.

We wish you an exciting, fruitful workshop, and an unforgettable stay in
the lovely city of Miami.

Workshop Chairs – WSMDEIS 2005

Savitri Bevinakoppa
Royal Melbourne Institute of Technology,
Australia

iv

Luís Ferreira Pires
CTIT, University of Twente,
The Netherlands

Slimane Hammoudi
ESEO, Angers ,
France

v

Workshop Chairs

Savitri Bevinakoppa
Royal Melbourne Institute of Technology,
Australia

Luís Ferreira Pires
CTIT, University of Twente,
The Netherlands

and

Slimane Hammoudi
ESEO, Angers ,
France

Program Committee

Jen-Yao Chung, (IBM, USA)
Alex Delis, (Polytec University, NY, USA)
Jiankun Hu (RMIT University, Australia)
Steve Vinoski (IONA, USA)
Albert Y. Zomaya, (CISCO, USYD , Australia)
MarianoBelaunde (France Telecom, France)
Bernard Coulette (GRIMM, Université de Toulouse, France)
Philippe Desfray (Softteam, France)
Marlon Dumas (QUT University, Australia)
Anastasius Gavras (Eurescom, Germany)
Sune Jacobson (Telenor, Norway)
Santosh Kumaran (IBM, USA)
Jean Louis Sourrouille (INSA , Université de Lyon, FRANCE)
Andreas Tolk(VMASC, USA)
Antonio Vallecillo (ESTI, Universidad de Malaga, SPAIN)
Marten van Sinderen (University of Twente, Netherland)

vi

Table of Contents

Foreword... iii

Table of Contents .. v

Full Papers

An XML-based system for configuration management of
telecommunications networks using web-services............................ 3
Adnan Umar, James J. Sluss Jr. and Pramode K. Verma

Prototype of Platform Independent Editor Using Unified Modeling
Language ... 11
Challapalli Venkata Vijay Chaitanya and Koduganti Venkata
Rao

Service Oriented Model Driven Architecture for Dynamic Workflow
Changes ... 17
Leo Pudhota and Elizabeth Chang

Design and Prototyping of Web Service Security on J2ME based
Mobile Phones.. 28
Ti-Shiang Wang

Generating Code for Mapping UML Associations Into C#................... 38
Iraky H. Khalifa, Ebada A. Sarhan and Magdy S. A. Mahmoud

Architecture for an Autonomic Web Services Environment.................. 53
Wenhu Tian, Farhana Zulkernine, Jared Zebedee, Wendy Powley
and Pat Martin

Extending UDDI with Recommendations: An Association Analysis
Approach... 66
Andrea Powles and Shonali Krishnaswamy

vii

Ontology Based Model Transformation Infrastructure 76
Arda Goknil and N. Yasemin Topaloglu

Evaluation of the Proposed QVTMerge Language for Model
Transformations... 86
Roy Grønmo, Mariano Belaunde, Jan Øyvind Aagedal, Klaus-D.
Engel, Madeleine Faugere and Ida Solheim

Architectural Framework for Web Services Authorization 96
Sarath Indrakanti, Vijay Varadharajan and Michael Hitchens

Towards a formalization of model conformance in Model Driven
Engineering... 106
Thanh-Hà Pham, Mariano Belaunde and Jean Bézivin

Dependencies between Models in the Model-driven Design of
Distributed Applications... 116
João Paulo A. Almeida, Luís Ferreira Pires and Marten van
Sinderen

From Mapping Specification to Model Transformation in MDA:
Conceptualization and Prototyping... 131
Slimane Hammoudi and Denivaldo Lopes

A Formal Semantics for the Business Process Execution Language
for Web Services .. 143
Roozbeh Farahbod, Uwe Glässer and Mona Vajihollahi

Posters

XML Schema-driven Generation of Architecture Components 157
Ali El bekai and Nick Rossiter

Steering Model-Driven Development of Enterprise Information
System through Responsibilities .. 163
Ming-Jen Huang and Takuya Katayama

viii

A Model-based approach to Managing Enterprise Information
Systems .. 169
Robert France, Roger Burkhart and Charmaine DeLisser

Author Index .. 179

Papers

2

An XML-Based System for Configuration Management
of Telecommunications Networks Using Web-Services

Adnan Umar, James J. Sluss Jr. and Pramode K. Verma

The University of Oklahoma,
4502 E. 41st Street, Building 4, Room 4403

Tulsa, Oklahoma 74135, USA
{umar,sluss,pverma)@ou.edu

Abstract. As the utilization and the application base of the Internet grows, the
need for an improved network management system becomes increasing
apparent. It is generally accepted that SNMP is not capable of tackling the
arising network management requirements and needs to be replaced. Also,
configuration management has been identified as one of the most desired
network management functionality. Recent research publications suggest a
growing interest in replacing SNMP by a Web Services (XML)-based network
management solution. In this paper we present our methodology and design of
our complete XML-based network management system developed with the
specific aim of performing configuration management. [1], [2]

1 Introduction

As the utilization and the application base of the internet grows, the need for an
improved management system becomes increasingly apparent. The management of
the Internet is traditionally based on the framework of SNMP. The SNMP was
designed almost fifteen years ago to address the network management needs of that
time. Back then, the networking environment was very different. The primary goals of
SNMP were to perform device-level management, be extensible, and efficient in
using communication and processing resources. Today, advances in technology have
dramatically changed the networking environment. This dramatic change has altered
the management requirements significantly. Scarcity of bandwidth and processing
power is no longer an issue and heterogeneous networks are commonplace.
Configuration management has been identified as the most desired management
functionality. Inadequacies of SNMP and the need for a new management technology
have also been brought to light. The two prime candidate technologies for the
development of a new management system appear to be XML and Java. Currently
many companies and standards bodies are working on developing an XML-based
network management system. To study the use of XML in network management
system within the wider research community, there needs to be a design and open-
source implementation that would facilitate research. In this paper, we present our
methodology and design of our complete XML based network management system
developed with the specific aim studying configuration management. To the best of
our knowledge, no such effort is being undertaken at this time [1], [2], [3], [4].

2 Methodology

The task of developing an XML based system includes specifying design
requirements, choosing the appropriate XML technologies, and testing the XML
design using generic software tools. This task can become very challenging since the
XML technologies are constantly changing and the software tools are often playing
catch-up. For this reason we have adopted a methodology with which we can organize
our design process. Our methodology consists of three activities. An ‘activity’ can be
defined as the process of taking iterative-steps to accomplish a task. First, we
decompose our management problem into functions and map these functions to XML
technologies. Second, using the results of our first activity, we piece together our
XML design. Third, we test our design by implementing a subset of it using generic
tools.

3 Network Management Functions

Our first activity in designing the management system was to identify the major
functions and map them to the appropriate XML technology. We have identified the
following functions that we believe an XML based network management system
using Web Services requires. This approach allows us to keep track of the evolving
XML technologies and facilitates the implementation process. The guideline we
followed for mapping the network management functions and XML technology is
that, they should be closely aligned such that only generic tools are required for
implementation. That is to say, if implemented correctly using generic XML tools,
our design should perform the required configuration management task. These
network management functions and their respective XML technologies are listed
below:

• Defining structure of management information (XML Schema [9],
[10], [11]). The ability of representing a very large variety of information
in a homogeneous fashion is crucial to success of a management system.
This function can be performed by the XML Schema technology. XML
Schema is an XML language that is capable of defining the structure of a
XML document. That is, it specifies which tags are permitted and in
which nesting order, and constrains on the number of occurrences of a
particular tag, etc. A tag can be made optional or required and the value’s
data-type can be declared. Another impressive feature of XML Schema is
its ability to validate a XML document. This feature can be used to reduce
code complexity by catching erroneous XML documents, that do not
match the defined tag-value structure, before they get passed on to the
application.

• Handling the management data (XML Document [6]). All information
needs to be represented in a form that allows information to be accessed,
modified, searched, and retrieved. This function can be performed by
XML documents. These documents will be based on a XML Schema that
defines its structure and the way information should be represented and

4

can be validated against it. XML documents are also a convenient way for
storing information.

• Navigating in the management documents (XPath [7] and XPointer
[18]). In an XML based management system, all information exists in the
form of XML documents. The number, size and complexity of these
documents can get rather large. Therefore, a function is required that is
capable of navigating through a maze of XML documents. The XML
community has addressed this issue by developing two specification
called XPath and XPointer. XPath is a recommendation that defines how
nodes within an XML documents can be accessed by forming an
expression. These expressions play a major role in other XML standards,
such as, XSLT and XQuery. XPointer is built on XPath and includes URI
addressing making it possible to address fragments of an XML file.

• Providing an interface between XML document and management
applications (DOM [12] and SAX APIs). In any XML based system
there is a need for an interface between XML documents and the
application. Although applications can treat the XML documents as a text
document and use their own parsing scheme, it is much better to use a
standard parser. Currently there are two popular XML interfacing
standard parsers: SAX and DOM.
 SAX (Simple API for XML) is a joint development of the members of
the XML-DEV mailing list. SAX is very simple, easy to learn, and not
demanding on resource such as memory. Various SAX parsers are
available for Java, C++, Python, Perl and Delphi.
 DOM (Document Object Model) is a complete interface to an XML
document. Using DOM applications can parse, retrieve, add, modify, and
delete sections of the XML documents. Since DOM stores the entire XML
document in memory, it can be very intensive on resources. Popular
implementations for DOM are MSXML from Microsoft for Windows and
Apache Soft ware Foundation’s Xerces that exists in Java and C++.

• Changing format of XML documents (XSLT [8]). An important issue
for XML in general is document transformation. Often information stored
in XML documents is formatted for the purpose of storage. To make the
information useful, often re-formatting is required. For his purpose XML
community has developed XSLT. XSLT is a powerful technology capable
of transforming one document into another document with a different
format. Several implementation tools for XSLT are available for various
platforms, such as, Java, C++, and Perl.

• Describing the management interface (WSDL [13]). Since we are
employing Web Services we cannot avoid the use of WSDL (Web
Services Description Language). WSDL is an XML language that
describes a web service. WSDL compilers are used to generate executable
code and are available for various platforms and programming languages.
 SNMP systems handle this function by providing MIBs can be used by
the MIB compilers. Data can by accessed by SNMP functions such as
Get, GetNext, and Set.

5

• Transporting parts of or entire XML documents (SOAP [14], [15],
[16]). This function is responsible for providing the means for
communication. We require this means of communication to be capable
of using any transportation protocol. We can map this function to the
XML standard called SOAP. SOAP is one of the Web Services standards
developed for exchange of information. SOAP is not tied to any transport
protocol and can use SMTP, FTP, etc. However, HTTP is the most
popular transportation protocol used by SOAP.

4 Design

The second activity in our methodology is creating a design. This design is realized
by using the results of the first activity. The proposed design (Fig. 1) creates a system
of XML documents that are capable of representing all desired management
functions. These documents can be implemented on any OS using any of the large
number of software available for XML. Currently, XML programming tools are
available for all major software platforms including .NET, COM, C/C++, and Java.
Furthermore, XML can also be implemented using scripting languages such as, PHP,
Cold Fusion, Perl, Python and Tcl. For every design there needs to be a set of
requirements that are to be fulfilled. We are using the list of requirement mentioned in
[1]. Following is the list of requirement and an explanation on how our design fulfills
them:

• Maintaining a clear distinction between configuration and
operational data. In our design we maintain a clear distinction between
configuration and operational data by keeping them in separate XML
documents. Both can have their respective XML Schema document to
help validate the XML documents containing the data. It also appears
desirable to handle the two separately in management application as well.

• Providing functionality to download and upload a small part or entire
configuration files. Our design is capable of transporting XML
documents by using SOAP between the network manager and network
device. These XML documents can be a small part of or entire
configuration file. Operational information is also to be passed using this
mechanism.

• Ensuring that configuration data is kept in text format for
interoperability. Everything in XML is kept in a text format. Therefore,
this requirement is met inherently by using the XML technology.

• Enabling the devices to hold multiple configurations, one of which
can be active at any given time. If one configuration can be stored in one
XML document, then by having multiple XML files multiple
configurations can be kept in one device. To have only one active
however, appropriate functions need to be implemented at the application
level.

6

Network Manager

Network Device

Tr
an

sp
or

t P
ro

to
co

l

XML
Schema

XML
Doc

XML
Doc

SOAP

XML
Doc

SOAP

WSDL

XML
Schema

Network Config Data

Device Operational Data

XML
Docu
ment

XML
Docu
ment

XML
Doc

XML
Schema

Device Config Data

XML
Docu
ment

XML
Docu
ment

XML
Doc

Network Management
Application

Web-Services Client

Network Device Mgt Application

Web-Services Server

DOM / SAX APIs

DOM / SAX APIs

XML
Schema

Fig. 1. Proposed XML-Based system for configuration management using web-services

• Providing a simplified mechanism for coordinated activation of
configuration taking into account loss of connectivity during a
management transaction. A simplified mechanism for coordinating
activation of configuration will need to be handled at the application level.
In our design SOAP provides the connectivity and the application can
benefit from its functionality.

• Being easy to use and cost effective. Ease of use and cost effective
requirement is met inherently by using XML. Unlike SNMP, XML is a
generic technology which makes XML tools, open-source software, and
developers with XML expertise much easier to find and is cost effective.

5 Testing

Testing of the XML design is the third activity in our methodology. In this section we
show how we tested our XML design. The main objective of this activity is to verify
that our design can be implemented using generic tools. We did this verification by
implementing a subset of our design that included all the functions that we identified

7

in our first activity. In our implementation we are using Jakarta Apache Tomcat [20]
and Apache Axis [19] as the web-server and SOAP engine respectively. The
challenge we face is that Apache Axis’s does not fully support all the features of web
services and supported features are often difficult to implement. For these reasons we
follow the technique suggest in [5] (Fig. 2). By adopting this technique we can easily
achieve document/literal style SOAP encoding and XML Schema validation support
by only performing a few steps. This technique demonstrates how Castor [22] can be
used in conjunction with Apache Axis to easily implement any web-service. We
tested our network management web-service using XML Spy [23] by placing a
sample XML document with sample configuration data. JDOM [21] was used to
access the XML document. The steps of the implementation can be found in [5].
 Some problems however, still remain. Notification operation is not supported by
Apache Axis’s WSDL2Java tool. Furthermore, it is not entirely clear how web-
services handle the notification operation, since there are no clear guidelines on how a
client can register itself with the server. A custom solution can be developed, but will
lead to interoperability issues. We believe that these issues will be resolved by the
XML community in the near future.

Network Manager

Network Device

H
TT

P

XML
Doc

XML
Doc

SOAP

XML
Doc

SOAP

WSDL

 Sample Data

Web-Services Client (XML Spy)

XML
Schema

Web Service Server (Jakarta Apache Tomcat)

SOAP Engine (Apache AXIS)

XML Schema Tool (Castor)
WSDL

2
Java

Castor
Compiler

Application

Fig. 2. Prototype and testing setup

8

6 Conclusion and future work

In this paper we have presented our methodology and design of our XML-based
network management system using web services. This methodology and design is
intended to provide a framework which will enable us to study configuration
management problems using XML based management system in great detail. Future
work currently underway entails an open source implementation of our design. This
implementation is intended to be a tool for research related to configuration
management.

Acknowledgements

Authors would like to acknowledge Keith Allen, Weijing Chen, and Will Chorley of
SBC Labs for providing an opportunity to work with the XML technology in network
management.

References

1. Jürgen Schönwälder, Akio Pras, Jean-Philippe Martin-Flatin, “On the Future of Internet
Management Technologies,” IEEE Communication Magazine, October 2003

2. L. Sanchez, K. McCloghrio, and J. Saperia, “Requirements for Configuration Management
of IP-based Networks,” RFC 3139, June 2001

3. Jae-Oh Lee, “Enabling Network Management Using Java Technologies,” IEEE
Communication Magazine, January 2000

4. Frank Strauβ, Torsten Klie, “Towards XML Oriented Integrated Network Management,”
2003. IFIP/IEEE Eighth International Symposium, March 2003

5. Kevin Gibbs, Brian D Goodman, and Elias Torres, “Create Web Services using Apache
Axis and Castor,” IBM developersWorks, http://www-136.ibm.com/developerworks/

6. T. Bary, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language
(XML) 1.0 (Second Edition). W3C Recommendation, October 2000

7. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation,
Inso Corp. and Brown University, November 1999

8. J. Clark. XSL Transformation (XSLT) Version 1.0. W3C Recommendation, November
1999

9. David C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, IBM, May 2001
10. Henry. S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn, XML

Schema Part 1: Structures, W3C Recommendation. University of Edinburgh, Oracle
Corporation, Commerce One, Lotus Development Corporation. May 2001

11. Paul V. Biron and Ashok Malhotra. XML Schema Part 1: Datatypes. Kaiser Permanente,
Microsoft. May 2001

12. L. Wood, et al. Document Object Model (DOM) Level 1 Specification. W3C
Recommendation, SoftQuad, October 1998

13. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. W3C Note, Microsoft, IBM, March 2001

14. Nilo Mitra. SOAP Version 1.2 Part 0 : Primer. W3C Recommendation, Ericsson, June 2003

9

15. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik F.
Nielsen. SOAP Version 1.2 Part 1: Messaging Framework. Microsoft, Sun Microsystems,
IBM, Canon. W3C Recommendation. June 2003

16. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik F.
Nielsen. SOAP Version 1.2 Part 2: Adjuncts. Microsoft, Sun Microsystems, IBM, Canon.
W3C Recommendation. June 2003

17. Hugo Haas, Oisin Hurley, Anish Karmarkar, Jeff Mischkinsky, Mark Jones, Lynne
Thompson, Richard Martin. SOAP Version 1.2 Specification Assertion and Test Collection.
W3C, IONA Technologies, Oracle Corp. AT&T, Unisys, Active Data Exchange.W3C
Recommendation June 2003

18. Steve DeRose, Ron Daniel Jr, Eve Maler, Jonathan Marsh, Norman Walsh. XML Pointer
Language (XPointer). Brown University, Interwoven, Arbortext Inc, Sun Microsystems,
Microsoft. August 2002

19. Apache Axis, Apache Software Foundation. http://ws.apache.org
20. Jakarta Apache Tomcat, Apache Software Foundation. http://jakarta.apache.org/tomcat
21. JDOM, http://www.jdom.org
22. Castor, http://www.exolab.org
23. XML Spy, Altova, http://www.xmlspy.com

10

Prototype of Platform Independent Editor Using Unified
Modeling Language

Challapalli Venkata Vijay Chaitanya1 and Koduganti Venkata Rao2

1III/IV Computer Science and Information Technology
1 chaitanya_vijay@rediffmail.com

2 vrkoduganti@co.uk
1,2 Gayatri Vidya Parishad College Of Engineering,

Accredited by National Board of Accreditation,
Affiliated to Jawaharlal Nehru Technological University,

Madhurawada, Visakhapatnam,
Andhra Pradesh, India. Pin – 530041

Abstract: This paper describes a prototype of Editor. This prototype deals
with web-based technology and occupies diminutive amount of space, which
enables a team of users to work simultaneously on different systems with the
same Editor. This has the capability of running in the server and client system
independently. More over this Editor have achieved the goal of platform
independency and it has it’s own capabilities to run on different platforms.
Along with these features this also have the feature to send messages to the
server from the client.
To enable concurrent access and platform independency the editor uses some of
the concepts of JVM, html, UML, and scripting languages. These features are
used to facilitate editing and operating. With the help of JVM the messages are
being sent to the server from the client.

1 Introduction

Operating systems play a major role in computing. Every operating system has its
own advantages and disadvantages. But it is not fair to restrict a computer intellectual
to a particular operating system, since the trend in the technology always varies from
time to time. With the improving technology one cannot survive by having
knowledge of only one operating system. But as the operating system changes it is
becoming more and more difficult for a particular individual to have an idea of all the
applications present in the operating system. Hence if the applications are made in
such a way that they are platform independent then one can easily handle those
applications and execute them to have their corresponding results. Here it decreases
the necessity to remembering the name of the same application in different operating
systems. Hence it is now required to have an application or software that can be run
on any platform. More over it would be more useful if the same application has the
features of forwarding the messages to the server from the client so that the server-
client relationship can also be achieved through the same application.

The prototype described in this paper packs all the above features and helps the
user to operate on any platform with the same application. This application mainly

deals with the text and the graphics modes (formats) of operation and has the
capability of handling the text files and the graphic files.

Text files are handled in this editor using the concepts of html and scripting
languages and these can be stored in the client system.

Graphics files are typically handles in the system. These files are handled using
the concepts of JVM and html.

UML plays a major role in the design issue and every part of the system is
designed in the UML and the diagrams in the UML play a key role in the design issue
of the entire prototype.

2 Example Scenarios

2.1 Example 1

The editor in the DOS operating system is restricted only to that of the DOS and this can be
opened by the command “EDIT”. As this opens, one can type the corresponding file and can
store it. This editor has it’s own advantages and disadvantages. The main disadvantage of this
editor is that it cannot handle the image files. This command individually occupies a total
space of 80692 bytes.

2.2 Example 1:

The editor in the WINDOWS operating system is “Notepad”. This also acts in the similar
fashion to that of the general dos editor have almost the same options. For image files one has
to open the “Paint” in windows and continue with his work. One cannot have the concurrent
access of Notepad and Paint from the same application and they as a whole occupies a disk
space of 73,728 bytes.

3 System Overview

As mentioned above the Editor described in this paper is completely web-based and
browser running Editor. This Editor is a composite of both text mode of input and
graphic mode of input. The Editor is likely to start at a page where the user is given a
choice to choose whether he wants to go for the text mode of input or the graphic
mode of input.

With in the project each user is given permissions to
• Create a new file
• Edit the files
• Change the colors of the background
• Add figures to the files.

12

The original user deals with the file use case. Here he opens a new file and has

permissions to input the text or to draw the figures. The edit use case helps him to
edit the contents of the file and the colors use case helps him to add colors to the total
project and the help use case to provide necessary help to the user. The user can
directly interact with the graphics editor package, which provides all the above-
mentioned use cases and can draw the required figures or to input the required text for
him.

The general architecture or the class diagram of the above mentioned graphics
editor have the corresponding operations to handle the files and their objects. Here
the class diagram consists of the methods such as open, close, save, save as, exit for
the classes such as file, edit, etc., This diagram mainly deals with the major operations
of the file handling and achieves the total concept of the project.

The major design issue lies in the sequence, which the total editor follows. Here

the total sequence is to be taken care of and have the capability of representing the
total diagram in the single sequence diagram. Our editor directly opens through any
platform and has the capability to ask the user about the operation he wants to use and
the mode in which he wants to enter the editor. Here he is given a chance to select the
options. Since the complete user interface is designed in html the user even without
having a minimum knowledge of the computer can also easily access the complete
system. Then he can select the respective option and can follow the mentioned
respective operations on the screen and can easily handle the complete software. The

13

sequence diagram is as shown in the figure and user can directly handle the respective
operations and can achieve the result.

The design issue also lies in the collaboration diagram where one can view the

total concept in the top-down approach and he can realize the total concept laid inside
it and the path through which the messages take the choice, which the user opts. Here
the objects of the same category lie in the same swim lane and this helps the user to
identify easily where the object belong to the which category and he can come to a
final understanding where he can directly interact with the system more easily and
conveniently and effectively. The more the user gets into the details of the system the
more he can adjust with it.

4 Discussion

Although the development of the prototype presented here is still going on it would be
useful to review the benefits and the limitations of the Editor.

14

4.1 Benefits

This Editor has its unique benefits, which are not present in the other editors.
This is completely a web-based editor and hence all the benefits that are provided

in the browser can be directly used in the editor with out any limitations.
This provides a chance to use the editor and the Internet at one instance of time

since this is completely a browser-based editor.
This has the capability of forwarding the messages (graphical) to the server

directly (only when the net is connected) through this editor and hence message
passing becomes so easy.

Since the Editor is completely designed using the html and JVM, bagged up all the
features of both of these, this have the capability of running in any operating system
with out the intervention of the operating system.

The major benefit in this is that the operating system (i.e., on which it is running)
only provides maximum options to it and hence the designer of the system does not
have to spend more time in providing all the options to it.

This provides the most user friendly nature and this can be operated by any user
who do not have that much knowledge about the computer as well as the operating
system especially.

4.2 Limitations

Because of the editor is designed completely in the browser there are certain
limitations to it.

We have first designed a prototype so that the original project time decreases and
the prototype can increase the understandability of the user.

Since our Editor is a web based editor we cannot have the page numbers and other
additional features with cannot be available in the browser.

Present system saves the text files only in the .txt extension.
It is limited only to create graphics files and is not capable of modifying the

already created files, which are present in the system.
Since we have used the concept of applets in JVM, it is not capable of saving the

file in the local machine.

15

This system does not support any paragraph counting, word counting and spell
checking functions.

This is the complete overview of the system and this system has it own benefits
and the limitations and more over there is so much to enhance in this system. The
future enhancements are discusses below.

5 Conclusions and Future Works

Having implemented this prototype of a Editor which deals with the text and the
graphics formats we are confident that this achieves some of the major goals of the
present trend such as platform independency, less space utilization on the disk, more
reliability, more user friendly and combined features of several applications. We can
also have a look to the future works.

It is planned to implement the complete features of the WORD such as formatting,
macros, tables, etc., in the Editor, which helps the user to edit his text completely.

An import function helps in importing the graphics file and helps in manipulating
the contents of the graphics file. This can help the user more and the usage of the
system improves.

Last but not the least: It is important to integrate these systems into the daily
teaching and research practices to gain more experience and more impulses for the
further developments. It should become a general practice to use these systems in the
daily life to improve more and more.

References

1. The Unified Language User Guide by Grady Booch, James Rumbaugh and Ivar Jacobson
2. Real Time UML by Bruce Powel Duglass
3. Analysis Patterns by Martin Fowler
4. Surviving Object-Oriented Projects
5. Object Solutions by Grady Booch
6. UML Distilled by Martin Fowler
7. Software Reuse by Ivar Jacobson
8. The Unified Software Development Process by Ivar Jacobson
9. Visual Modeling with Rational Rose and UML by Addison-Wesley Object Technology

Series
10. Software Project Management by Walker Royce
11. The Unified Model Reference Manual by James Rumbaugh
12. Applying Use Cases by Geri Schneider
13. The Object Constraint Language by Jos Warmer
14. Enterprise Computing with Objects by Yen-Ping Shan
15. http://user-mode-linux.sourceforge.net
16. http://www,onesmartclick.com
17. http://www.tigris.org
18. http://hotscripts.com

16

Service Oriented Model Driven Architecture for Dynamic
Workflow Changes

Leo Pudhota, Elizabeth Chang

School of Information Systems, Curtin University of Technology,
 PO Box U1987, Perth WA 6845, Australia

{PudhotaL,ChangE}@cbs.curtin.edu.au

Abstract: Collaborative workflow management systems in logistic companies
require strong information systems and computer support. These IT integration
requirements have expanded considerably with the advent of e-business;
utilizing web services for B2B (Business to Business) and P2P (Partner to
Partner) e-commerce. This paper proposes service oriented model driven
architecture for dynamic workflow changes and strategy for implementation
of these changes by isolation of services and business processes where by
existing workflow systems can easily incorporate and integrate the changes
following a step by step process replacement synchronization in workflow. This
paper describes conceptual framework for prototype implementation resulting
in dynamic collaborative workflow management.

1 Introduction

In this paper we discuss the design of workflow management system for dynamic
business processes of large logistic consortia. Often we see that the business processes
are composed of several parts, a structured operational part and an unstructured
operational part, or they could be composed of semi-structured parts with some given
and some unknown details. Unpredictable situations may occur as a result of changes
in decisions made by the management. The inability to deal with various changes
greatly limits the applicability of workflow systems in real industrial and commercial
operations. This situation raises problems in workflow design and workflow systems
development. We propose workflow implementation through service oriented
architecture and system isolation for making changes to the existing workflow.

 2 Dynamism In Collaborative Workflow

The advent of the web is to bind organizations together, for carrying out sales over
great distances and at any time has created new modes for marketing and enabled
partnerships, previously inconceivable within a wide array of businesses, as well as
other human activities [1]. This IT support has expanded with the advent of e-
commerce. However, with this advancement of B2B (Business to Business) and P2P
(Partner to Partner) e-commerce [6], there has been an increasing tendency to set up

consortia that represent several players in a given field. Such consortia consist of
companies or organizations in a given field that get together and produce a single site
or what appears to be single site in order to increase traffic through the site compared
to other competitor’s sites and/or extend beyond their region of operation,
Collaborative workflow management systems of a business sector like logistics
consortium with multi-users and very dynamic environments will have: workflow
specification, workflow execution, workflow evolution, workflow auditing,
transaction management, workflow recovery, workflow interaction (for cooperative
work), and others. The specification of a workflow consists of three items: Process,
Data, Invocation. Changes in a workflow may be an every-day routine in a working
environment. Such changes are of three types: Modification: new workflow has same
objective but different logic and replaces old one. Versioning: as before but new
workflow does not replace old one, but co-exists with it. Extension: new workflow
has different objective and therefore additional logic and replaces old one.

In addition, some environments require dynamic rather than static workflow
evolution, i.e., changing one part of the workflow while another part is running.

3 Web Services For Collaborative Logistic Workflow

A Consortium consists of many departments; generally there are six operational
divisions: Management Department, Warehouse Department, Logistic Department,
Accounts Department, Customer Service Department and Transport Department.
Each department has its own responsibility. However they are connected to each
other. Warehouse Department now already has its own system, so does Accounts
Department. The complexity of works become bigger and bigger when the customer’s
order increase. It is hard to know the progress of the orders and warehouse check. It is
also difficult to schedule the trucks, manpower, etc. Consortium likes to change its
internal work (flow of works among department) and its external work (flow of works
with its customers and other collaborative organizations). Consortium would like to
integrate various departments, and also with other logistic network companies in its
consortium. Consortium also wants its customers to be able to book warehouse
service, logistic service, place orders and view the status of orders, etc on the internet.
This is more like e-commerce way [3]. Here sellers are logistics providers, buyers are
customers and web services brokers are web services integrators, Consortium is
interlinked through internet and services are provided by web services. The basic
premise behind Web Services is that a piece of code is made available to remote
machines, using specific protocols, over the Internet. The Service part of Web
Services relates to the idea of providing access to functionality without having to
download or install the code, and the Web part refers to the means through which the
functionality is accessed [19]. The three component standards of Web Services are the
Simple Object Access Protocol (SOAP), Universal Description, Discovery and
Integration (UDDI), and Web Services Description Language (WSDL) [19].

18

4 Issues Of Dynamism In Collaborative Workflow

Activities and artefacts do not quite constitute a process. We need a way to describe
meaningful sequences of activities that produce some valuable result, and to show
interactions between processes. Changes in collaborative workflow have to be
incorporated into the integrated enterprise system. [8, 9, 10, 11].

In this paper we are concentrating on, 1. Design and Implementation of integrating
solution for adaptation of changes in the new workflow into an already existing
workflow. 2. Synchronization of new workflow to existing workflow. Other issues
like Management of data scattered over multiple origin systems/legacy systems, for
example, a company will have consolidate data in one logical view with a unified
architecture, thereby enabling data-source independence. Because application data
continues to live and change in the origin systems, the new software layer must be
able to retrieve origin data on the fly and also propagate changes back to the origin
systems [17]. Provide support for transactions/interaction across multiple back-end
systems. These issues will help in having a uniform data processing environment for
the whole enterprise, which would lead to changes and improvements in customer
services, control of receivables and increase efficiency in communication, sales,
marketing as well as minimization of warehouse stocks, streamlining inventory and
logistics flows. Provide control to Consortium management to monitor the
collaborative enterprise’s condition, its stock, order and its general financial condition
on a routine basis, This is indispensable to the management processes and enhances
decision-making and changes which need to be taken on the short term and long term
bases for the consortium to compete in the global market.

5 Service Oriented Framework To Support Backend
Collaborative Workflow

In this paper we present a service oriented framework for collaborative logistic
companies. The framework is divided in 3 sections 1. Business web services layer. 2.
Services communication layer and 3. Process and transaction layer. In Business web
services layer browsers interact with HTTP servers in their normal way taking
advantage of any technologies that enhance this browser-to-web server link [7].
Enterprise model framework shown in figure 1, balances across one or more
application server processes (also called instances) running on one or more machines.
Once running, Enterprise service framework instances do not go away between user
requests; they maintain themselves, their session’s state for users, and their database
connections. They are efficient, fast, and by definition redundant. It's the job of the
HTTP server adaptor to communicate with a given HTTP server and forward requests
to one or more application "instances" - an instance is a separate copy of a given
application process. Enterprise services framework serving a few users may have only
one instance.

A large application may have tens or hundreds of instances running on one or
more machines. If an application has more than one instance, the Services controller
is essentially acting as load balancing agent. If an instance fails, it only affects that

19

particular instance – all other instances and/or the site's web server is unaffected. The
controller will forward requests over the network as easily as it will forward requests
to applications running on the same box as the HTTP server. In fact, from a load
sharing perspective, it is ideal for the HTTP server and Application servers to reside
on separate boxes, since applications are server based, database access happens
behind the firewall. Browsers need never make direct connections to a database
server. Services access controls database connections so that they are highly secure
(only accessible via actual application API), and conserved (that is, you never have

S E R V I C E S I N T E R F A C E

S E R V I C E S C O N T R O L E R

S E R V I C E S A C C E S S

P R O C E S S A N D T R A N S A C T I O N L A Y E R

S E R V I C E S C O M M U N I C A T I O N L A Y E R

1 2 3 4 5 6

B U S I N E S S W E B S E R V I C E S L A Y E R

Fig. 1. Enterprise model Frame work

more than one connection per service unless this is specifically something the
developers insist regardless of the number of users it supports). Process and
Transaction layer works on underlying java foundation containing fundamental data
structure, implementations and utilities used. we see each department has its own
responsibility; however they are connected to each other. In a collaborative context,
communication may have to be coordinated not only with in the organizations but
also across organizations. Therefore a consortium may require synchronized
coordination of activities of inter and intra organizational departments. This
Conceptual Model provides an architectural separation of business functionality from
technology implementation. This separation allows designers to use business rules
defined in a UML model to drive two distinct steps in implementing such systems.

Step1. Create platform independent models in UML. The first model is a generic
domain model, used to build a common understanding and vocabulary among
warehouse Logistics domain experts. Step2. The domain model is then mapped into a
representing warehouse logistic business. Each of the models includes a detailed set
of UML Class Diagrams, Use Cases and associated Activity Diagrams describing the
system [12].

20

6 Conceptual Model Of Services Communication, Process And
Transaction Layer

This logical architecture of the web services frameworks is a programming building
blocks of the largest granularity. Web services Frameworks is responsible in
providing application’s user interface and state management. Since applications are
server based, database access happens behind the firewall. Browsers need never make
direct connections to a database server. Services access controls database connections
so that they are highly secure (only accessible via actual application API), and
conserved (that is, you never have more than one connection per instance regardless
of the number of users supported - unless this is specifically something the developers
desire). Designers can use business rules as defined in previous section to define in
UML model. Using this business model, we can create one or more subsystems to
represent the logical functions of each of the enterprise systems. This business model
contains both the details of the business logic, as well as the mapping of the logic into
the major subsystems. The business model forms the basis for managing all changes
to the current systems. And the next step is System Integration using Conceptual
Model of Platform Specific Models (PSM’s), for each of individual systems to form
enterprise system [12]. These models were each derived from one or more subsystems
in the business model. System construction consists of customizing each of the
enterprise systems, and creating the business logic. Business logic that spanned
systems is constructed using components technology and deployed in the application
server also called web service brokers.
 S e r v ic e s

S u b - S e r v ic e s

W o r k f lo w P r o c e s s e s

S u b w o r k f lo w -P r o c e s s e s

O b je c ts

I s o la t io n
 S e r v i c e s

S u b - S e r v i c e s

W o r k f l o w

S u b
w o r k f l o w -
P r o c e s s e s

O b j e c t s

I n t e g r a t i o n

N e w s u b w o r k f l o w
Fig. 2. Isolation replacement and integration of new workflow

21

Process and transaction framework contains an underlying java Foundation made
of fundamental data structure implementations and utilities used throughout the rest of
Enterprise processes. Examples include arrays, dictionaries and formatting classes.
These processes provide RDBMS independence for services persistence, provides
object persistence transaction management, and provides services useful for web
based presentation and deployment. It also provides an environment to use and create
reusable components; it facilitates the use of true business objects in services oriented
framework and handles storing and restoring objects to a data store and usually in a
relational database. Since the business processes and objects created don't care about
the underlying database or how their values are presented in user interfaces, they may
be re-used over and over in any number of different web applications and can be
maintained by developers. Web services framework also provides a persistence layer
to maintain information at all time.As a single process can produce a huge workflow
map, the subworkflow layers allow the workflow to be broken down into more
manageable sections. This also allows modularisation of commonly used functions –
for example bulk notification activities rather than having them repeated throughout
the main map or even several workflows maps or systems. This also makes them
easier to manage and maintain. Sub workflow layer can be very useful to split your
main process into its constituent elements – in a large process there is likely to
produce a quicker initiation and processing. However, in some cases, the overhead of
moving from a ‘parent’ workflow into a ‘child’ sub workflow can be a lot higher than
the performance benefit of doing so, hence we need to plan the workflow carefully.
This type of architecture will help in bringing about main areas of changes like:
Services Layer changes like criteria determining field colouration or visibility or
edibility of a given field has changed, or a popup box is now required if some criteria
is met.
• Data Changes / Mass Updates like Value Added Tax calculations need to be
redone if VAT rate changes, customer name changes
• Business Logic changes like Logistic criteria changes, routing requirements
change.
• Patches / Bug Fixes that need to be applied to many active workflows

Fig 3. Implementation Framework

One approach is to suspend, correct and restart each workflow in sequence,
although for large numbers of workflows this would be very time consuming [18].

22

7 Frameworks For Services Components And Implementation

We propose use of a modular approach to software development for implementation
of this model, current advancement in technology has resulted in better quality,
reusability, productivity, and cost effectiveness. Changes to the system composition
and configuration are limited once the system has been compiled. In order to solve the
complexity and flexibility issues of large-scale software, We encapsulate business
logic in a workflow, and use component based middle layer called Services Monitor
and Repository which acts as a centralized server that contains all diagrams, reports,
forms, data structure, data definitions, process flows, logic, and definitions of
organizational and system components; it provides a set of mechanisms and structures
to achieve seamless data-to-tool and data-to-data integration, this middle ware
provides the link between Component Services and data store. This services monitor
and repository layer follows strict object oriented principles, it contains two major
parts, workflow control components and Business control components which contains
all the objects that execute the complex business rules. In data store large complex
workflow processes are broken down into smaller workflows and sub workflow layers
to be able to better manage and maintain each section. Some process activities may be
repeated throughout the main map or even several workflows maps or systems. This
allows modularization of commonly used functions and help in easy management by
Services Monitor described in detail below. Data store shown in Figure 2 aims to
eliminate latency by allowing multiple applications to access a single physical data
store directly. This architecture is suitable when applications and databases are
located in the same data centre; this approach is more intrusive because we usually
have to modify some applications to use a common schema. Reading data directly
from a database is generally harmless, but writing data directly into an application's
database risks corrupting the application's internal state.

Although transactional integrity mechanisms protect the database from corruption
through multiple concurrent updates, they cannot protect the database from the
insertion of bad data. In most cases, only a subset of data-related constraints is
implemented in the database itself. [20]. To avoid this we include Services Monitor
which is visual tool mapping software which is part of the services monitor and
repository layer, we use component technology for data management in order to
extract the underlying schema in the datastore which is also in the form of
components. Services monitor allows us to identify the workflow processes and sub
workflow processes and objects stored in the data source, which need to be isolated
and a new sub workflow which has to be integrated, it also helps to create, edit, or
delete existing data store objects dynamically when connected to the datastore. We
can interact with the server data store using datastore diagrams incorporated in the
service monitor. Datastore diagrams graphically represent the tables as of a normal
database. These tables display the columns they contain, the relationships between the
tables, and indexes and constraints attached to the tables. We can use data store
diagrams to: View the tables in your database and their relationships. Perform
complex operations to alter the physical structure of the database.

We can make changes freely in the datastore diagram without affecting the
underlying datastore. When we modify a datastore object through a datastore diagram,
the modifications made are not saved in the datastore until we save the table or the

23

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vdbref/html/dvovrvisualdatabasetoolsglossary.asp

datastore diagram, Visualize the structure of your database tables and their
relationships. Provide different visualizations of complex databases. Experiment with
database changes without modifying the underlying database. Create new tables,
indexes, relationships, and other constraints. Alter the structure of your database.
Thus, we can experiment with "what if” and various workflow scenarios and also
check if these changes made to the workflow can be integrated to the existing
workflow, using a datastore design without having to permanently affect its existing
design or data. During editing, we can experiment with different object definitions to
see if proposed modification will affect the datastore. When we complete these
modifications, we can either save our diagram/design or update the database to match
the diagram, or we can discard it leaving the underlying database unchanged.For
example [please refer to figure 4], you can create/view a database diagram for
customer services department that shows only tables that hold local delivery of goods
information. We can view workflow part of the process that shows only those tables
that are used in this specific workflow module, here we can make change to
Devanning process to replace Warehouse code with Warehouse type code and
Delivery docket with Delivery time. We can change the size, shape, and position of
objects in the diagram without affecting their definitions in the database. When we
save the datastore diagram, the layout of the diagram is preserved as well as any
changes made to the object definitions in the diagram are also saved.

U p v a n n in g

W e b -S e rv ic e s

C u s to m e r se rv ic e s

L o c a l D e liv e ry E x p o rt

D e v a n n in g

G o o d s typ e
P ic k u p sc h e d u le

D e liv e ry d o ck e t
W are h o u se c o d e

Fig. 4. Example of local delivery process

So as to keep the whole consortium process running we propose exclusive locking
mechanism; the locking level Performance and concurrency can also be affected by
the locking level used, Exclusive locks are exclusive to the user till the changes are
made without having to dissturb the overall workflow. Exclusive lock on a record
means that part of the process is denyed access, there by that part of the workflow is
isolated so that the required changes can be made only to that part of the process, one
may choose some objects or even all of the workflow or sub workflow tasks to be
associated with implicit invocation. determines the size of the process that is locked.
[21]. This framework is applicable to a diverse range of software Performance and
concurrency can also be affected by the locking level used, Exclusive locks are
exclusive to the user till the changes are made without having to dissturb the overall
workflow. Exclusive lock on a record means that part of the process is denyed access,
there by that part of the workflow is isolated so that the required changes can be made

24

only to that part of the process, one may choose some objects or even all of the
workflow or sub workflow tasks to be associated with implicit invocation. When
editing of table in a datastore diagram has been done, an asterisk (*) Example
Delivery time *, appears after the table name in the title bar to indicate that the table
contains changes to the workflow that have not yet been saved in the database. This
indicator appears as a result of a change made to the workflow objects in the
datastore, represented as a column or index, in the table of the diagram/ design. When
we add a modified table to another open diagram, the table appears there with its
unsaved changes and an asterisk in its title bar. When you save the table or the
diagram, the asterisk disappears.

Component Services Layer

User Data

Service tier Component

EventListData

InformationData
LocaldeliveryView

Service tier Component

Service tier Component

Service tier Component

Middleware RemoteServicesManager
EventListManager

DatabaseAccess

WorkflowControl
Manager

BusinessControl
Manager

dotcom

dotcom

dotcom

ServicesRepositoryComponentsLayer

data management

data management

data management

Fig. 5. Example of component design for our services

This reconfigurable plug and play object component-based framework [please
refer to figure 5] is used to specify collaborative software construction, customization,
integration and evolution through the reuse of context-independent objects where
composite architectures are hierarchically constructed from layered groups of
collaborating component plug-ins development environments.

For user interface web services layer browsers interact with HTTP servers in their
normal way taking advantage of any technologies that enhance this browser-to-web
server link. For example secure socket layer communication protocols in Netscape
and Microsoft browser/server products browsers communicate with HTTP servers,
which communicate with the Application Server. The Business web services layer
generates web application at run time, Services communication layer provides
application’s user interface, state management and provides an environment to use

25

and create reusable components [7]. business logic is separated using two tier
approach, web services are generated at runtime from metadata in the services
repository component layer, this middleware data describes the webservices and its
interaction with the underlying business logic components [22]. This procedure helps
us to have multiple user services configuration based on shared business and
workflow logic components.

8 Conclusion

In this paper, we have discussed service oriented architecture for dynamic workflow
systems. We have also discussed issues and frameworks, service oriented enterprises
systems and have come up with approach for dynamic adaptation of the changes to
the existing workflow. We propose implementation of such systems by the process of
isolation, integration and synchronization, our future research will be to implement
this plug and play software development methodology and come up with a working
prototype of our system.

References

1. Marshak, R.T 1994.: “Falling in Love with Distinctions”, In “New Tools for New Times:
The Workflow Paradigm”, Future Strategies Inc.,

2. Miers, D 1996: “The Workware Evaluation Framework”, Enix Limited,
3. Chang, E 2000: Requirement Specification of Logistic Manager for Software Engineering

Project, Department of Computer Science and Software Engineering, The University of
Newcastle,.

4. Haake, J.M., Wang, W. 2002: “Flexible Support for Business Processes: Extending
Cooperative Hypermedia with Process Support”.

5. Denning, P.J.,1994 “The fifteen level”, In Proceedings of ACM SIGMETRIC Conference
on Measurement & Modeling of Computer Systems.

6. Sheth A 1996..: “State-of-the-art and future directions”, In Proceedings of the NSF
Workshop on Workflow and Process Automation in Information Systems.

7. David Neumann, 2004. An Introduction to WebObjects. Retrieved:July30,from
http://.mactech.com/articles/mactech/Vol.13/13.05/WebObjectsOverview.

8. Pudhota L, Chang E. et al 2003,. International Journal, Computer Science, System and
Engineering, “Extension of Activity Diagrams for Flexible Business Workflow Modeling
“volume 18 no3 UK.

9. Pudhota L, Chang E 2004 “collaborative workflow management for logistics consortium”
ICEIS Porto, Portugal.

10. Pudhota L, Chang E 2004 “Modelling the Dynamic Relationships between Workflow
Components” ICEISl Porto, Portugal.

11. Pudhota L, Chang E, Venable J 2004 “E- Business technology adaptation through
workflow mining” MSV Las Vegas, Nevada, USA.

12. http://www.omg.org/mda/mda_files/UNextMDA4.pdf
13. Ulieru. M, Robert W. Brennan Scott S. 2000 “The holonic enterprise: a model for Internet-

enabled global manufacturing supply chain and workflow management”, Canada.
14. Ulieru. M, Stefanoiu. D, et al2000.. “Holonic metamorphic architecture for manufacturing”

University of Calgary, Calgary, Canada

26

http://.mactech.com/articles/mactech/Vol.13/13.05/WebObjectsOverview
http://www.omg.org/mda/mda_files/UNextMDA4.pdf

15. Brandenburger, A. M. and Nalebuff, B. J., 1996, Co-operation, Doubleday NY.Brennan, R.
2000, “Performance comparison and analysis of reactive and planning-control architectures
for manufacturing”, Robotics and Computer Manufacturing 16(2-3), pp. 191-200.

16. Christensen, J.H, 1994 “Holonic Manufacturing Systems: Initial Architecture Standards
Directions”, Proceedings of the First European conferenceManufacturing systems,
European HMS Consortium, Hanover, Germany.

17. http://www.journee.com/n_hl_020703b.html
18. Anastassia.A, Yannis E. et al 1998 “Scientific Workflow Management by Database

Management” book title = "Statistical and Scientific Database Management" pages = "190-
199",

19. Clark, M., Fletcher, P., et al 2002. Web Services Business Strategies and Architectures.
Expert Press.

20. Talevski, A., Chang, E., Dillon, T., 2003 “Overview of a Plug and Play Component-Based
Framework”, World Multiconference on Systemics, Cybernetics and Informatics, Orlando,
Florida, USA.

21. Maloney, J., “COM Reality Tour”, Microsoft Cooperation. On-line at:
http://www.microsoft.com/com/ August 1997

22. T. Andrews, F. Curbera etc.: Business Process Execution Language for Web Services
Version 1.1. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, May
2003.

27

http://www.journee.com/n_hl_020703b.html

Design and Prototyping of Web Service Security on
J2ME based Mobile Phones

Ti-Shiang Wang

Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA.

ti-shiang.wang@nokia.com

Abstract: One of the main objectives in this paper is to investigate how to ma-
nipulate the Simple Object Access Protocol (SOAP) message and place security
functions in the header of SOAP message. Here, we will present the design and
implementation of web service security application on Java 2 Micro Edition
(J2ME) based mobile devices. Basically this prototyping includes two-stage
approach. In the first stage, we study the concept of proof in implementation of
web services security on the IBM laptop using IBM WebSephere Studio Device
Developer (WSDD V 5.6) IDE [1]. In addition we import kXML/kSOAP APIs
to process SOAP message and use Bouncy Castle’s API [2] supporting crypto-
graphic algorithms for security implementations. In this paper, the security
functions we present here include five tasks: non-security, data digest, data en-
cryption using symmetric key, data encryption using asymmetric key, and digi-
tal signature. At each task, we will discuss its corresponding design, SOAP
header message, time performance, and return results in emulator. Based on the
expected results from the first stage, in the second stage, we use Nokia
6600/3650 mobile phones as target mobile devices to test our application and
evaluate performance at each task. Finally we will share our experience and
lessons on this work in the conclusion and do the demonstration using Nokia
3650 mobile phone in the conference.

1 Introduction

As mobile phone becomes a commodity that almost everyone will own one mobile
phone but may not have the traditional landline, it is very likely that the mobile
phones will replace PDA (Personal Digital Assistant) devices in some applications.
The web services are services provided over Internet or intranet using standardized
XML messages to exchange information among different nodes. In addition, web
service is not tied to any platforms or programming languages, which may need ex-
tensive technical skill. Also, eXtensible Markup Language (XML) remote procedure
calls (XML-RPC), SOAP [3] or even HTTP can be used to implement the messaging
of web services. On top of the transport methods, web services use Web Services
Description Language (WSDL) to define the service provided by service applications
so requester and application provider can communicate each other regardless of pro-
gramming language or platform. Because web services are self-describing, discover-

able, and independent to any platforms, it can support automated application integra-
tion and help to improve the development process.

To illustrate the thoughts of implementing web service security, IBM WebSephere
Studio Device Developer (WSDD V 5.6) IDE, which is a J2ME development tool,
which supports automated stub generator and other advanced features, is considered
in this paper. That is, we use IBM WSDD to generate prototype files called “stubs”
and continue developing codes based on the generated files. The “stubs” are gener-
ated based on WSDL file from remote server. It contains the methods to process nec-
essary parameters and arguments to access remote services. The “stubs” may not have
complete codes but it serves as a base for further development. The ultimate goal is
using web services to build an application-centric web, which has less human interac-
tion involved. Thus, in this paper we will only focus the discussion on client-server
web services security implementation rather than enterprise web services, which will
be part of our future works. For manipulating SOAP message, though JSR 172 web
services specification also supports access to remote SOAP/XML based web services
and parsing XML data on the J2ME platform [4], it is not possible for J2ME mobile
devices with limited processing power to include all JAXP functionalities. In addi-
tion, current JSR 172 specification does not support SOAP message header handler.

The kXML [5][6] is a project to provide XML pull parser for J2ME based mobile
devices. It supports XML namespace, and XML writing. These APIs have ability to
process SOAP message using XML parser engine from kXML. kXML/kSOAP API
(an open-source J2ME XML and SOAP parser). In this work, both kXML and
kSOAP have to be included in the java classpath to provide the functionalities of
process SOAP messages. To implement the security functions in the SOAP header,
W3C has suggested adding these security tags into SOAP header as its security exten-
sions. This work will follow the recommendation of W3C to add security information
into SOAP header. As far as cryptographic algorithms used for mobile devices [7] are
concerned, we test and use Bouncy Castle’s cryptographic API, which is an open-
source Java cryptographic algorithm API for J2ME mobile devices. In this paper, five
tasks of security function are to implement: no-security, digest, encryption with sym-
metric key, encryption with asymmetric key, and digital signature. At each task, we
will show its SOAP message, demonstration of result, and time performance. For the
web server we used for this demonstration, we adopt temperature web service pro-
vided by Xmethods [8][9]. As we mention, in this work, we focus on the implementa-
tions of security function at client side, that is, the mobile phone or user side. Then in
the last section, we will draw a conclusion and discuss some future works.

2 Architecture and Implementation

In the client side, developer can use IDE or automated tool to generate stub, a proto-
type or template file to access web services based on the WSDL file. In previous
version of IBM WSDD (Version 5.5), which supports both Document-style and RPC-
style web services and the IDE can help us to generate Temperature_Stub.java file as
a way to automate the application development. However, for the WSDD 5.6 version,
only document-style web services are to support. Thus we use document-style tem-

29

perature WSDL for our implementation in the client side. Figure 1 shows the generic
architecture for our work. In the first stage, we use laptop and IBM WSDD tool kit
and emulator to demonstrate the concept of this implementation. Then in the second
stage, we use Nokia 6600/3650 mobile phone as the client component.

Soap request w ith security headers
(Temperature Service)

Soap response

Target Web Service Server
http:/ /www.xmethods.net

Mobile Terminal

Fig. 1. Proposed web service architecture using mobile phone

There are two modules, cryptographic algorithm module (CAM) and SOAP mes-
sage parser module (SMPM), required to implement web services security. The CAM
includes following files:

• Encryptor.java: an abstract class to define the interfaces of encryption and
decryption algorithm. The “Encryptor” class acts as a parent class for all se-
curity classes. As an abstract class, the real implementation needs to be done
after inheriting from it, so that further security extensions can be added or
integrated under the “Encryptor” class.

• DigestEncryptor.java: the implementation of data digest algorithm. This
class implements the abstract method of Encryptor.java file;

• SymmetricEncryptor.java: the implementation of secret key data encryption
algorithm. This class implements the abstract method of Encryptor.java file;

• AsymmetricEncryptor.java: the implementation of public key data encryp-
tion algorithm. This class implements the abstract method of Encryptor.java
file;

• DSEncryptor.java: the implementation of digital signature algorithm. This
class implements the abstract method of Encryptor.java and composite Di-
gestEncryptor and AsymmetricEncryptor classes.

For the SMPM, it includes following files:
• SoapEnvelope.java: a SOAP message parser without security extension;
• SecSoapEnvelope.java: a SOAP message parser with security extension;
• HttpTransportTest.java: Responsible for delivery of SOAP message.

The SOAP message handler has two classes: SOAPEnvelope and SecSOAPEn-
velope. SOAPEnvelope is the modified version of original class from kSOAP pack-
age and the SecSOAPEnvelope adds the header and body process capability so that

30

security and cipher data can be replaced in the SOAP message. In addition, to interact
between user/client side and server side, there are two java application files imple-
mented as well. SecTemperature_Midlet.java is the main class for J2ME application
and Temperature_Stub.java is the interface between SecTemperature_Midlet.java
and other modules mentioned above. In this work, we have implemented a tempera-
ture query web services application on J2ME based mobile phone. User of the mobile
application will be asked for zipcode and the selection of desired encryption algo-
rithm. There are five different cryptographic algorithms available for selection, in-
cluding no-security (Task 1), data digest (Task2), data encryption with symmetric key
(Task 3), data encryption with asymmetric key (Task 4), and digital signature (Task
5).

After user enters zipcode and chooses one of the encryption algorithms, the appli-
cation will take the zipcode (for example, 01803) as input and encrypt this zipcode
based on the selected encryption algorithm. Then, the application will generate a
cipher value and attach this value to the body on SOAP message. In addition, the
cryptography algorithm name and the web services security tags will be added to the
SOAP header and body. All the name spaces and XML tags in web services security
have been defined in the standard of OASIS Web Services Security [10]. It should be
noticed that the original zipcode is not replaced with cipher text because the existing
of plaintext and cipher value can help us to verify our implementation of crypto-
graphic algorithms and get the result (i.e., temperature degree) from the web server.

3 Detail Task Implementation and Results

In this section we discuss 5 tasks of our security implementation. In addition, the
corresponding SOAP message, and demonstration are presented and general time
performance is introduced as well.

3.1 Task 1:No-Security

In this task, we study what the SOAP message looks like without adding any security
function using IBM WSDD as the starting point for the rest of the following tasks.
The following SOAP message shows the regular SOAP message without security
extension. Figure 2 shows the snapshot and results from emulator. The time of result
responded from server side is ~4 seconds.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

31

Fig. 2. Snapshot of no-security Fig. 3. Snapshot of data digest
implementation. implementation.

3.2 Task 2: Data Digest

Data integrity is to ensure that the data is from original sender without any modifica-
tion by unauthorized users. It is important to understand that both sender and receiver
choose a key before creating or verifying the digest data. Once receiver receives the
data, the digest value from the received plaintext is generated using a pre-determined
key to both sides. The new digest value generated at receiver side will be compared
with the digest data sent from sender side. Both of them should be the same, other-
wise the data sent from sender side possibly have been modified. The following
SOAP message illustrates the SOAP message with data integrity security extension.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-

1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="SHA256" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>

32

 <ds:CipherValue
xmlns="http://www.nokia.com/nrc/boston/security/">d085119a2d49e7099ebf9f3fd5801bf9bebbaf77

b2be07805577cec7598b9aa1</ds:CipherValue>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
In this SOAP message, several lines have been added to the SOAP header. The

<wsse:Security> defines the standard of the web services security for this application.
The <ds:DigestMethod> defines the cryptographic algorithm used in this task. The
XML tag <ds:Reference> is used to indicate what data will be encrypted from the
SOAP body. Receiver is able to use this tag to re-construct the original plaintext.
Here, we only encrypt the zipcode but not the whole body of SOAP message. There
are also some lines adding to the BODY of SOAP message. The <ds:CipherValue>
is the data digest value calculated after entering zipcode by the user. In this case, the
SHA cryptographic algorithm is implemented. Please note that the digest data is
placed outside <getTem> tag because there will be no response if we insert other data
into the tag defined by WSDL to receive request information. Figure 3 shows the
result we get from WSDD emulator and the time to receive the result is ~ 3 seconds.

3.3 Task 3: Data Encryption Using Symmetric Key

Symmetric encryption takes plaintext as input and use secret key to encryption the
plaintext to a cipher text. In this project, we implemented the AES encryption, which
has 128-bit block size of plain text. Compared with previous data digest algorithm,
this task experiences more complicated since padding issue on the input message and
the key needs to be considered. The following SOAP message illustrated the imple-
mentation of symmetric encryption in SOAP message.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-wssecurity-secext-1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="AES" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">dec921ebadb8dbec94a1340f532a7
ef6</ds:CipherValue>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

33

The difference between the SOAP message for symmetric key encryption
task and data digest encryption is the attribute of <ds:DigestMethod> XML tag has
been replaced with “AES” to reflect the change of cryptographic algorithm. Also, the
cipher value in the body of SOAP message is replaced with corresponding cipher
data. Figure 4 shows the snapshot of symmetric key encryption application on emula-
tor. In this case, ~3 seconds is required to the result sent back from the server.

Fig. 4. Snapshot of data encryption Fig. 5. Snapshot of data encryption
using symmetric key. using asymmetric key.

3.4 Task 4: Data Encryption Using Asymmetric Key

The asymmetric key encryption is also called “public key encryption” algorithm.
Sender uses receiver’s public key to encrypt data. The encrypted (cipher text) data
(here, 01803 is used) is sent to the receiver and the receiver uses its own private key
to decrypt the cipher data to original plaintext. According to our test, it will take 4 or
5 minutes to generate the key pair on Nokia 6600/3650 mobile device, even though
the time required in the emulator is much shorter (~10 seconds), as shown in the
Figure 5. The following SOAP message illustrates the implementation of asymmetric
encryption in SOAP message.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-

1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="RSA" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>

34

 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">015d8dbccb65a206ccd0cee6abfe3f344a456e204e159
b11e119c48c5b0a347018263ba8341be1872cf83e58c6922a91d2758565076099583b9e84d0c946b01b425f1
d812dfc0651c40d3fc32e35bd82fd21d066d8b28eef9134dc4c60f0bcbd3c0ae0c354987aee407a3bd0cddf2e9
0d56e4f934268b93eae71406c7aa7ec81</ds:CipherValue>

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

It is obvious that the more time consumption to get the result is experienced due to
the limited processing power in the mobile phones.

3.5 Task 5: Digital Signature

In this task, both HASH and RSA algorithms are used to implement digital signature
function. The original message is calculated to a unique digest value using SHA-1
hash algorithm. Then, the digest is signed by sender’s private key as a signature mes-
sage. Both signature message and original plaintext data are sent to receiver side.
Once the receiver receives the signature message and plaintext from the sender side,
the signature message is decrypted using sender’s public key at receiver side. After
the signature message is decrypted to a hash message, which the is used to compare
with hash message generated in the receiver side using plaintext sent from sender to
check the integrity of the data. The following SOAP message illustrates the imple-
mentation of digital signature.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-secext-1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="DS" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">17638ec2a1d3a52a40ec6cd06f2242287756e84c51eb
3cb1ca75d4cd678ec92b890a92f222c8a907de81dce87caec1a1cbdf02b0d02cba5e5f9d13d30bf48f3c926222
e9d4fd568f1b1c6f01cf4933c3087427be3502f0b141d7ed70afe7364744d1af5587d7f9fb6fe11a494a3b48432
3ed403851aeccea0eae62a1edd57960

</ds:CipherValue>

35

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 6 shows the application running digital signature function. Because it needs
to generate private-public key pair as asymmetric algorithm, thus it takes more time
(~17 seconds) than any one of the tasks in this paper.
.

Fig. 6. Snapshot of digital signature.

4 Conclusion

As wireless networks have been widely deployed and mobile phones are popular year
after year due to cost reduction, people reply on the use of mobile phone more in their
daily life for specific services through the web server and Internet. It is well-known
that security is one of key components that should be implemented in the web ser-
vices and still remains as one of the challenging issues so far. In this paper, we have
prototyped five security tasks in the client side (or mobile phone) using IBM WSDD
and demonstrated these tasks using Nokia 6600/3650 series mobile phones. We also
presented the corresponding SOAP message communicated between client and server
sides. We also evaluated and compared the time performance of each task. Based on
our design and implementation, it takes more time to generate cipher text for asym-
metric key encryption and digital signature than other tasks. Due to the limited proc-
essing power of current mobile phones, when the application is running on real mo-
bile phones, we experienced more time delay to get the result from the server side
than we expected in the order of minutes. Thus how to improve the time performance
at client side to meet the practical need of people is part of future work. With this
time performance obtained from all the tasks in this paper, the application using web
service security using mobile devices needs to consider carefully and appropriately
from both technical/technology side and business side. In addition, we are also inves-
tigating the security functions implemented in the server side and planning to inte-

36

grate with existing results. Furthermore, some possible applications and implications
using web services using mobile phones are under investigation as well.

Acknowledgements

The author is grateful to Edmond Chang’s contribution on this project when he works
as an intern in Nokia Research Center. In addition, the author also thanks Dr. Senthil
Sengodan and Dr. Tat Chan for their encouragement, discussion and comments on
this work as well.

References

1. IBM WSDD, http://www-306.ibm.com/software/wireless/wsdd/
2. Bouncy Castle, http://www.bouncycastle.org/index.html.
3. M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen, SOAP Version 1.2 Part

1: Messaging Framework, http://www.w3.org/TR/2003/REC-soap12-part1-20030624/,
June, 2003.

4. Jon Rllid and Mark Young, Sun Microsystems, J2ME Web Services 1.0 final Draft,
http://www.jcp.org/en/jsr/detail?id=172, October 15, 2003.

5. kXML project - http://www.kxml.org
6. Enhydra.org, http://kxml.objectweb.org/project/aboutProject/index.html
7. Enterprise J2ME: Developing Mobile Java Applications, Michael Juntao Yuan, ISBN:

0131405306, Prentice Hall Publisher, 2003.
8. Xmethods.Inc, http://www.xmethods.net/, 2004.
9. WSDL files for temperature, http://www.xmethods.net/sd/2001/TemperatureService.wsdl.
10. OASIS, Web Services Security: SOAP Message Security 1.0 (WS-Security 2004),

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf,
March 2004.

37

http://www-306.ibm.com/software/wireless/wsdd/
http://www.bouncycastle.org/index.html
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.jcp.org/en/jsr/detail?id=172
http://www.kxml.org/
http://kxml.objectweb.org/project/aboutProject/index.html
http://www.xmethods.net/
http://www.xmethods.net/sd/2001/TemperatureService.wsdl
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Generating Code for Mapping UML Associations
Into C#

Iraky H. Khalifa1, Ebada A. Sarhan 1 and Magdy S. A. Mahmoud2

1 Helwan University, Computer Science Department, Faculty of Computer Science and in-
formation, Egypt

{Khalifa, Sarhan} dr_iraky@hotmail.com

2 Suez Canal University, Computer Science Department, Faculty of Computer Science and
information, Ismailia, Egypt
magdy01sh@yahoo.com

Abstract. Object-oriented programming languages do not contain syntax or
semantics to express associations directly. Therefore, UML associations have to
be implemented by an adequate combination of classes, attributes and methods.
This paper presents some principles for the implementation a UML binary asso-
ciations in CSharp (C#), paying special attention to multiplicity and navigabil-
ity. Our implementation has some specification for bidirectional associations.
These principles have been used to write a series of code patterns that we use in
combination with using tools which generating code for associations, such as
Poseidon for UML and Enterprise Architect. These Tools are read from a UML
model stored in XMI (XML Metadata Interchange) format.

1 Introduction

One of the key building blocks in the Unified Modeling Language [UML] is the con-
cept of association. An "association" in UML is defined as a kind of relationship be-
tween classes (Actually classifiers. Classifier is a superclass of Class in the
UML metamodel), which represents the semantic relationship between two or more
classes that involves connections (links) among their instances [1]. As it has been
denounced long ago [2], object-oriented programming languages express classifica-
tion and generalization well, but do not contain syntax or semantics to express asso-
ciations directly. Therefore, associations have to be implemented by an adequate
combination of classes, attributes and methods [3,9,11]. The simplest idea is to pro-
vide an attribute to store the links of the association, and accessor and mutator meth-
ods to manipulate the links. Other approaches emphasize the use of Java interfaces to
implement associations with some practical advantages [4, 13].

Poseidon UML[5] tools often provide some kind of code generation starting from
design models, but limited to skeletal code involving only generalizations and classes,
with attribute and method signatures, but no associations at all. The programmer has
to manually write the code to manage the associations in a controlled way, so that all
constraints and invariants are kept for correctness of the implementation. This is usu-

ally a repetitive task that could be automated to a certain extent. Besides, the number
of things that the programmer should bear in mind when writing the code for the asso-
ciations is so large, that he or she continuously risks forgetting some vital detail. This
is specially true when dealing with multiple (with multiplicity higher than 1) or bidi-
rectional (two-way navigable) associations. Moreover, the final written code is fre-
quently scattered over the code of the participating classes, making it more difficult to
maintain.

The aim of this work is three aims. First, write a series of code patterns that will
help programmers in mapping UML associations into a target object oriented pro-
gramming language. In this work, the language has been chosen to be CSharp (C#),
although the principles we have followed may be applied to other close languages like
C++, Java or the .NET framework. Second aim, using a tool that generates code for
associations using these patterns, the associations being read from a model stored in
XMI format. A third aim will be to enable reverse engineering, that is, obtaining the
associations between classes by analyzing the code that implements them. Although it
is a very simple and straightforward procedure if the code has been written with our
patterns.

Associations in UML can have a great variety of features. The present work is lim-
ited to the analysis and implementation of multiplicity and navigability in binary asso-
ciations. It excludes, therefore, more complex kinds of associations such as reflexive
associations, whole/part associations (aggregations and compositions), qualified asso-
ciations, association-classes, and n-ary associations [10]. It excludes, too, features
such as ordering, changeability, etc.

The following sections of this article are devoted to studying the features of multi-
plicity, navigability and visibility of associations, with a detailed analysis of the possi-
ble problems and proposed solutions. Then, Section 3 contains the description of a
uniform interface for all kinds of associations from the point of view of the participat-
ing classes, such as it is implemented by our patterns and source code. Finally, con-
clude briefly how to developed a concrete way of generating code of mapping UML
associations using C# code in this works.

2 The Problem of Multiplicity

The multiplicity of a binary association, placed on an association end (the target end),
specifies the number of target instances that may be associated with a single source
instance across the given association, in other words, how many objects of one class
(the target class) may be associated with a given single object from the other class (the
source class) [2]. The classical example in Figure 1 illustrates binary multiplicity.
Each instance of Person may work for none or one instance of Company (0..1),
while each company may be linked to one or more persons (1..*). For those readers
less familiarized with UML notation, the symbol (*) stands for "many" (unbounded
number), and the ranges (1..1) and (0..*) may be abbreviated respectively as (1) and
(*).

39

Fig. 1. A classical example of binary association with the expression of multiplicities

Listing 1. Program code to maintain the binary association between Person and
Company

 namespace model_1 {

 public class Company

 {

 …………………………………

 public Person[]person;

 } }

namespace model_1 {

 public class Person

 {

 …………………………

public Company company;

 } }

The potential multiplicities in UML extend to any subset of nonnegative integers
[2], not only a single interval as (2..*), or a comma-separated list of integer intervals
as (1..3, 7..10, 15, 19..*): specifications of multiplicity like {prime numbers} or
{squares of positive integers} are also valid, although there is no standard notation for
them. Nevertheless, in UML as in other modeling techniques, the most usual multi-
plicities are (0..1), (1..1), (0..*) and (1..*). We are going to restrict our analysis to
multiplicities that can be expressed as a single integer interval in the form of
(min..max) notation. The multiplicity constraint is a kind of invariant, that is, a condi-
tion that must be satisfied by the system. A possible practice when programming is: do
not check always the invariant, but only at the request of the programmer, after com-
pleting a set of operations that are supposed to leave system in a valid state (a transac-
tion).

This practice is more efficient in run-time, and gives the programmer more free-
dom and responsibility in writing the code, with the corresponding risk that he or she
forgets putting the necessary checks and carelessly leaves the system in a wrong state.
On the other side, we think that checking multiplicity constraints is not very time con-
suming (inefficient), especially when compared with the time required to manage
collections or synchronize bidirectional associations (see Section 3). Therefore, we
think that it is worth doing as much as we can for the programmer, so that our first
target will be to analyze the possibility of performing automatic checks for multiplic-
ity constraints.

40

2.1 Optional and mandatory associations

The value of minimum multiplicity can be any positive integer, although the most
common values are 0 or 1. When the value is 0 we say the association is optional for
the class on the opposite end (class Person in Figure 1), when the value is 1 or
greater we say it is mandatory (class Company). Optional associations pose no spe-
cial problems for the implementation, but mandatory associations do. From a concep-
tual point of view, an object participating in a mandatory association needs to be
linked at any moment with one object (or more) on the other side of the association,
otherwise the system is in a wrong state. In the example given in Figure 1, an instance
of Company needs always an instance of Person. Therefore, in the same moment
you create the instance of Company, you have to link it to an instance of Person.

This can happen in three different ways:

• An instance of Company is created by an instance of Person and linked to

 its creator.
• An instance of Company is created with an instance of Person supplied as

 a parameter.
• An instance of Company is created and it issues the creation of an instance of

 Person.

The third case poses additional problems. The creation of a Person will probably

require additional data, such as name, address, etc., and it does not seem very sensible
to supply them in the creation of a Company. This problem becomes much worse if
Person has other mandatory associations, for example one with the Country
where he or she lives: if this were the case, the creation of a Company would require
supplying data for creating a Person, for creating a Country, etc. The most obvi-
ous solution is to allow only the first and second forms of instantiation. But then sup-
pose the association is mandatory in both ends. Which instance is to be created first?
We have not a satisfactory choice, since we will put the system in a wrong state until
both creations are finished.

We could think of an atomic creation of both instances, but this is valid only for the
simplest case in which only two classes are involved. Should we define atomic crea-
tors for two, three, any number of classes? Similar problems arise when dealing with
object deletion. Imagine now that we are not creating or deleting instances, but chang-
ing links between instances.

If you want to change the instance of Company that is linked with a given instance
of Person, simply delete the link with the old Company and add a new link with
the new Company. This works as far as the old Company is linked to other in-
stances of Person; you can even delete the link and add no new one, since the asso-
ciation is optional for Person. If you had only one Person linked to a given Com-
pany, you should supply a new Person to the Company before deleting the link
with the old Person, but this is only the specified behavior (the association is man-
datory for Company) and you cannot complain about it. Nevertheless, we find new
problems here. If the association with Company were mandatory for Person too

41

(that is, 1..1 multiplicity instead of the current 0..1), the instance of Person could
not delete the old link with a Company and then add the new one, nor it could do it
in the reverse order, "first add then delete", because it would go through a wrong
system state. An atomic change of links would be valid only for the simplest cases,
but not for more complex ones such as the following, rather twisted case (see Figure
2): consider classes A and B, which are associated with multiplicity 1..1 on both ends,
and the corresponding instances a1, a2, b1 and b2. In the initial state, we have the
links a1-b1 and a2-b2. In the final state, we want to have the links a1-b2 and
a2-b1. Even if we can change atomically a1-b1 to a1-b2 without violating the
multiplicity constraints on a1, this would leave b1 without any links and b2 with
two links until the final state is reached. We should have to perform the whole change
atomically by means of an atomic switch implemented in a single operation.

Fig 2. Multiplicity constraints can make very difficult changing links between instances with-
out entering a wrong system state: a) class diagram; b) initial state; c) intermediate wrong state;
d) final desired state.

Obviously, we cannot define a new operation to avoid any conceivable wrong state
involving several instances. In consequence, we think that mandatory associations
pose unsolvable problems regarding the creation and deletion of instances and links:
we cannot achieve with a few primitive operations that a mandatory association is
obeyed at any time, and we cannot isolate, inside atomic operations, the times when
the constraint is not obeyed. Therefore, we have to relax the implications of manda-
tory associations for the implementation, as other methods do [8]. This proposal is as
follows: do not check the minimum multiplicity constraint when modifying the links of
the association (mutator methods, or setters), but only when accessing them (accessor
methods, or getters). The programmer will be responsible for using the primitives in a
consistent way so that a valid system state is reached as soon as possible.

For example, you will be allowed to create a Company without linking it to any
Person, and you will be allowed to delete all the links of a Company with in-
stances of Person; but before accessing, for other purposes, the links of that particu-
lar instance of Company towards any instances of Person, you will have to restore
them to a valid state, otherwise you will get an invalid multiplicity exception, which
shall be defined in the code that implements the associations according to this pro-
posal [9,13].

2.2 Single and multiple associations

The value of maximum multiplicity in an association end can be any integer greater or
equal than 1, although the most common values are 1 or *. When the value is 1 we say

42

the association is single for the class on the opposite end (class Person in Figure 1),
when the value is 2 or greater we say it is multiple (class Company). Single associa-
tions are easier to implement than multiple associations: to store the only possible
instance of a single association we usually employ an attribute having the correspond-
ing target class as type, but to store the many potential links of a multiple association
we must use some kind of collection of objects, such as the C# predefined Length,
Hashtable, etc. In the general case we cannot use an array of objects, because it
gets a fixed size when it is instantiated. Since collections in C# can have any number
of elements, the maximum multiplicity constraint cannot be stated in the declaration of
the collection in the C# code, but it must be checked elsewhere during run-time.

We need two kinds of mutators, add and remove, which will accept as a parame-
ter either single objects or entire collections. Because of the problems with minimum
multiplicity explained above, the remover sometimes will leave the source instance in
a wrong state; we can't avoid this situation. The adder, instead, leaves us a wider
choice. If we try to add some links above the maximum multiplicity constraint, we can
choose between rejecting the addition or performing it; in the latter case we violate
temporarily the constraint until a call to the remover restores the source instance to a
safe state; the wrong state would only be detected by accessor methods, as we settled
in the case of minimum multiplicity. However, this is true only for multiple associa-
tions implemented with a collection; in single associations implemented by means of
an attribute we simply cannot violate the maximum multiplicity constraint: we are
forced to reject the addition.

If we choose to reject the addition, instead, besides having an asymmetric behavior
between remover and adder, we can find precedence problems when invoking the
adder and the remover in succession. Consider class Game associated with class
Player with multiplicity 2..4 (see Figure 3), and suppose an instance g1 of Game
is linked to two instances p1, p2 of Player. We want to replace these two players
by four new different players q1, q2, q3, q4. If we issue "first remove then add", we
get finally what we want; if we issue "first add then remove", the addition is rejected
and the remotion leaves the instance of Game in a wrong state.

Fig 3. Precedence problems found when invoking the adder and the remover in succession: a)
class diagram of Game-Player association; b) initial state with players p1, p2; c) final
desired state after removing players p1, p2 and then adding players q1, q2, q3, q4; d) final
wrong state after unsuccessfully trying to add players q1, q2, q3, q4 and then removing
players p1, p2.

43

Listing 2. Program Code to maintain the binary association between Person and Com-
pany

namespace model_2 {

public class Game {

public Player m_Player;

public Game(){

 }

~Game(){

 }

public virtual void
Dispose(){

} }//end Game }//end
namespace model_2

namespace model_2 {

public class Player {

public Player(){

 }

 ~Player(){

 }

public virtual void
Dispose(){

 }

}//end Player }//end
namespace model_2

In the end, we have preferred to reject the addition if it violates the maximum allowed, and

ask the users of mutator methods to use them always in the right order, first remove then add,
so that we can get an analogous behavior for single and multiple associations. Therefore, the
remover does not check the minimum multiplicity constraint (possibly leaving empty a manda-
tory association), the adder does check the maximum multiplicity constraint, and the getter
raises an exception if either constraint is not fulfilled. Accessor methods of multiple associa-
tions have another peculiarity, when compared with the accessors of single associations: they
return a collection of objects, not a single object, therefore the returned type is that of the col-
lection, not that of the target class. In our implementation, the returned type is the C# interface
Collection, which is implemented by all standard collections. Internally, we use a
Hashtable collection, which ensures that there are no duplicate links in an association, as
the UML requires [7].

Finally, the standard collections in C# are specified to contain instances of the standard class
Object, which is a superclass of every class in C#. You cannot specialize these collections to
store objects pertaining only to a particular class (That is, you cannot specialize them to modify
their storage structure, but you can modify their behavior so that they) store in effect only the
required objects, precisely by means of the run-time type checking method we describe.. This
means that, if we use a Hashtable inside Company to store the links to instances of Per-
son, we must ensure on our own that no one puts a link to an instance of another class such as
Dog or Report (this could happen if a collection of objects is passed as a parameter to the
add method). Therefore, the mutator methods must perform a run-time type checking by
means of explicit casting. If the type-check fails, then the link is not set to that object, and a
class cast exception, which is predefined in C#, is raised.

44

3 The Problem of Navigability

The directionality, or navigability, of a binary association, graphically expressed as an
open arrow at the end of the association line that connects two classes, specifies the
ability of an instance of the source class to access the instances of the target class by
means of the association instances (links) that connect them (An alternate definition:
the possibility for a source object to designate a target object through an association
instance (link), in order to manipulate or access it in an interaction with message inter-
changes. The Standard does not give a clear definition of navigability, as we have
shown in previous works where we have tried to clarify this topic [9,10,13]). In this
paper, we take navigability and directionality as synonyms. If the association can be
traversed in both directions, then it is bidirectional (two-way), otherwise it is unidirec-
tional (one-way).

A navigable association end, which is referenced by its rolename, defines a pseudo
attribute of the source class, so that the source instance can use the rolename in ex-
pressions in the same way as it uses its own attributes [6]. An instance can communi-
cate (by sending messages) with the connected instances of the opposite navigable end
[11], and it can use references to them as arguments or reply values in communica-
tions [7]. Similarly, if the association end is navigable, the source instance can query
and update the links that connect it to the target instances.

The examples in Figure 4 illustrate navigability. The association Key-Door is
unidirectional, meaning that a Key can access the Door it can open, but an instance
of Door does not know the set of instances of Key that can open it: the Door
cannot traverse the connections (links) against the navigability of the association. On
the other side, the association Man-Woman is bidirectional, meaning that connected
instances of these classes know each other.

 a) Unidirectional

 b) Bidirectional

Fig 4. Examples of a) Unidirectional and b) Bidirectional Associations.

The arrowheads can be shown or omitted in a bidirectional association [14]. Unfor-
tunately, this leads to an ambiguity in the graphical notation, because we cannot. dis-
tinguish between bidirectional associations and associations with unspecified naviga-
bility. Or, worse, unspecified associations are assumed to be bidirectional without
further analysis [10].

45

Listing 3. Program code to maintain the unidirectional and bidirectional associations

 namespace model_3 {

 public class Key_ {

 ………………………………

 public Door door;

 } }

 public class Door {

 …………………

 }

namespace model_4 {

 public class Woman {

 …………………………………….

 public Man husband;

 } }

 public class Man {

 ……………………………

 public Woman woman; }

3.1 Unidirectional associations

A single unidirectional association is very similar to a single valued attribute in the
source class, of the type of the target class: an embedded reference, pointer, or what-
ever you want to call it. The equivalence, however, is not complete. Whereas the at-
tribute value is "owned" by the class instance and has no identity, an external refer-
enced object has identity and can be shared by instances of other classes that have a
reference to the same object [12] (see Figure 5). Anyhow, the equivalence is satisfac-
tory enough to serve as a basis for the implementation of this kind of associations. In
fact, in C# there is no difference at all: except for the case of primitive values, attrib-
utes in C# are objects with identity, and if they are public you cannot avoid them to be
referenced and shared by other objects.

Fig. 5. Partial equivalence between a) attribute and b) single unidirectional association.

Listing 4. Program code to maintain the Partial equivalence between attribute and
single unidirectional association

namespace model_2 {

 public class Person {

 …………………………..

 public Date birthdate;

46

 }

 }

public class Date {

/// Attributes – Asso-
ciation End

public class Book {

 …………………………………

public Date publica-
tion;

 }

 }

A multiple unidirectional association is a bit more complicated, although the im-
plementation can be based on the same principles, since it can be assimilated to a
multivalued attribute (UML allows multiplicity in attributes, thus multivalued attrib-
utes [8]). To manage the collection of objects on the navigable end, however, we need
an additional object of a standard collection class, which is a Hashtable in our
implementation (see Figure 6).

 (a)

 (b)

Fig. 6. Multiple unidirectional association: a) analysis diagram and b) design diagram.

A new object must be inserted to manage the collection of target objects. The stan-
dard collections in C#, such as Hashtable, are defined for the standard class Ob-
ject, which is a superclass of every class; therefore, mutator methods must ensure
that the objects contained in the collection parameter are of the appropriate type be-
fore adding them to the collection attribute. Therefore, the type of the attribute used to
implement the association inside the source class is not any more the target class itself,
but the Hashtable class or another convenient collection class. The methods to
manage the association will have to accomplish some additional tasks. Mutators can
add or remove not only single objects of the class target, but also entire collections;
thus, the type of the parameter will be either the target class of the association or the
intermediate collection class.

47

In this case, mutator methods must ensure that the objects contained in the collec-
tion parameter are of the appropriate type before adding them to the collection attrib-
ute. Accessors, as we have already explained (see Section 2), do not return a single
object, but a collection of objects, even when the collection is made up of only one
element. The returned collection object is not identically the same one that is stored
inside the source class, but a clone (a new object with a collection of references to the
same target elements), because the original collection object must remain completely
encapsulated inside the source object (represented by the composition in Figure 6).

Listing 6. Program code to maintain the Multiple unidirectional association analysis
and design diagrams

namespace model_6 {

 public class Recipe
 {

 …………………………………

 public Aliment[]
ingredient;

 ………………………………….

 public Aliment ali-
ment;

 } }

public class Aliment {

 …………………………

public Recipe recipe;

 }

public class Recipe {

 ……………………….

public HashTable
hashTable;

public HashTable
hashTable_1; }

public class Aliment :
Object {

 }

public class HashTable
{

 ………………………………

public Recipe recipe;

 ……………………………

public Object[] object;

 }

public class Object {

 ……………………………..

public HashTable
hashTable_2;

 }

As the diagrams in Figures 5 and 6 show, in our opinion the multiplicity constraint
in a design model can be specified only for a navigable association end. Indeed, the
multiplicity is a constraint that must be evaluated within the context of the class that
owns the association end; if that class knows the constraint, then it knows the associa-
tion end, that is, the end is navigable. You cannot restrict the number of objects con-
nected to a given instance unless this instance has some knowledge of the connected

48

objects, that is, unless you make the association end navigable. Therefore, the need for
a multiplicity constraint other than 0..* (that is, unrestricted) is an indication that the
association end must be navigable. In consequence, unidirectional associations with
multiplicity constraints on the nonnavigable association end must be rejected in code
generation.

3.2 Bidirectional associations

The partial equivalence between attributes and unidirectional associations is not any
more found among bidirectional associations. Instead, an instance of a bidirectional
association is more like a tuple of elements [14]. Combining the multiplicities in both
association ends, we can have three cases: single-single, single-multiple, and multi-
ple_multiple.

 a) analysis diagram

b) design diagram.

Fig. 7. Single-single bidirectional association: a) analysis diagram and b) design diagram

Listing 7. Program code to maintain the Single-single bidirectional association analy-
sis and design diagrams

namespace model_7 {

public class Man {

 ……………………

public Woman woman; } }

public class Woman {

49

/// Attributes – AssociationEnd and AssociationEnd hus-
band

public Man husband; } }

The implementation of the association's mutators must ensure that the husband of
the wife of a given man is that man himself, and vice versa.An easy way to implement
a single-single bidirectional association is by means of two synchronized single unidi-
rectional associations (see Figure 7). The synchronization of the two halves must be
preserved by the mutator methods on each side: every time an update is requested on
one side, the other side must be informed to perform the corresponding update; the
update is accomplished only if both sides agree that they can perform it while keeping
maximum multiplicity constraints.

A single-multiple bidirectional association can be implemented in a similar way,
combining a single unidirectional association and a multiple unidirectional associa-
tion. And, finally, a multiple-multiple bidirectional association is achieved by means
of two multiple unidirectional associations (see Figure 8).

Synchronization becomes progressively a more and more complex issue when one
or both association ends are multiple. Consider the example given in Figure 8. Sup-
pose you want to add an author to a particular Book instance; you do this by issuing
the add method on the Book instance, and passing a Person instance as a pa-
rameter. If the Book can have more authors without violating its maximum multiplic-
ity (which is 3), then it requests the author to add the Book itself to the collection of
publications the Person has; this can fail if the maximum multiplicity constraint for
the number of publications (in this case, 10) is violated. If the request to the author
succeeds, then the Book updates its side.

Now, you can try adding a collection of authors to a Book, too. As one can expect,
the Book requests each one of the authors to add the Book itself as a publication; if
only one of the authors fails to add the Book, then the whole operation must be un-
done, since an update must be atomic: all or none.

Fig. 8. Multiple-multiple bidirectional association: analysis and design diagrams

50

Similar considerations apply to the remove mutator, bearing in mind that the
remove method is performed even if the minimum multiplicity constraint is not
kept, therefore it can leave the source instance or any of the affected target instances
in an invalid state.

4 Conclusions

In this work we have developed a concrete way of generating code of mapping UML
associations using C# code: we have written specific code patterns, and we have using
a tool that reads a UML design model stored in XMI format and generates the neces-
sary C# files. We have paid special attention to two main features of associations:
multiplicity and navigability. This analysis has encountered difficulties that may re-
veal some weaknesses of the UML Specification.

However, different tool options will allow the user to override the automatic multi-
plicity and type checks when generating code, in favor of efficiency. Besides, we have
argued that unidirectional associations should not have a multiplicity constraint on the
source end in a design model, and bidirectional associations should not have both ends
with private (or protected) visibility; therefore, the tool will reject the generation of
code for these associations. Again, the user will be able to disable this model-
correctness checking and issue the code generation at his/her own risk.

This work can be continued on several lines. First, implementation of other associa-
tion end properties, such as ordering, changeability, interface specified, xored associa-
tions, and so on. Second, specific implementation of particular kinds of binary asso-
ciations, such as reflexive associations, aggregations and compositions. Third, im-
plementation of more complex associations: qualified associations, associations
classes, and n-ary associations. Fourth, expand the tool to perform reverse engineer-
ing, that is, obtaining the associations between classes by analyzing the code that im-
plements them.

References

1. Object Management Group. XML Metadata Interchange (XMI) Specification, Version 1.2,
January 2002. Available at http://www.omg.org/.

2. James Rumbaugh. "A Search for Values: Attributes and Associations". Journal of Object
Oriented Programming, 9(3):6-8, June 1996.

3. Scott W. Ambler. “An Overview of Object Relationships”, “Unidirectional Object Rela-
tionships”, “Implementing One-to-Many Object Relationships”, “Implementing Many-to-
Many Object Relationships”. A series of tips to be found at IBM Developer Works,
http://www-106.ibm.com/developerworks/.

4. Hermann Kaindl. “Difficulties in the Transition from OO Analysis to Design”. IEEE Soft-
ware, 16(5):94-102 (1999).

5. The Poseidon UML tool, http://www.gentleware.com//
6. James Rumbaugh. "Relations as Semantic Constructs in an Object- Oriented Language", In

Proceedings of the ACM Conference on Object-Oriented Programming: Systems, Lan-
guages and Applications, pp. 466-481, Orlando, Florida, 1987.

51

7. Object Management Group. Unified Modeling Language (UML) Specification, Version 1.4,
September 2001 (Version 1.3, June 1999). Available at http://www.omg.org/.

8. Perdita Stevens. “On the Interpretation of Binary Associations in the Unified Modelling
Language”, Journal on Software and Systems Modeling, 1(1):68-79 (2002). A preliminar
version in: Perdita Stevens. "On Associations in the Unified Modeling Language". The
Fourth International Conference on the Unified Modeling Language, UML'2001, October
1-5, 2001, Toronto, Ontario, Canada. Published in Lecture Notesin Computer Science 285,
Springer 2001, pp. 361-375.

9. Gonzalo Génova. "Semantics of Navigability in UML Associations". Technical Report
UC3M-TR-CS-2001-06, Computer Science Department, Carlos III University of Madrid,
November 2001, pp. 233-251.

10. Gonzalo Génova, Juan Llorens, Paloma Martínez. “The Meaning of Multiplicity of N-ary
Associations in UML”, Software and Systems Modeling, 1(2): 86-97, 2002. A preliminary
version in: Gonzalo Génova, Juan Llorens, Paloma Martínez. “Semantics of the Minimum
Multiplicity in Ternary Associations in UML”. The 4th International Conference on the
Unified Modeling Language-UML'2001, October 1-5 2001, Toronto, Ontario, Canada.
Published in Lecture Notes in Computer Science 285, Springer 2001, pp. 329-341.

11. Gonzalo Génova, Juan Llorens, Vicente Palacios. "Sending Messages in UML", Journal of
Object Technology, vol.2, no.1, Jan-Feb 2003, pp. 99- 115,
http://www.jot.fm/issues/issue_2003_01/article3.

12. Il-Yeol Song, Mary Evans, E.K. Park. "A Comparative Analysis of Entity- Relationship
Diagrams", Journal of Computer and Software Engineering, 3(4):427-459 (1995).

13. William Harrison, Charles Barton, Mukund Raghavachari. "Mapping UML Designs to
Java". The 15th Annual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications-OOPSLA’2000, October 15-19 2000, Minneapolis, Minnesota,
United States. ACM SIGPLAN Notices, 35(10): 178-187. ACM Press, New York, NY,
USA.

14. Guy Genilloud. "Informal UML 1.3 - Remarks, Questions, and some Answers". UML
Semantics FAQ Workshop (held at ECOOP'99), Lisbon, Portugal, June 12th 1999.

15. The Fujaba CASE Tool, University of Paderborn, http://www.fujaba.de/.
16. Java Community Process. Java Metadata Interface (JMI) Specification, Version 1.0, June

2002. Available at http://www.jcp.org/.

52

Architecture for an Autonomic Web Services
Environment

Wenhu Tian, Farhana Zulkernine, Jared Zebedee, Wendy Powley and Pat Martin
School of Computing,

Queen’s University, Kingston, ON Canada
{tian, farhana, zebedee, wendy, martin }@cs.queensu.ca

Abstract. The growing complexity of Web service platforms and their
dynamically varying workloads make manually managing their performance a
tough and time consuming task. Autonomic computing systems, that is, systems
that are self-configuring and self-managing, have emerged as a promising
approach to dealing with this increasing complexity. In this paper we propose
an architecture of an autonomic Web service environment based on reflective
programming techniques, where components at a Web service hosting site tunes
themselves and collaborate to provide a self-managed and self-optimized
system.

1 Introduction

Web services are self-contained and self-describing software components that can be
accessed over the Internet. They are now well accepted in Enterprise Application
Integration (EAI) [19] and Business to Business Integration (B2Bi) [4]. Performance
plays a crucial role in promoting the acceptance and widespread usage of Web
services. Poor performance (e.g. long response time) means the loss of customers and
revenue [14]. In the presence of a Service Level Agreement (SLA), failing to meet
performance objectives could result in serious financial penalties for the service
providers. As a result, Web service performance is of utmost importance, and recently
has gained a considerable amount of attention [3, 15, 18].

A Web service is a Web-accessible program that is described in a WSDL (Web
Service Description Language) [17] document. Web services are published or
discovered via a UDDI (Universal Description, Discovery and Integration) [16]
registry. SOAP (Simple Object Access Protocol) [13] is the most common message
passing protocol used to communicate with Web services.

A Web service hosting site typically consists of many individual components such
as HTTP servers, application servers, Web service applications, and supporting
software such as database management systems. If any component is not properly
configured or tuned, the overall performance of the Web service suffers. For example,
if the application server is not configured with enough working threads, the system
can perform poorly when the workload surges. Typically components such as HTTP
servers, application servers or database servers are manually configured, and
manually tuned. To dynamically adjust in an ever-changing environment, these tasks
must be automated.

Unacceptable Web service performance results from both networking and server-
side issues [10]. Most often the cause is congested applications and data servers at the
service provider’s site as these servers are poorly configured and tuned. Expert
administrators, knowledgeable in areas such as workload identification, system
modeling, capacity planning, and system tuning, are required to ensure high
performance in a Web service environment. However, these administrators face
increasingly more difficult challenges brought by the growing functionalities and
complexities of Web service systems, which stems from several sources:

• Increased emphasis on Quality of Services

Web services are beginning to provide Quality of Service features. They must
guarantee their service level in order that the overall business process goals can be
successfully achieved.

• Advances in functionality, connectivity, availability and heterogeneity

Advanced functions such as logging, security, compression, caching, and so on are
an integral part of Web service systems. Efficient management and use of these
functionalities require a high level of expertise. Additionally, Web services are
incorporating many existing heterogeneous applications such as JavaBeans,
database systems, CORBA-based applications, or Message Queuing software,
which further complicate performance tuning.

• Workload diversity and variability

Dynamic business environments that incorporate Web services bring a broad
diversity of workloads in terms of type and intensity. Web service systems must be
capable of handling the varying workloads.

• Multi-tier architecture

A typical Web service architecture is multi-tiered. Each tier is a sub-system, which
requires different tuning expertise. The dependencies among these tiers are also
factors to consider when tuning individual sub-systems.

• Service dependency

A Web service that integrates with external services becomes dependent upon
them. Poor performance of an external service can have a negative impact on the
Web service.

Autonomic Computing [7] has emerged as a solution for dealing with the
increasing complexity of managing and tuning computing environments. Computing
systems that feature the following four characteristics are referred to as Autonomic
Systems:

• Self-configuring - Define themselves on-the fly to adapt to a dynamically
changing environment.

• Self-healing - Identify and fix the failed components without introducing apparent
disruption.

54

• Self-optimizing - Achieve optimal performance by self-monitoring and self-tuning
resources.

• Self-protecting - Protect themselves from attacks by managing user access,
detecting intrusions and providing recovery capabilities.

In this paper we propose an architecture for an autonomic Web services
environment. We consider each component in the proposed architecture as self-
managing and thereby present a hierarchical layout of autonomic managers that
constitute a self-configuring and self-optimizing autonomic Web service system. The
remainder of the paper is structured as follows. Section 2 discusses related approaches
to Web service management. Our proposed autonomic architecture is presented in
Section 3, and a detailed scenario to illustrate how the architecture works is provided
in Section 4. Section 5 summarizes and concludes the paper.

2 Related Work

Architectural approaches based on SLA-driven Web services have been proposed by
Dan et al. [5] and Levy et al. [9]. Dan’s framework includes components for the
support of an SLA throughout its entire life-cycle as well as SLA-driven management
of services. Levy et al uses a queuing model to predict response times for different
resource allocations. In their model, the management system is transparent and
allocates server resources dynamically to maximize the expected value of a given
cluster utility function. Both of these approaches focus on service provisioning. We
focus on autonomic management rather than the provisioning aspects.

Farrell and Kreger [6] propose a number of principles for the management of Web
services including the separation of the management interface from the business
interface, pushing core metric collection down to the Web services infrastructure.
They use intermediate Web services that act as event collectors and managers. We
incorporate these ideas and expand upon them in our approach.

The insufficient reliability and lack of autonomic features in current Web services
architectures is presented by Birman et al in [2]. He proposes some extensions to the
current Web services framework in the form of more robust monitoring and reliable
messaging to achieve higher availability.

3 Autonomic Web Services Architecture
A Web services environment typically consists of a collection of components
including HTTP servers, application servers, database servers, and Web service
applications. In our proposed architecture, as shown in Figure 1, we consider each
component to be autonomic, that is, self-aware and capable of self-configuration to
maintain a specified level of performance. System-wide management of the Web
services environment is facilitated by a hierarchy of Autonomic Managers that query
other managers at the lower level to acquire current and past performance statistics,
consolidate the data from various sources, and use pre-defined policies and SLAs to
assist in system-wide tuning.

55

SLA
Neg otiation

 Site DSite CSite B Site E Site A

 Application Application

Fig. 1. Autonomic Web Services Architecture

At the lowest level in our architectural
refer to an autonomic element as a c

hierarchy are the Autonomic Elements. We
omponent augmented with self-managing

capabilities. An autonomic element is capable of monitoring the performance of its
component, or managed element, (such as a DBMS or an HTTP server), analyzing its
performance and, if required, proposing and implementing a plan for reconfiguration
of the managed element. Autonomic elements form the building blocks of our
architecture and are described in more detail in Section 3.1.

We refer to a Site as a collection of components and resources necessary for
hosting a Web service system provided by an organization. A Web services hosting
site typically consists of HTTP servers, application servers, SOAP Engines, and Web
services. Web services are basically Web accessible interfaces or applications that
can connect to other backend applications such as legacy systems, or database
management systems. Most often these backend components are located on separate
servers that are connected by a Local Area Network (LAN). A site can therefore span
multiple servers. A site manager oversees the overall performance of the site and
provides service provisioning for the components associated with the site.

An Application, as shown in Figure 1, is a special purpose client program that uses
one or more Web services, possibly from different sites. An investor application, for
ex

a Local Area Network (LAN). A site can therefore span
multiple servers. A site manager oversees the overall performance of the site and
provides service provisioning for the components associated with the site.

An Application, as shown in Figure 1, is a special purpose client program that uses
one or more Web services, possibly from different sites. An investor application, for
example, that allows users to look up stock prices may use Web services from several
different companies. A site’s SLA Negotiator negotiates SLA agreements between
the applications and the Web services hosted by the site. Once SLA agreements are
made, the site must manage its resources to ensure the agreed level of performance.

There are two levels of management in our approach; the component level and the
site level. The component is responsible for managing its own performance to meet
go

ample, that allows users to look up stock prices may use Web services from several
different companies. A site’s SLA Negotiator negotiates SLA agreements between
the applications and the Web services hosted by the site. Once SLA agreements are
made, the site must manage its resources to ensure the agreed level of performance.

There are two levels of management in our approach; the component level and the
site level. The component is responsible for managing its own performance to meet
goals specified by the site manager. The site manager monitors for SLA compliance,
sets component goals, and provides resource provisioning when necessary.

als specified by the site manager. The site manager monitors for SLA compliance,
sets component goals, and provides resource provisioning when necessary.

56

3.1 Autonomic Elements

An autonomic element can be viewed as a feedback control loop as shown in Figure 2
[8], controlled by an Autonomic Manager. The autonomic manager oversees the

t (the Managed Element), and by analyzing the collected
statistics in light of known policies and goals, it determines whether or not the
monitoring of the componen

component performance is adequate. If necessary, a plan for reconfiguration is
generated and executed.

Managed element

Monitor

Analyze Plan

Execute
Knowledge

Autonomic manager

Management Interface

Fig. 2. Autonomic Element

One approach to building autonomic elements is based on the principles of
reflective programming [11]. A reflective system is one that can inspect an apt its

onse to changing conditions. Typically a reflective system
maintains a model of self-representation, and changes to the self-representation are
au

 performance. This information is
sto

ements. Each component has an autonomic manager as
shown in Figure 2, augmented with a reflective Management Interface. This interface

d ad
internal behaviour in resp

tomatically reflected in the underlying system.
An example of an autonomic database management system (DBMS) based on

reflective programming techniques, was presented by Martin et al [12]. In this system,
the self-representation of the system embodies the current configuration settings and
the statistics that are collected regarding the system

red as a set of database relations that can be queried and updated. A monitoring
tool periodically takes snapshots of the DBMS performance and stores the collected
data in a data warehouse. When a new set of performance data is inserted into the
data warehouse, a database trigger is fired that calls a diagnosis function. The
diagnosis function compares current and past performance data to determine whether
or not a change in configuration is warranted based on a preset desired performance
setting. If one or more configuration parameters should be altered, a change is made
to the self-representation which in turn triggers a change to the underlying DBMS
configuration parameters.

We use this notion of reflection to implement Web components as autonomic
elements. In our architecture, all components such as the HTTP server, the application
server, the Web services and supporting applications as well as the site manager are
instances of autonomic el

57

is

his data can be accessed using the methods provided by the
ma

sentation is accessed via Web service operations for each element. Two
ma

F

used by higher level managers to set performance goals as per Service Level
Agreements (SLAs) for the managed element and to obtain current performance
statistics for the component. As in the example of the autonomic DBMS, a monitoring
tool periodically monitors the system performance and the analyzer compares the
current and past performance to determine whether a configuration change is
necessary to achieve the desired goal. Following the principles of reflective systems,
each autonomic element maintains a self-representation which embodies the
component’s current goal settings and its current performance statistics. Updates
made to the self-representation trigger changes to the actual system. If deemed
necessary by the analyzer, changes are made to the self-representation to reconfigure
the component.

In our proposed architecture, to ensure interoperability between autonomic
elements, a common management interface is specified for all elements to provide
access to the self-representation. Each autonomic element monitors itself to assess its
general health and the performance data is stored as part of the component’s self-
representation. T

nagement interface. Historical data may be used for performance analysis and
prediction.

The standard Web services environment already provides the tools required to
define, publish, discover, and to use APIs across platforms. These tools and methods
are exploited in our proposed architecture for communication between elements. To
implement the reflective interface, we view each component as a Web service where
the self-repre

nagement interfaces are defined for each autonomic element; the Performance
Interface and the Goal Interface. The Performance Interface exposes methods to
retrieve, query and update performance data. Each element exposes the same set of
methods, but the actual data each provides varies. Meta-data methods allow the
discovery of the type of data that is stored for each element

58

public interface Goal{
 // retrieves a list of goals that can be set for the component

public Vector getMetaData();
 // retrieves the current goal for the component

oal (String goalType);

ent

 retrieves the most recent performance data
public Vector getCurrentData();

of the most recent performance

 public Double getG
 // set a goal for the component

public Boolean setGoal(String goalType, Double
value)
}

public interface Performance{
 // retrieves a list of goals that can be set for the compon
 public Vector getMetaData();

//

 // returns a specified portion
i 3. Mag. nagement Interface Specifications

The Goal Interface provides methods to query and establish the goals for an
aut nomic element. Meta-data methods promote the discovery of associated goals
an

o asses the current health of
ea

registry as suggested by Farrell and Kreger [6]. The self-
rep

 Monitoring incurs a certain degree of overhead, so
mo

iety of
mo

3.2 Site Management

f Web service components and resources provided by an
organization that offers one or more Web services. The components comprising a site

o
d additional methods allow the retrieval of current goals. Goals for individual

components can be set only by their associated site manager. Goals for a site
manager are set by the site's SLA Negotiator component.

Component-level performance interfaces are accessed only by their associated site
manager. A site manager uses the performance interface t

ch of its components and uses the component’s goal interface to set individual goals
for each component.

Management interfaces are defined and published using WSDL and a private
management UDDI

resentation can be stored using any storage format (database, log files etc) as these
details are made transparent by the use of a Web service interface. Figure 3 shows
the interface specification of the management interfaces common to all autonomic
elements. The WSDL specification for the setGoal() method is given in the
Appendix as an example.

Each autonomic element implements a monitoring component to asses the health
of its managed element.

nitoring processes must be lightweight and invoked as infrequently as possible.
Multiple levels of monitoring allow more information to be collected depending on
the amount of detail that is desired. In some cases, it may be desirable to drill down,
collecting more detailed information to assist in problem determination. At times of
stable, acceptable performance, it may suffice to collect data less frequently.

Current HTTP servers and application servers provide rich interfaces for
monitoring tools to extract performance statistics and running status. A var

nitor tools are available on the market to visualize and analyze collected statistics,
and if necessary, to fire warnings when the pre-set thresholds are violated [20, 1].
DBMSs are rich in monitoring tools and APIs for gathering information. Monitors
can be switched on or off at will, and different levels of monitoring can be specified.
Monitoring individual Web services presents more of a challenge as each Web service
application is unique. Generic monitors can be developed that provide basic
information such as response time for the Web service, number of requests per time
unit, or average queue length.

A site is a collection o

are shown in Figure 4. A site may be distributed across many physical nodes.
Multiple instances of a component may reside on the same site and resources are
provisioned as required.

59

Query/Signal

HTTP Server

 Application
 Server SOAP Engine

WS1

 DB Legacy

XML

Objects

JDBC Wrapper SOAP

 HTTP Server
Goal

Interface
Performance

Interface

Application Server
Goal

Interface
Performance

Interface

Set

WS2 WS3
Web service

Goal
Interface

Performance
Interface

DB Server
Goal

Interface
Performance

Interface

Ext.WS

SLA Negotiator

Site Manager

Site Manager

Goal
Interface

Performance
Interface

Fig. 4. Autonomic Web Services Site

Applications that wish to use the Web services offered by a site negotiate a SLA
with the site’s SLA Negotiator. Details of an automated approach to SLA negotiation
is presented by Dan et al in [5], and is beyond the scope of this paper. We assume
that different SLAs can be specified for each Web service or, if a finer level of
granularity is required, SLAs can be set on a per-operation level. The site’s SLA
Negotiator translates these high level specifications into performance goals such as
response time or average throughput for each Web service or operation. The SLA
Negotiator component sets the goals for the site using the site’s management
interface.

Each site employs a Site Manager that oversees the general performance of the
components comprising the site. The site manager itself is implemented as an
autonomic element with its own autonomic manager. Conceptually, the site manager
is the autonomic manager of all the components within the scope of the site. The site
manager collects the performance statistics of each component by querying the
management interfaces of the individual components. This information, along with
the policies and goals defined for the site, is used to determine whether or not the
performance of the site is adequate. If the site is in violation of one or more of the
SLA agreements, an action plan is generated and executed. An action plan may
involve the generation and setting of new goals for particular components, or it may
involve a modification in the provisioning of resources.

The site manager is implemented as a Web service that exposes the site’s
performance interface that can be accessed by other site managers or external
components. This interface can be used by applications for error tracking, Web
service selection, or by modules handling external SLA compliance monitoring. The

60

performance data for a site provides summary data indicating the overall performance
of the associated components.

The site manager is responsible for monitoring the overall performance of the Web
services offered by the site. The site manager retrieves the performance data via the
components’ performance interfaces. The information required by the component for
self-management may differ from that required for overall system management by
managers at the site level. For instance, a DBMS focuses on low level resources such
as I/O and CPU usage to maximize performance. To optimize site performance, and
to monitor SLA compliance, the site manger requires higher level statistics such as
throughput or transaction response times. This information is available through the
components management interface.

4 Scenario

Functionality of the different components presented in the architecture of autonomic
Web services system can be better explained using a common example like the Stock
Quote composite Web service system shown in Fig. 5. In this system, a customer
uses an Investor application to find out the details about multiple stocks. The Investor
application invokes a Stock Broker (SB) Web service by sending a register message
containing a list of stock IDs. The Stock Broker sends accept or reject message to the
Investor in response. In case of accept, the Stock Broker sends the stock IDs received
from the customer, one by one to the Research Department (RD) Web service. The
RD finds the necessary information and sends a report directly to the Investor
application. When the Investor receives information about all the stocks, it sends an
acknowledgement message to the Stock Broker service. The Stock Broker service
then submits the bill to the Investor and notifies the Research Department about the
end of the job. The messages interchanged in this system are presented in Figure 5.

register, ack, cancel
Investor Stock Broker

(SB) (Application)

Fig. 5. Stock Broker Web Service System

The Stock Broker and Research Department Web services are located at two
different sites. Each of these sites is managed by a site manager. The site manager
receives the SLA from the SLA negotiator and monitors the performance of the

(Web service)
accept, reject, bill

request, terminate

Research Department
(RD)

(Web service)

report

61

different components at the site to provide an overall performance in compliance with
the SLA. For the Stock Broker service system, the site manager monitors the
performances of the HTTP server, application server, and other components at the site
including the Stock Broker service.

If the SLA between the Investor and the Stock Broker site is in violation, the Stock
Broker’s site manager retrieves the performance data of all the individual components
associated with this site, analyzes them, and sets new goals for the necessary
components in order to avoid violation of the SLA. For example, if the maximum
response time specified in the SLA is five seconds, and the observed response time is
close to, or beyond this threshold, the site manager tries to set new goals for specific
components to reduce the response time to five seconds or less. If the perceived
bottleneck is the HTTP server, the site manager uses the HTTP server’s goal interface
to set a new goal for this component.

Each component in the autonomic Web service system is associated with its own
autonomic manager. When new performance goals are set, the specific components
attempt to reconfigure themselves using their own autonomic managers. In our
example, the HTTP server’s autonomic manager may increase the number of threads
to improve its response time.

At the highest level, the client Investor application sets the SLA for the Stock
Broker service through the SLA negotiator before invoking the service. The SLA
negotiator conveys the same to the Stock Broker’s site manager and also to the linked
services, in this case the Research Department. When all the linked services agree to
the SLA, the Investor application can invoke the Stock Broker service. Both the
application and the site manager monitor the service performance to ensure SLA
compliance. For linked services, the site manager of the calling service does the
monitoring while the SLA negotiator plays the role of the application in doing the
SLA negotiation with the linked services.

5 Summary

Performance plays a crucial role in the eventual acceptance and widespread adoption
of the Web services model of application deployment. Web service performance,
however, is difficult to manage because of the complexity of the components and
their interactions, and the variability in demand and the environment. In this paper,
we propose autonomic computing as a solution to the problems in managing Web
service performance. We describe an architecture for an autonomic Web services
environment where each component is fully autonomic and equipped to cooperate in a
managed environment. Each component provides a management interface that
exposes a self-representation consisting of performance statistics and goal
information. Our architecture uses standard Web service tools and protocols; interface
definitions specified using WSDL and communication using SOAP over HTTP. Site
level managers oversee the overall performance of the components and ensure SLA
compliance.

We see that progress must be made in several areas before an autonomic Web
services architecture, such as the one described in this paper, can be deployed. First,
Web service components are currently not, for the most part, autonomic. In fact, in

62

many cases, components require a complete shut-down and restart before
configuration changes take effect, thus causing an interruption of service. Dynamic
reconfiguration support is necessary for components to fit into an autonomic
environment. As part of our research we are modifying open source Web based
components, such as the Apache HTTP server, to enable dynamic configuration.
Second, autonomic systems will require extensive monitoring, analysis and diagnosis.
Most Web components currently provide sophisticated support to accomplish these
tasks, however, ensuring that these processes do not burden the system with excessive
overhead costs will be a challenge. Third, an architecture like the one proposed here
relies on the specification of SLAs, goals and policies to determine acceptable
performance. Users require a specification language in which these high level SLAs
and policies can be expressed and SLAs must be translated into observable measures
to be used as goals for each component. We plan to use the WSLA language [5] as the
starting point and investigate how goals for individual components can be specified
and derived from Web service SLAs.

References

1. Apache Server Monitor,
 http://demo.freshwater.com/SiteScope/docs/ApacheServerMon.htm.
2. Birman, K., van Renesse, R., and Vogels, W.: Adding High Availability and Autonomic

Behavior to Web Services, 26th International Conference on Software Engineering
(ICSE'04), May 2004, Edinburgh, Scotland, United Kingdom.

3. Chiu, K., Web Services Performance: A Survey of Issues and Solutions, 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI 2003), Orlando, USA,
July, (2003).

4. Fletcher, P., Waterhouse, M. (Eds).: Web Services Business Strategies and Architectures,
Expert Press, (2002).

5. Dan, A., Davis, D., Kearney, R., Keller, A., King, R ., Kuebler, D., Ludwig, H., Polan, M.,
Spreitzer, M. and Youssef, A.: Web Services on Demand: WSLA-driven automated
management. IBM Systems Journal, 43(1), (2004) 136 – 158.

6. J. A. Farrell, H. Kreger, Web Services Management Approaches. IBM Systems Journal,
41(2), (2002).

7. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era, IBM System
Journal, V(42), N(1), (2003).

8. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer, 36(1),
(2003), 41-50.

9. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A.N., Youssef, A.:
Performance Management for Cluster Based Web Services, IFIP/IEEE 8th International
Symposium on Integrated Network Management (IM 2003), (2003), 247-261.

10. Loosley, C., Gimarc, R.L., Spellmann, A.C.: E-Commerce Response Time: a Reference
Model, Keynote Systems Inc., (2000).

11. Maes, P., Computational Reflection, The Knowledge Engineering Review, pp. 1-19,
(1988).

12. Martin, P., Powley, W., Benoit, D.. Using Reflection to Introduce Self-Tuning Technology
into DBMSs. Proceedings of IDEAS’04, Coimbra, Portugal, July 2004.

13. SOAP Version 1.2 Part 1: Messaging Framework, June 2004,
http://www.w3.org/TR/soap12-part1/.

63

http://demo.freshwater.com/SiteScope/docs/ApacheServerMon.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/2163toc.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/2163toc.htm
http://www.w3.org/TR/soap12-part1/

14. The Impact of Web Performance on E-Retail Success, Akamai Technologies, Feb. 1,
(2004),
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepa
per.pdf.

15. Tian, M., Voigt, T., Naumowicz, T., Ritter, H., and Schiller, J.: Performance Impact of
Web Services on Internet Servers, International Conference on Parallel and Distributed
Computing and Systems (PDCS 2003), Marina Del Rey, USA, (Nov. 2003).

16. UDDI Version 3.0.1, UDDI Spec Technical Committee Specification, (Oct. 2003),
http://uddi.org/pubs/uddi_v3.htm.

17. Web Services Description Language (WSDL) 1.1, (Mar. 2001),
http://www.w3.org/TR/wsdl.

18. Weikum, G.: Self-tuning E-services: from Wishful Thinking to Viable Engineering, High
Performance Transaction Systems Workshop Submissions, (Oct. 2001).

19. Wong, S.: Web services: The Next Evolution of Application Integration,
http://www.eaiindustry.org/docs/WebServicesTheNextEvolutionofApplicationIntegration.
pdf.

20. WebSphere Application Server Monitor,
http://demo.freshwater.com/SiteScope/docs/WebSphereMon.htm.

Appendix: WSDL Sample

The following shows the WSDL generated for the setGoal routine which is part of the
Performance management interface.
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://DefaultNamespace"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://DefaultNamespace"
xmlns:intf="http://DefaultNamespace"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:message name="setGoalResponse">
 <wsdl:part name="setGoalReturn"
type="xsd:boolean"/>
 </wsdl:message>
 <wsdl:message name="setGoalRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 <wsdl:part name="in1" type="xsd:double"/>
 </wsdl:message>
 <wsdl:portType name="Config">
 <wsdl:operation name="setGoal" parameterOrder="in0
in1">
 <wsdl:input message="impl:setGoalRequest"
name="setGoalRequest"/>

64

http://itresearch.forbes.com/detail/ORG/971829109_782.html
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepaper.pdf
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepaper.pdf
http://www.iasted.com/conferences/2003/marina/pdcs.htm
http://www.marinadelrey.com/
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/wsdl
http://demo.freshwater.com/SiteScope/docs/WebSphereMon.htm

 <wsdl:output message="impl:setGoalResponse"
name="setGoalResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="ConfigSoapBinding"
type="impl:Config">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="setGoal">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setGoalRequest">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="setGoalResponse">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ConfigService">
 <wsdl:port binding="impl:ConfigSoapBinding"
name="Config">
 <wsdlsoap:address
location="http://webs2/axis/services/Config"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

65

Extending UDDI with Recommendations: An
Association Analysis Approach

Andrea Powles and Shonali Krishnaswamy

School of Computer Science and Software Engineering
900 Dandenong Road, Monash University, Caulfield East, Victoria –3145, Australia.

akapowles@gmail.com,
Shonali.Krishnaswamy@infotech.monash.edu.au

Abstract. This paper presents a novel recommendation extension to UDDI that
we term RUDDIS. Recommendations can have potential benefits to both
providers and consumers of Web Services. We adopt a unique technique to
making recommendations that applies association analysis rather than
traditional collaborative filtering approach. We present the implementation and
demonstrate the functioning of RUDDIS in an unobtrusive manner where the
user has total control over the recommendation process.

1 Introduction

Recommendations are used in a wide variety of e-commerce applications such as
Amazon.com. Recommendations are useful for both buyers and sellers. For sellers,
they provide a means to highlight additional products and for buyers they provide a
filtered list of options to consider.

A natural and intuitive extension to the use of recommender systems in e-
commerce is the investigation of such recommendations within web services. With
the increasing recognition of the commercial potential of the service oriented
paradigm, it is conceivable that recommendations within services can be of
significant benefit and use. Providing recommendations for Web Services has the
potential to offer many benefits for accessibility and usability of Web Services for
both users and providers. It could present users with alternative or additional Web
Service selections thus improving the likelihood that a web service will be consumed
and that useful Web Services are being provided to users. Web Service providers
could see an increase in the use of the Web Services they are providing as they
would see greater exposure to possible users.

This paper presents a first investigation into incorporating a recommendation
component within the web services framework. We propose a plug-in component to
UDDI that extends the functionality of the UDDI from a discovery mechanism to one
that performs discovery and recommendations for web service search queries. The
focus on UDDI is evidently due its role as the standardised directory service
component within current web services framework. As the UDDI specification has
been designed with extensibility as a priority it is limited to only a few set functions.
There have been numerous models and implementations for extending the UDDI

specification to address existing limitations including Rashid (2003), Lyell (2003),
Systinet (2004), and Pokraev (2003).

While there have been many extensions of UDDI, there is yet to be any
investigation into the use of recommendations for Web Services. With the expected
increase of Web Service use, it will be beneficial for the UDDI to be able to provide
recommendations of Web Services. Web Services would gain additional exposure
through a UDDI that provides recommendations and users or systems looking to
integrate or consume a particular Web Service would benefit as they are provided
with additional Web Services that could be of use to them.

In developing a recommendation framework for service oriented architectures –
we had two possible options: Automated Collaborative Filtering (ACF) (Herlocker
2000) and content-based approaches (Sarwar 2004). Automated Collaborative
Filtering (ACF) is a widely used process for recommending information, services or
physical items that are of potential use for a person based on ratings provided by
other "similar" users. In content-based approaches the focus is on usage patterns
rather than having a user focus. In ACF, similarity of users is typically based on
maintaining user profiles. ACF is used in a wide variety of applications such as e-
commerce (typically agent-based systems such as (Guttman 1998), recommendations
for books [Amazon.com], music [CDNow.com] and movies [MovieFinder.com]. The
key distinguishing feature of ACF as opposed to "content-based" approaches to
making recommendations is the incorporation of the user dimension. However, there
are several major challenges in developing ACF systems [HKR00]: the difficulty in
developing valid user profiles, the question of mapping user profiles to individual
preferences and tastes for varied items and services, the application of user ratings
that do not capture the rationale for the ratings provided, the dependence on user
ratings that tend to be subjective, and the requirement for users to provide additional
information and perform extra tasks in providing the ratings.

 The entire premise of ACF rests on the notion that similarity between users can
be captured and represented. This premise is certainly valid when the objects in
question are movies, books or music - but becomes intractable when the question
pertains to web services. Consider questions such as: what makes two users invoke a
particular weather information service as opposed to another? Building such user
models for services is a worthwhile consideration – however, it requires considerable
user psychology and usage patterns to be available in order to develop such user
models. Furthermore, the dependence on users providing ratings is very obtrusive
and the uptake of this - given the very limited incentives in a service oriented
environment - is also questionable.

Therefore, this project aims to address these issues of ACF by using a content-
based approach. This project proposes the use of association analysis [WiE99] to
support recommendations in the web service environment. Association analysis or
association rule mining is widely used as a data mining technique in the retail industry
to perform tasks such as Market-Basket Analysis to search for interesting customer
habits by looking at associations (Witten 1999). The classical example is the one
where a store was reported to have discovered that people buying nappies tend also to
buy beer. It is also used in applications in marketing, store layout, customer
segmentation, medicine and finance. However, the value of using the concept of
association analysis in a wider context is slowly emerging with applications in
content-based image retrieval [MSP04]. The primary aim of association analysis is to

67

discover groups of items that occur together. Given a set of transactions {T}, each
containing a subset of items from an item set {i1, i2, …, im}, the focus is on the
discovery of association relationships or correlations among a set of items. The
strength of such associations is expressed by means measures known as support (i.e.
the probability of a set of items occurring together (P(ij ∪ ik)) and confidence (i.e the
conditional probability of a set of items (ik) appearing given that a set of items (ij)
exists (P(ik | ij))). The support indicates the frequency, while confidence denotes the
strength of the association. In the context of service oriented environment, this
technique alleviates many of the disadvantages highlighted with ACF, while retaining
the strength that it is also like ACF derived from a user-centric basis. In association
analysis, the transaction is derived from user activity – that is the user determines how
services are invoked in conjunction with each other. This is the fundamental basis for
performing an association analysis. On the other hand, it does not presume to build or
rely on user profiles and identification of similarity between users, which is inherently
challenging in the context of service oriented environments at this stage of its
evolution. However, it may be foreseen that in future when such widespread user
models and interactions are available ACF maybe used to in conjunction with
content-based approaches (Pennock 2001)enhance results obtained through
techniques such as association analysis. Furthermore, the occurrence of objects / items
in a transaction is an easily documented event and there is no additional overhead in
getting users to rate the objects / items they use. This “preferential rating” may easily
be established through implicit means such as frequency and duration of usage by the
same user.

We also note that the use of data mining techniques for recommendations in e-
commerce (Schafer 2001) has been validated. The paper is organized as follows. In
section 2 we present the design considerations and architecture of our UDDI
extension to perform recommendations – RUDDIS. Section 3 presents the
implementation of RUDDIS. Section 4 demonstrates its functioning using both a local
and external UDDI. Finally section 5 concludes this paper.

2 Recommendations in UDDI (RUDDIS)

We are proposing the use of UDDI as a Recommender system. We term this model as
Recommender Universal Description, Discovery and Integration System (RUDDIS).
RUDDIS will consist of a UDDI registry encompassing a Recommendation
component. This section examines the considerations and issues for the RUDDIS
model. An UDDI that includes a Recommendation component should contain the
following features:
 The model should conform to the UDDI specification and have minimal or no

impact on the existing Web Services stack. The specification integrity being
maintained is vital to the entire infrastructure and purpose of Web Services.
Should the integrity of the specification be violated then interoperable nature
strived for by Web Services may be foregone.

 Minimal effort should be required from the user to utilise RUDDIS compared to
utilising a standard UDDI.

68

 The model should support the provision of useful and meaningful
recommendations.

 The key concern to be deliberated with regards to the design for the UDDI
framework that includes a recommendation component is how to keep the UDDI
compliant with the specification. The UDDI API Specification document provided
by OASIS (Bellwood 2002) describes the programming interface and expected
behaviours of all instances of the UDDI registry. When enhancing UDDI it is crucial
to keep the standards set by this specification document. The UDDI data structures in
the specification provide a framework for the description of basic service
information, and an extensible mechanism to specify detailed service access
information using any standard description language. Web Services are based on
open standards which is the key to its heterogeneity. Altering the standards could
damage the ability of others being able to use the Web Service stack. In this context,
it is essential for RUDDIS to keep the recommendation and the UDDI components
separate to ensure the compliance of the existing standards. The recommendation
component and the UDDI component will be able to plug into each other via the
calls made to and from RUDDIS. This way the UDDI will not require any internal
modification and will maintain its integrity. This will allow the UDDI to function as
normal. Service providers still wishing to register Web Services in the UDDI can do
so as per usual. Clients wanting to search for Web Services without being provided
with recommendations can do so with the RUDDIS model. With this transparency
being modelled the user may never know they are using an extended UDDI.

In order for RUDDIS to provide useful recommendations we investigate the use
of Recommendations using Market Basket Analysis. Market Basket Analysis is
mainly used for data mining in the retail industry for discovering association rules
between items in the data (Witten 1999). For example if we have a video shop that
has a database of every hire transaction ever made over the history of the store. Each
transaction contains customer details, the videos hired, how many and the video type
e.g. Comedy, Romance, Horror, Drama or Action. As we mine through this data we
find that in the cases where there was more than one video hired, selecting type
Drama, 50% of the time also implies a comedy video was also hired. Then rule can
be described as “drama” “comedy”. Knowing such information can be very
useful. In this case the store manager could place the Drama and Comedy sections
closer together or introduce a special promotion for the two types when hired
together. Association analysis is a relatively simple yet effective analysis tool and
should be able to be implemented into a Recommendation System algorithm with
ease. The Apriori algorithm (Witten 1999) or its many variants and enhancements
are widely used as an effective implementation tool to support association analysis. It
is simple and is computationally efficient. We propose to use Apriori for facilitation
recommendation in RUDDIS.

We now examine how to ensure the model supports the provision of useful
accurate recommendations. For the recommendations to be accurate, data being used
to generate the rules needs to be accurate and up to date. RUDDIS is concerned with
firstly how to obtain the data that will be used to generate the association rules then
secondly, often the rules will be refreshed. Refreshing of the rules will require extra
processing by the system which may slow down the performance. There is the need
to weigh the importance of the performance of the system against the provision of
the most accurate recommendations. We establish that to obtain the data required to

69

generate the association rules the users interactions with RUDDIS will be recorded.
The details of all the queries made by users will be saved into a RUDDIS usage
database. When the rules require refreshing the data from the RUDDIS usage
database will be run through the Apriori algorithm to generate the rules. Also
established is that the user should be able to determine the frequency of updating the
rules. This way the user has control over the performance of RUDDIS as updating
requires extra processing power. We also believe that it is essential to design this
recommendation component such that it can be situated at the client or UDDI server
for maximum flexibility.

2.1 RUDDIS Architecture

A scenario that could take place with the use of RUDDIS, is that a possible user is
interested in searching for Web Services to do with planning a family trip to the east
coast. Using RUDDIS, the user is looking up Web Services on airline flights to get
there. The RUDDIS usage database contains all the Web Service requests made to
RUDDIS and to which session it belonged. The RUDDIS usage database is utilised
when recommendation rules need to be found. When our user enters in the query
“flights”, it is recorded in the RUDDIS usage database. Any other Web Service
requests made by the same user at the one time will also be recorded under the same
session. Also occurring in RUDDIS, is the data from the RUDDIS usage database
being run through the Apriori algorithm producing a set of association rules.
RUDDIS then seeks out any rules supporting “flights”, if there are rules for this
query item existing, the supporting rule with the strongest confidence level is found
and the association item in that rule is extracted. So there maybe two rules for our
query found such as “flights” “car hire” and “flights” “accommodation”.
Which ever rule of the two has the strongest confidence level for example the
“flights” “accommodation” rule, gets the associated item extracted, in this
example, “accommodation”. The original query “flights” is then queried in the UDDI
registry which contains the details of all registered Web Services. The association
item extracted, “accommodation” is then also queried in the UDDI registry. For
either of the two queries any Web Services found, are compiled and presented to the
user, who may then decided to proceed integrating the Web Services.

The following five elements illustrated in Figure 1 have been identified as being
required to carry out the tasks needed to be accomplished by RUDDIS.

The Manager Component: Is in control of handling all the interactions with the
interface. As a Web Service request comes through the Manager Component
evaluates the environment options selected by the user and the query item. It then
directs the requests being made to the appropriate components. Any items returning
from the other components are managed and acted upon by the Manager Component.

70

Fig. 1. RUDDIS Architecture

UDDI Query Component: Is in control of interacting with the UDDI registry which
stores all the Web Services details. When passed a query item by the Manager
Component it encapsulates the query into the appropriate format used for inquiries to
the UDDI. It is supported by the UDDI API client framework which assists in the
discovery of Web Services when requests are made. Any Web Services retrieved are
then passed through to the Manager Component to deliver back to the user.
Database interfaces Component: Is in control of monitoring any databases within
RUDDIS. Primarily this will be the RUDDIS usage database, but enables the
provision of additional databases to be added to the system if this flexibility is
required. Interactions between the Manager, Recommendation, Usage tracking and
Databases interfaces Components occur when the tracking data is being recorded and
when the RUDDIS usage database data is needed to run through the Apriori
algorithm.

Recommendation Component: Is in control of discovering the association rules in
RUDDIS and finding the strongest rule for the Web Service query being made by the
user. If any results are found they are then passed back to the Manager Component to
forward onto the UDDI Query Component, who sees if any correlating Web Services
exist in the registry. It ensures the processes of extracting the data from the RUDDIS
usage database and running the Apriori algorithm to generate the association rules.

Usage tracking Component: Is in control of ensuing that the users session and all
the Web Services requested during the session are recorded. This data will be stored
in the RUDDIS usage database through the use of the Database interfaces
Component.

Each of the components have there own task which they are responsible for, but are
required to communicate with each other to accomplish providing the
recommendations to the user.

71

 3 RUDDIS Implementation

A preliminary investigation of available UDDI implementations was required to
select one for implementation. In order to determine which UDDI registry to utilise
the following criteria was used in assessments. Based on the investigation we
selected the use of the open source UDDI juddi supported by the use of UDDI4J
(UDDI for Java) as the client. This selection was also based on recommendations
being made for these two technologies being used together (UDDI.org, Hess 2004,
Jung 2003).

The recommendation component in RUDDIS requires the ability to process the
data from the Usage database using the Apriori algorithm. WEKA stands for the
Waikato Environment for Knowledge Analysis. It provides practical machine
learning tools and techniques with Java implementations (Witten 1999). WEKA
contains an Apriori implementation which can be used to run the usage data through
to find association rules.

The implementation was built using Java. The RUDDIS implementation was built
as a web application using a combination of Java Server Pages (JSP) and Java
Servlets running on the Jakarta Tomcat Server. For the describing of Web Services,
they are categorised into two types, businesses and services. In RUDDIS the
assumption is made that what we do for business can also be applied to services. For
the implementation we have only the inquiry of businesses in the UDDI registry.

The Graphical User Interface (GUI) was implemented for RUDDIS takes the form
of a web application to be used in a web browser that then accesses the juddi registry
that resides on a server. The interface of RUDDIS was tailored to look like a
standard UDDI interface with just some minor enhancements to assist with the
recommendation section of the application and the facilitation of the selecting of
various environment options. The interface is aimed to comply with the look and feel
of existing public registries. Figure 2 provides a screen shot of the RUDDIS GUI.

Fig. 2. RUDDIS GUI

4 RUDDIS At Work

The primary function of RUDDIS is to extend the UDDI to comprise of the ability to
make recommendations of Web Services. Aside from this RUDDIS also allows the
user to make various selections with regards to the recommendations being made.
The section demonstrates the functioning of RUDDIS. This section illustrates the

72

feasibility of our approach and various options provided to the user to control the
operation of RUDDIS such that the user has total control and the recommender
system is as unobtrusive as possible. We now illustrate the options are as follows:

 A comparison of querying a local UDDI registry to querying an external
registry for Web Services. The user is presented with the selection of Registry being
either “juddi – internal” or “IBM – external”. When juddi is selected the juddi UDDI
registry on the local host is queried for Web Services. When IBM is selected the
IBM test registry on an external server is queried for Web Services.

 A comparison of RUDDIS providing recommendations to RUDDIS working as
a typical UDDI by not providing any recommendations. The user is presented with
the selection of Recommendations being either “on” or “off”. When “on” is selected,
RUDDIS will attempt to provide any recommended Web Services found in the
UDDI registry. When “off”, RUDDIS will function as a typical UDDI providing
only the Web Services found for the query item and not attempt to provide any
recommendations.

 For the purpose of assisting in the evaluation of RUDDIS, the juddi registry
database was populated with an assortment of 315 web service names. The
appropriate usage data was synthetically generated and used to populate the usage
database to assist in the provision of recommendations. The usage database contains
around 135 different sessions, each containing a number of Web Service requests.
The RUDDIS usage database has been set up to assure that some rules supporting
different scenarios will be generated. The evaluation data was used to generate the
ARFF file required by WEKA. This lists the 24 rules discovered once the usage data
is processed by WEKA. One of the rules generated supports the evaluation query of
“skiing” “hire” meaning that a user looking for a Web Service on skiing would be
highly likely to also want to look for Web Services on “hire”. Other associations that
could be useful that support this query are “lift passes”, “snow reports” and “ski
lessons”. Rather than the user having to remember that these are items they could be
interested in using, RUDDIS can offer them as recommendations.

The purpose of evaluating the difference between running with and without
recommendations, is to compare RUDDIS in both scenarios. Not only do we want to
see that associations analysis recommendations can be made with the methods that
have been selected, but what the impact is on a typical UDDI in providing
recommendations. When recommendations were turned on and “Skiing” was entered
in as the Web Service query the following Web Service results produced included a
recommended services list: board hire, car hire, hire costs, ski hire, taxi hire,
toboggan hire and hire snow gear.

What is observed in the previous results is that RUDDIS searches through the
rules and finds that for skiing, the strongest association rule contained the result of
“hire”. Under the Web Services Found heading, the Web Services retrieved from the
registry that contain “skiing” are displayed. Under the Recommended Web Services
heading any Web Services from the registry that contain “hire” are displayed. These
were retrieved using find_business from UDDI specification. When
recommendations are sected off the Web Service results are exactly the same as
when recommendations are switched “on”, except obviously no recommendations
are provided. From examining these we can observe that the UDDI can be extended
to provide Web Service recommendations. Also that it can be implemented in such a
way that it can be requested ensure no recommendations are made.

73

We also evaluated to establish RUDDIS’ ability to access an external UDDI
registry. In this case the IBM test registry was used. Again the same query was
entered. RUDDIS searched through the rules and found that for skiing, “hire” was
the strongest rule result. It found no Web Services in the registry using the
find_business library that contained “skiing”. Under the Recommended Web
Services heading any Web Services from the registry that contained hire are
displayed. In this case there was one with the name of “Saphire”. RUDDIS is
dependant on what Web Services are registered in the external UDDI, so there were
no Web Services existing in the IBM test registry that suited the query “skiing”.

It can be determined from the above results that RUDDIS is successfully able to
access an alternative external registry to the juddi UDDI on the local server and
provide recommendations. The main difference is the Web Services retrieved as this
is obviously a IBM test registry that contains a different set of registered Web
Services.

5 Conclusions and Future Work

We have proposed and developed a recommendation extension to UDDI that we term
RUDDIS. Recommendations can have potential benefits to both providers and
consumers of Web Services. We have also adopted a novel approach to making
recommendations that applies association analysis rather than traditional collaborative
filtering approach. We have implemented and demonstrated the functioning of
RUDDIS in an unobtrusive manner where the user has total control over the
recommendation process. Further, we make no changes to the existing UDDI and the
recommendation component acts as a plug-in that can used locally or at the server
side.

We recognise that while we have highlighted the usefulness of this approach and
demonstrated its practical feasibility – in order to fully validate such a model user
trials that collect real data are essential. We recognise this as a limitation of our work
so far. We plan to address these in at least a simulated context given that access to
real usage data at this stage of web services research and development is not feasible.
Furthermore, it is essential to determine the search space issues associated with a
large list of recommendations. This notwithstanding, this paper takes the first step
towards bringing the widely and successfully used concepts of recommendation in e-
commerce to area of service oriented computing.

References

1. Guttman, R, H., Moukas, A, G., and Maes, P., (1998), Agent-mediated electronic
commerce: A survey, Knowledge Eng. Rev., vol. 13, no. 2, pp. 147--159, 1998.

2. Herlocker, J, L. Konstan, J, A., and Reidl, J., (2000), Explaining Collaborative Filtering
Recommendations, Proceedings of the 2000 ACM conference on Computer supported
cooperative work, Philadelphia, Pennsylvania, USA, pp: 241 - 250

3. Hess Andreas, (19th March 2004), “How to set up your own UDDI registry” Andreas Hess
[online] Available: http://moguntia.ucd.ie/programming/uddi/ [Accessed 2 June 2004]

74

4. Jung, Christoph. (15th October 2003), “Discovering and Publishing Web Services with
JBoss.net” JBoss: Professional Open Source [online] Available:
http://www.jboss.org/developers/guides/jboss.net/uddi [Accessed: 2nd June 2004].

5. Lyell M, Rosen L, Casagni-Sinkins M , Norris D, (2003), “On Software Agents and Web
Services: Usage and Design Concepts and Issues”, The MITRE Corporation [online]
Available: http://www.agentus.com/WSABE2003/program/lyell.pdf [Accessed: 24th June
2004].

6. Padovitz, A., Krishnaswamy, S., and Loke, S, W., (2003), Towards Efficient and Smart
Selection of Web Service Providers Before Activation , Proceedings of the Workshop on
Web Services and Agent-based Engineering (WSABE 2003), [online] Available:
http://www.agentus.com/WSABE2003/program/shonali.pdf [Accessed: 24th June 2004].

7. Pennock David, Lawrence Steve, Popescul Alexandrin, and Ungar Lyle, “Probabilistic
Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data
Environments“,In Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI-2001), Morgan Kaufmann, San Francisco, 2001, pp. 437-444.

8. Pokraev, S. Koolwaaij, J. Wibbels, M. (2003, Aug, 4), “Extending UDDI with context-
aware features based on semantic service descriptions”, Xerox Corporation [online],
Available: https://doc.telin.nl/dscgi/ds.py/Get/File-30562/
UDDI__paper__camera_ready.pdf [Accessed 4 August 2003].

9. Rashid,A.ShaikhAli,O.F.Rana,David.W.Walker (2003)“UDDIe: An Extended Registry for
Web Services” [online], Department of Computer Science Cardiff University, UK
Available: http://www.wesc.ac.uk/projects/uddie/uddie/papers/saint03.pdf [Accessed: 24th
June 2004].

10. Sarwar B, Karypis G, Konstan J, Riedl J, (10 May 2001), “th Item-based Collaborative
Filtering Recommendation Algorithms”, GroupLens Research Group/Army HPC Research
Center [online] Available: http://www10.org/cdrom/papers/519/ [Accessed: 16th July
2004].

11. Schafer J Ben, Joseph A, Konstan, John Riedl, (2001 January - April), “E-Commerce
Recommendation Applications”, Data Mining and Knowledge Discovery, 5 (1-2): 115-153

12. Muller Henning, Squire David, Pun Thierry, (8th November 2003), “Learning from User
Behaviour in Image Retrieval: Application of the Market Basket Analysis”, International
Journal of Computer Vision, vol. 56, no.(1/2/3), pp. 65-77.

13. “Systinet” (2004) New Features in Systinet UDDI registry 5.0, Systinet [online] Availbale:
http://www.systinet.com/download/whats_new_in_wasp_uddi_5.0.pdf [Accessed: 29th
July 2004]

14. “UDDI.org: UDDI Products and Components” (2nd April 2004) UDDI.org [online]
Available: http://www.uddi.org/solutions.html [Accessed 2 June 2004].

15. Windley Phillip, (10th July 2003), Managing the Web services flow, InfoWorld [online]
Available: http://www.computerworld.com.au/index.php?id=1765450771&fp=16&fpid=0
[Accesssed: 29th July 2004]

16. Witten Ian H, Frank Eibe, (October 1999), “Data Mining” Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, p105-111.

75

Ontology Based Model Transformation Infrastructure

Arda Goknil1, N. Yasemin Topaloglu2

 Department of Computer Engineering, Ege University, Izmir, Turkey,
1goknil@staff.ege.edu.tr

2yasemin@bornova.ege.edu.tr

Abstract. Using MDA in ontology development has been investigated in sev-
eral works recently. The mappings and transformations between the UML con-
structs and the OWL elements to develop ontologies are the main concern of
these research projects. We propose another approach in order to achieve the
collaboration between MDA and ontology technologies. We propose an ontol-
ogy based model transformation infrastructure to transform application models
by using query statements, transformation rules and models defined as ontolo-
gies in OWL. Using this approach in model transformation infrastructure will
enable us to use semantic web and ontology facilities in model driven architec-
ture. This paper will discuss how these two technologies come together to pro-
vide automatization in model transformations.

1 Introduction

Model Driven Architecture (MDA) is a recent approach that has been introduced by
OMG [10]. MDA considers model generation as the core activity of software devel-
opment and specifically, it aims to accomplish software development through gener-
ating Platform Independent Models (PIMs) and mappings these models to Platform
Specific Models (PSMs). The main idea behind this is to enable software developers
to work in a higher abstraction layer than the code level. As a consequence, models
become the primary artifacts of software development [8]. To define mappings be-
tween models, model transformation, which takes one or more source models as input
and produces one or more models as output, according to a set of transformation rules
is needed.

An ontology is a formal explicit description of concepts in a domain of discourse,
properties of each concept describing various features and attributes of the concept,
and restrictions of slots [9]. Web Ontology Language (OWL) is a technology for
ontology development and knowledge representation in Semantic Web [2]. OWL
defines and instantiates Web ontologies. Recent works discuss that UML [12] could
be a key technology for the ontology development bottleneck [1] [5] [6]. A number of
partial solutions are currently available as a result of these works and Object Model-
ing Group (OMG) initialized a working group to create Ontology Definition Meta-
model (ODM) to define M2 level UML-ontology-OWL transformation [13]. Alterna-
tively to the established views, we propose another approach for the collaboration
between MDA and OWL. While recent works discuss the contributions of MDA to

ontology development, we discuss the possible contributions of ontologies to MDA.
We propose an ontology based model transformation infrastructure to transform ap-
plication models by using query statements, transformation rules and models defined
as ontologies in OWL.

In this paper, we discuss our ontology based model transformation approach and
define the ontologies for model transformations within the context of MDA. We base
our proposal on the idea that the current technologies for model transformations are
not enough for interoperability of the model queries and transformation rules. The
recent popular technologies to identify transformation rules are XMI and XSLT [15].

The paper is organized as follows. In Section 2, we discuss the general characteris-
tics and underlying concepts of the ontology based model transformations. In Section
3, we introduce our approach and define the ontologies for model transformation
infrastructure. Section 4 includes the conclusions.

2 Overview of Ontology Based Model Transformations

2.1 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a technology to provide a standard language for
the representation of ontologies on the web. OWL is a result of the ongoing process
of defining a standard ontology web language. It is an extension of Resource Descrip-
tion Framework (RDF) [17]. OWL provides a rich set of vocabulary to catch all the
relationships between classes and properties. An OWL document can include an
optional ontology header and any number of class, property, and individual descrip-
tions or axioms.

A Class identifier describes a named class in OWL ontology. For instance,
“<owl:Class rdf:ID=”Student”>” defines a class “Student” which is an instance of
“owl:Class”. In the ontology, many individuals can be instantiated from the defined
classes. Individuals are instances of classes, and properties may be used to relate one
individual to another. These properties can be used to state relationships between
individuals or from individuals to data values. For instance, an individual named Olca
may be described as an instance of the class Student and the property hasStudent may
be used to relate the individual Olca to the individual EgeUniversity which is derived
from the class University. There are two kinds of properties defined in OWL: object
property which relates individuals to individuals, and datatype property which relates
individuals to data values. Similar to object-oriented programming, class hierarchies
may be created by using one or more statements which shows that a class is a
subclass of another class [2]. For instance, the class UniversityStudent is the subclass
of the class Student. OWL allows restrictions to be placed on how properties can be
used by instances of a class. This restriction mechanism in OWL provides to define
constraints, which can not be specified in UML or other modeling techniques.

77

2.2 General Concepts of the Model Transformation Ontology

Model transformation is the core activity in MDA to generate new models or to
change the existing models. A model transformation takes one or more source models
as input and produces one or more models as output according to a set of transforma-
tion rules. The metamodeling technique is used to define these models and transfor-
mation rules [14]. A metamodel describes models by defining the meta entities and
the relationships among these entities together with the semantics of these relation-
ships. The meta class instances of the metamodel define the models and transforma-
tion rules generated from the metamodel. Extensible languages like XML Metadata
Interchange (XMI) and Extensible Stylesheet Language Transformations (XSLT) can
be used to encode models and transformation rules with meta class instances [3][15]
[16].

XMI allows us encoding models in sets of XML tags to make them tool independ-
ent and interoperable. XSLT is another technology that enables to work on XML
documents for model transformations. Though XMI and XSLT have reached wide
usage, the interoperability and extendibility they provide are not sufficient. XMI is
designed for interoperability among different case tools and it provides mechanisms
for the exchange of UML models but it is not suitable for more structural interopera-
bility.

The three main components of MOF 2.0 Query/Views/Transformations RFP [11]
should be considered in the definition of model transformation ontology. The QVT
RFP is issued by the Object Management Group (OMG) and seeks a standard solu-
tion for model manipulation. The three main subjects of model transformation defined
by QVT [11]:

• Queries take a model as input, and selects specific elements from that model.
• Views are models that are derived from other models.
• Transformations take a model as input and update it or create a new model.

In our work, these three parts are defined as ontological. Defining queries and
transformation in an ontology format will enable us to specify the structure of how
meta entities and the relations between them are kept. Also queries defined in differ-
ent transformation architectures will understand each other with the help of ontologi-
cal approaches. To define instances from classes in XMI, you must define the meta
classes in the same document. But in OWL, all instance queries reference a shared
query ontology for the definitions of meta classes to define instances. The ontologies
of these parts are defined as OWL documents. The definition in the OWL document
provides a meta model for model transformations. For every instance transformation,
instance ontologies can be derived from the meta ontologies.

3 Modeling the Transformation Components As Ontologies

As mentioned in QVT [11], the transformation infrastructure is constituted of three
main structures as query, view and transformation. In our approach, we propose to
model the meta entities and instances of these structures as ontologies.

78

3.1 Querying Application Models With Ontological Structures

Queries take a model as input, and select specific elements from that model. The aim
is to detect the specific source and target patterns in application models. For that
reason, different query languages have the same meta structures like selection and
condition. These main structures are the basis of the query ontology.

Two different ontology documents are needed to query an application model. The
first ontology document includes the meta classes of the query meta model. This meta
model defines the main entities and the possible associations of these entities. The
second document contains the instance query. The instance query selects the specific
elements in the application document, and it is derived from the meta entities which
are defined in the first query ontology. Figure-1 shows the relationship between the
instance query ontology, meta query ontology, application model and the engine that
process the query on the application model. Query.rdf includes the meta classes
which constitute the meta model of model queries. These meta classes are the main
selection elements like Select, Where, And, Or, Not. They associate the model ele-
ments to constitute the source and target patterns. InstanceQuery.rdf includes the
instances of the classes in Query.rdf to define an executable query for an application
model. Query.rdf is a kind of schema for query instances and defines the possible
queries with its constructs.

Fig. 1. Deriving Query Instances from Query.rdf

We propose a simple query language whose meta-model is shown in Figure-21.
The elements of this meta model constitute the structures in Query.rdf. The Query
class in Figure-2 defines the query which is composed of two parts as Where and
Select. The Select class associates with model elements which are derived after query
processing. The Where class defines the condition in the query and is composed of
the Boolean terms (And, Or, Not), model elements and query references.

1 Instead of showing the OWL document, we model our ontology definition by using UML

class diagrams because of the space limitation in this paper.

Query.rdf

imports

InstanceQuery.rdf

input

transforms

Engine Application

79

Query

+ name

Where

Select

ModelElement

QueryRef

+ name

BooleanTerm

And Or Not

1

1

0..1

1

0..1

0..1

0..1

0..1

1..*

1

1..*

1
1..*

1

0..*

0..1

0..20..2

0..1

0..*

0..1

0..2

0..2
0..1

Fig. 2. The Meta Classes in Query.rdf

The QueryRef denotes other queries that are referenced in the Where term of the
query. This enables us to use queries as recursive functions. The main difference
between the QueryRef and the Query classes is that the QueryRef class is only a refer-
ence and does not contain the selection and the condition terms in the ontology where
it is used. It defines the parameters which the Query it references uses in its own
ontology. The Boolean terms include the model definitions as the conditions on the
application model. The Where class may have these three classes in different combi-
nations. The query ontology can limit the possible combinations that can be obtained
from the meta model. The restrictions in the aggregation mechanism of the Where
class and its collaborators can be defined in OWL as shown below:

<owl:Restriction>
 <owl:onProperty rdf:resource=”#hasDefiniton”>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf>
 <owl:Class rdf:about=”#QueryRef”>
 <owl:Class rdf:about=”#BooleanTerm”>
 <owl:Class rdf:about=”#ModelElement”>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:onProperty>
</owl:Restriction>

<owl:Restriction>
 <owl:onProperty rdf:resource="#hasDefinition"/>
 <owl:cardinality

80

rdf:datatype=”http://www.w3.org/2001/XMLSchema#nonNegativeInt
eger”>1</owl:cardinality>

</owl:Restriction>

The property named hasDefinition defines the aggregation between the Where

class and its collaborators, the BooleanTerm class, the ModelElement class and the
QueryRef class. The first restriction defines that the Where class may have the Que-
ryRef, the BooleanTerm and the ModelElement classes but with the second restriction
it may have only one of them at once. The restriction mechanism in OWL provides to
define constraints, which can not be specified in UML or other modeling techniques,
for meta classes of our query model.

In Figure-2, we show the main classes that the query ontology must have. We can
extend this ontology with additional structures for more complex model queries. For
instance, there may be a set of same elements after the query processing. The query
result set may have a model including a class associated with a set of same elements.
To handle the set of model elements with iterations, there may be a container class to
keep model elements as a set. A query which selects a class with a public attribute
may return more than one public attribute of the class. We can handle the set of pub-
lic attributes in the class in a set structure. Without a set structure, the query only
matches the class with one public attribute at once. This set structure enables us to
match one class with the set of its public attributes all at once.

 Defining query models as ontologies allows us to extend this query meta model.
The InstanceQuery ontologies are derived from Query.rdf for every model query like
in Figure-1. In our work, InstanceQuery.rdf provides a query definition matching
UML classes and their attributes, both owned by the class, and all of its superclasses.
The query [4] shown below is an example of this.

QUERY hasAttr(C, A)
SELECT Class C, Attribute A, Class C2
WHERE A.owner=C OR (C.super=C2 AND hasAttr(C2, A))

It is possible for ontologies to be treated as reusable modules and imported into

different documents. An OWL document may contain an individual of class defined
in another ontology, which contains meta-data about that document itself. In our
example, the InstanceQuery defining the hasAttr query imports Query.rdf to create
individuals from the meta classes as shown below:

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="Query.rdf"/>
</owl:Ontology>

Every individual created in the QueryInstance references the class defined in the

Query ontology. In our case, the Where individual has an Or individual. This Or
individual has two properties named the left-hand side and the right-hand side. The
left-hand side has a clause which defines (A.owner=C) and the right-hand side has an
And individual. The And individual has (C.super=C2) clause in the left-hand side and
a QueryRef referencing the hasAttr query with the parameters as Class C2, and At-
tribute A. Figure-3 shows this condition structure. In the ontology, we define
(A.owner=C) clause with Class C which has Attribute A. Every model element used

81

in the query is defined and is aggregated by the Query individual. We use their refer-
ences while defining the clauses in the conditions. It means that the reference of the
Class C has the reference of the Attribute A. The reference mechanism allows us to
define conditions on model elements by using temporary clauses. The model elements
defined inside the query are accessed through their references while the conditions
are defined.

Where
 has

Or

And (A.owner=C)

left hand-side

right hand-side left hand-side

right hand-side

 (C.super=C2) hasAttr(C2,A)

Fig. 3. The Structure of the Condition Statement in the Instance Ontology

3.2 Transforming Application Models With Ontological Structures

Transformations take a model as input and update it or create a new model. The sub-
mission for MOF 2.0 QVT RFP [11] split queries, views and transformations into two
distinct groups. Queries and transformations may possibly create views, but views
themselves are passive [11]. In our work, we consider that a transformation includes
both queries and transformation operations. While queries select specific elements
from the application model, transformation operations are applied to these selected
model elements to transform the application model. The meta transformation ontol-
ogy includes both the meta classes of transformation operations and queries. It can be
considered that the transformation ontology is an extended query ontology to support
the transformation operations.

The relationship between transformation ontology and transformations is similar to
the relationship between meta ontology and instance ontology of queries that are
discussed in Section 3.1. Transformation.rdf includes the meta classes which consti-
tute the meta model of transformations and the instances in instance transformations
are derived from these meta classes. Transformation.rdf is a kind of schema for trans-
formation instances and defines the possible transformations with its constructs. Fig-
ure-4 shows the structures in our transformation ontology as a UML diagram.

82

Transformation

+ name

Where

Select

ModelElement

QueryRef

+ name

BooleanTerm

And Or Not

1

1

0..1

1

0..1

0..1

0..1

0..1

1..*

1

1..*

1
1..*

1

0..*

0..1

0..20..20..1

0..*

0..1

TOperation

Add Update Delete

*

1

1

1

TransformationRef

+ name
- Extends

- Superceeds

*1

0..2

0..2
0..1

Fig. 4. The Meta Classes in Transformation.rdf

The Transformation class in Figure-4 defines the transformation itself. It has the
Select and the Where classes like the Query class in Query.rdf because the transfor-
mation includes both model queries and transformation operations inside. The Where
class is associated with the QueryRef class because a query instance can be referenced
in the query condition of the transformation ontology. The query structures in Trans-
formation.rdf and Query.rdf are the same. Transformations may be related to other
transformations. [4] defines two ways for this relation: Extends and Supersedes. The
associations between the Transformation and the TransformationRef classes in our
ontology denote this relationship. Here, we have the OWL extensibility facilities to
support other possible transformation relations in our ontology. Other possible rela-
tions between transformations can also be added to the transformation ontology in
different approaches. The TOperation class and its sub-classes encapsulate the trans-
formation operations on application models. The sub-classes of the TOperation class
in our ontology are the Add, the Update and the Delete classes. We use them in our
ontology to define the simplest operations. They are also the atomic operations and
operate on meta class instances. In different and more complicated transformation
approaches, more abstract and high-level classes may be used to define transforma-
tion operations.

Below, we give an example for a transformation definition which converts a public
attribute from a given class to private and also creates the getter operation:

Transformation makingAttributePrivate(C, A)
SELECT Class C, Attribute A
WHERE (A.owner=C) AND (A.visibility=”Private”)

83

MAKE A.visibility=”Private”
 Define getMet = new Operation()
 getMet.name=”getAttr”
 getMet.owner=C

The Make part after model query in the transformation defines the transformation

operations on the application model. The first operation is making the visibility of
Attribute A private. It is an update operation denoted by the individual derived from
the Update class in the ontology. The second step in the transformation is creating a
get method in Class C. An individual derived from the Add class does the creation of
the get method named getAttr in Class C.

The third component of model transformations is views. Views are models that are
derived from other models. Application models can also be defined in OWL instead
of XMI where Case tools export and import the application models.

4 Conclusion

In this paper, we proposed an ontology based model transformation infrastructure.
Ontologies provide a shared and common understanding of a domain. We consider
the domain as model transformation in the context of model transformation languages
and model the main constructs of model transformations. It enables us to extend our
ontologies for future constructs of model transformations and allows communication
of rules across applications. We used OWL in the definition of our ontologies be-
cause it is executable and is supported by tools. The restriction mechanism in OWL
allows defining constraints about the instance models derived from meta models.
OWL which provides to define assertions for UML has a precise semantics and is
compared with Object Constraint Language (OCL) [18]. Some programmatic envi-
ronments [7] include OWL APIs. These environments provide persistent storage,
reading and writing OWL documents. Using OWL in model transformation infra-
structure allows us to use the current semantic technologies to constitute the trans-
formation engines. Loading and compiling the parts of model transformation are
processed by the help of current ontology APIs.

 Our aim is to investigate the possible contributions of ontologies to MDA and an
ontology based model transformation infrastructure. We think that ontologies will
play an important role in the development of MDA. In our future work, we will ex-
tend our transformation ontology with the constructs that support new transformation
domains.

References

1. Backlawski, K. et al: Extending the Unified Modeling Language for Ontology Develop-
ment. Int. J. Software and Systems Modeling, Vol.1, No.2 (2002) 142-156

2. Dean, M., Schreiber, G. (eds): OWL Web Ontology Language Reference W3C Recom-
mendation, Feb 10, 2004, http://www.w3.org/TR/owl-ref/

84

3. Demuth, B., Obermaier, S.: Experiements with XMI Based Transformations of Software
Models. WITUML’01, Genova Italy, April (2001)

4. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model Transformation: A
declarative, reusable patterns approach. In Proceedings EDOC 2003, pp 174-185

5. Falkovych, K., Sabou, M., Stuckenschmidth, H.: UML for The Semantic Web: Transfor-
mation-Based Approaches. In Knowledge Transformation in Semantic Web, IOS Press,
Vol.95 (2003), pp 92-106

6. Gasevic, D., Djuric, D., Devedzic, V., Damjanovic, V.: Approaching OWL to MDA
Through Technological Spaces. WISME@UML’2004, Lisbon Portugal, 2004

7. Jena: A Semantic Web Framework For Java. http://jena.sourceforge.net/
8. Judson, S., France, R., Carver, D.: Specifying Model Transformations at the Meta-model

Level. WISME@UML’2003, San Francisco USA, October (2003)
9. Noy, N., McGuinnes, D.: Ontology Development 101: A Guide to Creating Your First

Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05, March
(2001).

10. OMG: MDA Guide Version 1.0.1. The Object Management Group, Document Number:
omg/2003-06-01 (2003)

11. OMG: Submissions for MOF 2.0 Query/Views/Transformations Request for Proposal.
The Object Management Group (2003)

12. OMG: OMG Unified Modeling Specification. Version 1.4. (2001)
13. OMG: Ontology Definition Meta-Model, http://www.omg.org/cgi-bin/doc?ad/03-08-06

(Current Apr 3, 2004)
14. Sendall, S., Kozaczynski, W.: Model Transformation – the Heart and Soul of Model-

Driven Software Development. IEEE Software Sep/Oct. (2003), pp. 42-45
15. Staron, M., Kuzniarz, L.: Implementing UML model transformations for MDA.

NWPER’2004, Turku Finland, August (2004)
16. Wagner, A.: A pragmatical approach to rule-based transformations within UML using

XMI.difference. WITUML 2002, Malaga Spain, June (2002)
17. W3C Resource Description Framework. http://www.w3.org/RDF/
18. Zhao, Y., Assman, U., Sandahl, K.: OWL and OCL for Semantic Integration. Technical

Report, Programming Environmental Lab (PELAB), Department of Computer and Infor-
mation Science, Linköping University, Sweden.

85

Evaluation of the Proposed QVTMerge Language
for Model Transformations

Roy Grønmo1, Mariano Belaunde2, Jan Øyvind Aagedal1, Klaus-D. Engel3,
Madeleine Faugere4, Ida Solheim1

1SINTEF, Forskningsveien 1, Pb 124, Blindern N-0314 Oslo
{roy.gronmo, jan.aagedal, ida.solheim} @sintef.no

2France Telecom R&D, 2 Avenue Marzin, 22307 Lannion - France
mariano.belaunde@francetelecom.com

3Fraunhofer Gesellschaft FOKUS Kaiserin-Augusta-Allee 31, D-10589 Berlin
engel@fokus.fraunhofer.de

4THALES Research and Technology, Domaine de Corveville 91404 Orsay cedex - France
madeleine.faugere@thalesgroup.com

Abstract. This paper describes the set of requirements to a model-to-model
transformation language as identified in the MODELWARE project. We show
how these requirements divide into three main groups according to the way
they can be measured, how to decompose them into different grades of support
and how they can be weighted. The evaluation framework has been applied to
the current QVTMerge submission which targets the OMG QVT standardiza-
tion.

1 Introduction

Model-Driven Development (MDD) is a current buzzword that includes many tech-
nologies to improve the productivity in software development. Perhaps the greatest
leap to make when adopting MDD is the shift from being code-centric to become
model-centric. However, models will become first-class citizens only when there are
suitable tools to ensure consistency and traceability between models on different
levels of abstraction and from different viewpoints. A key concept in MDD is model-
to-model transformation. Such model-to-model transformations define mappings
between models, for instance to support refinement between models on different
levels of abstraction. Model transformation makes it possible to derive models from
other models in a controlled and automized manner. It also simplifies the way one
relate models, for instance to ensure consistency. In the past few years many different
proposals have been suggested for doing model transformations [1-3]. These hetero-
geneous solutions raise a need to standardize the way model transformations are per-
formed. The OMG is currently finalizing a standard called QVT [4], for specifying
model-to-model transformations, where the models are instances of metamodels de-
fined using the Meta Object Facility (MOF) [5]. In this paper we evaluate the
QVTMerge language [6], which is one of the two competing submissions towards the
QVT standard.

This work has been conducted in context of MODELWARE, an EU-supported In-
tegrated Project. An overall objective of MODELWARE is to improve productivity
in software development. This objective will be pursued by realizing the vision of
model-driven software development. To this end, model transformation is viewed as a
crucial technology. MODELWARE includes both research institutions, tool vendors
and end users, and this evaluation accommodates these different perspectives. We
performed this evaluation to be able to produce model-to-model transformation tech-
nology that meets the requirements in MODELWARE, and we hope to influence the
final stages of the ongoing standardization in OMG so that the standard meets the
identified requirements.

We have identified a set of MODELWARE evaluation criteria for model-to-model
transformation languages. Each criterion can be sorted in one of three categories
according to how to test it:
• Language inspection. Manual inspection of the language alone is enough to

evaluate the criterion.
• Example-dependant. In order to test such a criterion we need complete examples

that show how the language is used in practice.
• Tool-dependant. Such a criterion requires a tool implementation.

Note that for some of the criteria it may be debated to which category they belong
and if more than one category can be applied. Tools may implement additional func-
tionality not provided by the language itself. However, less vendor and tool depend-
ence is obtained if most of the criteria are satisfied by the language itself. Since no
complete QVTMerge compliant tools are available we will not cover the tool-
dependant criteria in this paper.

The criteria are presented in a template defining the rationale, scale, if the require-
ment is mandatory or optional, and weight. A rationale explains why the criterion is
considered important, scale explains the different levels of support, and weight is a
number between 1 (lowest importance) and 6 (highest importance). It is important
that the scale is defined precisely and in a manner that it is easy to evaluate the target
language. The importance level indicated by the weights is subjective and initial
MODELWARE judgments. These weights are critical to ensure that evaluated lan-
guages are ranked higher if they fulfill the most important requirements.

2 Language Inspection Criteria

This section contains the list of criteria that can be tested by manual inspection of the
inherent properties of the language. The criteria are sorted this way: mandatory re-
quirements first, then higher weights first.

Traceability (mandatory, weight=5). Rationale: This property will make it easier
for the user to understand how changes in the source will affect the target. It is also
useful when undesired target results are produced, as the tracing back to the source
element will be of important help in order to correct the source model or the defini-
tion of the transformation. Scale: 0 = No support, 1 = Manual support. The user must

87

explicitly express the elements to be traced. 2 = Automatic support. The language
automatically provides traceability of all the elements.

Unidirectionality (mandatory, weight=4). Rationale: Unidirectionality is the abil-
ity to specify transformations in one direction only. When we never need to apply the
reverse transformation it will be easier to concentrate only on the transformation one-
way. Scale: 0 = no support, 1 = support.

Complete textual notation (mandatory, weight=4). Rationale: Textual notation
enables users to define transformations without a graphical tool. Textual notations are
also often preferred for defining large, complex transformations since graphical ap-
proaches are hard to scale. Scale: 0=no support, 1 = support.

Black-box interoperability (mandatory, weight=4). Rationale: This enables the
reuse of any existing codes or scripts written in other languages, that otherwise would
need to be rewritten in the transformation language. Support requires that it is possi-
ble to specify references to external code within a transformation. Scale: 0 = no sup-
port, 1 = support.

Composition of transformations (mandatory, weight=3). Rationale: This is de-
sired in order to reuse several basic transformations to accomplish a more complex
task. Scale: 0 = No support. 1 = Sequence only. 2 = Supporting the five basic control
flow patterns [7] (sequence, and-split, and-join, or-split, or-join).

Graphical notation (mandatory, weight=2). Rationale: Graphical notations pro-
vide a higher-level view on the transformation and can more easily be communicated
than a pure lexical alternative. Scale: 0 = No support. 1 = Only parts of a transforma-
tion can be graphical. 2 = A single transformation can be fully defined graphically. 3
= Compositions of transformations (see separate property) as well as single transfor-
mations can be fully defined graphically.

Updating source model(s) (mandatory, weight=2). Rationale: In some cases it is
desired to update/complete an existing model instead of producing a new model.
Scale: 0 = no support, 1 = support.

Incomplete transformations completed with pattern parameters (mandatory,
weight=2). Rationale: This is a powerful construction for reusing large parts of a
transformation that otherwise would need to be copied into several transformations.
Scale: 0 = no support, 1 = support.

Modularity (optional, weight=6). Rationale: This will ease the comprehension
and development of transformations. Scale: 0=no support, 1 = support. Support for
this includes the possibility to split a transformation into several files, structure the
code in separate UML package, provide separate transformation rules or to group
methods inside classes, thus achieving fine grain modularity.

Reusability (optional, weight=5). Rationale: It is desirable to define transforma-
tions that capture common transformation rules that can be reused by other more
specialized or parameterized transformations. This will improve the ability to share
common knowledge, the ability to faster make new transformations and the ability to
maintain the transformations. Scale: 0 = No support. 1 point for each of these that are
satisfied: a) can import transformation library b) can specialize transformations.
Maximum score is 2.

Restricting conditions/pre-conditions (optional, weight=4). Rationale: This is
useful to ensure that the source model(s) provided to the transformation follows the
restrictions set by the transformation. It prevents the transformation from being used

88

incorrectly and provides the opportunity to give critical feedback to the transforma-
tion user. Scale: 0 = no support, 1 = support.

Bidirectionality (optional, weight=2). Rationale: When a transformation needs to
be defined in both directions as a relation between two models, it will be easier for
the user to define one bidirectional transformation than to define two separate trans-
formations for this purpose. The maintenance of a single transformation definition
will also be easier to maintain and it reduces the risk of errors. Scale: 0 = no support,
1 = support.

Multiple source models (optional, weight=2). Rationale: The input from more
than one source model may be necessary in order to produce the target. Scale: 0 = no
support, 1 = support.

Object orientation (optional, weight=2). Rationale: The principles of object ori-
entation will improve the reuse, maintenance and comprehension of transformations.
Scale: 0 = No support. 1 point for each of these four OO principles that are satisfied:
a) inheritance b) encapsulation c) identity/ instantiation d) late binding/ polymor-
phism. Maximum score is 4.

Learning Curve (optional, weight=2). Rationale: This property is desired since it
increases the chance of becoming widely adopted. The weight is low, since it should
not stop the introduction of a new way of programming style that has major advan-
tages but that is unfamiliar to most people. Scale: Measured as an answer to the ques-
tion: Is the transformation language easy to learn? (0 = Strongly disagree. 1 = Dis-
agree. 2 = Neither. 3 = Agree. 4 = Strongly agree)

Multiple target models (optional, weight=1). Rationale: It may be desirable to
produce more than one target model. Scale: 0 = no support, 1 = support.

3 Evaluating Ease-of-use Criteria by Examples

Most of the identified evaluation criteria were sorted in the language-inspection cate-
gory and the tool-dependant category. Only two of the criteria were identified as
being example-dependant: ease-of-use for simple and complex transformations.
These two criteria are of high importance, and they require some case studies on
reference transformation examples in order to be answered properly. The examples
have been defined by an evaluation team and one of the authors of QVTMerge has
assured that the language has been used in a suitable manner to solve the problem at
hand. There are two alternative ways of defining transformations with QVTMerge.
The first alternative uses predicate relations that declare the invariants that hold be-
tween source and target models (QVTMerge/Relations). The second alternative is a
constructive directional approach based on operations (QVTMerge/Mappings). The
evaluation has focused on the second approach.

All of the transformation examples have been defined using the concrete textual
notation of the mapping formalism. The examples are Enterprise Java Beans/UML to
Enterprise Java Beans/Java, XSLT to XQuery, UML Spem Profile to UML Spem
Metamodel, UML to Relational Database, Book to Publication, and EDOC to J2EE.
These examples cover both simple and complex transformations, vertical and hori-
zontal, structural and behavioral transformation examples.

89

Ease-of-use (mandatory, weight=6). Rationale: This property is highly desirable in
order to increase productivity and adoptability of a transformation language. Scale:
Measured as an answer to the question: Is the transformation language easy to use? 0
= Strongly disagree. 1 = Disagree. 2 = Neither. 3 = Agree. 4 = Strongly agree. Impor-
tant sub-questions that are useful to answer the main question: Is the transformation
language clear and understandable? Does it require a lot of mental effort to set up the
transformation? Is it easy to use the language to define transformations? Is it cumber-
some to use? Is it frustrating to use? Is it controllable? Is it flexible?

None of the examples are fully presented in this paper due to limited space. Below
is an extract from the EDOC [8] to J2EE (Java 2 Platform Enterprise Edition) trans-
formation example. EDOC defines how to model enterprise systems using UML,
while J2EE is a possible execution environment for EDOC models. This is a complex
platform-independent model (PIM) to platform-specific model (PSM) transformation
example.

module Edoc_To_J2EE (in edocModel:EDOC): j2eeModel:J2EE;
main () {
 edocModel.objects->firstPass();
 edocModel.objects->secondPass();
}
mapping firstPass(in EDOC::ModelElement) : JavaElement
 disjuncts Package_to_Package, ProcessComponent_To_Java_Interface {}
mapping secondPass(in EDOC::ModelElement) : JavaElement
 disjuncts
 PackageContainement,
 FlowPort_To_Method,
 Protocol_FlowPort_To_Method,
 OperationPort_To_Method, … {}
 mapping PackageContainement[in EDOC.PackageDef]():J2EE.JavaPackage {
 init {
 result := self.resolveone(J2EE.JavaPackage);
 }
 subPackages := self.ownedElement[EDOC::PackageDef]
 ->resolveone(J2EE.JavaPackage);
}

The transformation specification uses two passes. The first pass is used to create

the main structure and the data types, while the second pass is used to fill the detailed
contents of the target model. The disjunction declaration in the second pass chooses
separate rules for each target element to be created depending on the type of the
source element. The PackageContainment rule transforms from EDOC pack-
ages to J2EE packages. The pre-defined result keyword is used to assign the target
result object. subPackages refers to an association in the target metamodel which
defines that J2EE packages may contain other J2EE packages. The built-in re-
solveone method is used to retrieve all target objects of a given type that were
produced by a source instance in pass one. The final statement in the example assigns
subPackages to a set consisting of J2EE packages that has already been transformed
from EDOC packages in pass one.

When reviewing the example transformations some negative findings were discov-
ered that may be used to further improve the specification before it is finalized as an
OMG adopted specification:

90

• It is confusing when to use arrow and when to use dot for referencing part attrib-
utes/associations, built-in functions, inherited OCL functions etc.

• There is a mixture of procedural style with object-oriented style when defining
and invoking methods. Object method calls are object-oriented
(theXSLTRoot.P2P), while the signature uses an input parameter to represent
the object type on which we can invoke the method like in the code extract signa-
ture above. This makes it non-intuitive to understand the much used “self” key-
word that refers to the context parameter.

• It is hard to discover calls to the mappings rules. When doing transformations it
is crucial to easily see where calls are made recursively or to other mapping
rules. These calls cannot easily be distinguished from other calls to built-in func-
tions, attribute/association references or OCL functions. XSLT has a solution for
this by letting all calls to other mapping rules happen with the apply-templates
instructions.

In addition to the negative findings described above, some issues were controversial
because there were different opinions in the review group if the issues are negative
findings or not:
Long and cryptic expressions. Single expressions are sometimes very long and
cryptic to understand which requires a lot of mental effort. (Example: return :=
out Return { expressions :=
self.nodes[#Template][t|t.match = '/']->nodes->flatten()-
>NodeToExpression();) This is a heritage of OCL style and syntax.
QVTMerge introduces additional short-hands to avoid excessive verbosity in single
expressions – like the '#MyType' expression mapped as a call to the 'oclIsKin-
dOf(MyType)' pre-defined operation . It is not clear yet whether these additional
short-hands help on ease-of-use of the language. It is also possible for a transforma-
tion writer to split a computation in various lines using intermediate variables.
Two-pass. Some of the transformations use a two-pass approach in order to ensure
that some target instances are produced so that the resolve() methods will get the
proper element in a different context. This is a consequence of the explicit execution
strategy in QVTMerge/Mappings which might be perceived as an advantage or as a
disadvantage depending on writer preferences. An interesting issue here is to know
whether it is possible to handle automatically object resolutions - so that the language
user does not need to worry about this – without loosing the advantages of the ex-
plicit execution strategy.

The review of all the code examples shows nice program code structure, inheri-
tance, and modularity by separation into manageable mapping rules. We believe that
reusability and maintenance will be positive side-effects when the transformation
code is written as they were in the examples. The example-based ease-of-use evalua-
tion of the QVTMerge language shows slightly higher scores for complex than for
simple transformations and the combination of vertical and structural transformations
gets a lower score than the other categories of transformations. We need more exam-
ples in order to show that these trends are valid in general. But the overall average
ease-of-use is evaluated as approximately 2.5 on a scale from 0 to 4, where 4 is the
goal. It should be stressed that the evaluation of ease-of-use are subjective judgments
of the MODELWARE participants who performed the example-based testing.

91

4 Related Work

The QVT Request for Proposal (QVT RFP) [4] identified a list of mandatory and
optional requirements for submissions. Some of its requirements are focused on fit-
ting the new QVT specification into the set of existing OMG specifications so to
reuse and align well with existing recommendations. Many of the requirements of
QVT RFP coincide with MODELWARE. The QVT RFP has identified portability
and a declarative transformation language as requirements which are not directly
stated by MODELWARE. There are several MODELWARE requirements not men-
tioned in the QVT RFP: object-orientation, composition of transformations, multiple
source models, multiple target models, repetitiveness, black-box interoperability and
modularity. The purpose of the MODELWARE requirements is to measure the good-
ness and quality of the approach regardless of any compliance with existing OMG
recommendations.

Gardner et. al [9] and Langlois et. al [10] have reviewed the initial 8 submissions
to the QVT RFP and proposed recommendations for the final specification. Most of
their requirements are well covered already in this paper. Sendall and Kazaczynski
[11] proposes these desired properties: executability, efficiency, fully expressiveness
and unambiguity, clear separation of source model selection rules from target produc-
ing rules, graphical constructs to complement a textual notation, composition of trans-
formations, and “conditions under which the transformation is allowed to execute”.
They propose that declarative constructions should be used for implicit mechanisms
that are intuitive, but warns that too many implicit and complicated constructs may be
more difficult to understand than the more explicit and verbose counterpart.

The way to measure ease-of-use in this paper is inspired by Davis [12] who sug-
gests a decomposition of ease-of-use into sub-parts such as effort to become skillful,
mental effort, error prone etc. These sub-parts can be answered on a scale ranging
from strongly disagree to strongly agree. Davis has gone a lot further with his frame-
work than we have done in this work, by showing how to organize these sub-parts,
rank them, and use a questionnaire to compute final scores based on feedback from
several reviewers. Krogstie [13] has proposed a framework for measuring the quality
of models and modeling languages. Especially for graphical model transformation
languages this framework should be applicable.

5 Evaluation Summary of QVTMerge

This section presents the evaluation of QVTMerge. In the table below the M
(M=measured-scale-level) column shows the level of support and the S (S=score)
column shows the weighted score for the criterion. The values in parentheses show
the maximum value. Note that the level of support is downscaled to a value between 0
and 1 (0= no support, 1 = full support) by dividing by maximum scale level, which
ensures that the criteria are treated on equal scales before the weights are applied. A
final score can be computed by adding all the values in the S column. This is relevant
to compare QVTMerge with competing model transformation approaches.

92

Criterion How it is supported by QVTMerge M S

Ease-of-use
in simple
transforma-
tions

See section 5. 2.2
(4)

3.3
(6)

Ease-of-use
in complex
transforma-
tions

See section 5. 3 (4) 4.5
(6)

Traceability Fully automatic traceability is achieved by the four resolve operations
that can trace from any source object to any target object and vice
versa.

2 (2) 5 (5)

Unidirection-
ality

The language in textual as well as graphical notation directly supports
it.

1 (1) 4 (4)

Complete
textual
notation

Any transformation can be fully defined with the mappings part in
textual notation.

1 (1) 4 (4)

Black-box
interoperabil-
ity

A query operation, a mapping rule and transformation module may be
declared without a body definition. This means that the implementation
will be provided externally - for instance using Java.

1 (1) 4 (4)

Composition
of transfor-
mations

QVTMerge does not get maximum score of 2 due to the lack of possi-
bility to specify parallel control flows.

1 (2) 1.5
(3)

Graphical
notation

The maximum score of 3 is not achieved due to lack of graphically
specifying compositions such as “parallel split” and “synchronization”
which is not possible at all. It is assumed that single transformations
can be defined fully graphically although the specification states that in
some complex transformations OCL annotations are needed.

2 (3) 1.3
(2)

Updating
source
model(s)

The transformation signature allows input parameters which can be
specified as inout.

1 (1) 2 (2)

Incomplete
transforma-
tions com-
pleted with
pattern
parameters

QVTMerge/Mappings: A mapping may extend "abstract" incomplete
mappings.
QVTMerge/Relations: An abstract or checkable relation can be ex-
tended into executable transformations.

1 (1) 2 (2)

Modularity The transformation may be grouped into several separate transforma-
tion rules.

1 (1) 6 (6)

Reusability One point is given for the import module construction that enables one
to import other libraries, and one point is given for the ability to spe-
cialize transformations by the extension mechanisms extends,
merges and inherits.

2 (2) 5 (5)

Restricting
condi-
tions/pre-
conditions

This is supported by associating the source model with a modelType
with complianceKind = “strict”.

1 (1) 4 (4)

Bidirection-
ality

The textual relations part or the graphical notation enables bidirection-
ality.

1 (1) 2 (2)

93

Multiple
source mod-
els

The transformation signature allows any number of input parameters.

1 (1) 2 (2)

Object
orientation

Inheritance is supported by the three extension mechanisms extends,
merges and inherits. Polymorphism is supported for query and
mapping operations (through the virtual call mechanism). No specific
mechanism is defined for object identity or encapsulation.

2 (4) 1 (2)

Learning
Curve

One disadvantage is that there are many ways of doing the same thing,
using relations, mappings, graphical or textual. It is however possible
for a transformation writer to stick to a unique paradigm to minimize
the learning effort. Another disadvantage is that there are many implicit
constructions for shorthand notations that are hard to understand when
you are a newcomer to this language. Advantages are that the textual
language shares many similarities of both syntax and constructions with
well-known object oriented languages such as Java and c#, c++. Fur-
thermore the graphical notation is quite intuitive to understand.

2 (4) 1 (2)

Multiple
target models

The transformation signature allows any number of output parameters.

1 (1) 1 (1)

6 Conclusion and future work

This paper has identified 18 weighted evaluation criteria representing desired proper-
ties of a model-to-model transformation language. The list of requirements is more
extensive than all of the previously published efforts. We have also gone further than
previous efforts by defining six reference examples to measure the ease-of-use re-
quirement which is of uttermost importance but requires such case studies in order to
be measured. The evaluation of the current QVTMerge language shows that the man-
datory requirement of transactional transformations is unsupported (such support is
planned in a subsequent QVTMerge submission according the specification). Al-
though QVTMerge achieves maximum scores for many of the criteria, we have re-
vealed that the ease-of-use and learning curve of the QVTMerge language can be
further improved. The MODELWARE evaluation criteria presented here is applicable
to any model-to-model transformation language and can thus be used to rank model-
to-model languages.

The advantages of QVTMerge are the modularity, black-box integration and nice
structure of the program code into manageable separate transformation constraints
and rules. Also we should point out the flexibility and openness, allowing a writer to
select the kind of paradigm that is best appropriate to its transformation problem. We
have also identified some disadvantages. Because there are many ways to define a
transformation, using either the relations or mappings, textual or graphical, the learn-
ing curve for a user that would like to use all the possibilities, will be high. Many
different programming styles can be used and mixed including imperative, declara-
tive, object-oriented and procedural. All these options require more effort to be
skilled and it may cause messy code if used incautiously. We have also experienced
difficulties interpreting some of the single statements that are very long and cryptic.
Such expressions are commonly used and they require a lot of mental effort.

94

An available QVTMerge tool is necessary to evaluate tool-dependant requirements
such as performance, debugging functionality and robustness. Tool-dependant re-
quirements have also been specified within MODELWARE, but are not presented in
this paper due to limited space.

Acknowledgement

MODELWARE is a project co-funded by the European Commission under the "In-
formation Society Technologies" Sixth Framework Programme (2002-2006). Infor-
mation included in this document reflects only the author’s views. The European
Community is not liable for any use that may be made of the information contained
therein.

References

1. Bézivin, J., et al., The ATL Transformation-based Model Management Framework. 2003,
Université de Nantes: Nantes

2. Patrascoiu, O. YATL: Yet Another Transformation Language. in First European Workshop
on Model Driven Architecture with Emphasis on Industrial Application. 2004. University
of Twente, Enschede, the Netherlands.

3. Braun, P. and F. Marschall, Transforming Object Oriented Models with BOTL. Electronic
Notes on Theoretical Computer Science, 2002. 72(No. 3).

4. OMG, Object Management Group MOF 2.0 Query / Views / Transformations RFP.
2002,www.omg.org.

5. OMG, Meta Object Facility (MOF) Specification. 1997, Object Management
Group,www.omg.org.

6. QVT-Merge_Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP
(ad/2002-04-10). 2004,www.omg.org.

7. Aalst, W.M.P.v.d., et al., Workflow Patterns. Distributed and Parallel Databases, 2003.
14(3): p. 5-51.

8. OMG, UML Profile for enterprise distributed Object Computing (EDOC) version 1.0;
OMG Adopted Specification ptc/02-02-05.
2002,http://www.omg.org/technology/documents/formal/edoc.htm.

9. Gardner, T. and C. Griffin. A review of OMG MOF 2.0 Query / Views / Transformations
Submissions and Recommendations towards the final Standard. in MetaModelling for MDA
Workshop. 2003. York, England, UK.

10. Langlois, B. and N. Farcet. THALES recommendations for the final OMG standard on
Query / Views / Transformations. in 2nd OOPSLA Workshop on Generative Techniques in
the context of Model Driven Architecture. 2003. Anaheim, California, USA.

11]. Sendall, S. and W. Kozaczynski, Model Transformation – the Heart and Soul of
Model-Driven Software Development. IEEE Software, Special Issue on Model Driven
Software Development, 2003.

12. Davis, F.D., Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly, 1989. 13(3): p. pp. 318-339.

13. Krogstie, J., Evaluating UML Using a Generic Quality Framework. UML and the Unified
Process, ed. L. Favre. 2003: IRM Press

95

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/technology/documents/formal/edoc.htm

Architectural Framework for Web Services
Authorization

Sarath Indrakanti, Vijay Varadharajan, Michael Hitchens

INSS Research Group, Department of Computing
Macquarie University, Sydney, NSW 2109, Australia

{sindraka, vijay, michaelh}@ics.mq.edu.au

Abstract. This paper proposes an authorization architecture for Web services. It
describes the architectural framework, the administration and runtime aspects of
our architecture and its components for secure authorization of Web services as
well as the support for the management of authorization information. The paper
also describes authorization algorithms required to authorize a Web service
client. The architecture is currently being implemented within the .NET
framework.

1 Introduction

In general, security for Web services is a broad and complex area covering a range of
technologies. At present, there are several efforts underway that are striving to
provide security services for Web services. A variety of existing technologies can
contribute to this area such as TLS/SSL and IPSec. There are also related security
functionalities such as XML Signature and XML Encryption and their natural
extensions to integrate these security features into Web service technologies such as
SOAP [1] and WSDL [2].

WS-Security specification [3] describes enhancements to SOAP messaging to
provide message integrity, confidentiality and authentication. The WS-Trust [4]
language uses the secure messaging mechanisms of WS-Security specification to
define additional primitives and extensions for the issuance, exchange and validation
of security tokens within different trust domains. While there is a large amount of
work on general access control and more recently on distributed authorization [5],
research in the area of authorization for Web services is still at an early stage. There is
not yet a specification or a standard for Web services authorization. There are
attempts by different research groups [6-9] to define authorization frameworks and
policies for Web services. Currently most Web service based applications, having
gone through the authentication process, make authorization decisions using
application specific access control functions that results in the practice of frequently
re-inventing the wheel. This motivated us to have a closer look at authorization
requirements for Web services and propose an authorization architecture.

In the next section, we describe our Web Services Authorization Architecture
(WSAA). Section 3 discusses the benefits of the proposed architecture. We compare
our architecture to related work in section 4 and then give some concluding remarks
in section 5.

2 Web Services Authorization Architecture (WSAA)

Fig. 1. Web Services Authorization Architecture (WSAA)

WSAA (figure 1) comprises of two domains - an administrative domain and a runtime
domain. We manage Web services in the administration domain by arranging them
into collections and the collections into a hierarchy. We provide administration
support to manage a collection of Web services. We also provide support for the
arrangement (adding, removing) of Web services within the collections and the
movement of Web services within collections. Authorization related components such
as authorization policy evaluators, trusted certification authorities (provide
authentication and authorization credentials) and dynamic attribute services (provide
attributes required for authorization) can be managed in the administration domain.
Also security managers can assign a set of authorization policy evaluators to authorize
requests to Web services.

To make the authorization process efficient, we have a runtime domain where the
authorization related information such as what credentials are required to invoke a
particular Web service and how to collect those credentials, is compiled and stored.
This information is automatically compiled from time to time when necessary using
the information from the administration domain and it can be readily used by
components in the runtime domain.

The Registry Server located anywhere in the Internet is responsible for maintaining
relations between services and their service providers. When a client requests the
Registry Server for a specific service, the latter responds with a list of Web services
that implement the requested service.

97

2.1 System Components

Client Proxy (CP) collects the required authentication and authorization credentials
from the respective authorities on behalf of the client before sending a Web service
request and handles the session on behalf of the client with a Web service’s security
manager.
Security Manager (SM) is an automated component responsible for both
authentication and authorization of the client. A client’s CP sends the necessary
authentication and authorization credentials to the SM. SM is responsible for
managing all the interactions with a client’s CP.
Authentication Server (ANS) receives the authentication credentials from SM and
uses some mechanism to authenticate the client. We treat ANS as a black box in our
architecture as our focus in this paper is on authorization of the client. We included
this component in the Web services security layer for completeness.
Authorization Server (AZS) decouples the authorization logic from application
logic. It is responsible for locating all the authorization policy evaluators involved,
sending the credentials to them and receiving the authorization decisions. Once all the
decisions come back, it uses the responsible authorization decision composers to
combine the authorization decisions. Where required, AZS also collects the
credentials and attributes on behalf of clients from the respective trusted certification
authorities and dynamic attribute services.
Authorization Policy Evaluator (APE) is responsible for making authorization
decision on one or more abstract system operations. Every APE may use a different
access control mechanism and a different policy language. However, an APE defines
an interface for the set of input parameters it expects (such as subject identification,
object information, the authorization credentials and dynamic attributes) and the
output authorization result.
Trusted Certification Authority (TCA) is responsible to provide authentication
and/or authorization credentials required to authenticate and/or authorize a client. For
example, a TCA may provide public key certificates or authorization related
certificates such as a Role Membership Certificate (RMC) [10].
Dynamic Attribute Service (DAS) provides system and/or network attributes such as
bandwidth usage and time of the day. A dynamic attribute may also express properties
of a subject that are not administered by security administrators. For example, a nurse
may only access a patient’s record if s/he is located within the hospital’s boundary. A
DAS may provide the nurse’s ‘location status’ attribute at the time of access control.
Dynamic attributes’ values change more frequently than traditional static
authorization credentials (also called privilege attributes). Unlike authorization
credentials, dynamic attributes must be obtained at the time an access decision is
required and their values may change within a session.
Authorization Decision Composer (ADC) combines the authorization decisions
from authorization policy evaluators using an algorithm that resolves authorization
decision conflicts and combines them into a final decision.

The Authorization Manager (AZM) for an organization is responsible to manage
the APEs, TCAs, DASs and ADCs. S/he uses the Authorization Administration API
for this purpose. The related data is stored in the Authorization Administration
Database (AAD). See figure 1.

98

2.2 Web Services Model

We consider a Web service model based on the model defined in [7], where Web
Service, Web Service Method and Web Service Collection are viewed as objects. Web
service collections are used to group together a set of related Web service objects.
Authorization related information can be managed in a convenient way if a set of
related Web service objects is grouped together in a hierarchy of collections. Figure 2
shows an example of a hierarchy of Web service collections.

Fig. 2. Web Service Collection Hierarchy

2.3 Web Services Administration

A Web Service Manager (WSM) manages Web Services and Web Service Methods
and a Web service Collection Manager (WCM) manages Web Service Collections
using the Administration API (see figure 1). These objects are stored in the Web
service Administration Database (WAD).

To effectively manage the collections, we arrange a set of related Web Service
Collection (WSC) objects in a tree-shaped hierarchy as shown in figure 2. Each WSC
in the hierarchy has a responsible Web service Collection Manager (WCM). There is
only one Security Manager for a hierarchy of WSCs. In a WSC hierarchy tree, the
root WSC’s manager is called the Root Web service Collection Manager (RWCM). A
RWCM is responsible for providing the Security Manager details (such as its
location) in the WSDL statement of every Web service located under the collections
s/he manages.

Let us consider an organization with a single hierarchy (such as the one shown in
figure 2) of Web service collections. In figure 2, the root WSC is WSC1 and the
RWCM is WCM1. We can consider a newly initiated system to simply consist of the
root WSC, WSC1 and a few Web Service (WS) objects under it managed by WCM1.
WCM1 can add new WS objects from WAD into WSC1. S/he can delete or move WS
objects within the collections s/he is responsible for. There are other issues to
consider such as 1) Who decides the location of a WS object (and how is the location
changed)? 2) Who decides the shape of the tree itself? There are various design

99

choices to consider to answer these questions. Due to space limitations, we have not
included the discussion on such design choices in this paper. We will describe these
design aspects in a separate paper.

2.4 Authorization Data Administration and Policy Evaluation

A Web Service Manager (WSM) is also responsible to manage the authorization
related information for the Web services s/he is responsible for. We consider a Web
service method to be a high-level task that is exposed to clients. Each task (method) is
made up of a number of system operations. These operations can be of different
abstract types. For instance, each method of a Purchase Order service may perform
one or more of these three operations - Web operation, Database operation and Mail
operation. Each of these operations has a responsible authorization policy evaluator. It
is reasonable to assume a WSM knows the set of tasks a Web service under his/her
control performs. Similarly a WSM knows the set of operations each of these tasks
(methods) perform. Using the authorization policy evaluator definitions from
Authorization Administration Database (AAD), WSM associates authorization policy
evaluators to Web services and their methods. This association is made in the Web
Service Authorization (WSA) and the Web Service Method Authorization (WSMA)
objects. WSM uses the Authorization Administration API to create and manage these
objects. Similarly, a Web service Collection Manager (WCM) manages (using
Authorization Administration API) authorization policy evaluator and authorization
decision composer information in a separate object called Web Services Collection
Authorization (WSCA) for all the collections s/he manages. These objects are stored
in AAD.

Similar to Web service methods, a Web service can also have one or more
authorization policy evaluators responsible for the Web service itself. Web service
level policies are first evaluated before its method level authorization policies are
evaluated. A Web service’s authorization policy evaluators evaluate Web service
level authorization policies. These policies will typically not be as fine-grained as
method level authorization policies. A WSM may choose to create a new
authorization decision composer for one or more Web services s/he manages or may
decide to use one from the set of existing authorization decision composers from
AAD if it serves the purpose.

Similar to Web services and their methods, a Web service collection can also have
one or more authorization policy evaluators responsible for authorizing access to the
collection itself. Collection level policies are first evaluated before a Web service’s
authorization policies are evaluated. A Web service collection’s authorization policy
evaluators evaluate collection level authorization policies. These policies will
typically be course-grained when compared to Web service and Web service method
level policies. Every root Web service collection has an authorization decision
composer associated with it responsible for combining the decisions from all
authorization policy evaluators involved. The coarse-grained authorization policies
for all the relevant ancestor Web service collections (of an invoked Web service) are
first evaluated, followed by the Web service level authorization policies and finally
the fine-grained Web service method level policies are evaluated. The course-grained
policies are first evaluated before the finer-grained policies as it helps reduce the

100

computing cost. If the client is not authorized by a course-grained policy, access can
be denied straight away. For example in figure 2, when a client invokes WS1’s
method M1, WSC1’s authorization policies are first evaluated by APE1 and APE2,
followed by WSC2 (APE3) and then WSC3 (APE4) policies. If APE1, APE2, APE3 and
APE4 give out a positive decision, WS1’s authorization policies are evaluated by
APE6. If APE6 gives out a positive decision, then finally M1’s authorization policies
are evaluated by APE7 and APE8. WS1’s authorization decision composer, ADCWS1
combines the decisions from APE6, APE7 and APE8 and if the final decision is
positive, WSC1’s authorization decision composer, ADCWSC1 combines the decisions
from APE1, APE2, APE3, APE4 and ADCWS1. If the final decision from ADCWSC1 is
positive, the client will be authorized to invoke WS1’s method M1.

2.5 Runtime Authorization Data

We addressed who assigns (and how) authorization policy evaluators and
authorization decision composers for Web services and Web service collections. The
next question is, how does a client know, where necessary, how to obtain the required
authorization credentials and dynamic runtime attributes before invoking a Web
service? What are the responsible authorization policy evaluators (and the credentials
and attributes they require), trusted certification authorities (the credentials they
provide) and the dynamic attribute services (the attributes they provide)? How does
the Authorization Server (AZS) know what the set of responsible authorization
decision composers for a particular client request is?

To answer these questions, we have an Authorization Runtime Database (ARD) in
the runtime domain. ARD consists of the runtime authorization related information
required by clients and the Authorization Server. This information is exposed to
clients in the form of authorization assertions defined in a WS-Authorization Policy
statement attached to a Web service’s WSDL statement. We define an XML schema
for WS-Authorization Policy statement. The statement contains information about
what credentials and attributes to collect and where to collect them from. However,
we do not show the schema in this paper due to space limitation.

Credential Manager (CRM) is an automated component that creates and stores the
authorization runtime information, in the form of objects in ARD, using the
information from WAD and AAD databases. This makes the authorization process
efficient as the information in ARD is streamlined for the runtime domain. CRM is
invoked from time to time, when a Web service object is added or deleted to a
collection, moved within a hierarchy of collections or when the shape of the tree itself
changes, to update the runtime authorization information (objects) in ARD.

When a Web service object is placed and/or moved within a Web service
collection in a tree, the set of authorization policy evaluators responsible for
authorizing a client’s requests changes. Similarly, the set of trusted certification
authorities and dynamic attribute services responsible also changes. For example, in
figure 2, when WS1 moves from WSC3 to WSC5, the set of responsible authorization
policy evaluators for WS1’s method M2 changes from {APE1, APE2, APE3, APE4,
APE6, APE7, APE9} to {APE1, APE2, APE3, APE5, APE6, APE7, APE9}. Once the
change is made, CRM is automatically invoked and it updates ARD with the
necessary runtime object entries for each method of WS1. The responsible

101

authorization decision composers before and after the move will still be ADCWSC1 and
ADC WS1.

2.6 Authorization Algorithms

WSAA supports three algorithms. The first, push-model algorithm supports
authorizations where a client’s Client Proxy, using WS-Authorization Policy, collects
and sends the required credentials (from trusted certification authorities) and
attributes (from dynamic attribute services) to a Web service’s Security Manager. The
second, pull-model algorithm supports authorizations where the Authorization Server
itself collects the required credentials from trusted certification authorities and
authorization policy evaluators collect the required attributes from dynamic attribute
services. The third, combination-model supports both the push and pull models of
collecting the required credentials and attributes.

 An organization must deploy one of these algorithms depending on the access
control mechanisms used. If all the access control mechanisms used by the set of
authorization policy evaluators are based on a pull model, then the organization must
deploy the pull-model algorithm. If all the access control mechanisms used are based
on a push model, then the organization must deploy the push-model algorithm.
However, when some of an organization’s authorization policy evaluators use the
pull-model and others use the push-model, the combination-model algorithm must be
deployed.

3 Discussion - Benefits of the Proposed Architecture

Some of the key advantages of the proposed architecture are as follows:
(a) Support for various access control models: WSAA supports different access
control models including mandatory access control, discretionary access control, role-
based access control, and certificate based access control models. The access policy
requirements for each model can be specified using its own policy language. The
policies used for authorization can be fine-grained or coarse-grained depending on the
requirements. Access control mechanisms can either use the push-model or pull-
model or even a combination of both for collecting client credentials.
(b) Support for legacy applications and new Web service based applications: Existing
legacy application systems can still function and use their current access control
mechanisms when they are exposed as Web services to enable an interoperable
heterogeneous environment. Once again different access policy languages can be used
to specify the access control rules for different principals. They could adopt a push or
a pull model for collecting credentials. At the same time WSAA supports new Web
service based applications built to leverage the benefits offered by Web services. New
access control mechanisms can be implemented and used by both legacy and new
Web service applications. A new access control mechanism can itself be implemented
as a Web service. All WSAA requires is an end-point URL and interface for the
mechanism’s authorization policy evaluator.
(c) Decentralized and distributed architecture: WSAA allows a Web service to have
one or more responsible authorization policy evaluators involved (each with its own

102

end-point defined) in making the authorization decision. The authorization policy
evaluators themselves can be defined as Web services specializing in authorization.
These features allow WSAA to be decentralized and distributed. Distributed
authorization architecture such as ours provides many advantages such as fault
tolerance and better scalability and outweighs its disadvantages such as more
complexity and communication overhead.
(d) Flexibility in management and administration: Using the hierarchy approach of
administering Web services and collections of Web services, authorization policies
can be specified at each level making it convenient for Web service collection
managers (WCM) and Web service managers (WSM) to manage these objects as well
as their authorization related information. Another benefit of WSAA is that the
credential manager component automatically generates runtime authorization objects.
(f) Ease of integration into platforms: Each of the entities involved both in
administration and runtime domains is fairly generic and can be implemented in any
middleware including the .NET platform as well as Java based platforms. The
administration and runtime domain related APIs can be implemented in any of the
available middleware.
(g) Enhanced security: In our architecture, every client request passes through the
Web service’s security manager and then gets authenticated and authorized. The
security manager can be placed in a firewall zone, which enhances security of
collections of Web service objects placed behind an organization’s firewall. This
enables organizations to protect their Web service based applications from outside
traffic. A firewall could be configured to accept and send only SOAP request
messages with appropriate header and body to the responsible security manager to get
authenticated and authorized.

4 Related Work

Kraft proposes a model based on a “distributed access control processor” for Web
services [7]. The main components in the authorization model are the gatekeeper,
which intercepts SOAP requests to a Web service and one or more Access Control
Processors (ACPs) that make the authorization decisions for the Web service. The
gatekeeper itself can be an ACP. It also has the responsibility of authenticating the
requesting client, combining the decisions from individual ACPs and to make the
final access control decision. The advantage of this model is it supports decentralized
and distributed architecture for access control. The model is generic enough to
support different models of access control. This model however, does not provide
support for administration of authorization related information. It also does not
provide support to manage Web service collections and their authorization related
information using standard APIs, which our architecture provides.
Yague and Troya [8] present a semantic approach for access control for Web services.
The authors define a Semantic Policy Language (SPL). SPL is used to create metadata
for resources (Secure Resource Representation (SRR)) and generic policies without
the target resource in them. A separate specification called Policy Applicability
Specification (PAS) is used to associate policies to target objects at run time
dynamically when a principal makes a request. The architecture is based on the

103

integration of a Privilege Management Infrastructure (PMI) and the SPL language
features. At run time, depending on the Source of Authorization Descriptions
(SOADs) that the Source of Authorization (SOA) in the PMI is willing to provide to
the client and the SRRs, the Policy Assistant component streamlines the SPL policies
and the PAS. What is interesting in this model is that the authorization policies can be
attached dynamically based on the metadata of the resource being accessed and also
be streamlined dynamically to the SOADs the SOA is willing to send, through the
PMI client. The disadvantage with this model is that authorization policies can only
be written in SPL and is based on one model of access control – the PMI, which
means this model is not generic enough to support different access control
mechanisms required by applications in a heterogeneous environment. This means
unlike our architecture, legacy applications (using their own access control
mechanisms) are not supported by this model. The model also does not provide
management and administration support for Web service objects.
Agarwal et al [6] define an access control model that combines DAML-S [11], an
ontology specification for describing Web services and SPKI/SDSI [12], used to
specify access control policies and to produce name and authorization certificates for
users. Access Control Lists (ACLs) are used to specify access control policies of Web
Services. Each ACL has the properties keyholder, subject, authorization, delegation
and validity. Access control is defined as a pre-condition to access a Web service.
When trying to access a Web service, a user sends the set of credentials needed to
access the Web service. The user does this by using the ACL provided in the access
control precondition of the Web service provider. The user calculates the set of
certificates needed by making use of a chain discovery algorithm. If the client is
authorized with the certificates provided, the Web service returns the functional
outputs sought by the client. This model is a certificate based access control model
and so is not generic enough to support multiple access control models. This means
legacy applications exposed using Web services cannot use different models of access
control they have already been using. The ACLs in this model are simple and one
cannot specify fine-grained and complex authorization policies using this model. The
model also does not provide management and administration support for Web service
objects.
Ziebermayr and Probst discuss their authorization framework [9] for “simple Web
services”. Their framework does not consider distributed authorization and assumes
that Web services provide access to data or sensitive information located on one
server and not distributed over the Web. The framework uses a rule based access
control model where simple rules are written for components (in which Web services
reside), Web services and parameters of a Web service method. A rule consists of a
reference to a service definition, another reference to a user and additional rule
information for parameters where necessary. When an access request comes in, the
rules at these various levels are checked and an authorization decision is made. This
framework uses simple rule based access control and so does not support different
models of access control. This means legacy applications cannot be exposed as Web
services. Another disadvantage with this framework is that it cannot support
authorizations for distributed Web services, which have access to data and/or
information over a number of Web servers. Unlike our architecture, there is no
abstraction of each Web service method’s function into a set of operations. This
abstraction makes it easy to perform authorization administration as discussed earlier.

104

5 Concluding Remarks

We proposed an authorization architecture for Web services - WSAA. We described
the architectural framework, the administration and runtime aspects of our
architecture and its components for secure authorization of Web services as well as
the support for the management of authorization information. WSAA supports push-
model, pull-model and combination-model authorization algorithms.

The architecture supports legacy applications exposed as Web services as well as
new Web service based applications built to leverage the benefits offered by Web
Services; it supports old and new access control models and mechanisms; it is
decentralized and distributed and provides flexible management and administration of
Web service objects and authorization information. We believe that the proposed
architecture is easy to integrate into existing platforms and provides enhanced security
by protecting exposed Web services from outside traffic. We are currently
implementing the proposed architecture within the .NET framework.

References

1. World Wide Web Consortium (W3C), "SOAP v1.2, http://www.w3.org/TR/SOAP/," 2003.
2. World Wide Web Consortium (W3C), "Web Services Description Language (WSDL) v1.1,

http://www.w3.org/TR/wsdl," 2001.
3. B. Atkinson et al, "Web Services Security (WS-Security) Specification, http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/," 2002.
4. S. Anderson et al., "Web Services Trust Language (WS-Trust), http://www-

106.ibm.com/developerworks/library/specification/ws-trust/," 2005.
5. V. Varadharajan, "Distributed Authorization: Principles and Practice," in Coding Theory

and Cryptology, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore: Singapore University Press, 2002.

6. S. Agarwal, B. Sprick, and S. Wortmann, "Credential Based Access Control for Semantic
Web Services," American Association for Artificial Intelligence, 2004.

7. R. Kraft, "Designing a Distributed Access Control Processor for Network Services on the
Web," presented at ACM Workshop on XML Security, Fairfax, VA, USA, 2002.

8. M. I. Yagüe and J. M. Troya, "A Semantic Approach for Access Control in Web Services,"
presented at Euroweb 2002 Conference. The Web and the GRID: from e-science to e-
business, Oxford, UK, 2002.

9. T. Ziebermayr and S. Probst, "Web Service Authorization Framework," presented at
International Conference on Web Services (ICWS), San Diego, CA, USA, 2004.

10. J. Bacon and K. Moody, "Toward open, secure, widely distributed services,"
Communications of the ACM, vol. 45, pp. 59-64, 2002.

11. M. B. A. Ankolekar, J. R. Hobbs,O. Lassila, D. McDermott, D. Martin, S. A. McIlraith, S.
Narayanan, M. Paolucci, T. Payne, K. Sycara, "DAML-S: Web Service Description for the
Semantic Web," presented at 1st International Semantic Web Conference (ISWC), Sardinia,
Italy, 2002.

12. C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M. Thomson, and T. Ylonen, "Simple
public key certificate, http://theworld.com/~cme/html/spki.html," 1999.

105

Towards a formalization of model conformance in
Model Driven Engineering

Thanh-Hà Pham1,2, Mariano Belaunde1, Jean Bézivin2

1 France Télécom R&D, 2 avenue Pierre Marzin, 22300 Lannion Cedex, France

{thanhha.pham, belaunde.mariano}@rd.francetelecom.com
2 ATLAS Group, INRIA&LINA, University of Nantes, France

jean.bezivin@lina.univ-nantes.fr

Abstract. The principle of “everything is an object” basically supported by two
fundamental relationships inheritance and instantiation has helped much in
driving the object technology in the direction of simplicity, generality and
power of integration. Similarly in the Model Driven Engineering (MDE) today,
the basic principle that “everything is a model” has many interesting properties.
The two relations representation and conformance are suggested [2] to be the
two basic relations in the MDE. This paper tends to support this ideas by
investigating some concrete examples of the conformance relation concerning
three technological spaces (TS) [10]: Abstract/Concrete Syntax TS, XML TS
and Object-Oriented Modeling (OOM) TS. To go further in this direction we
try to formalize this relation in the OOM TS by using the category theory – a
very young and abstract but powerful branch of mathematics. The OCL
language is (partially) reused in this scheme to provide a potentially useful
environment supporting MDE in a very general way.

1 Introduction

Model Driven Engineering (MDE) today does not limit itself to the OOM
Technological Space (TS) but many other TSs such as AS TS, XML TS ... [10]. This
means explicitly that its principles must be very general and not only restricted to
OOM TS. Today, the principle « Everything is a model » as suggested by many
authors such as [3] becomes the main principle of the MDE similarly to the principle
« Everything is an object » in object technology. Conformance is one of the
fundamental relations supporting this principle in MDE. This paper investigates the
conformance relation in some well-known Technological Spaces such as
Abstract/Concrete Syntax, XML and OOM technological spaces.
The paper is organized as follow: section 1 presents the context of our work; section 2
presents some ideas about the notion of conformance in several well-known TSs;
section 3 presents a formalization of the conformance relation in the OOM TS using
category theory and the OCL language. The practical usage of this formalization will
be discussed in the section 4. Some related works are briefly introduced in the section
5. Some conclusions will be provided in the section 6.

2 Conformance in some Technological Spaces

We begin our discussion with a simple example coming from Regular Expression. It
is not difficult to see that there is a mapping from a string S = acccd to a regular
expression E = a(b|c*)d? when the string S matches the expression E. This mapping is
illustrated in the Fig.1.

a (b | c*) d?

a c c c d

Fig. 1. A very simple form of conformance – a string matches a regular expression

The regular expression E defines characters that may appear in a string conforming to
E: {a,b,c,d} and how these characters are structured using several constructions:
– alternation with a vertical bar such as b | c specify the choice of b or c.
– quantification with a quantifier (+,?,*) that following a character specifies how

often that character is allowed to occur.
– grouping with brackets to define the scope and precedence of the other operators.
If the guiding principle of the MDE:

“Everything is a model” [P0]
is accepted, we have the following two models: the string S and its definition E (is
also a string) with their characters as model elements. It can be said that S is defined
by E or S conforms to E.
“A model conforms to its definition, this definition is also a model called meta-model
of the first one” [P1]
From our first observation, we propose the following principle:
“Every element of a model finds an unique definition in a meta-model that the model
conforms to” [P2]
We have also the following comments:
– The order of elements in S must respect to the order of elements defined in E. [C1]
– The group of elements in S must respect to the group definition in E. [C2]
– The number of occurrences of elements in S must respect to quantification

definitions in E. [C3]
Now we move to an illustrative example in the Abstract/Concrete Syntax TS. Let’s
consider a well-known HelloWorld program written in the Pascal programming
language. This program is considered to be a syntactically correct with respect to the
grammar of the Pascal programming language. In this example, the HelloWorld
program is a model and the grammar of the Pascal programming language is the
meta-model defining the former. The principle [P2] is applicable in this case and is
illustrated in the Fig.2. A part of the grammar is represented in the flowchart form
extracted from [9]. Every symbol of this program finds a unique definition in the
grammar. The three comments [C1, C2, C3] are also correct in this case.

107

 program HelloWorld;

begin
 writeln('Hello World');
end.

program

PROGRAM identifier (identifier) ; block .

;

BEGIN ENDstatement

;

; block ;

PROCEDURE

FUNCTION identifier parameter list : type identifier

identifier parameter list

block

 program HelloWorld;

begin
 writeln('Hello World');
end.

Fig. 2. A Pascal program conforms to the grammar of the Pascal programming language

In the XML TS, we find the following definition [6]: « An XML document is valid if it
has an associated document type declaration and if the document complies with the
constraints expressed in it ». This means explicitly that a valid XML document must
conform to a DTD. DTDs specify two kinds of constraints as classified in [5]:
structural constraints given by element declaration rules and attribute constraints
given by attribute declaration rules. Also following [5], « the structural constraints of
DTD are abstracted as extended context free grammars, that is, context free
grammars where the right hand side of each production contains a regular
expression. An XML document is valid with respect to the structural constraints of a
DTD if its abstraction as a tree represents a derivation tree of the extended CFG
corresponding to that DTD ». Attribute constraints deal with the values of attribute
nodes while structural constraints deal with the labels of nodes in the XML tree.

<?xml version="1.0"?>
<!ELEMENT message (from,to,subject,body)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (#PCDATA)>

<?xml version="1.0"?>
<!DOCTYPE message SYSTEM "message.dtd">
<note>
 <from>Ha</from>
 <to>Mariano</to>
 <subject>Work completed</subject>
 <body>The work has been done</body>
</note>

Fig. 3. An XML document conforms to a DTD.

Let’s consider an example that illustrates the relation between an XML document and
a DTD. In this case, the model is the XML document and the meta-model defining
this model is the DTD. The XML document has (element and attribute) nodes as its
elements. The principle [P2] and the three comments [C1, C2, C3] are also applicable
in this case.
We have analyzed the conformance relation in the case of regular expression,
Abstract/Concrete syntax and XML. The principle [P2] is also applicable in Object-
Oriented modeling.
In the left of the Fig.4 is an UML diagram represented in a case tool such as Rose.
This model is an instance-of of the UML meta-model as simplified in Fig.4. Every
elements of this model finds its unique definition in the meta-model.

108

ModelE lem ent

P rim it iveDataType

Clas s ifie r

A t tribute

+ t ype

*

1

*

1

A s s oc iation

C las s

**
+ s uper

**

0.. 1

*

0.. 1 + att ribute

*

1

*

+ s ourc e
1

+ forward*+ revers e

+ des tina t ion
1

*

1

*

B a nk:C lass

B a nk_ C lien t:A ssoc ia tion

C lien t:C la ss

S trin g :C la ss

b nam e :A ttr ib u te
n am e = "na m e"

bad d ress:A ttr ibu te
nam e ="a dd ress"

cha dd re ss:A ttr ibu te
nam e ="h om ea ddre ss"

coadd ress :A ttr ibu te
na m e = "o fficeadd ress "

accou n tid :A ttr ibu te

A d dress:C la ss

stre e t:A ttr ibu te n um be r:A ttr ibu te in t:C lass

C lass ::a llP a ren ts (): S e t(C lass);
a llP a ren ts = se lf.su pe r->u n ion (se lf.supe r->co llec t(p | p .a llP a re n ts())

con te xt C lass
inv : no t se lf.a llP a re n ts ()-> inc lud es(se lf)

Fig. 4. An illustrative example: a model UML conforms to its meta-model

An UML model conforms to the UML meta-model must also satisfied all the well-
formedness rules defined with the meta-model. The multiplicity in the meta-model
can also be expressed as constraints associated to the meta-model [16]. Furthermore,
we have the following principle:
– Every link in the model finds a unique definition in the meta-model. [P3]
This principle is so important as the [P2] principle for a model UML and also for the
conformance relation between a model and a meta-model defining it in meta-
modeling. These two principles [P2, P3] are also applicable in the “strict meta-
modeling” approach in which the OMG’s MOF is an example: “Every element of an
Mn level model is an instance_of exactly one element of an Mn+1 level model” [1].

3 A formalization of the conformance relation in the OOM TS

In a very general way, a model can be viewed as containing:
– A set of model elements (character in a string or regular expression, symbols and

terminals in a grammar, element or attribute nodes in XML, model elements in
modeling)

– Some of those elements are associated to some sorts of literal (integer, real,
string....)

– A set of links that associates elements (link is directed). Those links forms a
navigation network among model elements.

– To make sense, each model must be associated with a meta-model defining it.
– Every model element finds its unique definition in the meta-model.
– Every model link finds its unique definition in the meta-model.
The fact that there is a mapping from a model (the defined artifact) and its meta-
model (the defining artifact) is one of the necessary conditions for the model to
conform to its meta-model. This mapping includes model elements mapping and
model links mapping and is then a structural mapping. Together with this structural
mapping the model must satisfy constraints associated to the meta-model. Those

109

constraints can be evaluated based on structural mapping and literal values associated
to model elements.
Before taking into details of the formalization, we put some words about the category
theory. Category theory originally arose in mathematics out of the need of formalism
to describe the passage from one type of mathematical structure to another [7].
Category theory has been used in diverse branches of software engineering and
computer science as pointed out by Goguen [8], in object-oriented software evolution
[11] and recently the formalization of UML [14] and MOF [4] etc. In category theory
there are structures called categories that contain objects and morphisms. Those
morphisms can be composed and the composition of morphisms is associative.
Functor is a structure-preserving mapping between two categories. Definitions of
category, functor and other notion of category theory can be found at [15], [7]. A
computational aspect of category theory can be found in [12].
The next topic is the proposed formalization of the conformance relation between a
model and its meta-model in the OOM TS. The OOM TS bases on OMG’s
technology (MOF, UML, QVT...), which is originally based on object models.
Adapted from [13], an object model is a tuple

µ=(CLASS,ATT
c
,OP

c
,ASSOC,associates,roles,multiplicities,<,

 PRIMITIVETYPE)

such that
i. CLASS is a set of classes.
ii. ATTc is a set of operation signatures for functions mapping an object of

class c to an associated attribute value.
iii. OPc is a set of signatures for user-defined operations of a class c.
iv. ASSOC is a set of association names.

a. associates is a function mapping each association name to a list
of participating classes.

b. roles is a function assigning each end of an association a role
name.

c. multiplicities is a function assigning each end of an
association a multiplicity specification.

v. < is a partial order on CLASS reflecting the generalization hierarchy of
classes.

vi. PRIMITIVETYPE is a set of primitive data types used in the object
model = {STRING, INTEGER, REAL }.

In our formalization, model navigation plays an important role. We proposed the
concept of navigation morphism which is represented by a tuple

nav = (e
s
, L, E

t
)

such that
i. e is the model element that is the source of the navigation morphism s

ii. L is a sequence of navigation label
iii. Et is a sequence of elements that is orderly located in the navigation

from the source element es to the target element. The last element of
this sequence is the target of the navigation morphism.

Now, from every object model µ, there is a derived category Cµ :

110

Cµ = (ObC
,Mor

C
,dom,cod,id,composition)

such that
i. Obc = CLASS ∪ PRIMITIVETYPE
ii. PRIMITIVETYPE is the set of primitive types used in the object

model
iii. MorC = Mor ∪ Mor C1 C2

iv. MorC1 is the set of all navigation morphisms
(es , [role name],[et])
representing a navigation from es to et (es ,et ∈ CLASS) through the
“role name” role. MorC1 can be calculated from CLASS, ASSOC,
associates and roles.

v. MorC2 is the set of all navigation morphisms
(es , [attribute name],[et])
representing a navigation from es (es ∈ CLASS) to et (es ∈
PRIMIVITES) through the “attribute name” attribute. MorC1

can be calculated from CLASS, ATTc, PRIMITIVETYPE.
vi. dom: MorC → Obc is a function that takes a navigation morphism as

argument and gives the source of that navigation morphism as result.
This function can be calculated from CLASS, ATTc, ASSOC,
associates, roles and <.

vii. cod: MorC → Obc is a function that takes a navigation morphism as
argument and gives the target of that navigation morphism as result.
This function can be calculated from CLASS, ATTc, ASSOC,
associates, roles and <.

viii. id is an identity function that takes a model element e as its argument
and give a navigation morphism (e,[],[e]) as result. i.e this
function returns a navigation morphism from the element e to itself
(there is no navigation label)

ix. composition is a function that takes two navigation morphisms
nmor1 = (es1,L1 ,Et1) and nmor2 = (es2,L2 ,Et2) as its
arguments and give a composite navigation morphism
nmor=(es1,L1 concat L2,Et1 concat Et1)
when cod(nmor1)=dom(nmor2)

Once the model µ is promoted as a meta-model (M2 level), any model of this meta-
model can be represented by a category :

C
model

 = (Ob
C
,Mor

C
,dom,cod,id,composition)

such that
i. Obc = OBJECT ∪ LITERAL
ii. OBJECT is the set of objects in the selected model
iii. LITERAL is the set of objects associated to a primitive value used in

the selected model
iv. MorC = MorC1 ∪ MorC2
v. MorC1 is the set of all navigation morphisms

(es , [role name],[et])
representing a navigation from es to et (es ,et ∈ OBJECT) through the
“role name” role. MorC1 can be calculated from the selected model.

111

vi. MorC2 is the set of all navigation morphisms
(es , [attribute name],[et])
representing a navigation from es (es ∈ OBJECT) to et (es ∈
LITERAL) through the “attribute name” attribute. MorC1 can be
calculated from the selected model.

vii. dom: MorC → Obc is a function that takes a navigation morphism as
argument and gives the source of that navigation morphism as result.
This function can be calculated from the selected model.

viii. cod: MorC → Obc is a function that takes a navigation morphism as
argument and gives the target of that navigation morphism as result.
This function can be calculated from the selected model.

ix. id is an identity function that takes a model element e as its argument
and give a navigation morphism (e,[],[e]) as result. i.e this
function returns a navigation morphism from the element e to itself
(there is no navigation label)

x. composition is a function that takes two navigation morphisms
nmor1 = (es1,L1 ,Et1) and nmor2 = (es2,L2 ,Et2) as its
arguments and give a composite navigation morphism
nmor=(es1,L1 concat L2,Et1 concat Et1)
when cod(nmor1)=dom(nmor2)

An example: BankClient model conforms to SimpleUML model

The simplified meta-model UML and the Bank_Client model (Fig.4) are illustrated
partially in the categorical form in the Fig. 5. Model elements and model links of
these two models is provided in the Table.1.

Class Association
source

destination

reverse

forward

Bank

Client

Bank_Client

source

forward

reverse

destination

Fig. 5. A partial view of mapping from BankClient (model) to SimpleUML (meta-model)

The mapping from Bank_Client model to SimpleUML model illustrated in the
Table.2 can be expressed by a functor F: CBank_Client → CSimpleUML that contains:
– A model element mapping

Felement = Bank → Class ; Client → Class ; Bank_Client → Association
– A model link mapping Fnavigation =

(Bank,[forward],[Bank_Client]) → {(Class,[forward],[Association]) ;
(Client,[reverse],[Bank_Client]) → (Class,[reverse],[Association]) ;
(Bank_Client,[source],[Bank]) → (Association,[source],[Class]) ;
(Bank_Client,[destination],[Client]) → (Association,[destination],[Class])

112

Table 1. Model elements and model links of Bank_Client and SimpleUML model

 CBank_Client CSimpleUML

elements {Bank,Client,Bank_Client} {Class, Association}
links/ basic
navigations

{(Bank,[forward],[Bank_Client]),
 (Client,[reverse],[Bank_Client]),
(Bank_Client,[source],[Bank]),
(Bank_Client,[destination],[Client])}

{(Class,[forward],[Association]),
(Class,[reverse],[Association]),
(Association,[source],[Class]),
(Association,[destination],[Class])}

Table 2. Navigation mapping and mapping of a composition

From Bank_Client To SimpleUML
(Bank,[forward],[Bank_Client]) (Class,[forward],[Association])
(Bank_Client,[destination],[Client]) (Association,[destination],[Class])
(Bank,[forward],[Bank_Client]) °
(Bank_Client,[destination],[Client])=
(Bank,[forward,destination],[Bank_Client,Client])

(Class,[forward],[Association]) °
(Association,[destination],[Class])=
(Class,[forward,destination],[Association,Class])

Remarks. The mapping of the composition of two navigations is the composition of
the mappings of the two navigations. This is an important property of the structural
mapping and is called structure-preserving mapping in the category theory.

4 Exploiting the formalization

In order to demonstrate the benefits of the proposed formalization, we have developed
a prototype of an MDE environment in which different kind of data such as models,
meta-models, mapping specifications, conformance relationships and more generally,
any structure-preserving relationship can be represented in a unified manner (using
categories and functors).
The developed prototype having architecture depicted in Fig.6 contains an OCL
evaluator that exploits categorical representations of models and conformance
mapping to navigate through model elements. The implementation of this evaluator is
well facilitated since model navigation – an important part of the language is made
explicit in the categorical representation of (meta-)models.

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

Fig. 6. The MDE environment prototype

The developed prototype has allowed us to point out several potential usages of the
formalization presented in the previous sections. Some of these usages are provided
below:
– Verifying for model conformance: the input and output model of a transformation

can be respectively verified if each model conforms to its meta-model due to the
OCL evaluator.

– Model query: models can be queried with the OCL language.

113

– Model transformation execution: a set of model transformations (structure
preserving transformation) can be executed due to the transformation engine.

– Systematic traceability: the traceability information is stored as categorical
functors and is produced as explicit result of transformation together with output
model.

– Tracking for multi-step transformations: since traceability information is stored in
the form of functors, those functors can be composed in the case of successive
transformation.

– Help to the analysis of impacts: since the structural relation between input and
output model is captured by a functor (this functor is also the traceability
information), it is possible to ask some kind of questions about transformation
executed such as: if a model element (or model link) in the input model is removed
then which parts of the output model will change? Or in the inverse direction: if I
want to make some change in the output model, which parts of the input model
need to be changed? These kind of questions can be answered without making real
change and re-execute transformations and is very useful in an interactive
environment where model transformation is an interactive computer aided tool to
the development or may be in the specification phase of model transformation
when debugging facility is a requirement.

– Analysis for (structural) completeness of model transformations: with the
traceability information we can easily verify which parts of the input model do not
take part in the generation of any model element in the output model, this may be
the case in that the specification of model transformation is not complete.

5 Related works

Category theory has been used to formalize UML [14] and recently MOF [4]. These
formalizations based on Slang, a language supporting category theory of the Kestrel
Institute [14]. Our formalization uses directly the graph representation (interpreted as
categories) of models, functors to describe conformance mapping and OCL to
describe constraints. In our work, functor is also used to represent relation between
models at different levels of abstraction of the same system.

6 Conclusions

The work presented in this paper bases on a categorical abstraction of model and OCL
to formalize the conformance relation of a model to its meta-model in the Object-
Oriented Modeling TS. This relation can be expressed by a conformance mapping
from the model to its meta-model and a set of constraints associated to the meta-
model. These constraints must be satisfied when being evaluated over the model, the
meta-model and the conformance mapping between them. We believe that the same
kind of formalization can be used to other TSs due to the conformance mapping from
a model to its definition (meta-model) in OOM TS or from a XML document to its
DTD (or XML Schema), etc. The main advantage of this formalization is that it is

114

very abstract and can be applied to any kind of (meta-)models. This formalization is
also a first step in defining a model transformation formalism in which traceability
and analysis of impacts is fully supported.

References

1. Colin Atkinson. Meta-Modeling for Distributed Object Environments. In The First
International Enterprise Distributed Object Computing Conference (EDOC '97) , pages 90-
103, Brisbane, Australia, October 1997. IEEE Computer Society Press.

2. Jean Bézivin. On the Basic Principles of Model Driven Engineering. In MDE for Embedded
System Summer School, Brest, France, September 2004. ENSIETA.

3. Jean Bézivin. On the unification power of models. SoSym, 2005.
[http://www.sciences.univ-nantes.fr/lina/atl
/www/papers/OnTheUnificationPowerOfModels.pdf]

4. Kenneth Baclawski, Mieczyslaw Kokar, and Jeffrey Smith. Metamodeling facilities. [
http://www1.coe.neu.edu/%7Ejsmith/Publications/mof.pdf]

5. Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet, and Marcelo
Arenas. Efficient Incremental Validation of XML Documents. In ICDE, 2004. [
http://www.cs.toronto.edu/~marenas/publications/icde04.pdf]

6. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). W3C, February 2004. [
http://www.w3.org/TR/2004/REC-xml-20040204/]

7. Michael Barr and Charles Wells. Category Theory - Lecture Notes for ESSLLI. Lecture
Notes, 1999. [http://www.folli.uva.nl/CD/1999/library/pdf/barrwells.pdf]

8. Joseph A. Goguen. A Categorical Manifesto. Mathematical Structures in Computer
Science, 1(1):49-67, 1991.
[http://citeseer.ist.psu.edu/goguen91categorical.html]

9. Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-Verlag,
1976.

10. I. Kurtev, J. Bézivin, and M. Aksit. Technical spaces: An initial appraisal. In CoopIS, DOA
2002 Federated Conferences, Irvine, 2002.
[http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf]

11 Tom Mens. A Formal Foundation For Object-Oriented Software Evolution. PhD thesis,
Vrije Universiteit Brussel, August 1999.

12. David E. Rydeheard and Rod M. Burstall. Computational Category Theory. Series in
Computer Science. Prentice Hall International, 1988.
[http://www.cs.man.ac.uk/~david/categories/book/book.pdf]

13. Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, 2002.
[http://www.db.informatik.uni-bremen.de/teaching/courses/ss2002_oose/m.pdf]

14. Jeffrey E. Smith. UML Formalisation and Transformation. PhD thesis, Northeastern
University, Boston, Massachusetts, December 1999.

15. Jaap van Oosten. Basic Category Theory. In Basic Research in Computer Science, BRICS
Lecture Series. University of Aarhus, January 1995.
[http://www.brics.dk/LS/95/1/BRICS-LS-95-1/BRICS-LS-95-1.html]

16. Jos Warmer and Anneke Keleppe. The Object Constraint Language, Precise Modeling
With UML. Object Technology Series. Addison-Wesley, 1999.

115

Dependencies between Models in the Model-driven
Design of Distributed Applications1

João Paulo A. Almeida, Luís Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{almeida, pires, sinderen}@cs.utwente.nl

Abstract.. In our previous work, we have defined a model-driven design
approach based on the organization of models of a distributed application
according to different levels of platform-independence. In our approach, the
design process is structured into a preparation and an execution phase. In the
preparation phase, (abstract) platforms and transformation specifications are
defined. These results are used by a designer in the execution phase to develop
a specific application. In this paper, we analyse the dependencies between the
various types of models used in our design approach, including platform-
independent and platform-specific models of the application, abstract platforms,
transformation specifications and transformation parameter values. We consider
models as modules and employ a technique to visualize modularity which uses
Design Structure Matrices (DSMs). This analysis leads to requirements for the
various types of models and directives for the design process which reduce
undesirable dependencies between models.

1 Introduction

In our previous work [1, 2], we have defined a model-driven design approach (aligned
with the Model-Driven-Architecture [7]) based on the organization of models of a
distributed application according to different levels of platform-independence. In this
approach, models at a particular level of platform-independence can be realized with a
number of platforms (such as, e.g., middleware platforms), possibly through
application of successive (automated) transformations that lead ultimately to
platform-specific models, i.e., models at the lowest level of platform-independence
with respect to a particular definition of platform.

An important architectural concept of our approach is that of an abstract platform.
An abstract platform is an abstraction of infrastructure characteristics assumed for
models of an application at a certain level of platform-independence. An abstract
platform is represented through metamodels, profiles and reusable design artefacts
[1]. For example, if a platform-independent design contains application parts that
interact through operation invocations (e.g., in UML [8]), then operation invocation is
a characteristic of the abstract platform. Capabilities of a concrete platform are used

1 This work is part of the Freeband A-MUSE project. Freeband (http://www.freeband.nl) is

sponsored by the Dutch government under contract BSIK 03025.

http://www.freeband.nl/

during platform-specific realization to support this characteristic of the abstract
platform. For example, if CORBA is selected as a target platform, this characteristic
can be mapped onto CORBA operation invocations.

An indispensable activity in early stages of our development approach is to
determine the levels of models, the abstract platforms, and the (automated)
transformations that are needed. This activity is part of the preparation phase of the
MDA development process [6]. In the preparation phase, (MDA) experts define the
metamodels, profiles and transformations that are to be used in the execution phase by
application developers. In the execution phase, a specific application is developed
using the generalized designs and design knowledge captured during the preparation
phase.

Figure 1 shows the various models manipulated in our approach. Three levels of
platform-independence are depicted, and the results are classified according to the
phase in which they are produced. In this figure, an arrow indicates that a model is
dependent on the existence of another model by construction. Abstract platforms have
been depicted as models, indicating that abstract platform definitions can be captured
in abstract platform models. Transformation specifications have also been depicted as
models, indicating that generalized design operations can be captured and reused.
Transformation specifications can be parameterized and values for transformation
parameters are defined in the execution phase. These values are called transformation
arguments. Arguments of a transformation are also called markings when these are
associated to elements in a source model, in which case transformation parameters are
called marks.

Ideally, models in our approach (presented in Figure 1) should be independent of
each other, i.e., it should be possible to create models independently, and a
modification in one model should not impact other models. Nevertheless, models
capture design decisions on the same object of design, i.e., the same application, and
hence not all models are independent of each other. The benefits of separation of
models are reduced when models are related in such a way that modifications in a
model affect other models. In this paper, we analyse the dependencies between the
various types of models used in our design approach and strive to find techniques to
avoid undesirable dependencies between models.

application

PIM M1

application
PIM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

abstract
platform Π2

level 1

level 2

application
PSM M3

transformation
specification T2

transformation
arguments a2

concrete
platform Π3

level 3

preparation phase execution phase

Fig. 1. Models in our design approach

117

Dependencies between models restrict the opportunities for division of labour and
concurrent design. Interdependencies reduce the efficiency of the design process and
often have to be addressed in the design process by introducing iteration cycles [4].
As we elaborate in this paper, some interdependencies can be avoided by following a
number of rules with respect to the content of the various models and with respect to
the modifications that may be applied to the various models.

In the remainder of this paper, we address the following questions with respect to
the separation of models in our approach (among others):
– can concrete platforms be modified without affecting PIMs and abstract

platforms?
– can transformation specifications be modified without affecting PIMs and abstract

platforms?
– does a modification in a PIM affects a corresponding PSM?
– does a modification in a PSM affects a corresponding PIM?
– are there interdependencies between the various models that require iterations in

the design process? Can these be avoided?
This paper is further organised as follows: section 2 proposes that models should

be considered as modules whose modularity can be analysed through a technique
called Design Structure Matrices (DSMs) [9, 10]; section 3 analyses the
(inter)dependencies between the various types of models, which results in
requirements and guidelines for the separation of models; section 4 discusses how the
dependencies between models affect the design process; section 5 classifies the
different models according to their various dependencies; finally, section 6 presents
some concluding remarks.

2 Models as modules

In order to examine the relations between the various models, we consider models as
modules. Typically, a module is a set of elements of a design that are grouped
together according to an architecture or plan, with three main purposes [3, 4]: to make
complexity manageable; to enable parallel work; and to accommodate future
uncertainty.

While modularization is often used as a technique to split up and assign different
functions of a complex system to different system parts, we split up and assign
different design decisions to different models. A number of basic principles of
modularity apply both to the functional decomposition of system parts (within a
model) and to the separation of models in our design approach.

As is noted in [4]: “a complex engineering system is modular-in-design if (an only
if) the process of designing it can be split up and distributed across different separate
modules that are coordinated by design rules, not by ongoing consultations amongst
the designers.” This definition reveals two important features of systems that are
modular-in-design:
– Independence: The absence of ongoing consultations amongst the designers of

different modules reveals that modules should be largely independent of each
other. Modules correspond to independent activities in the design process; and

118

– Dependence: The relations between the different modules are defined by a set of
design rules2 to be respected. These design rules reflect the need for coordination
of design choices. Separating strongly related modules forces the number of
design rules to increase, constraining the freedom of designers of the different
modules.

In the following sections, we examine independence and dependence of models in our
design approach. We employ a technique to visualize modularity-in-design which
uses Design Structure Matrices (DSMs) [9, 10]. DSMs have been used extensively in
the field of Engineering Design, both for products and production processes and
design processes [4]. In this technique, modules are arrayed along the rows and
columns of a square matrix. The matrix is filled in by determining, for each module,
which other modules affect it and which are affected by it. The result is a map of the
dependencies between the modules.

3 Dependencies between models: two levels of models

We start our analysis by assuming two levels of design within a single design iteration
cycle as depicted within the rounded rectangle in Figure 2.

design activities

design activities

level 1

level 2

user requirements

design 1

design 2

design activities

design activities

design 1’

design 2’

user requirements’

design activities

design activities

design 1’’

design 2’’

user requirements’’ ...

Fig. 2. Two levels of models related by transformation

We assume further that the preparation phase results in an abstract platform Π1 for
designs at level 1, a concrete platform Π2 for designs at level 2. The design activities
are constrained by a transformation specification T1 that relates models that rely on Π1
to models that rely on Π2. This situation is depicted in Figure 3. This figure reveals
the various models of the execution phase that are considered at this point of our
analysis, namely, an application PIM, transformation arguments, and an application
PSM.

2 In functional decomposition, interfaces between components are considered design rules.

119

application
PIM M1

application
PSM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

concrete
platform Π2

T1

design activities

…

parametrization

…

pr
ep

ar
ati

on
 p

ha
se

transfer of results

dependency by construction

Fig. 3. Two levels of models related by transformation

We discuss the dependencies between each of the models depicted in Figure 3 in the
following sections. In each section, we discuss how the various models are affected as
a result of a modification of one of the other models. After the relations between all
models are examined, a DSM is built to visualize the dependencies between the
various models.

Application PIM. Table 1 shows the dependencies between the various models and
an application PIM. The ‘ ’ symbol marks the existence of some dependency. The
absence of the symbol indicates there is no dependency. We justify the existence or
absence of a dependency for each pair of models.

120

Table 1. Dependencies between the various models and an application PIM

 Application PIM Explanation
Application
PIM

N/A trivial

Abstract
platform

 An abstract platform is designed so that it can be used to design a class of applications;
the modified application PIM is still a member of this class of applications.
This constitutes a generality requirement for abstract platform, but also sets the
constraints on possible modifications of an application PIM for a given abstract
platform.

Application
PSM

 through
transformation

The relations between application PIMs and PSMs are determined by transformation
specifications and transformation arguments; if the application PIM is modified, it is
possible that the modified PIM and the original PSM no longer respect this relation; in
this case, the PSM or transformation arguments may be affected by change.

Concrete
platform

 The concrete platform is a member of the set of target platforms implied by portability
requirements; all application PIMs that rely on the abstract platform must be buildable
(see explanation below about buildability) in the concrete platform, thus requiring no
modifications in the concrete platform.
This constitutes requirements for the abstract platform and transformation
specification.

Transf.
arguments

 Transformation arguments are used to introduce variation in transformation
specifications, in order to capture particular design decisions; these decisions may be
application-specific or may refer to elements of the application PIM; e.g.,
transformation parameters can be used to specify the physical allocation of each
application component in the application PIM.

Transf.
specification

 Transformation specifications are designed so that they can be applied to the class of
applications that can be built on top of an abstract platform; the modified PIM is still a
member of this class of applications.
This constitutes a generality requirement for transformation specification.

Buildability of a design is inversely proportional to the amount of time, effort and
resources required to build a conformant realization of the design on a particular
platform. Buildability depends on the contents of a design. The actual contents of a
platform-independent design depend partly on the abstract platform, which is defined
in the preparation phase. Therefore, in the preparation phase, buildability can only be
estimated indirectly, by analysing the impact of abstract platform characteristics in the
buildability of the class of application designs supported by the abstract platform. We
propose this is done by examining the differences and similarities in the abstract
platform and target platforms3.

Having introduced the notion of buildability, we are able to formulate a definition
of platform-independence of a design. We say that a design is platform-independent
if, and only if, it is buildable on a number of target platforms. The set of target
platforms is determined by portability requirements for the design, which are
themselves determined by technical, business and strategic arguments.

Abstract platform. Table 2 shows the dependencies between the various models
and an abstract platform.

3 We have explored this idea initially in [2].

121

Table 2. Dependencies between the various models and an abstract platform

 Abstract
platform

Explanation

Application
PIM

 By definition: “an abstract platform is an abstraction of infrastructure characteristics assumed
in the construction of PIMs of an application”; if these characteristics change, the application
PIM may be affected.

Abstract
platform

N/A trivial

Application
PSM

 Modifying an abstract platform may affect PIMs, transformation specifications (see respective
cells in this table), which in turn may affect application PSMs (see other tables); however,
only direct dependencies are represented in a DSM.

Concrete
platform

 The set of target platforms is determined by portability requirements; during abstract platform
definition, buildability with respect to the target platform must be observed.
This constitutes a requirement for abstract platform definition.

Transf.
arguments

 Transformation arguments depend on the transformation specification, which depends on
abstract platforms (see cell below); however, only direct dependencies are represented.

Transf.
specification

 The abstract platform defines the common characteristics of a class of platform-independent
designs for which there should be generalized implementation relations to different platforms;
these implementation relations are captured in transformation specifications; a change in
abstract platform characteristics changes the class of applications, invalidating assumptions on
common concepts, patterns and structures that were made to define transformations.

The separation between an abstract platform and a transformation specification is
analogous to the separation between an interface definition and a realization of the
interface in component-based design: an abstract platform defines requirements which
are satisfied by one or several transformation specifications.

Application PSM. Table 3 shows the dependencies between the various models and
an application PSM.

Table 3. Dependencies between the various models and an application PSM
 Application PSM Explanation
Application
PIM

 through
transformation

The relations between application PIMs and application PSMs are determined by
transformation specifications and transformation arguments; if the application PSM is
modified, it is possible that the modified PSM and the original PIM no longer respect
this relation; in this case, the PIM or transformation arguments may be affected by
change. This dependency exists for both unidirectional and bidirectional [5]
transformations. In the case of bidirectional transformations, changes to PIM may be
propagated automatically.

Abstract
platform

 A modification in an application PSM may result in a modification in the application
PIM (see cell application PIM above); the modified PIM is still a member of this class
of applications for which the abstract platform is defined.
This constitutes a generality requirement for abstract platform, but also sets the
constraints on modifications of an application PSM for a given abstract platform.

Application
PSM

N/A trivial

Concrete
platform

 A concrete platform is designed so that is can be used to design a class of applications;
the modified PSM is still a member of this class of applications.
This constitutes a generality requirement for concrete platforms.

Transf.
arguments

 through
transformation

(see cell application PIM above)

Transf.
specification

 Transformation specifications define generalized implementation relations;
transformation specifications define a class of PSMs that conform with PIMs; the
modified PSM is still a member of this class of applications.
This constitutes a generality requirement for transformation specifications, but also
sets the constraints on possible modifications of an application PSM for a given
transformation specification and a PIM.

122

Concrete platform. Table 4 shows the dependencies between the various models and
a concrete platform.

Table 4. Dependencies between the various models and a concrete platform

 Concrete
platform

Explanation

Application
PIM

independence
is engineered

Independence is engineered in the definition of abstract platforms.
This constitutes a buildability requirement for abstract platforms.

Abstract
platform

independence
is engineered

Independence is engineered in the definition of abstract platforms.
This constitutes a buildability requirement for abstract platforms.

Application
PSM

 Application PSM depends on sets of concepts, patterns and structures provided by a
concrete platform; the instability of concrete platforms, and hence application PSMs,
motivates separation of platform-independent and platform-specific concerns in our
approach.

Concrete
platform

N/A trivial

Transf.
arguments

 Transformation arguments may be platform-specific, e.g., markings may define that
particular components should be transformed into Session or Message-Driven
Enterprise Java Beans.

Transf.
specification

 Transformation specifications define generalized implementation relations for a
particular target platform; change the target platform and these relations may be
invalidated. Ideally, this dependency could be reduced by using concrete platform
models as transformation arguments. However, this solution requires highly general
transformation specifications, which define generalized implementation relations for a
class of target platforms (resulting in a platform-independent transformation
specification).

Transformation arguments. Table 5 shows the dependencies between the various
models and transformation arguments.

Table 5. Dependencies between the various models and transformation arguments
 Transf.

arguments
Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of implementation, so that different
implementations of application PIMs built on top of it are possible; since transformation
arguments are used to introduce variations in generalized implementation relations,
changes in transformation arguments should not affect application PIMs nor abstract
platforms.
This constitutes a requirement for abstract platforms and transformations, and sets the
constraints on possible modifications of transformation arguments for a given
combination of abstract platform and transformation specification.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 through
transformation

The relations between PIMs, transformation arguments and PSMs are determined by
transformation specifications; if transformation arguments are modified, it is possible
that the original PIM, the modified arguments and the original PSM no longer respect
this relation; in this case, the PSM may be affected by change in transformation
arguments.

Concrete
platform

 A concrete platform is designed so that is can support a class of applications; a PSM
that is affected by a change in transformation arguments is still a member of this class of
supported applications, therefore, requiring no modification of the concrete platform.
This constitutes a requirement for transformation specification, namely that the results
of transformations are always PSMs that use the concrete platform.

Transf.
arguments

N/A trivial

Transf.
specification

 Transformation specifications have transformation parameters, which are assigned
values when the transformation specification is instantiated.

123

From the perspective of model transformation, the distinction between PIMs and
transformation arguments is unnecessary: both PIMs and transformation arguments
may be considered as input information for an unparameterized transformation.
However, the distinction is relevant from the perspective of the design process: PIMs
are platform- and transformation independent, while transformation arguments may
be platform- and transformation specific. Transformation arguments may be defined
after PIMs have been conceived. As a consequence, designers of PIMs may not be
aware of whatever transformation parameters may be chosen by a designer using the
PIM as a starting point to derive a PSM.

Transformation specification. Finally, Table 6 shows the dependencies between the
various models and a transformation specification.

Table 6. Dependencies between the various models and a transformation specification

 Transf.
specification

Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of implementation, so that different
implementations of application PIMs built on top of it are possible; these different
implementations are captured in transformation specifications.
This constitutes a requirement for abstract platform, but also sets the constraints on
possible modifications of transformation specifications for a given abstract platform.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 The relation between application PIM and application PSM is determined by
transformation specifications and transformation arguments; since a change in
transformation specification should not affect PIMs (see cell application PIM above),
modifications to transformation specifications must be accommodated in the PSM or in
transformation arguments.

Concrete
platform

 PSMs related by transformation specifications must be realizable on top of a concrete
platform.
This constitutes a requirement for transformation specifications.

Transf.
arguments

 Transformation parameters are used to introduce variations in generalized
implementation specifications; if a transformation specification is modified parameters
may be modified and new parameters may be introduced, affecting transformation
arguments.

Transf.
specification

N/A trivial

Since transformation arguments may be transformation-specific, transformation
arguments must be captured separately from PIMs so that PIMs do not become
transformation-specific. Therefore, in case of parameterization by marking, the
unmarked PIM must be kept separately from markings. The unmarked PIM and
markings can be combined into a marked model for the purposes of transformation if
necessary.

124

Design Structure Matrix. Table 7 provides an overview of the dependencies
between each of the models considered in our analysis so far. The columns of this
table correspond to the columns of tables 1 to 6. When the table is read row-wise, the
‘ ’ mark indicates that the model that names to the row is affected by the models that
name each of the columns. When the table is read column-wise, the mark shows the
models that may be affected directly as a result of a modification in the model that
names the column.

Table 7. Dependencies between models: Design Structure Matrix

 Application
PIM

Abstract
platform

Application
PSM

Concrete
platform

Transf.
arguments

Transf.
specification

Application
PIM

N/A through
transformation

independence
is engineered

Abstract
platform

 N/A independence
is engineered

Application
PSM

 through
transformation

 N/A through
transformation

Concrete
platform

 N/A

Transf.
arguments

 through
transformation

 N/A

Transf.
specification

 N/A

DSMs exhibit an interesting property for our analysis: if we consider that there is a
time sequence associated with the position of the elements in the matrix, then all
marks above the diagonal are considered feedback marks [11]. Feedback marks
require iterations in the sequence of tasks executed. DSMs can be manipulated to
eliminate or reduce feedback marks, e.g., by reordering the sequence of elements in
the matrix. It is also possible to group elements of the matrix into clusters, a technique
which allows us to consider the set of elements of a cluster as a single module.

In the following section, we manipulate the DSM represented in Table 7 to show
how the dependencies between models affect the design process.

4 Dependencies between models and the design process

Preparation and execution phase concerns. Table 8 shows a reordered DSM. The
models that result from the preparation activities, namely, concrete and abstract
platforms and transformation specifications are placed in the first three positions of
the matrix. These models are grouped into a cluster, which represents the preparation
phase. A second cluster represents the execution phase, grouping application PIM,
transformation arguments and application PSM.

125

Table 8. Clustering dependencies with respect to preparation and execution activities

 Concrete
platform

Abstract
platform

Transf.
specification

Application
PIM

Transf.
arguments

Application
PSM

Concrete
platform

N/A

Abstract
platform

independence
is engineered

N/A

Transf.
specification

 N/A

Application
PIM

independence
is engineered

 N/A through
transformation

Transf.
arguments

 N/A through
transformation

Application
PSM

 through
transformation

 through
transformation

N/A

The absence of feedback marks above the diagonal formed by the preparation and
execution phase clusters in Table 8 shows that the preparation phase does not depend
on the execution phase. This result is made possible by requirements imposed on the
preparation phase. These requirements are described in the cells of tables 1 to 6 that
correspond to the cells positioned above the diagonal formed by the two clusters.
Failure to satisfy these requirements would imply the presence of feedback
dependencies, which would require revisiting the preparation phase. The absence of
feedback marks above the diagonal formed by the preparation and execution phase
clusters can be summarized by the following design rule:

Changes in PIM, PSM or transformation arguments must be accommodated in
PIM, PSM or transformation arguments, but not in the abstract platform, concrete
platform nor transformation specification.

Table 8 also reveals the absence of feedback dependencies within the preparation
phase, since, within the cluster, no feedback marks appear above the diagonal. The
same, however, cannot be said of the execution phase: modifications in the
application PSM may affect the PIM and transformation arguments. The presence of
feedback dependencies in the execution phase is addressed through iteration in the
execution phase. An iteration in the execution phase allows a designer to gain insight
into the implications of design decisions at the PIM-level for the application PSM,
which may result in adjusting the PIM in a subsequent iteration.

However, for the design process to advance towards a stable application PIM, it is
necessary that the dependencies between PSM and PIM should eventually decrease.
Eventually, the application PIM must be such that it does not depend on design
decisions that constrain the choice of target platform. This constitutes an important
requirement for the iterative approach in the execution phase.

126

Multiple levels of models. We continue our analysis by considering the dependencies
between the models at three different levels related by transformation. Table 9 shows
the dependencies between the various models. These dependencies are clustered for
each pair of consecutive levels of models, i.e., a cluster for models of levels 1 and 2
and a cluster for models of levels 2 and 3. This DSM is build by reapplying the
transformation pattern, which explains the isomorphic nature of the dependencies in
the two clusters.

Table 9. Clustering dependencies with respect to levels of models

A

bs
tra

ct

pl
at

fo
rm

 Π
1

A
pp

lic
at

io
n

PI
M

 M
1

Tr
an

sf
.

sp
ec

ifi
ca

tio
n

T 1 Tr
an

sf
.

ar
gu

m
en

ts
 a

1

A
bs

tra
ct

pl

at
fo

rm
 Π

2

A
pp

lic
at

io
n

PI
M

 M
2

Tr
an

sf
.

sp
ec

ifi
ca

tio
n

T 2 Tr
an

sf
.

ar
gu

m
en

ts
 a

2

C
on

cr
et

e
pl

at
fo

rm
 Π

3

A
pp

lic
at

io
n

PS
M

 M
3

Abstract platform Π1 N/A
Application PIM M1 N/A
Transf. specification T1 N/A
Transf. arguments a1 N/A

Abstract platform Π2 N/A
Application PIM M2 N/A

Transf. specification T2 N/A
Transf. arguments a2 N/A
Concrete platform Π3 N/A
Application PSM M3 N/A

The table shows an overlap between the two clusters. This overlap indicates that the
design activities in the different levels are not completely independent, and that the
intermediate model PIM forms the ‘interface’ between the two clusters, as could be
expected.

5 Classifications of models

This section concludes our analysis by classifying the various models and design
decisions according to the following dimensions of separation of separation of
concerns:
– platform-independent and platform-specific concerns;
– application-independent and application-specific concerns, which correspond to

preparation and execution phases concerns, respectively; and,
– transformation-independent and transformation-specific concerns.
Figure 4 places the different models according to the first two dimensions. Three
levels of models are depicted.

127

application
PIM M2

application
PSM M3

transformation
specification T2

transformation
arguments a2

abstract
platform Π2

concrete
platform Π3

application-specific application-independent

application
PIM M1

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

pl
atf

or
m

-in
de

pe
nd

en
ce

Fig. 4. Dimensions of separation of concerns and models

In Figure 4, transformation specifications are placed in the boundary between two
levels of platform-independence. This is to denote that transformation specifications
rely on the (abstract) platforms of both source and target levels of models (see Table 2
and Table 4). In addition, transformation specifications may also capture some
transformation rules which are independent of the target platform.

Similarly to transformation specifications, transformation arguments are also
placed in the boundary between two levels of platform-independence. In addition,
transformation arguments are placed in the boundary between the application-specific
and application-independent concerns area. This is to denote that arguments may be
application-specific (see Table 1), but may also capture application-independent
design decisions. Application-specific transformation parameterization is used to
improve the generality of transformation specifications with respect to specific
applications. Application-independent transformation parameterization is used to
improve flexibility of transformation specifications in general, e.g., to cope with to
variation in user requirements that are not captured in the source models but that are
to be addressed during transformation. An example of an application-independent
transformation argument determines that, irrespective of the application model, all
application parts should be allocated to the same unit of deployment of the target
platform.

In addition to the dimensions considered in Figure 4, we can also classify models
related in a transformation step as transformation-independent or transformation-
specific. This classification is relative to a transformation specification. In a
transformation step, the source application model is transformation-independent (with
respect to a transformation specification from that level of models), since it relies on
an abstract platform, which is itself transformation-independent (see Table 6). The
target application model and the transformation arguments can be classified as
transformation-specific. This can serve as a guideline to determine whether design
decisions should be captured at the source application model level or at either
transformation arguments or the target application model level.

128

6 Main conclusions and directives

From the analysis of the relations between the various models, we can conclude that:
– Feedback dependencies between execution and preparation phases can be

avoided by addressing generality requirements at the preparation phase. Failure
to address these requirements results in cycles between the execution and
preparation phases;

– Platform-independent and platform-specific models are interrelated, their
dependencies defined by transformation. The interrelation between PIMs and
PSMs is addressed through iteration in the execution phase. An iteration in the
execution phase allows a designer to gain insight into the implications of certain
design decisions at the PIM-level.

Our analysis leads to the following directives for the design process:
– Changes in PIM, PSM or transformation arguments must be accommodated in

PIM, PSM or transformation arguments, but not in the abstract platform, concrete
platform nor transformation specification.

– Dependencies between PIM and PSM are handled by iterations in the execution
phase, leading to a stable application PIM that does not depend on platform-
specific design decisions.

– Interdependent design decisions must be captured at the same level of platform-
independence. Since some design decisions are platform-specific, this imposes
constraints on the organization of models at different levels of platform-
independence. We have illustrated the consequences of interdependent design
decisions with an example in [1].

– The classification of models according to the various dimensions of concerns
serves as a guideline to determine in which models design decisions should be
captured.

References

1. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: On the Notion of
Abstract Platform in MDA Development. In: Proceedings Eighth IEEE International
Conference on Enterprise Distributed Object Computing (EDOC 2004). IEEE CS Press
(2004) 253–263

2. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proceedings Seventh IEEE
International Conference on Enterprise Distributed Object Computing (EDOC 2003). IEEE
CS Press (2003) 112–134

3. Baldwin, C.Y, Clark, K.B.: Design Rules, Volume 1, The Power of Modularity. MIT Press,
Cambridge, MA (2000)

4. Baldwin, C.Y, Clark, K.B.: Modularity in the Design of Complex Engineering Systems,
Harvard Business School Working Paper Series, No. 04-055 (2004)

5. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0: Query / Views
/ Transformations Submissions and Recommendations towards the final Standard, ad/03-08-
02, OMG (2002)

6. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based
development methodology for distributed applications. In: Proceedings of the 1st European

129

Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-
IA 2004), CTIT Technical Report TR-CTIT-04-12, University of Twente, Enschede, The
Netherlands (2004) 43–51

7. Object Management Group: MDA-Guide, V1.0.1, omg/03-06-01, OMG (2003)
8. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02, OMG (2003)
9. Steward, D.V.: The Design Structure System: A Method for Managing the Design of

Complex Systems. In: IEEE Transactions on Engineering Management, Vol. 28 (1981) 71–
74

10. Warfield, J.N.: Binary Matrices in System Modeling. In: IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 3 (1973) 441–449

11. Yassine, A., Braha, D.: Complex Concurrent Engineering and the Design Structure Matrix
Method. In: Concurrent Engineering, Vol. 11, No. 3, SAGE Publications (2003) 165–176

130

From Mapping Specification to Model Transformation
in MDA: Conceptualization and Prototyping

Slimane Hammoudi, Denivaldo Lopes

ESEO, Ecole Supérieure d’Electronique de l’Ouest
4, Rue Merlet de la Boulaye

BP 926, 49009 ANGERS cedex 01
{shammoudi, dlopes}@eseo.fr

Abstract. In this paper, we present in the first part our proposition for a
clarification of the concepts of mapping and transformation in the context of
Model Driven Architecture (MDA), and our approach for mapping
specification and generation of transformation definition. In the second part, we
present the application of our approach from UML to C#. We propose a
metamodel for mapping specification and its implementation as a plug-in for
Eclipse. Once mappings are specified between two metamodels (e.g. UML and
C#), transformation definitions are generated automatically using
transformation languages such as Atlas Transformation Language (ATL). We
have applied this tool to edit mappings between UML and C# metamodels.
Afterwards, we aim to use these mappings to generate ATL code to achieve
transformations from UML into C#.

1 Introduction

The Object Management Group (OMG) has stimulated and promoted the adoption of
the Model Driven Architecture (MDATM) [1] to define an approach to software
development based on modeling and automated mapping of models to
implementation. In this approach, models become the hub of development, separating
platform independent characteristics (i.e. Platform-Independent Model - PIM) from
platform dependent characteristics (i.e. Platform-Specific Model - PSM).
The MDA approach promises a number of benefits including business logic is
protected against the changes in technologies, systems can evolve for meeting new
requirements, old, current and new technologies can be harmonized, legacy systems
could be integrated and harmonized with new systems.
In this approach, models are applied in all steps of development up to a target
platform, providing source code, files of deployment and configuration, and so on.
MDA proposes architecture to address the complexity of software development and
maintenance, which has no precedents. It claims that software developers can create
and maintain software artifacts with little effort. However, before this becomes a
mainstream reality some issues in MDA approach need solutions such as mapping,
transformation, handling of semantic distance between metamodels [3], bidirectional
mapping [4], and so on.

 In this paper, we use the term mapping as a synonym for correspondence between
the elements of two metamodels, while transformation is the activity of transforming
a source model into a target model in conformity with the transformation definition.
In our approach, a transformation definition is generated from a mapping
specification. The distinction between mapping specification and transformation
definition is detailed in later sections. The objective of this paper is threefold. First,
to provide a precise definition of the concepts of mapping and transformation.
Second, to provide a general metamodel for mapping specification between two
metamodels (source and target) in the context of MDA. Third, to present a tool based
on eclipse enabling the edition of mappings and the generation of transformation
definition from mapping specifications. We will apply this tool to C# Platform from
UML as PIM.
This paper is organized in the following way. Section 2 is an overview of MDA and
the main concepts behind this framework. Section 3 presents our proposition for the
clarification of the concepts of mapping and transformation and our metamodel for
mapping specification between two metamodels in the context of MDA. Section 4
introduce briefly a formalism for mapping and shows the implementation of our
proposed metamodel through a plug-in for eclipse, and its application to C# platform
from UML PIM. Section 5 concludes this paper and presents the future directions of
our research.

2 Background

The OMG’s Model Driven Architecture (MDA) is a new approach to develop large
software systems in which the initial efforts aim to cover their functionalities and
their behavior. MDA separates the modeling task of the implementation details,
without losing the integration of the model and the development in a target platform.
The key technologies of MDA are Unified Modeling Language (UML), Meta-Object
Facility (MOF), XML Meta-Data Interchange (XMI) and Common Warehouse
Metamodel (CWM) [1]. Together, they unify and simplify the modeling, the design,
the implementation, and the integration of systems. One of the main ideas of MDA is
that each model is based on a specific meta-model. Each meta-model precisely
defines a domain specific language. Finally, all meta-models are based on a meta-
metamodel. In the MDA technological space, this is the Meta-Object Facility (MOF).
There are also standard projections on other technological spaces like XMI for
projection on XML and Java Metadata Interface (JMI) for projection on Java. MDA
also introduces other important concepts: Platform Independent Model (PIM),
Platform-Specific Model (PSM), transformation language, transformation rules and
transformation engine. These elements of MDA are depicted in figure 1.

132

MOF

 transformation language

target
metamodel

transformation
rules

source
model

target
model

transformation
engine

source
metamodel

basedOn basedOn

basedOn

basedOn basedOnexec

from to

source target

basedOn

Fig. 1. Transformation in MDA

Each element presented in Figure 1 plays an important role in MDA. In our approach,
MOF is the well-established meta-meta-model used to build meta-models. The PIM
reflects the functionalities, the structure and the behavior of a system. The PSM is
more implementation-oriented and corresponds to a first binding phase of a given
PIM to a given execution platform. The PSM is not the final implementation, but has
enough information to generate interface files, a programming language code, an
interface definition language, configuration files and other details of implementation.
Mapping from PIM to PSM determines the equivalent elements between two meta-
models. Two or more elements of different meta-models are equivalents if they are
compatible and they cannot contradict each other. Model transformation is realized
by a transformation engine that executes transformation rules. Transformation rules
specify how to generate a target model (i.e. PSM) from a source model (i.e. PIM).
To transform a given model into another model, the transformation rules map the
source into the target meta-model. The transformation engine takes the source model,
executes the transformation rules, and gives the target model as output. Using one
unique formalism (e.g. MOF) to express all meta models is very important because
this allows the expression of all sorts of correspondence between models based on
separate meta-models. Transformations are one important example of such
correspondence, but there are also others like traceability, etc. In other words, given
m1(s)/Ma and m2(s)/Mb, where m1 is a model of a system s created using the meta-
model Ma, and m2 is a model of the same system s created using the meta-model Mb,
then a transformation can be de- fined as m1(s)/Ma → m2(s)/Mb. When Ma and Mb
are based on the same meta-meta-model, the transformation may be expressed in a
unique transformation language (i.e. a language independent of the meta-model).
Furthermore, the transformation language itself may be considered as a domain-
specific language. This has many interesting consequences. One of these is that a
transformation program corresponds to an MDA model. We may thus easily consider
higher-order transformations, i.e. transformations having other transformations as
input and/or producing other transformations as output. One of the most popular
meta-models is UML, but there are plenty of other meta-models being defined. For

133

example, there could be a meta-model of the Java language. Based on these two
meta-models, it is possible to express a transformation from UML 1.5 class diagrams
to Java 1.4.2 code. In fact, models have been used for a long time, but they remained
disconnected from the implementation process.
The automatic generation of code to a specific language from a UML class diagram is
not new either; some CASE tools give this support such as Poseidon for UML
(http://www.gentleware.com). However developers still have to write all the
application codes by hand. Moreover, when the application has evolved to acquire
new capabilities or adapt to new technologies, these tools cannot help the developer,
and the model is used only as documentation. An Integrated Development
Environment (IDE) provides a set of tools integrated on a single user interface that
often comprises a sophisticated text editor, a graphical editor for GUI, an editor to
database tables, a compiler and a debugger, e.g. IBM’s WebSphere Studio and
Microsoft’s Visual Studio .NET. An IDE can aid the software development, but only
in the programming phase (i.e. it is based on code-centric approach). A tool powered
with MDA will be enabled to support the system development throughout its life
cycle. The development of large software systems can take some suggested benefits
(some benefits are still not proven) from MDA:
- The same PIM can be used many times to generate models on different platforms

(PSMs) [8];
- Many views of the same system, e.g. many abstraction levels or details of

implementation. We de-fine abstraction levels as the possibility to see a system (e.g.
applications and business process) fragmented in many different and interlinked
levels, each level detaching important characteristics of the same system;

- Enhancement of the portability and of the interoperability of systems in the level of
models;

- Preservation of the business’s logic against the changes or evolution of technology ;
- An uniform manner for business models and for technologies to evolve together;
- Prevention against error-prone factors linked to manual design of systems [7];
- Increase the return on technology investments;
- Enhancement of the reengineering, i.e. it assists the recuperation of business’s logic

from source codes or from implementation environments;
- Enhancement of the interaction and of the migration between different

technological spaces.
Apart from these benefits, the approach using models forces the architects to think

about the architecture and the model behind the system in development, whereas a
code centric approach makes architects concentrated on the code, so they
consequently forget the main properties of the system. Other case studies have shown
some benefits of the MDA Approach. In [11], the authors have demonstrated that the
development of a case study (i.e. J2EE PetStore) using a MDA tool is 35% faster than
the development using a code centric approach (i.e. using a non powered-MDA tool).

134

3 Mapping and Transformation

Nowadays, MDA suffers from a lack of agreement on terminology, especially
concerning the concepts of mapping and transformation. In MOF QVT [6], mapping
is defined as specification of a mechanism for transforming the elements of a model
conforming to a particular metamodel into elements of another model that conforms
to another (possibly the same) metamodel. In MDA distilled book [13], mapping is
defined as the application or execution of a mapping function in order to transform
one model to another, and mapping function is defined as a collection of mapping
rules that defines how a particular mapping works. In both references and others
discussed in [7], the concept of mapping and transformation are not so clear, since
these terms can refer to many different concepts. Moreover, they are usually defined
without explicit distinction between them. The table 1 presented in [7], and extended
briefly here, illustrates in an obvious manner that the terminology related with the
transformation and mapping concepts is really immature.

Table 1: Equivalencies between terms according to the Transformation Pattern

 Transf.
Instance

Tranf.
Function

Transf.
Model

Transf.
Program

Transf.
Progr.
Lang

Transf.
Interp

MDA Guide [2] Transfo Mapping
Instance

Mapping Mapping
Language

MDA Distilled
[13]

Mapping Mapping
rule

Mapping
function

MDA
Explained[10]

Transfo.
Mapping

Mapping/Transf
rule

Transfo.
Definition

 Transfo.
tool

QVT DSTC [6] Tracking Transfo.
rule

Transfo. Transfo.
Engine

QVT Partners
[14]

 Transfo.
Relation

Mapping
Relation

[17] Mapping Model of
Mapping

 Mapping
Formalism

[18] Transfo. Transfo.
Pattern

[19] Transfo.
Spec

 Transformer

[20] Transfo.
Process

 Transfo.
Descr

According to our vision, the concepts of mapping and transformation should be
explicitly distinguished, and together could be involved in the same process that we
denominate transformation process. In fact, in the transformation process, the
mapping specification precedes the transformation definition. A mapping
specification is a definition (the most declarative as possible) of the correspondences
between metamodels (i.e. a metamodel for building a PIM and another for building a
PSM). Transformation definition contains a minute description to transform a model

135

into another using a hypothetic or concrete transformation language. Hence, in our
approach the transformation process of a PIM into a PSM can be structured in two
stages: mapping specification and transformation definition. Finally, we define the
term transformation as the manual or automatic generation of a target model from a
source model, according to a transformation definition. From a conceptual point of
view, the explicit distinction between mapping specification and transformation
definition remains in agreement with the MDA philosophy, i.e. the separation of
concerns. Moreover, a mapping specification could be associated with different
transformation definitions, where each transformation definition is based on a giving
transformation definition metamodel. Figure 2 illustrates the different concepts of
MDA according to our vision where mapping specification is a mapping model, and
transformation definition is a transformation model. In this figure, a mapping model
is based on its metamodel, and it relates two metamodels (left and right). A
transformation model is based on its transformation metamodel, and it is generated
from a mapping model. A transformation engine takes a source model as input, and it
executes the transformation program to transform this source model into the target
model.

basedOn

Transformation Tool

Source M Target M Transformation M Mapping M

Mapping MM Target MMSource MMTransformation MM

GeneratedFrom

basedOn basedOn basedOn

left right

basedOn

The MOF
MMM

basedOn

basedOn

basedOn

basedOnsource target

Transformation Programexec

 MMM: metametamodel MM: metamodel M: model

Fig. 2: Transformation Process within MDA: from Mapping to Transformation

Several research projects have studied the mapping specification between
metamodels [9] [12] [18]. However, the ideas around mapping specification are not
sufficiently developed to create efficient tools to enable automatic mappings.

136

Nowadays, transformation languages are not yet very well explored to make choices
about a standard transformation language such as desired by OMG [2]. In the next
few years, the submitted propositions [6] [14] in response to QVT RFP might
converge to a standard language, which will provide a new step forward in the
evolution of MDA. However, wisdom tells us that one problem can be resolved using
different solutions, but one solution for all problems does not exist. Thus, it is clear
that this standard language will not provide a sufficient solution for all types of model
transformations around MDA. However, this will not be a limitation for applying
MDA, because a transformation language is also a model, thus one transformation
language can also be transformed into another transformation language. A priori,
transformations between transformation languages seem unnecessary and
unproductive. However, several examples such as Structured Query Language (SQL)
(i.e. a standard query language for manipulating databases) have demonstrated that a
standard is beneficial, because it establishes a unique and well-known formalism for
understanding a problem and its solution. On the one hand, SQL provides a universal
language for manipulating databases. On the other hand, SQL can be transformed
into a proprietary language for execution into a database engine. A transformation
from SQL into a proprietary language provides some benefits such as improved
performance, reduction of memory-use, and so on. Making an analogy between SQL
and a standard transformation language, we can expect that a standard transformation
language can provide some benefits without imposing severe limitations. Mapping
and transformation have been studied for a long time ago in the database domain.
However, they have taken another dimension with the sprouting of MDA. This not
means that they are well studied and done to be applied in the MDA context. In fact,
mapping specification and transformation definition are not yet an easy task.
Moreover, tools to enable the automatic creation of mapping specification and
automatic generation of transformation definition are still under development.
In the next section, we start briefly presenting a foundation for mapping and
afterwards we discuss our proposition for specifying mappings (i.e. correspondences
between metamodels). This approach for mapping is based on a metamodel and
implemented as a tool on Eclipse. This tool provides mapping support that is a
preliminary step before the generation of a transformation definition.

4 Foundations and Prototyping

In this section, we present our proposition for specifying mappings (i.e.
correspondences between metamodels). This approach for mapping is based on a
metamodel and implemented as a tool on Eclipse. This tool provides support for
mapping, which is a preliminary step before the creation of a transformation
definition, using ATL. We have applied this tool for the different cases presented
previously.
The creation of mapping specification and transformation definition is not an easy
task. In addition, the manual creation of mapping specification and transformation
definition is a labor-intensive and error-prone process [12]. Thus the creation of an
automatic process and tools for enabling them is an important issue. Some

137

propositions enabling the mapping specification have been based on heuristics [12]
(for identifying structural and naming similarities between models) and on machine
learning (for learning mappings). Other propositions enabling transformation
definition have been based on graph theory . Mapping specification is not a new issue
in computer science.
 For a long time, the database domain has applied mappings between models (i.e.
schema) and transformation from different conceptual models, e.g. entity-relationship
(ER), into logical or physical models (relational-tables and SQL schema). However,
these same issues have taken a new dimension with the sprouting of MDA, because
models become the basis to generate software artifacts (including code) and in order
to transform one model into another model, mapping specification is required. So,
both mapping specification and transformation definition have been recognized as
important issues in MDA.

4.1 A metamodel for mapping

In order to define a mapping, we need a metamodel, which enables:

- Identification of what elements has similar structures and semantics to be
mapped.

- Explanation of the evolution in time of the choices taken for mapping one
element into another element.

- Bi-directional mapping. It is desirable, but is often complex [10].
- Independence of model transformation language.
- Navigation between the mapped elements.

Figure 3 presents our proposition of a metamodel for mapping specification. A
complete definition of this metamodel is presented in [5].

In this metamodel, we consider that a mapping can be unidirectional or bi-directional.
In unidirectional mapping, a metamodel is mapped into another metamodel. In bi-
directional mapping, the mapping is specified in both directions. Thus, as presented
previously, we prefer refer to the two metamodels in a mapping as left or right
metamodels.

A central element in this metamodel is the element Correspondence. This
element is used to specify the correspondence between two or more elements, i.e. left
and right element. The correspondence has a filter that is an OCL expression. When
bidirectional is false, a mapping is unidirectional (i.e. left to right), and when it is
false it is bidirectional (i.e. in both directions). It has two TypeConverters
identified by typeconverterRL and typeconverterLR.
typeconverterRL enables the conversion of the elements from a right
metamodel into the elements from a left metamodel. typeconverterLR enables
the conversion of the elements from a left metamodel into the elements from a right
metamodel. We need often specify only the typeconverterLR.

138

Fig. 3. Metamodel for Mapping Specification

4.2 A Plug-in for Eclipse

Eclipse Modeling Framework (EMF) is a modeling framework and code generation
facility for supporting the creation of tools and applications driven by models [15].
EMF represents the efforts of Eclipse Tools Project to take into account the driven
model approach. In fact, MDA and EMF are similar approaches for developing
software systems, but each one has different technologies. MDA was first designed
by OMG using MOF and UML, while EMF is based on Ecore and stimulates the
creation of specific metamodels.

A tool supporting our proposed metamodel for mapping should provide:

• Simplification for visualizing mappings. In order to specify a mapping, two
metamodels are necessary. From experience, metamodels have generally a
considerable number of elements and associations. So the visualization becomes
complex, putting two metamodels so large side by side and the mapping in the
center. A tool should allow the creation of views, navigation and encapsulation

139

of details unnecessary for each mapping in order to facilitate the visualization
and comprehension of the mapping without modifying the involved metamodels.

• Creation of transformation definition from mapping specification. A mapping
specification is a model itself, and then it can also be transformed into another
model. For example, a mapping model can be transformed into a transformation
model.

Our proposed tool supports all these characteristics, except the semi-automatic
matching which is the next step for its improvement.

Figure 4 shows our plug-in for Eclipse. This tool is denominated mapping
Modeling Tool (MMT). The tool presents a first metamodel on the left side, a
mapping model in the center, and a second metamodel on the right. In this figure, the
UML metamodel (fragment) is mapped into a C# metamodel (fragment). At the
bottom, the property editor of mapping model is shown. A developer can use this
property editor to set the properties of a mapping model. Before specifying mapping
using our tool, we need create metamodels based on Ecore. Some tools support the
editing of a metamodel based on Ecore such as Omondo [15] or the eCore editor
provided with EMF. The application of our tool using UML and C# metamodel can
be explained in the following steps:

1. We created a project in eclipse and we imported the UML and C# metamodel
into this project.

2. We used a wizard to create a mapping model. In this step, we chose the name
for the mapping model, the encoding of the mapping file (e.g. Unicode and
UTF- 8), the metamodels files in the format XMI.

3. The UML and C# metamodels are loaded from the XMI files, and the
mapping model is initially created, containing the elements Historic,
Definition, and left and right MetamodelHandlers. For each
MetamodelHandler is also created ElementHandlers that are references to the
elements of the corresponding metamodel.

4. We edit the mapping model. First, we define the inter-relationships between
the metamodels creating correspondences between their elements. Second,
we create for each correspondence nested correspondence. Third, for each
nested correspondence, we create one Left and one or more Right elements.
In addition, each Left and Right element has a ElementHandler. If it is
necessary, the TypeConverter is created to explicit the casting between two
mapped elements.

5. The mapping model can be validated according to its metamodel, and it can
be used to generate a transformation definition (e.g. using ATL language).

This tool can export a mapping model as transformation definition. For the
moment, we have implemented a generator for ATL [8], but we envisage creating
generators to other model transformation languages such as YATL [4], in order to
evaluate the power of our proposed metamodel for mapping.

140

Fig. 4. Mapping Modelling Tool (MMT): From UML to C# metamodel

5 Conclusion

In this paper, we have discussed the MDA approach providing a detailed description
of transformation process, distinguishing mapping and transformation. If
transformation is the heart and soul of MDA [16], and transforming a PIM into a
PSM requires finding correspondences between metamodels, then mapping
specification is also another important issue within MDA context. We have proposed
a metamodel for mapping and a tool (i.e. MMT) to support mappings. To illustrate
our tool, we have specified mappings between UML as PIM and C# as PSM.
According to model management algebra, a mapping is generated using an operator
called match, which takes two metamodels as input and returns a mapping between
them. The schema matching was not yet integrated in our plugin, because, at this
stage, we are more interested in addressing the creation of mappings driven by
models.

141

References

1. OMG: Model Driven Architecture (MDA)- document number ormsc/2001-07-01. (2001)
2. OMG, « MDA Guide Version 1.0.1 », OMG/2003-06-01, June 2003.
3. Kent, S., Smith, R.: The Bidirectional Mapping Problem. Electronic Notes in Theoretical

Computer Sciences 82 (2003)
4. Patrascoiu, O.: Mapping EDOC to Web Services using YATL. 8th IEEE Enterprise

Distributed Object Computing Conference (EDOC 2004) (2004)
5. Lopes, D., Hammoudi, S. Bézivin, J, Jouault, F.: Mapping Specification in MDA: From

Theory to Practice. INTEROP-ESA'2005 Conference (February 23-25, 2005)
6. DSTC, IBM, and CBOP. MOF Query / Views / Transformations Second Revised

Submission, January 2004. ad/2004-01-06.
7. J. M. Favre. Towards a Basic Theory to Model Driven Engineering. UML 2004 - Workshop

in Software Model Engineering (WISME 2004), 2004.
8. Bézivin, J., Dupre, G., Jouault, F., Pitette, G., Rougui, J.E.: First Experiments with the

ATL Model Transformation Language: Transforming XSLT into XQuery. 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven Architecture (2003)

9. Jan Hendrick Hausmann, S.K.: Visualizing Model Mappings in UML. ACM 2003
Symposium on Software Visualization (SOFTVIS 03) (2003) 169–178

10. A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, August 2003.

11. Middleware Company: Model Driven Development for J2EE Utilizing a (MDA)
Approach.www.middleware-company.com/casestudy.

12. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and Reasoning
about Mappings between Domain Models. Eighteenth National Conference on Artificial
intelligence (AAAI’02) (2002) 80–86

13. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, 1st edition, March 2004.

14. QVT-Merge Group. Revised submission for MOF 2.0 Query/Views/Transformations RFP
(ad/2002-04-10), April 2004. Available at http://www.omg.org/docs/ad/04-04- 01.pdf.

15. Omondo. Omondo Eclipse UML, October 2004. Available at http://www.omondo.com.
16. Sendall S, Kozaczynski W : Model Transformation – the Heart and Soul of Model Driven

Software Development.
17. G. Caplat and J. L. Sourrouille. Model Mapping in MDA. Workshop in Software Model

Engineering (WISME2002), 2002.
18. S.R.Judson, R.B.France, D.L.Carver. “Specifying Model Transformation at the Metamodel

Level”, WISME 2003.
19. I Kurtev, K.Van den Berg. A synthesis based approach to Transformation in an MDA

Software Development Process.
20. M. Peltier. Techniques de Transformation de Modèles Basées sur la méta-modélisation.

Thèse de Doctorat, Université de Nantes, 2003.

142

A Formal Semantics for the Business Process Execution
Language for Web Services

Roozbeh Farahbod, Uwe Glässer and Mona Vajihollahi

Software Technology Lab
School of Computing Science

Simon Fraser University
Burnaby, B.C., Canada

{rfarahbo/glaesser/mvajihol}@cs.sfu.ca

Abstract. We define an abstract operational semantics for the Business Process
Execution Language for Web Services (BPEL) based on theabstract state ma-
chine(ASM) formalism. This way, we model the dynamic properties of the key
language constructs through the construction of aBPEL abstract machinein
terms of a distributed real-time ASM. Specifically, we focus here on theprocess
execution modeland the underlyingexecution lifecycleof BPEL activities. The
goal of our work is to provide a well defined semantic foundation for establish-
ing the key language attributes. The resulting abstract machine model provides a
comprehensive and robust formalization at three different levels ofabstraction.

Keywords: Web Services Orchestration, BPEL4WS, Abstract Operational Se-
mantics, Abstract State Machines, Requirements Specification

1 Introduction

In this paper, we present an abstract operational semanticsof the XML based Business
Process Execution Language for Web Services (BPEL4WS) [1], anovel Web Services
orchestration language proposed by OASIS [2] as a future standard for the e-business
world. BPEL4WS, or BPEL for short, provides distinctive expressive means for de-
scribing the process interfaces of Web based business protocols and builds on existing
standards and technologies for Web Services. It is defined ontop of the service in-
teraction model of W3C’s Web Services Description Language (WSDL) [3]. A BPEL
business process orchestrates the interaction between a collection of abstract WSDL
services exchanging messages over a communication network.

Based on theabstract state machine(ASM) formalism [4], we define aBPEL ab-
stract machine, calledBPELAM, as a concise and robust semantic framework for mod-
eling the key language attributes in a precise and well defined form. That is, we for-
malize dynamic properties of the Web Services interaction model of a BPEL business
process in terms of finite or infinite abstract machineruns. Due to the concurrent and
reactive nature of Web Services and the need for dealing withtime related aspects in
coordinating distributed activities, we combine an asynchronous execution model with
an abstract notion of real time. The resulting computational model is referred to as
a distributed real-time ASM. Our model captures the dynamic properties of the key

language constructs defined in the language reference manual [1], henceforth called
the LRM, including concurrent control structures, dynamiccreation and termination of
service instances, communication primitives, message correlation, event handling, and
fault and compensation handling.

The goal of our work is twofold. First and foremost,BPELAM provides a firm se-
mantic foundation for checking the consistency and validity of the language definition
by conceptual means and by analytical means. Formalizationis crucial for identifying
and eliminating deficiencies that otherwise remain hidden in the informal language def-
inition of the LRM [2, Issue #42]: “There is a need for formalism. It will allow us to not
only reason about the current specification and related issues, but also uncover issues
that would otherwise go unnoticed. Empirical deduction is not sufficient.”

Second, we address pragmatic issues resulting from previous experience with other
industrial standards, including the ITU-T language SDL1 [6] and the IEEE language
VHDL [7]. An important observation is that formalization techniques and supporting
tools for practical purposes such as standardization call for a gradual formalization of
abstract requirements with a degree of detail and precisionas needed [8]. To avoid a gap
between the informal language definition and the formal semantics, the ability to model
the language definitionas iswithout making compromises is crucial. Consequently, we
adopt here the view and terminology of the LRM, effectively formalizing the intuitive
understanding of BPEL as directly as possible in an objectively verifiable form.

The result of our work is what is called anASM ground model[4] of BPEL. Intu-
itively, ground models serve as ‘blueprints’ for establishing functional software require-
ments, including their elicitation, clarification and documentation. Constructing such a
ground model requires a major effort — especially, as a cleararchitectural view, which
is central for dealing with complex semantic issues, is widely missing in the BPEL
language definition.

The paper is organized as follows. Section 2 briefly summarizes the formal semantic
framework. Section 3 introduces the core of our hierarchically definedBPELAM, and
Section 4 then addresses important extensions to theBPELAM core. Section 5 discusses
related work, and Section 6 concludes the paper.

2 Distributed Real-time ASM

We briefly outline the formal semantic framework at an intuitive level of understand-
ing using common notions and structures from discrete mathematics and computing
science. For details, we refer to the existing literature onthe theory of abstract state
machines [9] and their applications [4].2

We focus here on the asynchronous ASM model, called distributed abstract state
machine (DASM), as formal basis for modeling concurrent andreactive system behav-
ior in terms of abstract machineruns. A DASM M is defined over a given vocabulary
V by its programPM and a non-empty setIM of initial states.V consists of symbols
denoting the various semantic objects and their relations in the formal representation

1 Our ASM semantic model of SDL is part of the current SDL standard defined by the Interna-
tional Telecommunication Union [5].

2 See also the ASM Web site atwww.eecs.umich.edu/gasm.

144

of M , where we distinguishdomain symbols, function symbolsandpredicate symbols.
Symbols that have a fixed interpretation regardless of the state ofM are calledstatic;
those that may have different interpretations in differentstates ofM are calleddynamic.
A stateS of M yields a valid interpretation of all the symbols inV .

Concurrent control threads in an execution ofPM are modeled by a dynamic set
AGENT of autonomously operatingagents. Agents ofM interact with each other by
reading and writing shared locations of global machine states, where the underlying
semantic model regulates such interactions so that potential conflicts are resolved ac-
cording to the definition ofpartially ordered runs[4].

PM consists of a statically defined collection of agent programs, each of which
defines the behavior of a certaintypeof agent in terms of state transition rules. The
canonical rule consists of a basic update instruction of theform f(t1, t2, ..., tn) := t0,
wheref is an n-ary dynamic function symbol and thetis (0 ≤ i ≤ n) are terms.
Intuitively, one can conceive a dynamic function as afunction tablewhere each row
associates a sequence of argument values with a function value. An update instruction
specifies a pointwise function update, i.e., an operation that replaces an existing function
value by a new value to be associated with the given arguments.

Finally, M models the embedding of a system into a given environment — the
external world— through actions and events as observable at interfaces. The external
world affects operations ofM through externally controlled ormonitoredfunctions.
Such functions change their values dynamically over runs ofM , although they cannot
be updated by agents ofM . A typical example is the representation of time by means
of a nullary monitored functionnow taking values in a linearly ordered domainTIME.
Intuitively, now yields the time as measured by some external clock.

3 BPEL Abstract Machine

This section introduces the core components ofBPELAM architecture and the under-
lying abstraction principles starting with a brief characterization of the key language
features as defined in [1]. We then present BPEL’s process execution model and its
decomposition intoexecution lifecyclesof basic and structured activities. As a con-
crete example of a structured activity dealing with concurrency and real-time aspects,
we consider thepick activity. The architectural view, the decomposition into execution
lifecycles, and the model ofpickare new and not contained in [10].

BPEL introduces a stateful model of Web Services interacting by exchanging se-
quences of messages between business partners. A BPEL process and its partners are
defined as abstract WSDL services using abstract messages as defined by the WSDL
model for message interaction. The major parts of a BPEL process definition consist
of (1) partnersof the business process (Web services that this process interacts with),
(2) a set ofvariablesthat keep the state of the process, and (3) anactivity defining the
logic behind the interactions between the process and its partners. Activities that can be
performed by a business process are categorized intobasicactivities,structuredactivi-
ties andscope-relatedactivities. Basic activities perform simple operations like receive,
reply, invokeand others. Structured activities impose an execution order on a collection

145

of activities and can be nested. Scope-related activities enable defining logical units of
work and delineating the reversible behaviour of each unit.

Dynamic Process Creation A BPEL process definition works as a template for
creating business process instances. Process creation is implicit and is done by defin-
ing a start activity, which is either areceiveor a pick activity that is annotated with
‘createInstance = yes’, causing a new process instance to be created upon receiving
a matching message. That is, when a new instance of a businessprocess is created, it
starts its execution by receiving the message that triggered its creation.

Correlation and Data Handling A Web service consists of a number of business
process instances; thus, the messages arriving at a specificport must be delivered to the
correct process instance. BPEL introduces a generic mechanism for dynamic binding
of messages to process instances, calledcorrelation.

Long Running Business Transactions Business processes normally perform trans-
actions with non-negligible duration involving local updates at business partners. When
an error occurs, it may be required to reverse the effects of some or even all of the previ-
ous activities. This is known ascompensation. The ability to compensate the effects of
previous activities in case of an exception enables so-called Long-Running (Business)
Transactions (LRTs).

3.1 Abstract Machine Architecture

Logically, BPELAM consists of three basic building blocks referred to ascore, data
handling extension, andfault and compensation extension(Figure 1). Thecorehandles
dynamic process creation/termination, communication primitives, message correlation,
concurrent control structures, as well as the following activities: receive, reply, invoke,
wait, empty, sequence, switch, while, pick andflow. The core does not consider data
handling, fault handling, and compensation behavior. Rather these aspects are treated
as extensions to the core (see Section 4). Together with thecore these extensions form
the completeBPELAM.

The core of the

BPEL Abstract Machine

Fault/Compensation

extension
Data Handling

extension

Fig. 1. BPELAM Behavioural Decompositionam

The vertical organization of the machine architecture consists of three layers, called
abstractmodel,intermediatemodel andexecutablemodel. The abstract model formally

146

sketches the behavior of the key BPEL constructs, while the intermediate model, ob-
tained as the result of the first refinement step, provides a complete formalization. Fi-
nally, the executable model provides an abstract executable semantics implemented in
AsmL [8]. A GUI facilitates experimental validation through simulation and animation
of abstract machine runs.

Figure 2 shows an abstract view of the underlying Web Services interaction model.
A BPEL document abstractly defines a Web service consisting of a collection of busi-
ness process instances. Each such instance interacts with the external world through
two interface components, calledinbox managerandoutbox manager. The inbox man-
ager handles all the messages that arrive at the Web service.If a message matches a
request from a local process instance waiting for that message, it is forwarded to this
process instance. Additionally, the inbox manager also deals with new process instance
creation. The outbox manager, on the other hand, forwards outbound messages from
process instances to the network.

Inbox manager, outbox manager, and process instances are modeled by three differ-
ent types of DASM agents: theinbox manager agent, theoutbox manager agent, and
one uniquely identifiedprocess agentfor each of the process instances.

Outbox

Manager

Inbox

Manager

BPEL

process

definition

Web Service

a collection of

business process

instances

Fig. 2. High-level Structure ofBPELAM

3.2 Activity Execution Lifecycle

Intuitively, the execution of a process instance is decomposed into a collection of ex-
ecution lifecycles for the individual BPEL activities. We therefore introduceactivity
agents, created dynamically by process agents for executing structured activities. Each
activity agent dynamically creates additional activity agents for executing nested, struc-
tured activities. Similarly, it creates auxiliary activity agents for dealing with concurrent
control threads (like inflowandpick3). For instance, to concurrently execute a set of ac-
tivities, a flow agent assigns each enclosed activity to a separateflow thread agent[10].
At any time during the execution of a process instance, the DASM agents running under
control of this process agent form a tree structure where each of the sub-agents mon-
itors the execution of its child agents (if any) and notifies its parent agent in case of

3 One may argue thatpick is not a concurrent control construct, but as we will see in Section
3.3, it can naturally be viewed as such.

147

Execution is

completed

There is more to

be executed /

Fetch next activity

Execution of the

enclosed activity

is completed

Executing

activity

Initialization

There is nothing to

be executed
Started Completed

Activity

Completed
Running

Fig. 3. Activity Execution Lifecycle:BPELAM core

normal completion or fault. This structure provides a general framework for execution
of BPEL activities. The DASM agents that model BPEL process execution are jointly
calledkernel agents. They include process agents and subprocess agents. In thecore,
however, subprocess agents are identical to activity agents.

Figure 3 illustrates the normal activity execution lifecycle of kernel agents in the
BPELAM core. When created, a kernel agent is in theStartedmode. After initialization,
the kernel agent starts executing its assigned task by switching its mode toRunning.
Upon completion, the agent switches its mode toActivity-Completedand decides (based
on the nature of the assigned task) to either return to theRunningmode or finalize
the execution and becomeCompleted. Activity agents that may execute more than one
activity (like sequence) or execute one activity more than once (likewhile) can switch
back and forth between the two modesActivity-CompletedandRunning.

3.3 Pick activity

A pick activity identifies a set of events and associates with each of these events a
certain activity. Intuitively, it waits on one of the eventsto occur and then performs
the respective activity; thereafter, thepick activity no longer accepts any other event.
4 There are basically two different types of events:onMessageevents andonAlarm
events. An onMessage event occurs as soon as a related message is received, whereas
an onAlarm event is triggered by a timer mechanism waiting‘for’ a certain period of
time or ‘until’ a certain deadline is reached.

In BPELAM, eachpick activity is modeled by a separate activity agent, calledpick
agent. A pick agent is assisted by two auxiliary agents, apick message agentthat is
waiting for a message to arrive, and apick alarm agentthat is watching a timer. We
formalize the semantics of thepick activity in several steps, each of which addresses

4 Regarding the case that several events occur at a time, the LRM is somewhat loose declaring
that the choice “is dependent on both timing and implementation.” [1]

148

a particular property, and then compose the resulting DASM program, calledPickPro-
gram in whichself refers to a pick agent executing the program.

Pick Agent
PickProgram ≡

case execMode(self) of
Started → PickAgentStarted
Running → PickAgentRunning
ActivityCompleted→ FinalizePickAgent
Completed→ stop self

When created, the pick agent is in theStartedmode and initializes its execution
by creating a pick alarm agent and a pick message agent. It then switches its mode to
Runningand waits for an event to occur — either a message arrived or a timer expired.

Pick Agent
PickAgentRunning ≡

if normalExecution(self) then
onsignal s : AGENT COMPLETED

execMode(self) := ActivityCompleted
otherwise

if chosenAct(self) = undefthen
choose dsc∈ occurredEvents(self) with MinTime(dsc)

chosenAct(self) := onEventAct(edscEvent(dsc))
// onEventActis the activity associated with an event

else
ExecuteActivity(chosenAct(self)))

Depending on the event type, either the pick message agent orthe pick alarm agent
notifies the pick agent by adding anevent descriptorto theoccuredEventsset of the
pick agent. An event descriptor contains information on theevent such as the time of
its occurrence. When an event occurs, the pick agent updates the functionchosenAct
(with initial valueundef) with the activity associated with the event. Once the activity
is chosen (chosenAct(self)6= undef), the pick agent performs the chosen activity and
remainsRunninguntil the execution of the chosen activity is completed as indicated
by a predicatechosenActCompleted. It then switches its execution mode toActivity-
Completed.

Finalizing a running pick agent includes informing its parent agent that the exe-
cution is completed and changing the execution mode toCompleted. As illustrated in
Figure 3, theCompletedmode leads to the agent’s termination.

Due to the space limitations, we do not show here the definitions of PickAgent-
Started, FinalizePickAgent, as well as the programs of the pick message and the pick
alarm agents, but refer to [11, 12] for a complete description.

4 Extensions to the BPELAM Core

For a clear separation of concerns and also for robustness ofthe formal semantic model,
the aspects of data handling, fault handling and compensation behavior are carefully

149

separated from the core of the language. To this end, the coreof BPELAM provides a
basic, yet comprehensive, model forabstract processesin which data handling focuses
on protocol relevant data in the form of correlations while payload data values are left
unspecified [1].

Compensation and fault handling behavior is a fairly complex issue in the definition
of BPEL. An in-depth analysis in fact shows that the semantics of fault and compensa-
tion handling, even when ignoring all the syntactical issues, is related to more than 40
individual requirements spread out all over the LRM. These requirements (some of them
comprise up to 10 sub-items) address a variety of separate issues related to the core se-
mantics, general constraints, and various special cases (see [2]). A thorough treatment
of the extensions is beyond the space limitations of this paper. Thus, we present an
overview of the fault handling behavior in the following sections and refer to [11] for a
comprehensive description.

4.1 Scope activity

Thescopeactivity is the core construct of data handling, fault handling, and compen-
sation handling in BPEL. Ascopeactivity is a wrapper around a logical unit of work (a
block of BPEL code) that provides local variables, a fault handler, and a compensation
handler. The fault handler of a scope is a set ofcatchclauses defining how the scope
should respond to different types of faults. A compensationhandler is a wrapper around
a BPEL activity that compensates the effects of the execution of the scope. Each scope
has a primary activity which defines the normal behavior of the scope. This activity
can be any basic or structured activity. BPEL allows scopes to be nested arbitrarily. In
BPELAM, we model scopes by defining a new type of activity agents, called scope
agents.

Fault handling in BPEL can be thought of as a mode switch from the normal exe-
cution of the process [1]. When a fault occurs in the executionof an activity, the fault
is thrown up to the innermost enclosing scope. If the scope handles the fault success-
fully, it sends anexitedsignal to its parent scope and ends gracefully, but if the fault is
re-thrown from the fault handler, or a new fault has occurredduring the fault handling
procedure, the scope sends afaulted signal along with the thrown fault to its parent
scope. The fault is thrown up from scopes to parent scopes until a scope handles it suc-
cessfully. A successful fault handling switches the execution mode back to normal. If a
fault reaches the global scope, the process execution terminates [1].

The normal execution lifecycle of the process execution model (Figure 3) needs to
be extended to comprise the fault handling mode of BPEL processes. The occurrence
of a fault causes the kernel agent (be it an activity agent or the main process) to leave
its normal execution lifecycle and enter a fault handling lifecycle. Figure 4 illustrates
the extended execution lifecycle of BPEL activities.

In BPELAM, whenever a sub-process agent encounters a fault, the agentleaves
its normal execution mode and enters theExecution-Faultmode. If this agent is not a
scope agent, it informs its parent agent of the fault and stays in theExecution-Fault
mode until it receives a notification for termination. On theother hand, if the faulted
agent is a scope agent, it terminates its enclosing activity, creates a fault handler, assigns
the fault to that handler, and switches to theFault-Handlingmode. If the fault handler

150

A fault occurs

It is not

a scope agent /

Notify parent

agent.

It is a scope agent /

Start fault handler

agent.

Fault handler

throws a fault

Fault handler

completed

successfully

Execution

Fault

Exited

Fault

Handling

Faulted

Fig. 4. Activity Execution Lifecycle: Fault Handling

finishes successfully, the scope agent enters theExitedmode indicating that this agent
exited its execution with a successful fault handling process. The difference between
a scopewhich has finished its execution in theCompletedmode and ascopethat has
finished in theExitedmode is reflected by the way scopes are compensated, which we
do not further address in this paper.

4.2 Pick activity: extended

The structured activities of thecore(activity agents) are also refined to capture the fault
handling behavior of BPEL. The well-defined activity execution lifecycle ofBPELAM

(Figures 3 and 4) along with the fact that the fault handling behavior of BPEL is mostly
centered in thescopeactivity, enable us to generally extend the behavior of structured
activities by defining two new rules:HandleExceptionsInRunningMode andWaitForTer-
mination. As an example, the pick agent program of Section 3.3 is refined as follows:

Pick Activity Extended
PickProgram ≡

PickProgram
core

case execMode(self) of
Running→ HandleExceptionsInRunningMode
ExecutionFault→ WaitForTermination
Faulted→ stop self

Activity agents react to a fault by informing their parent agent of the fault and stay in
theExecution-Faultmode until they receive a notification for termination. If the parent
agent is not a scope agent, the parent agent reacts in the sameway and the fault is passed
upwards until it reaches a scope agent. The scope agent handles the fault as described
in Section 4.1, and sends a termination notification to its child agent. Upon receiving
the notification, a sub-process agent that is waiting for a termination notification in

151

turn passes it to its child agents (if any) and enters theFaultedmode, where it then
terminates. If a sub-process agent receives a termination notification while in its normal
execution mode, it first enters theExecution-Faultmode and then reacts as if it were
waiting for the notification.

The normal execution of activity agents in theRunningmode is extended by the
following rule:

Structured Activity Extended
HandleExceptionsInRunningMode ≡

if faultExtensionSignal(self) then
onsignal s : AGENT EXITED

execMode(self) := ActivityCompleted
otherwise

onsignal s : AGENT FAULTED
TransitionToExecutionFault(fault(s))

otherwise
onsignal s : FORCEDTERMINATION

faultThrown(self) := fault(s)
PassForcedTerminationToChildren(fault(s))
execMode(self) := emExecutionFault

In theExecution-Faultmode, if a termination notification is received, the pick agent
terminates its enclosing activity and goes to theFaultedmode. Analogously to theCom-
pletedmode, sub-process agents terminate their execution in theFaultedmode. For the
complete extended pick agent program see [12].

5 Related work

There are various research activities to formally define, analyze, and verify Web Ser-
vices orchestration languages. A group at Humboldt University is working on formal-
izations of BPEL for analysis, graphics and semantics [13].Specifically, they use Petri-
nets and ASMs to formalize the semantics of BPEL. However, the pattern-based Petri-
Net semantics of BPEL [14] does not capture fault handling, compensation handling,
and timing aspects; overall, the feasibility of verifying more complex business processes
is not clear and still subject to future work. The ASM semantic model in [15] closely
follows what we had presented in [16] with minor technical differences in handling
basic activities and variables.

Formal verification of Web Services is addressed in several papers. The SPIN model-
checker is used for verification [17] by translating Web Services Flow Language (WSFL)
descriptions into Promela. [18] uses a process algebra to derive a structural operational
semantics of BPEL as a formal basis for verifying propertiesof the specification. In
[19], BPEL processes are translated to Finite State Process(FSP) models and compiled
into a Labeled Transition System (LTS) which is used as a basis for verification. [20]
presents a model-theoric semantics (based on situation calculus) for the DAML-S lan-
guage which facilitates simulation, composition, testing, and verifying compositions of
Web Services.

152

6 Conclusions

We formally define a BPEL abstract machine in terms of a distributed real-time ASM
providing a precise and well defined semantic foundation forestablishing the key se-
mantic concepts of BPEL. Transforming informal requirements into precise specifi-
cations facilitates reasoning about critical language attributes, exploration of different
design choices and experimental validation. As a result of our formalization, we have
discovered a number of weak points in the LRM [12].

The dynamic nature of standardization calls for flexibilityand robustness of the
formalization approach. To this end, we feel that the ASM formalism and abstraction
principles offer a good compromise between practical relevance and mathematical ele-
gance — already proven useful in other contexts [6]. Our model can serve as a starting
point for formal verification (considering formal specification as a prerequisite for for-
mal verification). Beyond inspection by analytical means, we also support experimental
validation by making our abstract machine model executableusing the executable ASM
languageAsmL[21].

References

1. Andrews, T., et al.: Business process execution language for web services version
1.1 (2003) Last visited Feb. 2005,http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel.

2. Organization for the Advancement of Structured Information Standards (OASIS): WS BPEL
issues list. (2004)http://www.oasis-open.org.

3. W3C: Web Services Description Language (WSDL) Version 1.2 Part1: Core
Language. (2003) Last visited May 2004,http://www.w3.org/TR/2003/
WD-wsdl12-20030303.

4. Börger, E., Sẗark, R.: Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag (2003)

5. ITU-T Recommendation Z.100 Annex F (11/00): SDL Formal Semantics Definition. Inter-
national Telecommunication Union. (2001)

6. Glässer, U., Gotzhein, R., Prinz, A.: The formal semantics of sdl-2000: status and perspec-
tives. Comput. Networks42 (2003) 343–358

7. Börger, E., Gl̈asser, U., M̈uller, W.: Formal Definition of an Abstract VHDL’93 Simulator
by EA-Machines. In Delgado Kloos, C., Breuer, P.T., eds.: Formal Semantics for VHDL.
Kluwer Academic Publishers (1995) 107–139

8. Glässer, U., Gurevich, Y., Veanes, M.: An abstract communication architecture for modeling
distributed systems. IEEE Trans. on Soft. Eng.30 (2004) 458–472

9. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms. ACM
Transactions on Computational Logic1 (2000) 77–111

10. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the Business
Process Execution Language for Web Services. In: Proc. of the 11thInt’l Workshop on
Abstract State Machines, Springer-Verlag (2004)

11. Farahbod, R.: Extending and refining an abstract operational semantics of the web services
architecture for the business process execution language. Master’s thesis, Simon Fraser Uni-
versity, Burnaby, Canada (2004)

12. Farahbod, R., Glässer, U., Vajihollahi, M.: Abstract Operational Semantics of the Business
Process Execution Language for Web Services. Technical Report SFU-CMPT-TR-2005-04,
Simon Fraser University (2005) Revised version of SFU-CMPT-TR-2004-03, April 2004.

153

13. Martens, A.: Analysis and re-engineering of web services. To appear in 6th International
Conference on Enterprise Information Systems (ICEIS’04) (2004)

14. Schmidt, K., Stahl, C.: A petri net semantic for BPEL4WS - validation and application.
In Kindler, E., ed.: Proceedings of 11th Workshop on Algorithms and Tools for Petri Nets.
(2004)

15. Fahland, D.: Ein Ansatz einer formalen Semantik der Business Process Execution Language
for Web Services mit Abstract State Machines. Technical report, Humboldt-Universiẗat zu
Berlin (2004)

16. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the Business
Process Execution Language for Web Services. Technical Report SFU-CMPT-TR-2003-06,
Simon Fraser University (2003)

17. Nakajima, S.: Model-checking verification for reliable web service.In: OOPSLA 2002:
Workshop on Object-Oriented Web Services. (2002)

18. Koshkina, M., van Breugel, F.: Verification of Business Processes for Web Services. Tech-
nical Report CS-2003-11, York University (2003)

19. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility verification for web service
choreography. In: Proceedings of the IEEE International Conference on Web Services
(ICWS’04), IEEE Computer Society (2004) 738–741

20. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In: Proceedings of the eleventh international conference on World Wide Web, ACM
Press (2002) 77–88

21. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution engine. In:
Proc. of the 12th Int’l Workshop on Abstract State Machines. (2005)

154

Posters

156

XML Schema-driven Generation of Architecture
Components

Ali El bekai1, Nick Rossiter1

1School of Informatics, Northumbria University,
Newcastle upon Tyne, UK

Email: ali.elbekai@unn.ac.uk, nick.rossiter@unn.ac.uk

Abstract. It is possible to code by hand an XSL stylesheet that validates an
XML document against some or all constraints of an XML schema. But the
main goal of this paper introduces general techniques as a technology solution
for different problems such as (a) generation of SQL schema from
XMLSchema, (b) generating XSL stylesheet from XMLSchema, and (c)
XQuery interpreter generating. Each of the techniques proposed in this paper
works by XMLSchema-driven generation of architecture components with XSL
stylesheet. As can be seen the input is XMLSchema and XSL stylesheet and the
output is generic stylesheets. These stylesheets can be used as interpreter for
generating other types of data such as SQL queries from XQueries, SQL data,
SQL schema and HTML format. Using XSL stylesheets we present algorithms
showing how we can generate these components automatically.

1 Introduction

XML is fast emerging as the dominant standard for representing and exchanging
information over the Internet [4,2]. If data is stored and represented as XML docu-
ments, then it should be possible to query the contents of these documents in order to
extract, synthesize and analyze their contents. Also, it is possible to transform theses
data to another format and to generate a component from the XML data. Originally,
XML was created to meet the challenges of data exchange in Web applications or
between applications and users, not for data presentation purposes. To deal with pres-
entation issues, XML needs to be used in conjunction with stylesheets to be easily
viewed on the web. For this reason, eXtensible Stylesheet Language was created.
XSL (Extensible Stylesheet Language) is being developed as part of the W3C
stylesheets activity [13,14]. It has evolved from the CSS language to provide even
richer stylistic control, and to ensure consistency of implementations. It also has
document manipulation capabilities beyond styling. Of course, designing “traditional”
software transformation tools for that purpose can achieve such a task. However, the
power of having a cross-platform and XML independent language would be lost.
Precisely, isolating content from formatting needs to be considered, especially when
dealing with Web based documents. Therefore, any method of transforming XML
documents into different formats such as XML, HTML, SQL, flat files or WML
needs to be tailored so that it can be used with different platforms/languages.

This paper introduces the technological solutions for different problems such as (a)
SQL schema generation, (b) XSL stylesheet generation, and (c) XQuery interpreter
generation automatically by transforming an XMLSchema through an XSLT.2.

2 Related Work

Bourret [2] noted that XML and its surrounding technologies have many facilities in
common with real databases such as storage (XML documents), schemas (DTDs,
XML schema languages), query languages (XQuery, XPath, XQL, XML-QL,
QUILT, etc.), and programming interfaces (SAX, DOM, JDOM). On the other hand,
XML lacks efficient storage, indexes, security, transactions and data integrity, multi-
user access, triggers, queries across multiple documents, and so on. Aboulnaga et al
[1] started a discussion in the XML community about characterizing and generating
XML data. Provost [10] considered the most common patterns for document content
constraints, and finds that XML Schema validation is only the first of several neces-
sary layers. Bourret [3] summarized two different mappings. The first part of the
process, generally known as XML data binding, maps the W3C's XML Schemas to
object schemas. The second known as object-relational mapping, maps object sche-
mas to relational database schemas. In [6,11] techniques are presented for querying
XML documents using a relational database system, which enables the same query
processor to be used with most relational schema generation techniques. Norton [8]
presents an XSL as validation to validate XML document. W3C and Peterson de-
scribe a query processor that works for different schema generation techniques [12,
9]. Their work is done in the context of data integration, and the tables generated by
each relational schema generation technique are specified as materialized views over
a virtual global schema. In [5] a translation is presented of XQuery expression drawn
from a comprehensive subset of XQuery to a single equivalent SQL query using a
novel dynamic interval encoding of a collection of XML documents. In [7] an algo-
rithm is presented that translates simple path expression queries to SQL in the pres-
ences of recursion in the schema in the context of schema-based XML storage shred-
ding of XML relations.

 As a result none of the approaches described above introduce an algorithm to
generate a generic XSL stylesheet for transforming XML to SQL statements or an
XSL stylesheet for transforming XQueries to SQL queries or for generating SQL
schema by using XSL. We will next introduce general algorithms to generate these
components automatically.

3 SQL Schema Generations

Basically, the DOM [12,16] is a specification that comprises a set of interfaces that
allow XML documents to be parsed and manipulated in memory. The main interfaces
for an application with DOM are: Node: the base type, representing a node in the
DOM tree; Document: representing the entire XML document as a tree of Nodes (the
DOM parser will return Document as a result of parsing the XML); Element: to rep-

158

resent the elements of the XML document; Attribute, representing an attribute of
some XML element; Interface enabling setting/getting the value of that attribute; and
Text: representing the text content of an element (i.e. the text between tags that is not
part of any child element). The DOM tree is composed of nodes, each of which repre-
sents a parsed document. Based on these interfaces, we will use the XMLSchema
parse file (DOM) as input in our algorithm to generate the components automatically.
Now we will introduce an algorithm that can be used automatically to generate the
SQL schema as output of an arbitrary XMLSchema. In particular, we present a trans-
lation algorithm that takes as input an XMLSchema and XSL stylesheet and produces
a SQL schema as the output.

Fig.1. An algorithm for generating SQL schema from XMLSchema.

4 XSL Generations

Basically, it is possible to code by hand an XSL stylesheet that validates an XML
document against some or all constraints of an XML schema. But in this section we
introduce an algorithm as shown in Fig. 3 for generating an XSL stylesheet from an
XMLSchema parse file (DOM) and as mentioned before the DOM tree is composed
of nodes, each of which represents a parsed document. In other words this algorithm
is the technology solution to the problem of generating an XSL automatically by
transforming an XMLSchema through an XSLT. The result is a generic XSL
stylesheet providing the mechanism to transform and manipulate XML data. Also the
generated XSL stylesheet can be used to transform an XML document into another
format such as XML to SQL statements and XML to HTML document.

5 The XQuery Interpreter Generation

Basically, the XQuery [15] is a language containing one or more query expressions.
XQuery supports conditional expressions, element constructors, FOR, LET, WHERE,

159

RETURN (FLWR) expressions, expressions involving operators and function calls
and quantifiers, type checking and path expressions. Some XQuery expressions
evaluate to simple node values such as elements and attributes or atomic values such
as strings and numbers. The syntax for retrieving, filtering, and transforming records
uses FOR, LET, WHERE and RETURN clauses. A FLWR expression creates some
bindings, applies a predicate and produces a result set. XQuery does not conform to
the same conventions as SQL. XQuery and SQL share some similar concepts. Both
languages provide keywords for projection and transformation operations (SQL
SELECT or XQuery RETURN). SQL supports joins between tables and XQuery
supports joins between multiple documents.

Fig. 2. The generated XSL stylesheet for generating SQL schema from XMLSchema

Here are two simple examples: one with XPath type of a query and the other with
FLWR expression. The single forward slash (/) signifies the parent-child relationship
between elements. In tracing a path through a tree the expression starts at the root
node and follows parent node and so on.
1) X / <collection>/<object>/<objectInfor>
2) For obj in <collection> do
 Where obj = <object>
 Return <object>
Finally in this section we introduce an algorithm for generating an XSL stylesheet

from the XMLSchema to interpret the XQuery. In other words, this is the technology
solution to the problem of generating automatically the XQuery interpreter by trans-
forming an XMLSchema through an XSLT.

160

.

// Input XMLSchema, XSL stylesheet // Output XSL stylesheet
1. start
2. if the input arguments (XMLSchema, XSL stylesheet) exist
 2.1 Build DOM and parse it
 2.2 if parsing XMLSchema is done DOM will build dynamically
 2.2.1 perform XSL stylesheet (each XSL stylesheet contains templates and commands to
 select and manipulate structure of data)
 2.2.2 if transformation is ok
 2.2.2.1 invoke the root node of DOM tree
 2.2.2.2 compare the root node with template rules in the stylesheet, if it matches the
 first one then map to the root node of an XSL stylesheet output (as new template)
 2.2.2.3 If the root node has parent/child nodes
 2.2.2.3.1 the XSL walks through DOM tree and pulls nodes from DOM tree and
 places them with formatting as a new template to output
 2.2.2.3.2 compare and match complexType nodes of the DOM tree with the and
 XSL template, and for each a complexType name create a separate table
 2.2.2.3.3 map the child nodes to the table as a column names, and also the
 data type of XMLSchema mapped as values to the column names
 2.2.2.3.4 iterate through the DOM tree nodes and set the keyword VALUES to the
 output as new template in the XSL stylesheet
 2.2.2.3.5 insert the required statement and then return all template (new XSL
 stylesheet generated)
 2.2.2.4 set null and terminate
 2.2.3 report transformation errors and terminate
 2.3 report parsing errors and terminate
 3. report reading errors and terminate
 4. terminate\end

Fig. 3. An algorithm for generating XSL from XMLSchema.

Fig. 4. Algorithm generating XSL from XMLSchema to transform XQueries to SQL queries.

6 Conclusion

The contribution of this work is that it introduces general techniques for generating
SQL schema, XSL and XQuery using XMLSchema and XSL stylesheet, which (a)
enables the use of these techniques for transforming XML data to SQL data and stor-
ing it in a relational database, (b) allows the user to present HTML format, and (c)

161

interprets XQueries (transforms XQueries to SQL queries) so that we can then re-
trieve and query data from the database. A potential cause for concern is that our
general techniques may be less overlapping in implementation thus losing some effi-
ciency.

However based on our prototype implementation in java, we have found that it is
very quick to generate XSL stylesheets as an interpreter for different types of trans-
formation such as SQL Schema and XQueries in to SQL queries. As we know it is
possible to code by hand an XSL stylesheet that validates an XML document against
some or all constraints of an XML schema and to generate an XSL stylesheet. How-
ever with our automated technique this task is easy, quick and less overlapping and
we will use these generated components to integrate the (offline and online) compo-
nents to satisfy our requirements. Also, we plan to extend these techniques to work
with Multiple XMLSchema, not just single XMLSchema.

References

1. Aboulnaga, A., Jeffrey F. Naughton, Chun Zhang. Generating Synthetic Complex-
Structured XML Data. Fourth International Workshop WebDB'2001 (2001).

2. Bourret, R, XML and Database www.rpbourret.com/xml/XMLAndDatabases.htm (2004).
3. Bourret, R, Mapping W3C Schemas to Object Schemas to Relational Schemas.,

www.rpbourret.com/xml/SchemaMap.htm March (2001).
4. Chawathe S. Describing and Manipulating XML Data, Bulletin IEEE Technical (1999).
5. DeHaan D, D. Toman, M. Consens, and M. T. Özsu, A Comprehensive XQuery to SQL

Translation using Dynamic Interval Encoding, Proc ACM Int Conf Management Data
(SIGMOD'03), San Diego, 623-634 June (2003).

6. Florescu D, D. Koaamann. Storing and Querying XML Data using an RDBMS, IEEE
Data Engineering Bulletin, 22 27-34 (1999)

7. Krishnamurthy R., Venkatesan T.Chakaravarthy, Raghav Kaushik, Jeffrey F. Naughton,
Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-to-SQL
Query Translation, ICDE (2004)

8. Norton Francis. Generating XSL for Schema validation
http://www.redrice.com/ci/generatingXslValid, May 20, (1999)

9. Peterson David, Paul V. Biron, and Ashok Malhotra XML Schema 1.1 Part 2: Datatypes.
W3C, Working Draft WD-xmlschema11-2-20040716, July (2004)

10. Provost W, XML Validation Architecture using XML Schema, XPath, and XSLT. (2002)
11. Shanmugasundaram J., E. Shekita, J. Kiernan, R. Krishnamurthy, E. Viglas, J. Naughton

and Igor Tatarinov. A General Technique for Querying XML Documents using a Rela-
tional Database System. ACM SIGMOD Record, 30(3), (2001)

12. W3C, Document Object Model (DOM) Level 2 HTML Specification Version 1.0 W3C
Recommendation 09 January. http://www.w3.org/TR/2003/REC-DOM-Level (2003).

13. W3C. Extensible Stylesheet Language (XSL) Version 1.0, W3C Candidate Recommenda-
tion. http://www.w3.org/TR/2001/REC-xsl-20011015/ October 15, (2001)

14. W3C XSL Working Group, W3C Recommendation on XSL Transformations (XSLT)
http://www.w3.org/TR/xslt. (1999)

15. W3C.XQuery 1.0: An XML Query Language, W3C Working Draft July 23, (2004).
16. W3C.DOM Working Group, Document Object Model, http://www.w3.org/DOM/. (2004).

162

Steering Model-Driven Development of Enterprise
Information System through Responsibilities

Ming-Jen Huang and Takuya Katayama

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi-shi, Ishikawa, Japan

{m-huang, katayama}@jaist.ac.jp
http://kt-www.jaist.ac.jp/index-e.html

Abstract. OMG proposes the MDA that promotes the ideas of modeling in
UML and transforming UML models to code. But UML is not universal for
every domain and the direct translation approach of the MDA is not adequate.
In this paper, we introduce REST, an idea of using responsibilities as contextual
information to instruct machines to generate software systems. First, we give an
overview of RESTDA - a software development architecture for business based
on the concept of REST. Then we describe a domain-specific language -
Business Models. It helps developers to describe a business from a document-
processing perspective. We also introduce a rule-based validation of
consistency within Business Models. Finally, we describe the transformation
mechanism of RESTDA. Our approach provides machines higher intelligence
to generate source code for different contexts.

1 Introduction

Model Driven Architecture (MDA) proposed by OMG [1] is a software development
approach that promotes defining platform-independent models in UML and having
machines to transform them into technology-specific code [2]. Its concept is based on
two assumptions. First, UML is precise and expressive enough to describe problems
we are interested in. It is also universal enough to describe any domain of problems.
Second, all problems defined by every kind of UML modeling constructs should
imply identical contextual information. For the MDA, UML becomes the master key
to open every door to any solution.

With regard to the first assumption, different domains have different requirements.
Thus, a domain-specific language (DSL) that is customized for a specific domain is
more realistic and more productive [3]. With regard to the second assumption,
considering the following example: does the case of implementing UML models of a
car having four wheels equal to the case of a teacher having four students? By UML,
they may be drawn identically in class diagrams or even sequential diagrams. For an
effective model transformation mechanism, we do not only have to give machines
syntactic and semantic information, but also the capability of reacting according to
different contexts. To that end, we propose a conceptual idea, Responsibility-Steering
Model Transformation (REST) to augment existing model-driven approaches.

REST is a conceptual idea of model transformation that is inspired by
Responsibility-Driven Design, which is proposed by Wirfs-Brock [4]. She promoted
the idea of designing a software system from responsibilities and devising role objects
to collaboratively work together to assume these responsibilities [5]. In REST, we
consider responsibilities of an abstraction level are realized by responsibilities of a
level beneath. And realization of all responsibilities of all levels, combining with
domain-specific languages, instructs machines to generate detailed implementation of
different technology-specific code. The advantages of our approach are: (1)
Responsibilities provide extra contextual information of domains under consideration.
The problems like the example of car and teacher can be avoided. (2) By defining
model transformation in terms of responsibilities of different levels, any change of
requirements can lead to easy and reliable modification to the target system. (3) By
formalizing responsibilities, the correct transformation can be ensured.

The purpose of our work is to devise a development architecture and to apply the
idea of REST to the development architecture to solve the problems of the MDA
mentioned above. In this paper, we introduce the development architecture for
business called Responsibility-Steering Development Architecture (RESTDA).

The remainder of this paper is organized as follows. Section 2 gives the overview
of RESTDA, the details of the DSL - Business Models, and the description of the
rule-based consistent validation of BM. Section 3 describes the details of REST and
its implementation in RESTDA. Section 4 gives the conclusions and future works.

2 Responsibility-Steering Development Architecture

Fig. 1. Architecture of RESTDA

Fig. 2. Structure of Business Models

RESTDA is composed of a DSL to model concepts of business world and a model
transformation mechanism between models and code. Fig. 1 shows the architecture of
RESTDA. The DSL, Business Models, describes different business scenarios from the
structural, behavioral, and constraint aspect. Definition of BM of a target system is
transformed into a technology-neutral object model - Collaborative Responsibility
Model (CRM) by machines with a business scenario as a unit. CRM does not contain
details of technology-specific implementation but generalized software objects and
responsibilities of these objects. By means of CRM, a system can be divided into
many vertical-sliced parts, and each part can be transformed into different

164

technology-specific code that is most suitable to a situation. Instead of direct
translation of meta-model to code, RESTDA applies the idea of REST, using
syntactic, semantic, and contextual information, to instruct machines to transform BM
to CRM and CRM to source code.

2.1 Business Models Description

BM defines the running of a business from three different views. Business entities
describe the structural view. Business activities describe the behavioral view.
Business rules describe constraints of business entities and business activities.
Definition of BM of a target system has one or more scenarios which describe a
possible situation of document processing (see Fig. 2).

Fig. 3. A Sample of Business Entity
Diagram

Fig. 4. A Sample of Business Activity
Diagram

Business entities are roles that participate in a scenario. They are described in
business entity diagram. A sample is shown in Fig. 3. Here, we borrow the drawing
conventions from UML. There are two types of business entity, actor and document.
Actor type entity represents human role in a scenario. In the diagram, it is displayed in
stereotype <<actor>>. Document type entity is what is usually printed out as a
formal or legal document in a business. In the diagram, it is displayed in stereotype
<<document>>. Between business entities, they may have relations.

A business activity is a sequence of operations on which business documents are
processed. A business activity has three parts, request, operations, and response.
Request describes how the request is sent (Channel), who makes the request (Actor),
and what information is carried by the request (Params). A single operation is an
action operating on a document. It describes what type the operation is (Type), what
document to operate on (Target), and what information to provide after completion of
an operation (Result). There are four types of operation: CREATE, RETRIEVE,
UPDATE, and DELETE. Operations can be linked sequentially to represent
sequential operations. A business activity is described in a business activity diagram.
As the exemplar Fig. 4 shown, the request is sent via HTTP and made by
WebCustomer. WebCustomer should provide information of Book in the request.
The business activity has a single operation to RETRIEVE information of Book and
return resulting Book. The response is sent via HTTP to the WebCustomer.
WebCustomer and Book are referred to the business entities of the scenario.

165

Business rules are constraints of business entities and business activities. For a
business entity, business rules define the possible range of values of its properties. For
a business activity, they define conditions of allowable activity requests or conditions
of allowable operations, among other things.

2.2 Formalization and Implementation of Verification

The semantics of BM is formalized as predicates and implemented in a rule-based
engine to verify validity of BM. These predicates are called verification rules. They
are defined in terms of three basic constructs, be of business entity, attr of entity
attribute, and ba of business activity. The types of business entity and activity
are DocumentType(be) , ActorType(be) , and BusinessActivityType(ba) . Each construct has

an identifier ID(be) , ID(attr) , and ID(ba) . Relations (own and detailedBy) between

business entities are Own(be ,be)1 2 and DetailedBy(be ,be)1 2 . Channel, actor, params

of request are RequestChannel(ba) , RequestActor(ba) , and RequestParams(ba) . Type,

target, and result of operation are OperationType(n,ba) , OperationTarget(n,ba) , and

OperationResult(n,ba) respectively (n denotes the sequence of operations). For

example, OperationType(1,ba) denotes the type of the first operation. Channel, actor,

params of response are ResponseChannel(ba) , ResponseTarget(ba) , and

ResponseParams(ba) respectively.

There are five types of verification rules within BM. In this paper, we explain only
the first type of verification rules - structural relation. In BM, business entities have
two types of relation, own and detailedBy. For example, an actor type Manager
owns a document type MonthlySalesReport and MonthlySalesReport is
detailed by a document type WeeklySalesReport. Types of entity at two ends of
a relation should be correct and they are represented as two rules:

1. Only an actor type entity can own a document type entity

be ,be Own(be ,be) ActorType(be) DocumentType(be)1 2 1 2 1 2∀ ⇒ ∧

2. Only a document type entity can be detailed by a document type entity:

be ,be DetailedBy(be ,be) DocumentType(be) DocumentType(be)1 2 1 2 1 2∀ ⇒ ∧

The verification rules are implemented in a rule-based engine, Jess [6]. Jess
contains facts and rules. The collection of facts is information Jess knows. The
collection of rules in Jess is a kind of actions that triggers under certain conditions [7].
Rules in Jess can be stated as “if P then A ”. P denotes a set of conditional facts.
A denotes a set of actions. P is tested against all known facts. For example, if we

know (1) a verification rule states that only an actor type entity can own a document
type entity and (2) a fact states that SalesStaff (actor type) owns
PurchasingStaff (actor type). If a Jess rule states “if (1) is not satisfied against
all known facts, then displays a warning message.” Since PurchasingStaff of
(2) is not a document type, Jess would display a warning message.

166

3 Responsibility-Steering Model Transformation

REST is a conceptual idea of model transformation that uses responsibilities of
different levels as contextual information to instruct machines to transform platform-
independent models into technology-specific code. Real-world responsibilities of
structural and behavioral constructs and constraints of a DSL are realized by
generalized object responsibilities and the generalized object responsibilities are
realized by responsibilities of technology-specific code, such as classes or
components. In RESTDA, the realization of generalized object responsibilities is pre-
defined. Developers only have to define (1) the responsibilities of BM and (2) how
generalized object responsibilities realize these responsibilities for each scenario.

First, developers have to define real-world responsibilities from BM. A
responsibility of any level always has a holder and a receiver. A holder represents a
structural role which assumes the responsibility. A receiver represents a structural role
that is affected by the consequence of the responsibility. Responsibilities of the same
level are connected by holders and receivers. We use Collaborative Responsibility
Diagram (CRD) to draw responsibilities, holders, and receiver as shown in Fig. 5. A
collaborative responsibility diagram shows the structural and behavioral aspect of
responsibility realization. To read the diagram, a rounded rectangle represents a
responsibility and a rectangle represents a role. The left-hand role of a responsibility
represents a holder and the right-hand role represents a receiver. A receiver of a
responsibility could be a holder of another responsibility. The responsibilities are
fulfilled from left to right one by one.

BW-1: Request for
searching book service

WebCustomer TargetSystem

BW-2: Provide
request information

BW-3: Provide its
own information

BW-4: Process request

TargetSystem

BW-5: Execute
operations in turn

Book

BW-6: Provide its
own information

TargetSystem WebCustomer

Structurer
Information

holder
Interfacer Interfacer Controller Controller

Structurer
Service
provider

Information
holder

Interfacer
Information

holder

GO-1: Provide
WebCustomer’s

information

GO-2: Decode
protocol-specific
request message

GO-3: Validate
WebCustomer’s

security

GO-4: Decide
next executing

operation

GO-5: execute
next operation

GO-6: Search
book by

keywords

GO-7: Provide
Book’s

information

GO-8: Render
resultant views

GO-9: Manage
life-cycle of

service provider GO-10: Manage
life-cycle of

service provider

BW-7: Return executing
results to response target

Fig. 5. A Sample of Collaborative Responsibility Diagram

Second, developers have to define how generalized object responsibilities realize
the real-world responsibilities. It is a process of refinement by decomposing a real-
world responsibility into smaller chunks. For example, the real-world responsibility
“Process request” is realized by two generalized object responsibilities: “Decode
protocol-specific message” and “Validate WebCustomer’s security”. Again, a holder
and a receiver are assigned to a generalized object responsibility. They come from
generalized objects. We borrow the concepts of role stereotypes from Responsibility-
Driven Design. It defines six types of role: information holder, structurer, service
provider, coordinator, controller, and interfacer [5]. A generalized software object
represents a stereotype that assumes a set of generalized responsibilities. Developers
have to contemplate types of responsibility and types of generalized object

167

simultaneously for each scenario. Responsibilities of generalized objects and their
holders and receivers form CRM that are further transformed into Java code by Jess.

RESTDA predefines how a generalized object of CRM is transformed into one or
more Java classes. The generation rules are also implemented in Jess in a code-
template-generation fashion where the data for placeholders of code templates come
from definition of CRM. These rules also define how different source code to
generate for different responsibility definitions.

4 Conclusion and Future Work

In this paper, we introduced the software development architecture for business –
RESTDA which is based on the idea of REST. The significance of the research is that
domain experts can use BM to describe the running of a business without concerning
any technology details. Instead of direct translation approach, the combination of
syntactic, semantic, and contextual information of each level offers machines higher
intelligence to generate software systems from platform-independent models.

With regard to future work, one is to formalize the concept of responsibilities
Another is to use much expressive higher-order logic to quantify over predicates and
to apply automatic theorem provers, such as HOL, to verify consistency of BM and
responsibility realization [8,9].

Acknowledgments

This research is conducted as a program for the “21st Century COE Program” by
Ministry of Education, Culture, Sports, Science and Technology.

References

1. MDA Guide Version 1.0.1. OMG. http://www.omg.org/docs/omg/03-06-01.pdf (2003)
2. Frankle, D.S.: Model Driven Architecture : Applying MDA to Enterprise Computing.

Wiley, New York (2003)
3. Thomas, D.: MDA: Revenge of the Modelers or UML Utopia? IEEE Software, Vol. 21, No.

3, pp. 15 – 17 (2004)
4. Wirfs-Brock, R.: Object-Oriented Design: a Responsibility-Driven Approach. OOPSLA ’89

Conference Proceedings, pp. 71 – 75 (1989)
5. Wirfs-Brock, R., McKean, A.: Object Design: Roles, Responsibilities, and Collaborations.

Addison-Wesley, Boston (2003)
6. Jess v7.0a4. http://herzberg.ca.sandia.gov/jess/
7. Friedman-Hill, E.: Jess in Action. Manning: rule-based systems in Java. Manning,

Greenwich, CT (2003)
8. Aoki, T., Katayama, T.: Unification and Consistency Verification of Object-Oriented

Analysis Models. Asia-Pacific Software Engineering Conference, (1998)
9. Yatake, K., Aoki, T., Katayama, T.: Collaboration-Based Cerification of Object-Oriented

Models in HOL. Verification and Validation of Enterprise Information Systems (2004)

168

A Model-based Approach to Managing Enterprise
Information Systems

Robert France1, Roger Burkhart2, Charmaine DeLisser3

1 Colorado State University, Fort Collins, Colorado
france@cs.colostate.edu

2Information Systems, Deere & Company, Moline,Illinois, USA
BurkhartRogerM@johndeere.com

3 University of Technology, Kingston, Jamaica
cdelisser@utech.edu.jm

Abstract. Organizations must evolve their information systems (IS) in order to
adapt to changes in their environment or to maintain or enhance
competitiveness. The use of modern application integration technologies (e.g.,
middleware) and advanced network technologies has resulted in IS that provide
services at unprecedented levels, but at the price of becoming more complex
and thus more difficult to evolve. By way of concrete examples, this paper
focuses on the use of system models expressed in the Unified Modeling
Language (UML) to effectively manage information systems assets. The system
models capture critical information about an organization and are part of an
overall framework called the Application Mapping Framework or AMF. The
AMF can be used by IT architects and planners to track applications, relate
descriptions of system artifacts across different levels of abstraction and support
redundancy, gap and impact analyses. The paper also identifies management
roles needed to ensure that the AMF repository contains comprehensive and up-
to-date models.

1 Introduction

The mission-critical role that Information Systems (IS) play in accomplishing
business goals requires that they be managed and tracked as organizational assets. In
this paper we describe a framework called the Application Mapping Framework
(AMF), for organizing information about planned and deployed applications in an
organization. The AMF is intended to support disciplined management and evolution
of IS resources and enables business managers, information technology (IT) planners
and architects, and application developers to (1) make decisions that minimize
development risks and costs, (2) identify opportunities for cutting costs, and (3)
identify new business opportunities. The AMF is more than just a static application
portfolio. It provides services that can be used by IT planners and architects to support
redundancy, gap and impact analyses. Proper use of the AMF will enhance the ability
of an organization to maintain a corporate memory and utilize that memory to cost-
effectively evolve its IS resources and business processes to meet business goals. The

AMF is intended to provide a single, accurate, organized source of information about
business processes, applications, data and other IT resources.

An overview of the AMF architecture is presented in Section 2 of this paper.
Types of analyses supported by the AMF and management functions required to
build, use and maintain the AMF, are presented in Section 3. Section 4 explains by
way of an example how the AMF could be used to support IS planning and evolution.
The paper concludes with our views on the merits of using a model-based approach to
IS management and an outline of our planned work in this area.

2 An Overview of the AMF

The AMF provides a logical architecture for a repository of information on
applications and data within an organization. Its development is based on experience
gathered on industrial projects that focused on developing application portfolios for
organizations with a large and diverse set of distributed applications. The AMF
specifies an application that is flexible in terms of the physical form or location of
information could be captured and integrated in the framework. To help organize its
wide range of topics and content, the information in the AMF is structured into a
number of core views. Information in a core view can be further organized into sub-
views.

Business
Arc hitect ure

Physical Design
Arc hitect ure

A pp lication and Data
Arc hitect ure

Deployment
Arc hitect ure

Tracked Artifact

Business t o
Appl ic ation Mapp ing

Application to Physical
Design Mapping

Physical to Deployment
Mapping

Model
Management

Fig. 1. Enterprise Application Map Structure

170

The UML (Unified Modeling Language) [1] is used to describe the structure of
information in the AMF. An UML package is used to describe a view. UML Class
Diagrams are used to describe the conceptual structure of information in a view,
where a UML class represents a type of information item, a UML association
represents a conceptual relationship between peer information item types, and an
UML specialization relationship represents a further classification of an information
item type. A view, represented as a package, contains a structure of packages
(representing sub-views) and types (representing information item types).

At the top level, the AMF is organized into three views.
• The IT Planning View contains information pertaining to ongoing and planned IS

projects, and includes information on tactical and strategic plans. The IT
Planning View is intended to support the work of IT planners and project
managers.

• The Asset View contains information about enterprise-wide and domain-specific
reusable business artifacts. This view is intended to support systematic reuse of
development experiences across an organization.

• The Enterprise Application Map is the central component of the AMF and
contains information about the current and planned information system resources
(e.g., applications, data, processes, roles) that are tracked within an organization.
The previously mentioned views utilize information within this view (as
indicated by the dependency relationships – the dashed arrows – between the
packages).

This paper focuses on the Enterprise Application Map. The information in the
Enterprise Application Map is organized into the following primary views (see Figure
1):
• Business Architecture: This view contains information about the business

processes and entities that are tracked by an organization.
• Application and Data Architecture: This view contains information about the

logical (i.e., technology-independent) aspects of applications and data. The
information includes descriptions of the IS artifacts (applications and data) as
they exist, as well as plans for evolving the artifacts. Descriptions include models
and artifact metadata.

• Physical Design Architecture: This view contains information about the physical
design of applications and data, that is, it presents a technology-specific view of
applications. This view allows one to track the technologies that are used to
implement applications and data.

• Deployment Architecture: This view contains information about the deployment
and usage of applications within an organization. Information pertains to the “as
is” deployment and usage of applications and data, as well as to planned
deployments and usages.

Relationships between concepts across these views are described by the Mapping
Packages:
• Business to Application Mapping: This package links elements in the Business

Architecture view to the Application and Data Architecture view. The mappings
provide traceability of business concepts to logical (platform independent)
application concepts.

171

• Application to Physical Design Mapping: The mappings in this package provide
traceability of logical application elements to physical (platform-specific) design
elements.

• Physical to Deployment Mapping: The mappings in this package provide
traceability of physical design elements to the artifacts to their deployed forms.

The other packages of information in the Enterprise Application Map contain
information that is orthogonal to the packages described above.
• Tracked Artifact: This package contains information about properties that are

common to artifacts that are tracked in the AMF. Currently, this includes only
information pertaining to versioning of artifacts.

• Model Management: This package contains information about models, groupings
of model elements used to present views of applications, the tools used to display
models and the organizational roles responsible for maintaining the views.

3 Using the AMF

This section outlines the kinds of analyses that are supported and the management
roles that are recommended for effective management and evolution of the AMF.

3.1 Management Roles

Effective use of the AMF by business analysts, architects and system developers is
possible only when the contents of the AMF are relevant, properly packaged, easily
retrieved, current and accurate. The following are recommended management roles
that address issues related to the relevancy, accuracy, and usability of the AMF:
• Content Manager: Responsible for packaging, cataloging, and updating AMF

contents.
• Content Collector: Responsible for collecting candidate contents.
• Content Certifier/Evaluator: Responsible for evaluating and certifying candidate

AMF contents. The evaluation is carried out to determine, for example, the
accuracy, relevance, and currency of candidate content.

• Content Disseminator: Responsible for promoting and facilitating the use of the
AMF.

• AMF Strategic Planner: Responsible for developing and maintaining plans for
evolving the AMF. This involves analyzing the usage of the AMF, analyzing
repository contents (e.g., identifying content with diminishing returns), and
identifying opportunities.

3.2 User Roles

Users of the AMF can be classified in terms of the roles they play in system and
business process management and development. Below we list the roles and the types
of interactions they can have with the AMF.

172

• Business Analyst: Responsible for defining, documenting and updating business
processes.

• IS Architect: Responsible for planning and managing the integration and
evolution of IT systems that support business processes.

• System Architect: Responsible for designing and managing the evolution of a
particular system.

• System Developer: Responsible for implementing system designs and changes.

3.3 Model-based Analyses

 A sample set of IT project planning activities supported by the AMF are listed below:
• Impact Analyses: During project planning one needs to determine, among other

concerns, how the system to be developed impacts other systems, what resources
are required and available for the project, what parts of the system functionality
can be provided by existing system components and what parts need to be built or
acquired. The AMF can be used to support impact analysis, determining the
impact of change on the organization’s ability to effectively meet business needs.
The relationships among the artifacts in the AMF (for example, data/object
create, read, update, and delete relationships between applications and
data/objects) can be used to determine the impact of planned changes and new
features on existing applications and data and on other current and planned IT
projects.

• Gap Analyses: The AMF can also be used to support gap analyses. As new
processes and system functionality are developed, gaps in the existing integrated
system need to be identified and filled. Gap analysis is concerned with
determining the missing functional and process elements that need to be present
in order to implement new functionality of processes. The repository can be used
to determine what parts of a system are under development or already exists, and
what parts need to be obtained from outside vendors or be built in-house.

• Redundancy analyses: As an organization’s pool of systems grows, the need to
identify redundancies to reduce inefficiencies and avoid conflicts arising from
multiple representations of a single concept across an organization becomes
evident. Redundancy analysis is concerned with identifying systems that provide
similar services. The repository can be used to determine whether proposals for
new system features can already be met by existing systems and to determine
wasteful overlaps in system functionality.

• Reuse analyses: Order-of-magnitude improve-ment in productivity and system
quality can be accomplished if developers reuse product experiences. A well-
managed integrated system can form the basis for identifying potentially reusable
experiences across an organization. Reusability analysis is concerned with
identifying potentially reusable artifacts. Commonality analyses can be carried
out on the repository to identify organization-wide and domain-specific patterns
that can be packaged for reuse (e.g., as product frameworks, components,
reusable models).

173

4 An order fulfillment process scenario

The following scenario, though fictional, provides a realistic view of how the AMF
can be used to support IT planning and system evolution within an organization. The
Commercial Equipment (CE) Division of a fictitious organization has acquired a new
distribution channel that is located overseas. The need to adhere to reporting
regulations and other standards (e.g., customer addressing) in force within the foreign
territory requires CE to reengineer its order fulfillment processes and systems.

In this scenario the AMF contains a web of artifacts ranging from business models
of the processes to documents describing the deployment and usage of applications,
and the computing infrastructure that currently support the processes. The AMF is
accessed through interfaces that provide reporting functions and browsing starting
points that are particular to the roles of the individuals accessing the repository. For
example, the Business View interface of the AMF provides business analysts with a
business-oriented view of the repository contents from which they can drill down to
more system-specific views if required.

In the absence of an AMF, analysts, planners and developers have the challenge of
locating, relating, and analyzing possibly poorly documented information about the
current order fulfillment processes and supporting systems within CE. They may even
have to revert to source code analysis. These activities are expensive, error-prone, and
time-consuming. More importantly, such an environment is not conducive to the
development of systems that fully exploit resources that can significantly reduce the
cost of development without sacrificing system quality.

4.1 Business Analysis

The business analyst is responsible for defining an order fulfillment business process
that will handle the orders of the new distribution channel. To carry out this task the
analyst needs to (1) consider the impact of the proposed process solutions on existing
processes and systems, and (2) identify possible opportunities for exploiting current
system resources in the execution of the new processes, in order to define a cost-
effective and realizable process.

As a starting point, the analyst uses the AMF to determine the location of
documents that describe the current CE order fulfillment processes. Using the
documentation reporting facility of the Business View interface, the analyst locates
information on order fulfillment processes. A partial view of the table that is
displayed as a result of the interaction with the AMF is shown below:

Table 1. Relationships between Processes and the Responsible Organizational Roles

Subject
Area

Business Activity Responsible
Organization

Order Fulfillment Org1
Order Entry Org2
Order Routing Org2

Order

Order
Management

Org3

174

The order fulfillment processes are contained in the Order subject area and
consists of business sub-activities. Clicking on an activity name in column 2 takes the
analyst to a page that contains model(s) of the activity. These models can be
expressed as Activity Diagrams, Interaction Diagrams, and/or Use Cases. Using these
links the analyst can not only access models that help in understanding the processes,
but also use the information to identify models that are impacted by the change and
that can be reused to describe the changed process. The analyst also needs to work
with the owners of the process descriptions that will be impacted by the change.
Clicking on the items in the third column of Table 1 results in a page that displays
contact information for business process owners.

Table 2 is a partial view of the table that is displayed when Order Entry in column
2 of Table 1 is selected (in this case the process models are organized by the types of
orders processed):

Table 2. Process Model Table for Order Entry

Business
Activity

Order Entity
Type

Essential
Process
Model

Process
Realization

Model
Domestic
Dealer Order

Ess-.mdl Real-
OD.mdl

Export Order
Region 1

Ess-
E1.mdl

Real-
E1.mdl

Order
Entry

Export Order
Region 2

Ess-
E2.mdl

Real-
E2.mdl

There are a number of variants of the Order Entry process, each determined by the
type of order it processes. Selecting an order type in column 2 of Table 2 results in a
page that describes the order type. Columns 3 and 4 contain pointers to models of the
processes. An essential process model describes a process in terms of externally
observable effects (i.e., effects that are observable by users of the business processes
– the external view), and a process realization model describes a process in terms of
how the activities are carried out (the internal view).

The analyst also needs to determine the business entities that are impacted by the
change. To support this task the AMF can be used to produce the following table:

Table 3. Trace relationships between business activities and business entities

Business Activity Business Entity Access Type Responsible
Organization

Order Fulfillment Org 1
Order Entry Order

FDD
…

Create
Create
…

Org2
Org2

Order Routing Supplier
…

Update
…

Supp

Order Management Customer
Account
…

Update
…

Customer Dept

175

Selecting items in column 1 of Table 3 results in a page that shows the realization
process models indicating which entities are created, accessed, updated and deleted by
the business activity. Column 2 lists the business entities that are manipulated by the
business activities, and column 3 specifies the type of access (Create, Read, Update,
Delete).

The analyst also needs to have an idea of the order fulfillment systems and
databases that would be impacted by the change in order to identify a cost-effective
process solution. Another table (not shown), can show the relationship between the
business activities and the systems and databases that support the activities. Selecting
on the items in System and Database columns can link the analyst to a page that
contains descriptions of the artifacts, contact information for the owners of the
artifacts, and pointers to more detailed information about the systems and databases.

5 Related Work

Other frameworks for information systems architecture are being used today, most
notably being the Zachman Framework (ZF), the Four+one framework and the RM-
ODP. Each has its own merit providing developers of new systems architectural
options for conceptualizing and designing. Zachman Framework is pre-object and
reflects a structured approach to development. It consists of a thirty-six-cell matrix
covering the perspectives of different stakeholders and aspects of the architecture. It is
seen as the best way to conceptualize all the elements of a system but has been
criticized as being process-heavy, requiring years to create. Ambler [3] suggests ways
in which ZF can be used in an agile manner.

The RM-ODP [2] is rooted in object analysis, and covers five viewpoints
enterprise, information, computational engineering and technology. Evitt [4] points
out that the viewpoints are abstract and do not reflect the concerns of specific
stakeholders as the ZF.

The AMF being proposed provides a lower level of detail than the ZF and RM-
ODP. Whereas the frameworks mentioned above can be used for developing new
systems, the AMF is intended for use as a lightweight means to document existing
systems and the way they relate to each other. It is to be used as a management tool
for identifying gaps, redundancies and reuse opportunities, and to be able to perform
impact analysis. The AMF can be used within the context of both the ZF and the RM-
ODP.

6 Further work

The AMF can provide a comprehensive representation of an enterprise’s business and
information systems and the means to conduct relevant queries and analyses. The
proposed business architecture, application and data architecture etc. serve to define a
workable structure for organizing, managing, analyzing and evolving enterprise
information systems. Populating this framework with suitable, well placed and
accurate business and information system design and implementation models

176

however, requires the involvement of skilled modelers, the formulation of and
adherence to standards of operating that will guarantee capture of accurate
information in a timely manner. The discipline required to make the use of the AMF
a success will ultimately result in improved practices, processes and tools and to a
more mature use of IT.

Our next step is to validate the AMF by using it to develop an IS repository for an
industrial partner. We are currently evaluating different development environments
for hosting, populating and querying an AMF repository. We will then develop and
deploy a prototype repository infrastructure and evaluated its usage. The experience
we gain will help refine the architecture and give insights into the types of
mechanisms needed to seamlessly integrate AMF related activities and IS
development and planning activities.

References

1. The Object Management Group (OMG): Unified Modeling Language: Superstructure, the
OMG, {http://www.omg.org}, Version 2.0, Final Adopted Specification, August, 2003

2. Open Distributed Processing Reference Model: ISO/IEC IS 10746.
http://www.joaquin.net/ODP. Visited 3/01/2005

3. Ambler, S.W., Architecture and Architecture Modeling Techniques (2002)
http://www.agiledata.org/essays/enterpriseArchitectureTechniques.html Visited 12/11/2002

4. Evitts, P. : A UML Pattern Language. MacMillan Technical Publishing (2000)

177

178

179

Author Index

Aagedal, J.................................... 86
Almeida, J. 116
Belaunde, M.86, 106
Bezivin, J. 106
Burkhart, R............................... 169
Chaitanya, C. 11
Chang, E..................................... 17
DeLisser, C. 169
El Bekai, A. 157
Engel, K...................................... 86
Farahbod, R. 143
Faugere, M. 86
France, R. 169
Glässer, U................................. 143
Goknil, A.................................... 76
Grønmo, R................................. 86
Hammoudi, S........................... 131
Hitchens, M. 96
Huang, M. 163
Indrakanti, S............................... 96
Katayama, T............................. 163
Khalifa, I..................................... 38
Krishnaswamy, S. 66
Lopes, D................................... 131
Mahmoud, M. 38
Martin, P..................................... 53
Pham, T. 106
Pires, L...................................... 116
Powles, A.................................... 66
Powley, W. 53
Pudhota, L.................................. 17
Rao, K... 11
Rossiter, N. 157
Sarhan, E. 38
Sluss Jr., J...................................... 3
Solheim, I. 86

Tian, W..53
Topaloglu, N.76
Umar, A...3
Vajihollahi, M. 143
van Sinderen, M. 116
Varadharajan, V.96
Verma, P.3
Wang, T.......................................28
Zebedee, J.53
Zulkernine, F.53

	páginas iniciais.pdf
	INSTICC PRESS
	Portugal

