242 research outputs found

    Frequency Diverse Array Radar: Signal Characterization and Measurement Accuracy

    Get PDF
    Radar systems provide an important remote sensing capability, and are crucial to the layered sensing vision; a concept of operation that aims to apply the right number of the right types of sensors, in the right places, at the right times for superior battle space situational awareness. The layered sensing vision poses a range of technical challenges, including radar, that are yet to be addressed. To address the radar-specific design challenges, the research community responded with waveform diversity; a relatively new field of study which aims reduce the cost of remote sensing while improving performance. Early work suggests that the frequency diverse array radar may be able to perform several remote sensing missions simultaneously without sacrificing performance. With few techniques available for modeling and characterizing the frequency diverse array, this research aims to specify, validate and characterize a waveform diverse signal model that can be used to model a variety of traditional and contemporary radar configurations, including frequency diverse array radars. To meet the aim of the research, a generalized radar array signal model is specified. A representative hardware system is built to generate the arbitrary radar signals, then the measured and simulated signals are compared to validate the model. Using the generalized model, expressions for the average transmit signal power, angular resolution, and the ambiguity function are also derived. The range, velocity and direction-of-arrival measurement accuracies for a set of signal configurations are evaluated to determine whether the configuration improves fundamental measurement accuracy

    Low Correlation Interference OFDM-NLFM Waveform Design for MIMO Radar Based on Alternating Optimization.

    Get PDF
    The OFDM chirp signal is suitable for MIMO radar applications due to its large time-bandwidth product, constant time-domain, and almost constant frequency-domain modulus. Particularly, by introducing the time-frequency structure of the non-linear frequency modulation (NLFM) signal into the design of an OFDM chirp waveform, a new OFDM-NLFM waveform with low peak auto-correlation sidelobe ratio (PASR) and peak cross-correlation ratio (PCCR) is obtained. IN-OFDM is the OFDM-NLFM waveform set currently with the lowest PASR and PCCR. Here we construct the optimization model of the OFDM-NLFM waveform set with the objective function being the maximum of the PASR and PCCR. Further, this paper proposes an OFDM-NLFM waveform set design algorithm inspired by alternating optimization. We implement the proposed algorithm by the alternate execution of two sub-algorithms. First, we keep both the sub-chirp sequence code matrix and sub-chirp rate plus and minus (PM) code matrix unchanged and use the particle swarm optimization (PSO) algorithm to obtain the optimal parameters of the NLFM signal's time-frequency structure (NLFM parameters). Next, we keep current optimal NLFM parameters unchanged, and optimize the sub-chirp sequence code matrix and sub-chirp rate PM code matrix using the block coordinate descent (BCD) algorithm. The above two sub-algorithms are alternately executed until the objective function converges to the optimal solution. The results show that the PASR and PCCR of the obtained OFDM-NLFM waveform set are about 5 dB lower than that of the IN-OFDM

    Architectures and Algorithms for the Signal Processing of Advanced MIMO Radar Systems

    Get PDF
    This thesis focuses on the research, development and implementation of novel concepts, architectures, demonstrator systems and algorithms for the signal processing of advanced Multiple Input Multiple Output (MIMO) radar systems. The key concept is to address compact system, which have high resolutions and are able to perform a fast radar signal processing, three-dimensional (3D), and four-dimensional (4D) beamforming for radar image generation and target estimation. The idea is to obtain a complete sensing of range, Azimuth and elevation (additionally Doppler as the fourth dimension) from the targets in the radar captures. The radar technology investigated, aims at addressing sev- eral civil and military applications, such as surveillance and detection of targets, both air and ground based, and situational awareness, both in cars and in flying platforms, from helicopters, to Unmanned Aerial Vehicles (UAV) and air-taxis. Several major topics have been targeted. The development of complete systems and innovative FPGA, ARM and software based digital architectures for 3D imaging MIMO radars, which operate in both Time Division Multiplexing (TDM) and Frequency Divi- sion Multiplexing (FDM) modes, with Frequency Modulated Continuous Wave (FMCW) and Orthogonal Frequency Division Multiplexing (OFDM) signals, respectively. The de- velopment of real-time radar signal processing, beamforming and Direction-Of-Arrival (DOA) algorithms for target detection, with particular focus on FFT based, hardware implementable techniques. The study and implementation of advanced system concepts, parametrisation and simulation of next generation real-time digital radars (e.g. OFDM based). The design and development of novel constant envelope orthogonal waveforms for real-time 3D OFDM MIMO radar systems. The MIMO architectures presented in this thesis are a collection of system concepts, de- sign and simulations, as well as complete radar demonstrators systems, with indoor and outdoor measurements. Several of the results shown, come in the form of radar images which have been captured in field-test, in different scenarios, which aid in showing the proper functionality of the systems. The research activities for this thesis, have been carried out on the premises of Air- bus, based in Munich (Germany), as part of a Ph.D. candidate joint program between Airbus and the Polytechnic Department of Engineering and Architecture (Dipartimento Politecnico di Ingegneria e Architettura), of the University of Udine, based in Udine (Italy).Questa tesi si concentra sulla ricerca, lo sviluppo e l\u2019implementazione di nuovi concetti, architetture, sistemi dimostrativi e algoritmi per l\u2019elaborazione dei segnali in sistemi radar avanzati, basati su tecnologia Multiple Input Multiple Output (MIMO). Il con- cetto chiave `e quello di ottenere sistemi compatti, dalle elevate risoluzioni e in grado di eseguire un\u2019elaborazione del segnale radar veloce, un beam-forming tri-dimensionale (3D) e quadri-dimensionale (4D) per la generazione di immagini radar e la stima delle informazioni dei bersagli, detti target. L\u2019idea `e di ottenere una stima completa, che includa la distanza, l\u2019Azimuth e l\u2019elevazione (addizionalmente Doppler come quarta di- mensione) dai target nelle acquisizioni radar. La tecnologia radar indagata ha lo scopo di affrontare diverse applicazioni civili e militari, come la sorveglianza e la rilevazione di targets, sia a livello aereo che a terra, e la consapevolezza situazionale, sia nelle auto che nelle piattaforme di volo, dagli elicotteri, ai Unmanned Aerial Vehicels (UAV) e taxi volanti (air-taxis). Le tematiche affrontante sono molte. Lo sviluppo di sistemi completi e di architetture digitali innovative, basate su tecnologia FPGA, ARM e software, per radar 3D MIMO, che operano in modalit`a Multiplexing Time Division Multiplexing (TDM) e Multiplexing Frequency Diversion (FDM), con segnali di tipo FMCW (Frequency Modulated Contin- uous Wave) e Orthogonal Frequency Division Multiplexing (OFDM), rispettivamente. Lo sviluppo di tecniche di elaborazione del segnale radar in tempo reale, algoritmi di beam-forming e di stima della direzione di arrivo, Direction-Of-Arrival (DOA), dei seg- nali radar, per il rilevamento dei target, con particolare attenzione a processi basati su trasformate di Fourier (FFT). Lo studio e l\u2019implementazione di concetti di sistema avan- zati, parametrizzazione e simulazione di radar digitali di prossima generazione, capaci di operare in tempo reale (ad esempio basati su architetture OFDM). Progettazione e sviluppo di nuove forme d\u2019onda ortogonali ad inviluppo costante per sistemi radar 3D di tipo OFDM MIMO, operanti in tempo reale. Le attivit`a di ricerca di questa tesi sono state svolte presso la compagnia Airbus, con sede a Monaco di Baviera (Germania), nell\u2019ambito di un programma di dottorato, svoltosi in maniera congiunta tra Airbus ed il Dipartimento Politecnico di Ingegneria e Architettura dell\u2019Universit`a di Udine, con sede a Udine

    High-Resolution Wide-Swath IRCI-Free MIMO SAR

    Get PDF

    Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Get PDF
    Modern communication systems provide myriad opportunities for passive radar applications. OFDM is a popular waveform used widely in wireless communication networks today. Understanding the structure of these networks becomes critical in future passive radar systems design and concept development. This research develops collection and signal processing models to produce passive SAR ground images using OFDM communication networks. The OFDM-based WiMAX network is selected as a relevant example and is evaluated as a viable source for radar ground imaging. The monostatic and bistatic phase history models for OFDM are derived and validated with experimental single dimensional data. An airborne passive collection model is defined and signal processing approaches are proposed providing practical solutions to passive SAR imaging scenarios. Finally, experimental SAR images using general OFDM and WiMAX waveforms are shown to validate the overarching signal processing concept

    Passive Multistatic Radar Imaging using an OFDM based Signal of Opportunity

    Get PDF
    This paper demonstrates a proof of concept in using an OFDM-based signal of opportunity for SAR imaging purposes within a passive, multistatic radar construct. Two signal processing methods have been proposed to create phase history data. The same methods are applied in both a simulated software model and an experimental data collection environment to produce simulated SAR images using the CBP imaging algorithm. The images generated from both the experimental and simulated data were observed to be consistent with each other and with expectations in terms of resolution. Coherent addition of the images results in improved image resolution due to the geometric and frequency diversity of the multistatic scenario compared to the individual bistatic pairs

    Meeting IMT 2030 Performance Targets: The Potential of OTFDM Waveform and Structural MIMO Technologies

    Full text link
    The white paper focuses on several candidate technologies that could play a crucial role in the development of 6G systems. Two of the key technologies explored in detail are Orthogonal Time Frequency Division Multiplexing (OTFDM) waveform and Structural MIMO (S-MIMO)

    Advanced signal processing solutions for ATR and spectrum sharing in distributed radar systems

    Get PDF
    Previously held under moratorium from 11 September 2017 until 16 February 2022This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance.This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter

    Estudo de formas de onda e conceção de algoritmos para operação conjunta de sistemas de comunicação e radar

    Get PDF
    The focus of this thesis is the processing of signals and design of algorithms that can be used to enable radar functions in communications systems. Orthogonal frequency division multiplexing (OFDM) is a popular multicarrier modulation waveform in communication systems. As a wideband signal, OFDM improves resolution and enables spectral efficiency in radar systems, while also improving detection performance thanks to its inherent frequency diversity. This thesis aims to use multicarrier waveforms for radar systems, to enable the simultaneous operation of radar and communication functions on the same device. The thesis is divided in two parts. The first part, studies the adaptation and application of other multicarrier waveforms to radar functions. At the present time many studies have been carried out to jointly use the OFDM signal for communication and radar functions, but other waveforms have shown to be possible candidates for communication applications. Therefore, studies on the evaluation of the application of these same signals to radar functions are necessary. In this thesis, to demonstrate that other multicarrier waveforms can overcome the OFDM waveform in radar/communication (RadCom) systems, we propose the adaptation of the filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM) and universal filtering multicarrier (UFMC) waveforms for radar functions. These alternative waveforms were compared performance-wise regarding achievable target parameter estimation performance, amount of residual background noise in the radar image, impact of intersystem interference and flexibility of parameterization. In the second part of the thesis, signal processing techniques are explored to solve some of the limitations of the use of multicarrier waveforms for RadCom systems. Radar systems based on OFDM are promising candidates for future intelligent transport networks. Exploring the dual functionality enabled by OFDM, we presents cooperative methods for high-resolution delay-Doppler and direction-of-arrival estimation. High-resolution parameter estimation is an important requirement for automotive radar systems, especially in multi-target scenarios that require reliable target separation performance. By exploring the cooperation between vehicles, the studies presented in this thesis also enable the distributed tracking of targets. The result is a highly accurate multi-target tracking across the entire cooperative vehicle network, leading to improvements in transport reliability and safety.O foco desta tese é o processamento de sinais e desenvolvimento de algoritmos que podem ser utilizados para a habilitar a função de radar nos sistemas de comunicação. OFDM (Orthogonal Frequency Division Multiplexing) é uma forma de onda com modulação multi-portadora, popular em sistemas de comunicação. Para sistemas de radar, O OFDM melhora a resolução e fornece eficiência espectral, além disso sua diversidade de frequências melhora o desempenho na detecção do radar. Essa tese tem como objetivo utilizar formas de onda multi-portadoras para sistemas de radar, possibilitando a operação simultânea de funções de radar e de comunicação num mesmo dispositivo. A tese esta dividida em duas partes. Na primeira parte da tese são realizados estudos da adaptabilidade de outras formas de onda multi-portadora para funções de radar. Nos dias atuais, muitos estudos sobre o uso do sinal OFDM para funções de comunicação e radar vêm sendo realizados, no entanto, outras formas de onda mostram-se possíveis candidatas a aplicações em sistemas de comunicação, e assim, avaliações para funções de sistema de radar se tornam necessárias. Nesta tese, com a intenção de demonstrar que formas de onda multi-portadoras alternativas podem superar o OFDM nos sistemas de Radar/comunicação (RadCom), propomos a adaptação das seguintes formas de onda: FBMC (Filter Bank Multicarrier); GFDM (Generalized Frequency Division Multiplexing); e UFMC (Universal Filtering Multicarrier) para funções de radar. Também produzimos uma análise de desempenho dessas formas de onda sobre o aspecto da estimativa de parâmetros-alvo, ruído de fundo, interferência entre sistemas e parametrização do sistema. Na segunda parte da tese serão explorados técnicas de processamento de sinal de forma a solucionar algumas das limitações do uso de formas de ondas multi-portadora para sistemas RadCom. Os sistemas de radar baseados no OFDM são candidatos promissores para futuras redes de transporte inteligentes, porque combinam funções de estimativa de alvo com funções de rede de comunicação em um único sistema. Explorando a funcionalidade dupla habilitada pelo OFDM, nesta tese, apresentamos métodos cooperativos de alta resolução para estimar o posição, velocidade e direção dos alvos. A estimativa de parâmetros de alta resolução é um requisito importante para sistemas de radar automotivo, especialmente em cenários de múltiplos alvos que exigem melhor desempenho de separação de alvos. Ao explorar a cooperação entre veículos, os estudos apresentados nesta tese também permitem o rastreamento distribuído de alvos. O resultado é um rastreamento multi-alvo altamente preciso em toda a rede de veículos cooperativos, levando a melhorias na confiabilidade e segurança do transporte.Programa Doutoral em Telecomunicaçõe
    corecore