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Abstract: The OFDM chirp signal is suitable for MIMO radar applications due to its large time-
bandwidth product, constant time-domain, and almost constant frequency-domain modulus. Partic-
ularly, by introducing the time-frequency structure of the non-linear frequency modulation (NLFM)
signal into the design of an OFDM chirp waveform, a new OFDM-NLFM waveform with low peak
auto-correlation sidelobe ratio (PASR) and peak cross-correlation ratio (PCCR) is obtained. IN-OFDM
is the OFDM-NLFM waveform set currently with the lowest PASR and PCCR. Here we construct
the optimization model of the OFDM-NLFM waveform set with the objective function being the
maximum of the PASR and PCCR. Further, this paper proposes an OFDM-NLFM waveform set
design algorithm inspired by alternating optimization. We implement the proposed algorithm by
the alternate execution of two sub-algorithms. First, we keep both the sub-chirp sequence code
matrix and sub-chirp rate plus and minus (PM) code matrix unchanged and use the particle swarm
optimization (PSO) algorithm to obtain the optimal parameters of the NLFM signal’s time-frequency
structure (NLFM parameters). Next, we keep current optimal NLFM parameters unchanged, and
optimize the sub-chirp sequence code matrix and sub-chirp rate PM code matrix using the block
coordinate descent (BCD) algorithm. The above two sub-algorithms are alternately executed until
the objective function converges to the optimal solution. The results show that the PASR and PCCR
of the obtained OFDM-NLFM waveform set are about 5 dB lower than that of the IN-OFDM.

Keywords: OFDM; MIMO radar; NLFM; alternating optimization; particle swarm optimization
(PSO); block coordinate descent (BCD); cross-correlation function; auto-correlation function sidelobe;
sub-chirp rate

1. Introduction

Multiple-input multiple-output (MIMO) radar uses waveform diversity techniques to
improve power efficiency, clutter suppression ability, and other performances. A monostatic
MIMO radar with M transmitting/receiving antennas is shown in Figure 1. The M signals
transmitted by the M antennas are different. The echo of all transmitted signals are collected
by each receiving antenna. MIMO diversity gain is achieved by an ideal separation of
the echo. The filter hm, m = 1, 2, . . . , M is matched to the m-th transmit signal. The echo
from the other M-1 transmitted signals causes correlation interference at the output of
hm. A MIMO waveform set is orthogonal when the cross-correlation function between
any pair of M transmit signals is zero. Although orthogonality is not achievable within a
limited time-bandwidth product, a low cross-correlation is achievable. Furthermore, the
sidelobe of the auto-correlation of the waveform set should be lowered to improve pulse
compression performance. The research of the MIMO radar waveform design focuses
on reducing the peak of auto-correlation function sidelobe and cross-correlation function
within a limited time-bandwidth product [1]. Orthogonal frequency division multiplexing
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(OFDM) signal is suitable for application in MIMO radar systems because of its high range
resolution, high Doppler resolution, and high design freedom [2–7].
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Figure 1. A monostatic MIMO radar with M antennas for transmitting and receiving.

There has been much research on the OFDM waveform for single-input single-output
(SISO) radar systems. Initially, OFDM waveforms were used in multi-carrier FMCW radar
systems [8]. Subsequent studies of the OFDM waveform have adopted this modulation
strategy of sub-carriers in their framework. However, most existing radar OFDM wave-
forms have a non-constant time-domain modulus. As the power amplifiers of real radar
systems are generally non-linear, it is critical to reduce the peak-to-mean envelope power
ratio (PMEPR) and peak-to-average power ratio (PAPR) of OFDM waveforms. At the
same time, it is also important to optimize the performance of the auto-correlation function
and ambiguity function [9–11]. To solve this problem, practical radar systems can use
power amplifiers with higher dynamic range and linearity, but the trade-offs are higher
system cost and complexity. Several researchers have evaluated the impact of directly
limiting the amplitude of the OFDM waveform, and showed that the magnitude of noise
and interference increases [12]. Besides, the direct design of the constant envelope OFDM
waveform is another way. R. Mohseni et al. [13] and Wen-Qin Wang et al. [14] have pro-
posed several constant envelope OFDM waveforms with good correlation performance
and flexible parameter design.

In recent years, with the development of MIMO radar, there has been an increasing
number of studies on designing OFDM waveform sets for MIMO radar systems. According
to the different sub-carriers, the MIMO radar OFDM waveform sets are divided into two
categories: LFM-OFDM [15–20] and PC-OFDM [21–25]. The sub-carrier of the LFM-OFDM
waveform set is a chirp signal, and thus, the LFM-OFDM waveform set has better Doppler
tolerance. The PC-OFDM waveform set consists of multi-carrier phase-coded signals.
Comprehensive and in-depth studies on single-carrier phase-coded waveform set for
MIMO radar can be found in [26–29], and not many problems are left in the multi-carrier
case. LFM-OFDM waveform sets have better prospects in MIMO-SAR systems due to the
advantages of chirp signals [30–32]. Wen-Qin Wang [33] has designed a constant envelope
MIMO radar LFM-OFDM waveform set, termed OFDM chirp, modulated by random
sub-chirp codes. OFDM chirp waveform set has relatively high cross-correlation function
peaks [34]. If its cross-correlation peaks are reduced to a certain extent, the OFDM chirp
waveform can be applied to not only MIMO synthetic aperture radar (SAR) systems [35,36],
but also other MIMO radar systems [37]. Compared with LFM signals, non-linear frequency
modulation (NLFM) signals have a lower auto-correlation sidelobe and a larger degree of
freedom. Based on the time-frequency structure of NLFM signals, a possible approach to
suppress the correlation peaks of the OFDM chirp waveform set is to use different sub-chirp
rates, e.g., Gao et al. [38] use the time-frequency structure of the NLFM signals to construct
the sub-chirps of the OFDM chirp waveform set with lower cross-correlation peaks. The
obtained new waveform set is referred to as the OFDM-NLFM waveform set in this paper.
Since then, there have been several studies on the OFDM-NLFM waveform set [39,40].
Currently, the IN-OFDM designed by Xiang Lan et al. [41] is the OFDM-NLFM waveform
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set with the lowest peak of auto-correlation sidelobe ratio (PASR) and cross-correlation
ratio (PCCR).

This paper develops the signal model and the optimization model of the OFDM-
NLFM waveform set. The time-frequency structure of the OFDM-NLFM waveform set is
constructed by sub-chirp signals with different time-width, center frequency, and chirp
rates. After determining the number of transmitted signals of the OFDM-NLFM waveform
set, the number of sub-bands, and other system parameters, an OFDM-NLFM waveform
set is generated by the following steps. The first step is to initialize the NLFM signal’s time-
frequency structure (NLFM parameters). Then, the time-frequency structure of the NLFM
signal is divided into several sub-bands, or sub-pulses. Next, we replace the nonlinear
frequency modulation curve in each sub-band with a linear frequency modulation curve
and generate the piecewise chirp signal to approximate the NLFM signal. Finally, the
sequence order of sub-chirp signals is permutated according to the sub-chirp sequence
code matrix, and the sign of chirp rates is changed according to the sub-chirp rate plus
and minus (PM) code matrix. Especially, each row of the sub-chirp sequence code matrix
is a permutation that determines the order of the sub-chirp sequence for each transmit
signal of the OFDM-NLFM waveform set, and each element of the sub-chirp rate PM code
matrix is a 1-bit binary number that determines whether the sub-chirp signal is an up-chirp
signal or a down-chirp signal. This paper defines the objective function as the sum of the
cross-correlation functions considering that the correlation interferences from the other
transmit signals are additive.

To design the OFDM-NLFM waveform set with the lowest possible PASR and PCCR,
this paper proposes an OFDM-NLFM waveform set design algorithm based on alternating
optimization. There are both discrete code matrices and continuous NLFM parameters of
the OFDM-NLFM waveform set. The expression between the objective function and the
waveform parameters consists of time-frequency structure transformation and correlation
function calculation. Hence, the OFDM-NLFM waveform set design problem is a high-
dimensional optimization problem with a complex objective function and complicated
optimization variables. Dimensionality reduction and decomposition are efficient solutions
to a high-dimensional optimization problem with fast execution [42–44]. The method
proposed in this paper adopts the idea of the alternating direction multiplier method
(ADMM) [45], which is also known as alternating optimization. The parameters of the
OFDM-NLFM waveform set to be optimized include continuous and discrete variables.
For continuous variables, using the particle swarm optimization (PSO) algorithm [46] to
find the minimum value of the complex objective function is simple and efficient. For
discrete variables, it is difficult to find the optimal solution analytically since the sub-chirp
sequence code matrix and the sub-chirp rate PM code matrix are unconstrained. The
coordinate descent (CD) algorithm [47] is efficient to solve the unconstrained optimization
problem. Inspired by the CD algorithm, a new block coordinate descent (BCD) algorithm
is proposed to find the optimal solution of the sub-chirp sequence code matrix and the
sub-chirp rate PM code matrix. In this method, the optimization parameter matrices are
divided into blocks according to different transmit signals that they determine. In short,
the OFDM-NLFM waveform set design algorithm based on alternating optimization is
composed of two sub-algorithms; the PSO algorithm optimizes the continuous NLFM
parameters, and the BCD algorithm optimizes the sub-chirp sequence code matrix and the
sub-chirp rate PM code matrix. After either of the two sub-algorithms has been executed,
the optimal result is passed to the other sub-algorithm, ensuring that the objective function
decreases monotonically until it converges.

This paper develops the signal model and parameter optimization model of the
OFDM-NLFM waveform set. A novel OFDM-NLFM waveform set design algorithm
based on alternating optimization is proposed. With the same system parameters as the
current optimal IN-OFDM waveform, the PASR and PCCR of the obtained waveform
set are about 5 dB lower than that of the IN-OFDM. The rest of this paper is organized
as follows. Section 2 introduces the signal model of the OFDM-NLFM waveform set
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and establishes the mathematical model of MIMO radar OFDM-NLFM waveform set
optimization design problem. Section 3 presents the details of the OFDM-NLFM waveform
set design algorithm based on alternating optimization. Section 4 performs numerical
simulations under different system parameters. The results are compared with the current
optimal OFDM-NLFM waveform set, IN-OFDM. The influences of different parameters on
the algorithm design results are analyzed. Section 5 is the conclusion.

2. Signal Model and Optimization Model
2.1. OFDM-NLFM Waveform Set Signal Model

Consider a monostatic MIMO radar with M antennas for transmitting and receiving.
An OFDM-NLFM waveform set can be generated as follow. (1) construct the time-frequency
structure of the piecewise chirp signal that approximates the origin NLFM signal. Note
that the sub-chirp signals of the piecewise chirp signal have different sub-chirp rates and
bandwidths. (2) minimize the cross-correlation function by adjusting the sub-chirps order
in the time-frequency structure of the piecewise chirp signal. Therefore, the parameters
of the OFDM-NLFM waveform set consist of two parts; for each transmit signal, one part
is NLFM parameters that control the time-frequency structure, and another part is the
sub-chirp sequence code matrix and the sub-chirp rate PM code matrix that controls the
order of sub-chirp sequence and the sub-chirp rates, respectively.

Figure 2 is the time-frequency structure of one of the M transmit signals of the OFDM-
NLFM waveform set. Each signal of the OFDM-NLFM waveform set is generated by a
time-imitating and sub-chirp rate transforming of a piecewise chirp signal. In this figure,
the number of sub-pulses and sub-bands is set to N = 8. T represents pulse duration. fL and
fH represent the highest and lowest signal frequency, respectively. The red curve on the left
represents the time-frequency structure of the original NLFM signal, and the green broken
line that approximates the red curve represents the time-frequency structure of the cor-
responding piecewise chirp signal. The values of t0, t1, . . . , t8 and f0, f1, . . . , f8 in Figure 2
determine the segmentation points of the time-frequency structure curve. Subsequently,
the sequence order of the sub-chirp signals is permutated, and the signs of the sub-chirp
rates are adjusted. It is noticed that permutating the sequence order of the sub-chirp signals
can be completed in both the time and frequency domain.
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Figure 2. The time-frequency structure of one of M transmit signals of the OFDM-NLFM waveform set.

The first step to constructing the signal shown in Figure 2 is to generate an NLFM
signal and a piecewise chirp signal. The time-frequency structure of the NLFM signal
depends on its signal model and parameters. Based on the time-frequency structure of
the chirp signal, we generate the time-frequency curve f (t) of the NLFM signal by adding
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several sine function items whose amplitude is controlled by parameters [48]. The time-
frequency structure curve established in this way is defined as{

y(x) = B
T x + a · B

π sin( 2π
T x) + b · B

π sin( 4π
T x)

f (t) = y(t− t0 − T
2 )

, (1)

where a and b are adjustable parameters. t and f represent the time and instantaneous
frequency, respectively, t0 ≤ t ≤ t0 + T and f0 ≤ f ≤ f0 + B. The time-frequency curve
is limited to a rectangle with a bandwidth of B = fH − fL and time width T. One way
to determine the segmentation points of the time-frequency curve is to set time domain
segmentation points, which can be expressed as

fn = f (tn), n = 0, 1, 2, . . . , N. (2)

Another way is to set frequency segmentation points at first. The segmentation points
of the time-frequency curve are determined according to the reverse function of f (t) in
Equation (1), expressed as

tn = f−1( fn), n = 0, 1, 2, . . . , N, (3)

where f−1 represents the reverse function of f (t). Numerical methods can be adopted
when the reverse function is difficult to solve. Equations (2) and (3) show that any two
of the three, which are the NLFM parameters, time-domain segmentation points, and
frequency-domain segmentation points, determine the time-frequency structure of the
piecewise chirp signal. According to the obtained time-frequency structure, the time width,
sub-chirp rate, and the carrier frequency of each sub-chirp signal can be determined. The
time width is

Tn = tn − tn−1, n = 1, 2, . . . , N. (4)

The sub-chirp rate is

kn =
Bn

Tn
=

fn − fn−1

tn − tn−1
, n = 1, 2, . . . , N. (5)

The center frequency of each sub-band is

fcn =
1
2
( fn + fn−1), n = 1, 2, . . . , N. (6)

The sign of the sub-chirp rate is a vector defined as

α = [α1, . . . , αn, . . . , αN ], αn ∈ {1,−1}. (7)

According to Equations (4)–(7), the complex expression of each sub-chirp signal is

sn(t) = exp(jπαnknt2) · exp(j2π fcnt), t ∈
[
−Tn

2
,

Tn

2

)
. (8)

The sub-chirp signals sn(t) of a piecewise chirp signal are shown in Equation (8). As
shown in Figure 2, the time-imitation of the piecewise chirp signal is required to obtain
each of the M transmit signals of the OFDM-NLFM waveform set. The sub-chirp sequence
code that determines the order of the time-imitation is defined as

β = [β1, β2, . . . , βN ], (9)

where β1, β2, . . . , βn, . . . , βN is a permutation of 1, 2, . . . , N. Note that the n-th sub-chirp
signal after the time-imitation equals the βn-th sub-chirp signal before the time-imitation.
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For the convenience of derivation, let t0 = 0 in the following. The expression of one of M
transmit signals of the OFDM-NLFM waveform set is

s(t) =
N

∑
n=1

rect(
t + 1

2 Tβn −∑n
i=1 Tβi

Tβn

)sβn(t +
1
2

Tβn −
n

∑
i=1

Tβi ), (10)

where rect(x) is the rectangular window function

rect(x) =
{

1 |x| ≤ 0.5
0 |x| > 0.5

. (11)

For the OFDM-NLFM waveform set with M transmit signals, we have the following
waveform parameters:

(1) A total of M groups time-frequency structure curve parameters of the NLFM signal
(NLFM parameters) can be defined as

[(a1, b1), (a2, b2), . . . , (aM, bM)]. (12)

(2) Segmentation points parameters in the time domain or frequency domain. The
segmentation points and the NLFM parameters in Equation (12) determine the sub-
chirp rate, center frequency, time width, and bandwidth of the sub-chirp signal in
the sub-band. For the m-th transmit signal, the time domain segmentation points are
tm
1 , tm

2 , . . . , tm
n , . . . , tm

N M groups segmentation parameters can be defined as
t1
1 t1

2 · · · t1
N

t2
1 t2

2 · · · t2
N

...
...

. . .
...

tM
1 tM

2 · · · tM
N

. (13)

(3) The sub-chirp sequence code matrix and the sub-chirp rate PM code matrix. Both
matrices are composed of M row vectors. The meaning of every element of the matrix
can be seen in Equations (7) and (9). The two matrices can be defined in Equation
(14), where αm

n ∈ {1,−1}, m = 1, 2, . . . , M, βm
1 , βm

2 , . . . , βm
n , . . . , βm

N is a permutation of
1, 2, . . . , N.

C1 =


α1

1 α1
2 · · · α1

N
α2

1 α2
2 · · · α2

N
...

...
. . .

...
αM

1 αM
2 · · · αM

N

, C2 =


β1

1 β1
2 · · · β1

N
β2

1 β2
2 · · · β2

N
...

...
. . .

...
βM

1 βM
2 · · · βM

N

. (14)

According to the above three groups’ parameters, the expression of the m-th transmit
signal of the MIMO radar OFDM-NLFM waveform set is

sm(t) =

 ∑N
n=1 rect

(
t+ 1

2 Tm
βm

n
−∑n

i=1 Tm
βm

i
Tm

βm
n

)
sm

βm
n
(t + 1

2 Tm
βm

n
−∑n

i=1 Tm
βm

i
) , 0 ≤ t ≤ T

0 , others
, (15)

where m = 1, 2, . . . , M, and each sub-chirp signal is defined as

sm
β (t) = exp(jπαm

β km
β t2) · exp(j2π f m

cβt), t ∈
[
−

Tm
β

2
,

Tm
β

2

)
, β = βm

n , (16)

where km
β , f m

cβ, Tm
β can be calculated according to Equations (3)–(6).
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2.2. MIMO Radar Waveform Set Performance Evaluation

For a MIMO radar waveform set with M transmit signals, the aperiodic auto- and
cross-correlation function for each pair of signals are

Ri(t) =
∫ T

−T
si(s)s∗i (s− t)ds, i ∈ {1, 2, . . . , M}, (17)

Rij(t) =
∫ T

−T
si(s)s∗j (s− t)ds, i 6= j and i, j ∈ {1, 2, . . . , M}, (18)

where Ri(t) represents auto-correlation function and Rij(t) represents cross-correlation
function. In a real MIMO radar system, the echo of all transmit signals enters into each
matched filter. Therefore, the waveform set performance should be a cross-correlation
function between the sum signal of the other transmit signals and itself. Here we define
the correlation functions for MIMO radar as follows.

ARi(t) =
∫ T

−T
si(s)si∗(s− t)ds, i ∈ {1, 2, . . . , M}, (19)

CRi(t) =
∫ T

−T
si(s)

[
∑

1≤j≤M,j 6=i
sj∗(s− t)

]
ds, i ∈ {1, 2, . . . , M}, (20)

where ARi(t) and CRi(t) represent auto- and cross-correlation function of the i-th transmit
signal of the waveform set. Ideal orthogonality means CRi(t) = 0 for any t and i in
Equation (20), which is not achievable. In order to optimize the orthogonality and pulse
compression performance of the OFDM-NLFM waveform set, the following indicators are
optimized by the proposed OFDM-NLFM waveform set design algorithm.

PASR = max
1≤i≤M

10 log10

 max
t

|t| ≥ w

∣∣∣∣ ARi(t)
ARi(0)

∣∣∣∣2
 dB, (21)

PCCR = max
1≤i≤M

10 log10

(
max

t

∣∣∣∣ CRi(t)
ARi(0)

∣∣∣∣2
)

dB. (22)

In Equations (21) and (22), ARi(0) is the peak value of the auto-correlation function,
and w is the width of the auto-correlation mainlobe. PASR is the peak auto-correlation
sidelobe ratio, and PCCR is the peak cross-correlation ratio. The waveform set performs
better when its values are lower.

2.3. OFDM-NLFM Waveform Set Optimization Model

Based on the signal model of the OFDM-NLFM waveform set and MIMO radar cor-
relation function performance indicators, this section establishes the optimization model
for the OFDM-NLFM waveform set. The solution space of this optimization problem
consists of the OFDM-NLFM waveform set parameters, including the NLFM parameters,
the sub-chirp sequence code matrix, and the sub-chirp rate PM code matrix. Here we
do not optimize the segmentation parameters. One reason is that the dimension of the
optimization variable will be much higher if the segmentation parameters are included.
Another reason is that it is tricky to optimize it using the existing continuous parameter op-
timization method, as the mapping between time-frequency segmentation parameters and
the objective function is very complicated. Therefore, the optimization model established
in this paper does not consider the time-frequency segmentation parameters.

The solution space and optimization variables of the optimization problem are mod-
eled as
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X = (X1, X2, X3) ∈ Ω

X1 =

[
a1
b1

a2
b2

· · ·
· · ·

aM
bM

]
, X2 =


α1

1 α1
2 · · · α1

N
α2

1 α2
2 · · · α2

N
...

...
. . .

...
αM

1 αM
2 · · · αM

N

, X3 =


β1

1 β1
2 · · · β1

N
β2

1 β2
2 · · · β2

N
...

...
. . .

...
βM

1 βM
2 · · · βM

N


. (23)

The solution space Ω is composed of three independent sub-spaces, and its optimiza-
tion variable X is divided into three parts corresponding to the OFDM-NLFM waveform
set parameters shown in Equations (12) and (14).

According to the definition of the solution space and the OFDM-NLFM waveform set,
the mapping from the solution space to the objective function domain is described as

F (X) = F2(s) = F2(F1(X))
F2(s) = max{PASR(s), PCCR(s)}
s = s(t) =

[
s1(t), s2(t), . . . , sM(t)

]
∈ S

, (24)

where F2 represents the mapping from the waveform set s(t) to the objective function. The
two performance indicators, PASR and PCCR, are actually functions of s(t). F1 represents
the mapping from the solution space Ω to the signal space S. According to the definition of
the solution space and objective function, the OFDM-NLFM waveform set optimization
problem of MIMO radar is modeled as

min
X
F (X) = F2(F1(X)) = F2(2(1(0(X1, t1, t2, . . . , tN), X2), X3))

s.t. X = (X1, X2, X3) ∈ Ω
, (25)

where F (X) is the objective function. Ω is the solution space. X is an optimization
variable satisfying the constraint conditions in Equation (23). 0 represents the mapping
from the solution space Ω to the space of piecewise chirp signal. t1, t2, . . . , tn, . . . , tN are
the time-domain segmentation parameters. 1 and 2 are sub-chirp rate transformation
and time-imitation for the piecewise chirp signal obtained by 0, respectively. X2 controls
the sign of the sub-chirp rate in each sub-bands. X3 controls the sequence order of each
sub-chirp signal. In short, the optimized objective function value F (X) is obtained by first
mapping every variable X in the solution space Ω to the waveform set space S, and then
mapping the obtained OFDM-NLFM waveform set to the objective function domain.

3. OFDM-NLFM Waveform Set Design Algorithm Based on Alternating Optimization

In the above-mentioned MIMO radar OFDM-NLFM waveform set optimization prob-
lem, the solution space is of high dimension, and its objective function is complex. This
paper proposes an OFDM-NLFM waveform set design algorithm based on alternating
optimization. Especially, we divide the solution space into sub-spaces according to its
characteristics, and the optimization problem in sub-spaces is viable to solve.

For an OFDM-NLFM waveform set with M transmit signals, each of which has N
sub-chirp signals, the optimization variable X includes three parts. X1 is NLFM param-
eters consisting of 2M continuous variables. X2 is a matrix consisting of MN binary bits,
with 2MN different values. X3 consists of M permutations, with a total of (N!)M different
values. Thus the dimension of the solution space Ω is very high, and the structure of the
optimization variable is complex containing continuous, discrete variables and permu-
tations. To map from the solution space to the objective function domain, we first map
the solution space to the waveform, and then calculate the performance indicators of the
MIMO waveform set. A difficulty is that the simple auto- and cross-correlation functions
are not elementary functions, but instead the functionals of the waveform set. To conclude,
the objective function does not possess good properties such as continuity and derivability.
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The OFDM-NLFM waveform set optimization problem defined in Equation (25) is an NP-
hard constrained optimization problem with mixed discrete and continuous optimization
variables. Its objective function is nonlinear, nonconvex, and non-differentiable. In this
case, the common linear programming, continuous optimization, and convex optimization
methods fail, and the other optimization design algorithms for the MIMO radar waveform
set cannot apply to the OFDM-NLFM waveform set as they are limited to its specific
waveform set.

As the objective function is difficult to be simplified, the most direct approach is
to separate discrete variables from continuous variables. Alternating optimization is a
computational framework to solve high-dimensional optimization problems [45]. Alter-
nating optimization decomposes the large global problem into smaller and easier-solved
sub-problems by coordinate decomposition and obtains the solution of the global prob-
lem by combining the solutions of the sub-problems. The OFDM-NLFM waveform set
design algorithm proposed by this paper is based on the idea of alternating optimization.
If we keep the continuous variables unchanged and optimize the discrete variables, the
problem is a combinatorial optimization problem. Instead, if we keep the discrete vari-
ables unchanged, the problem is a continuous optimization problem. This paper selects
appropriate optimization sub-algorithms to solve each of the two problems. After one
sub-algorithm has been executed, the current optimal solution is passed to the input of the
other sub-algorithm.

The optimization of the discrete variable of the OFDM-NLFM waveform set is an
unconstrained combinatorial optimization problem. Since the dimension of the discrete
variable is very large, it is not feasible to find the global optimal solution accurately.
Thus, the CD algorithm can be used to solve the unconstrained optimization problem by
conducting approximate minimization along the coordinate direction or in the coordinate
hyperplane [47]. This paper optimizes the sub-chirp sequence code matrix and the sub-
chirp rate PM code matrix based on the idea of the CD algorithm. The CD algorithm is fast
in execution, but its optimization result could be unstable. To balance the efficiency and
stability of the CD algorithm, the parameter matrices are divided into blocks according
to the different transmit signals that they determine. Each row of the sub-chirp sequence
code matrix and the sub-chirp rate PM code matrix corresponds to each transmit signal of
the OFDM-NLFM waveform set. The BCD algorithm optimizes one row of the matrix with
the other rows remaining unchanged. In this way, it can greatly reduce the computational
complexity of the algorithm when optimizing the high dimensional matrices.

The intelligent optimization algorithm is a simple and direct solution for the continu-
ous parameters of the OFDM-NLFM waveform set, considering that the objective function
is very complex and difficult to be simplified and transformed. The PSO algorithm is a
random search algorithm originally inspired by the foraging behavior of birds [46]. It is
found to be suitable for dealing with high-dimensional continuous variable optimization
problems with the complex objective function. Hence, in this paper, the PSO algorithm is
used to optimize NLFM parameters.

The overall block diagram of the proposed OFDM-NLFM waveform set design algo-
rithm is shown in Figure 3, and the specific steps of the algorithm are as follows.
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Step 1: Select the initial NLFM parameters and construct M time-frequency curves
according to Equation (1). The sub-chirp rate PM code matrix with MN elements is
generated by random binary numbers. The sub-chirp sequence code matrix is generated
by M random permutations. M is the number of transmit signals, and N is the number of
the sub-chirp signals of each transmit signal.

Step 2: After the parameter initialization step, the time domain segmentation parame-
ters in Equation (13) should be set properly.

Step 3: After the initial waveform has been obtained, keep the sub-chirp rate PM code
matrix and sub-chirp sequence code matrix unchanged. Optimize NLFM parameters using
the PSO algorithm and obtain the current optimal NLFM parameters. Before executing, the
PSO algorithm, population size, the maximum number of iterations, and other parameters
should be set properly.

Step 4: Keep the current optimal NLFM parameters obtained in step 3 unchanged,
sub-chirp rate PM code matrix and sub-chirp sequence code matrix are optimized based
on the BCD algorithm. Firstly, the matrix to be optimized is divided into several small
blocks. Secondly, each block is optimized in turns with other blocks unchanged. Finally,
the current optimal sub-chirp rate PM code matrix and sub-chirp sequence code matrix are
obtained.

Step 5: If the difference between the objective function values before and after step 3
and step 4 is lower than the threshold, the optimization algorithm converges. Output the
current optimal NLFM parameters, sub-chirp rate PM code matrix, and sub-chirp sequence
code matrix. Otherwise, jump to step 3 and continue.

The specific implementation of the above steps is described in the following. Section 3.1
introduces the initialization of OFDM-NLFM waveform set parameters. Section 3.2 in-
troduces the optimization of NLFM parameters based on the PSO algorithm. Section 3.3
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introduces the optimization of sub-chirp rate PM code matrix and sub-chirp sequence code
matrix based on the BCD algorithm.

3.1. OFDM-NLFM Waveform Set Parameter Initialization

The principle of the parameter initialization for the OFDM-NLFM waveform set is
to make the peak of the auto-correlation function sidelobe low. The NLFM parameters in
Equation (12) affect the peak of the auto-correlation function sidelobe, measured by the
PASR in Equation (21). In order to help select the appropriate initial values of the NLFM
parameters, this section traverses the parameter value in a certain range to test its impact
on the PASR. The PASR is also affected by the sub-chirp rate PM code matrix and sub-chirp
sequence code matrix. Therefore, in this section, the PASR of M transmit signals is tested
under several groups of random initialed sub-chirp rate PM code matrices and sub-chirp
sequence code matrices. For each group of the matrices, the test goes through all the values
of NLFM parameters with a ∈ (−0.9, 0.9), b ∈ (−1, 1).

Set M = 1 in Equations (12) and (21) because a bigger M is not necessary when PCCR is
not analyzed. The PASR under two different groups of sub-chirp rate PM code matrices and
sub-chirp sequence code matrices are shown in Figures 4 and 5. The results show that the
PASR is lower when the NLFM parameters are in the interval of a ∈ (0, 0.9), b ∈ (−0.2, 0.2).
Thus, the initial values of NLFM parameters should be selected from the above interval. It
can be seen from Figures 4 and 5 that different sub-chirp rate PM code matrix and sub-chirp
sequence code matrix have little impact on PASR. Therefore, we set the NLFM parameters
to the random numbers in the above interval, and generate initial values of the sub-chirp
rate PM code matrix and sub-chirp sequence code matrix using random numbers and
permutations. The initial solution of the optimization X(0) is defined as follows.

X(0) = (X(0)
1 , X(0)

2 , X(0)
3 ) ∈ Ω, (26)
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3.2. NLFM Parameters Optimization Based on PSO

Every time after initializing the OFDM-NLFM waveform set parameters or executing
of one iteration of alternating optimization, the PSO algorithm is used to optimize the
NLFM parameters. According to Equation (23), the number of NLFM parameters is 2M.
Thus the particle dimension is 2M. The interval of the NLFM parameters is a ∈ (0, 0.9), b ∈
(−0.2, 0.2). According to the global optimization model in Equation (25), the optimization
model of the PSO algorithm can be expressed as

min
X1

G(X1) = F
(

X1, X(k)
2 , X(k)

3

)
= F2

(
2

(
1

(
0(X1, t1, t2, . . . , tN), X(k)

2

)
, X(k)

3

))
s.t. X1 =

[
a1
b1

a2
b2

· · · am · · ·
· · · bm · · ·

aM
bM

]
am ∈ (0, 0.9), bm ∈ (−0.2, 0.2)

, (27)

where G(X1) represents the objective function of the PSO. X(k)
2 and X(k)

3 represents the
current optimal sub-chirp rate PM code matrix and sub-chirp sequence code matrix after
the k-th iteration of the alternating optimization. Note that they are the initial solution
described in Equation (26) when k = 0. Since the PSO algorithm is executed iteratively, the
initial population of the k+1-th iteration should include the optimal NLFM parameters in
the k-th iteration. Thus, the population of the k+1-th iteration is initialized as

P(k+1)
0 =

{
p1, p2, p3, . . . , pq

}
, (28)

where P(k+1)
0 is the initial population. q is the number of particles. p1 = X(k)

1 is assigned
to the optimal solution after the k-th execution of the PSO. The rest of the particles are
initialized by random numbers. Initializing the population in this way ensures the current
best solution to be passed to the next generation. After the k+1-th PSO algorithm has been
executed, the optimal solution can be expressed as

X(k+1)
1 = pbest ∈ P(k+1)

G , (29)

where P(k+1)
G represents the G-th generation population after the k+1-th execution of PSO.

G is the maximum generation of the PSO algorithm. pbest is the optimal solution, and the
current optimal NLFM parameter is X(k+1)

1 . Recall that before each execution of the PSO
algorithm, the NLFM parameters, sub-chirp rate PM code matrix, and sub-chirp sequence
code matrix are set to the current optimal values to ensure that the objective function
decreases monotonously.
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3.3. Sub-Chirp Rate PM and Sub-Chirp Sequence Code Matrix Optimization Based on BCD

After obtaining current optimal NLFM parameters by the PSO, the next step of the
OFDM-NLFM waveform set design algorithm is to optimize the sub-chirp rate PM code
matrix and sub-chirp sequence code matrix. This task is an unconstrained combinatorial
optimization problem that can be expressed as

min
X2,X3
H(X2, X3) = F

(
X(k+1)

1 , X2, X3

)
= F2

(
2

(
1

(
0

(
X(k+1)

1 , t1, t2, . . . , tN

)
, X2

)
, X3

))
s.t. (X(k+1)

1 , X2, X3) ∈ Ω
, (30)

where H(X2, X3) is the objective function of the BCD algorithm. The solution space of
the optimization variables is a subspace of the solution space Ω. The goal of the above
optimization is to obtain the optimal sub-chirp rate PM code matrix and sub-chirp sequence
code matrix under the current optimal NLFM parameters. The optimal solutions are
expressed as X(k+1)

2 , X(k+1)
3 which satisfy

F
(

X(k+1)
1 , X(k+1)

2 , X(k+1)
3

)
≤ F

(
X(k+1)

1 , X(k)
2 , X(k)

3

)
, (31)

where X(k)
2 and X(k)

3 are the optimal values of the sub-chirp rate PM code matrix and sub-chirp
sequence code matrix after the k-th execution of the sub-algorithm. These two current optimal
values are also the initial solutions of the k+1-th optimization. The optimization algorithm
based on BCD proposed in this section is mainly built on the coordinate descent algorithm.
The two code matrices are divided into smaller blocks. Each time we update one element
or one block of the matrix, the values of the other elements are fixed. Considering that each
row of the matrix corresponds to each transmit signal of the OFDM-NLFM waveform set, the
above two matrices can be divided into M blocks according to different rows.

X2 =
[

α1 α2 · · · αM ]T

αm =
[

αm
1 αm

2 · · · αm
N
]T

αm
n ∈ {1,−1}, m = 1, 2, . . . , M, n = 1, 2, . . . N

, (32)


X3 =

[
β1 β2 · · · βM ]T

βm =
[

βm
1 βm

2 · · · βm
N
]T

βm
1 , βm

2 , . . . , βm
Nis a permutation of1, 2, . . . , N, m = 1, 2, . . . , M

. (33)

The blocks of the above-mentioned matrix are divided as shown in Equations (32) and
(33). In the BCD algorithm, one row of the matrix is updated with the rows corresponding
to the other transmit signals unchanged. Each row of the matrices is updated alternately.
Therefore, the optimization algorithm proposed in this paper is composed of the two layers
of loops:

Outer loop: Update the m-th row vector αm of X(k)
2 and βm of X(k)

3 . The values of the
other row vectors remain unchanged. The 1, 2, . . . , M-th row of the matrices are updated
alternately until the objective function converges.

Inner loop: Update the n-th column of the row vector αm and βm, keeping the other
columns unchanged. The 1, 2, . . . , N-th columns are updated alternately.

Therefore, the original high-dimensional optimization problem shown in Equation (30)
is equal to solving several low-dimensional optimization problems. The optimization
variable after the i-th outer loop is

X2, (i) =
[

α1
(i) α2

(i) · · · αM
(i)

]T

X3, (i) =
[

β1
(i) β2

(i) · · · βM
(i)

]T , (34)

where X2, (0) = X(k)
2 and X3, (0) = X(k)

3 . The outer loop execution can also be summarized
as a minimization problem as follows.
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min
αm ,βm

H
(

αm, βm,
[
α1
(i), α2

(i), . . . , αm−1
(i) , αm+1

(i) , . . . , αM
(i)

]
,
[

β1
(i), β2

(i), . . . , βm−1
(i) , βm+1

(i) , . . . , βM
(i)

])
s.t. αm ∈ {1,−1}N , βm ∈ GN

, (35)

where {1,−1}N is the set of the binary row vectors whose length are N. GN is the set of all
possible permutations of 1, 2, . . . , N. The number of the element of the set is N! and the
optimization solution is expressed as

X∗2, (i+1) =
[
α1
(i), α2

(i), . . . , αm−1
(i) , αm

∗ , αm+1
(i) , . . . , αM

(i)

]
X∗3, (i+1) =

[
β1
(i), β2

(i), . . . , βm−1
(i) , βm

∗ , βm+1
(i) , . . . , βM

(i)

] , (36)

where αm
∗ and βm

∗ are the optimal row vectors, X∗2, (i+1) and X∗3, (i+1) is the optimal code
matrices of the i+1-th iteration. In the next iteration, we change the value of m and optimize
another row of the sub-chirp rate PM code matrix and sub-chirp sequence code matrix.
The process of the outer loop can be summarized in Algorithm 1.

Algorithm 1: Block coordinate descent algorithm for X2 and X3

Input: Initial solution X(k)
2 , X(k)

3 .

Output: Optimal solution X(k+1)
2 , X(k+1)

3 .

Step 1: m = 1, i = 0, X2, (0) = X(k)
2 , X3, (0) = X(k)

3 .
Step 2: Update the m-th row vector αm

(i) of X2, (i) and βm
(i) of X3, (i). Input it to Algorithm 2 whose

output is the optimal row vector αm
∗ and βm

∗ .

Step 3:

 X2, (i+1) =
[
α1
(i), α2

(i), . . . , αm−1
(i) , αm

∗ , αm+1
(i) , . . . , αM

(i)

]
X3, (i+1) =

[
β1
(i), β2

(i), . . . , βm−1
(i) , βm

∗ , βm+1
(i) , . . . , βM

(i)

]
Step 4: i = i + 1. If m > M is true, m = 1, otherwise m = m + 1.
Step 5: Calculate the objective function using X2, (i) and X3, (i). If the value of the objective

function is not decreasing, X(k+1)
2 = X2, (i), X(k+1)

3 = X3, (i) and the optimal matrix is obtained,
otherwise jump to Step 2 and continue.

The inner loop calculates the optimal value of αm
∗ , βm

∗ . Similarly, denote j be iteration
counter, and the row vector after the j+1-th iteration can be expressed as

αm, (j+1) =
[

α
m, (j)
1 α

m, (j)
2 · · · α

m, (j)
N

]
βm, (j+1) =

[
β

m, (j)
1 β

m, (j)
2 · · · β

m, (j)
N

] . (37)

When j continues to increase until the value of the objective function converges, and
the obtained optimal solution is αm

∗ , βm
∗ . In order to describe the update of the time-

frequency code matrix, consisting of M permutations, the exchange operation of the row
vector or the permutation is defined as follows

βm, (j+1)•(Nb, Na) =
[

β
m, (j)
1 , . . . , β

m, (j)
b , . . . , β

m, (j)
a , . . . , β

m, (j)
N

]
, (38)

where •(Na, Nb) represents the exchange of the a-th and b-th column of the row vector.
According to the definition of the exchange operator, the update algorithm of the row
vector can be summarized as in Algorithm 2.
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Algorithm 2: The update algorithm for the m-th row of X2 and X3

Input: Current optimal row vectors αm
(i), βm

(i) from Algorithm 1.
Output: Optimal row vectors αm

∗ , βm
∗ .

Step 1: n = 1, j = 0, βm, (0) = βm
(i), αm, (0) = αm

(i).

Step 2: Exchange every columns with the n-th column of βm, (j), and N new row vectors is
obtained as βm, (j)•(N1, Nn), . . . , βm, (j)•(NN , Nn).
Step 3: Calculate N objective function F1,F2, . . . ,FN using N new row vectors. Select the
minimum objective function Fl (if the l-th value is lowest) and its corresponding row vector is
optimal solution expressed as βm, (j+1) = βm, (j)•(Nl , Nn).

Step 4: The value of the n-th column of αm, (j) satisfies α
m, (j+1)
n ∈ {1,−1}. Select the one making

the objective function is the lowest and the optimal solution is αm, (j+1).
Step 5: j = j + 1. If n > N is true, n = 1, otherwise n = n + 1.
Step 6: Calculate the objective function using αm, (j), βm, (j). If the value of the objective function
is not decreasing, the optimal row vectors αm

∗ , βm
∗ is obtained, otherwise jump to Step 2 and

continue.

4. Numerical Simulation
4.1. OFDM-NLFM Waveform Set Design

This section designs the OFDM-NLFM waveform set using the proposed algorithm
based on alternating optimization in Section 3. We evaluate the performance indicators
PASR and PCCR in Equations (21) and (22) under typical radar system parameters. The
result is compared with the IN-OFDM that currently has the best correlation function
performance. The system parameters in this section are shown in Table 1. The numerical
simulations of the proposed OFDM-NLFM waveform set design algorithm are imple-
mented with MATLAB that runs on a PC with one Intel Core i7-6700 CPU and 8 GB
RAM. Numerical simulations in the subsequent sections are also implemented in the same
way. To compare with IN-OFDM, the time-domain segmentation parameters in Equation
(13) are set as tm

1 , tm
2 , . . . , tm

8 = 0.08, 0.40, 0.72, 2.80, 2.80, 0.72, 0.4, 0.08 µs. The segmentation
parameters of different transmit signals are the same when m = 1, 2, 3, 4.

Table 1. MIMO radar system parameter.

Parameters Values

Pulse Width (T) 8 µs
Sample frequency (Fs) 800 MHz

Bandwidth (B) 400 MHz
Signal Number (M) 4

Sub-band Number (N) 8

The correlation function of the IN-OFDM waveform is shown in Figure 6. The blue
curve in Figure 6 represents the auto-correlation function of the IN-OFDM waveform
set for each transmit signal, and the red curve is the cross-correlation function between
the sum of the other transmit signals and itself. Results show that PASR = −17.7259 dB,
PCCR = −16.4961 dB. The specific values of the sub-chirp rate PM code matrix and sub-
chirp sequence code matrix are shown in Table I of [41].

Under the same setting, the sub-chirp rate PM code matrix and sub-chirp sequence
code matrix obtained by the proposed OFDM-NLFM waveform set design algorithm are
shown in Tables 2 and 3. The indicator values of the optimized OFDM-NLFM waveform
set are PASR = −21.7567 dB, PCCR = −21.7806 dB. Its PASR is 4.03 dB lower than that
of the IN-OFDM waveform set. Its PCCR is 5.2845 dB lower than that of the IN-OFDM
waveform. Figure 7 is the obtained time-frequency structure of the NLFM signals and the
piecewise chirp signals. Figure 8 is the time-frequency structure of the transmit signals of
the OFDM-NLFM waveform set obtained by the proposed algorithm. The blue curve in
Figure 9 represents the auto-correlation function of the OFDM-NLFM waveform set for
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each transmit signal, and the red curve is the cross-correlation function between the sum of
the other transmit signals and itself.
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Table 2. Sub-chirp rate PM code matrix of the optimal OFDM-NLFM waveform set.

X2 Chirp 1 Chirp 2 Chirp 3 Chirp 4 Chirp 5 Chirp 6 Chirp 7 Chirp 8

Signal 1 −1 1 −1 1 −1 −1 1 −1
Signal 2 1 1 −1 −1 1 −1 1 −1
Signal 3 1 1 −1 −1 1 −1 1 −1
Signal 4 1 1 −1 1 1 1 −1 −1

Table 3. Sub-chirp sequence code matrix of the optimal OFDM-NLFM waveform set.

X3 Chirp 1 Chirp 2 Chirp 3 Chirp 4 Chirp 5 Chirp 6 Chirp 7 Chirp 8

Signal 1 6 2 4 3 7 1 8 5
Signal 2 5 2 1 3 6 7 8 4
Signal 3 7 8 2 1 5 4 3 6
Signal 4 4 3 8 6 5 1 2 7
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4.2. The Effect of Random Initialization

This section analyzes the influence of different random initial values on the final
design result. This section randomly generates 10 groups of sub-chirp rate PM code matrix
and sub-chirp sequence code matrix as the initial solution for the proposed optimization
algorithm. We calculate the MIMO waveform set correlation function indicator under the
same radar system parameters in Table 1. The time-domain segmentation parameters are
still set to tm

1 , tm
2 , . . . , tm

8 = 0.08, 0.40, 0.72, 2.80, 2.80, 0.72, 0.4, 0.08 µs. The results are shown
in Table 4.

Table 4. OFDM-NLFM waveform set design results when the segmentation parameters set to
tm
1 , tm

2 , . . . , tm
8 = 0.08, 0.40, 0.72, 2.80, 2.80, 0.72, 0.4, 0.08 µs .

Number 1 2 3 4 5

PASR −19.7342 −20.4841 −20.9608 −20.032 −20.5363
PCCR −19.7343 −20.4871 −21.0856 −20.0368 −20.7768

6 7 8 9 10
PASR −20.0301 −21.7567 −19.536 −21.1542 −20.5295
PCCR −20.3785 −21.7806 −19.7171 −21.2282 −21.1641
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Figure 9. Auto-correlation function and cross-correlation function of the transmit signals of the
OFDM-NLFM waveform set obtained by the proposed algorithm.

It can be seen from Table 4 that the average value of the PASR is −20.4754 dB and the
standard deviation is 0.6808 dB. The average value of the PCCR is −20.6389 dB, and the
standard deviation is 0.6885 dB. They are much lower than that of IN-OFDM. The standard
deviation of the 10 sets of data does not exceed 0.7 dB, which means that the result of the
proposed method is stable. The convergence curves of the objective function are shown in
Figure 10. The horizontal axis is the number of iterations. When the number of iterations
is odd, the objective function values are obtained by the PSO algorithm. When the number
of iterations is even, the objective function values are obtained by the BCD algorithm. The
objective function is max [PASR, PCCR] as in Equation (24). According to the results of
10 experiments, the initial objective function value ranges from−7.06 dB to−14.27 dB. After the
proposed algorithm has been executed, the objective function value decreases to values around
−20.00 dB. The results show that the proposed algorithm based on alternating optimization can
obtain the MIMO radar OFDM-NLFM waveform set with low PASR and PCCR.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 23 
 

 

Table 4. OFDM-NLFM waveform set design results when the segmentation parameters set to 

1 2 8
, ,..., 0.08,0.40,0.72,2.80,2.80,0.72,0.4,0.08 sm m mt t t    . 

Number 1 2 3 4 5 

PASR −19.7342 −20.4841 −20.9608 −20.032 −20.5363 

PCCR −19.7343 −20.4871 −21.0856 −20.0368 −20.7768 

 6 7 8 9 10 

PASR −20.0301 −21.7567 −19.536 −21.1542 −20.5295 

PCCR −20.3785 −21.7806 −19.7171 −21.2282 −21.1641 

It can be seen from Table 4 that the average value of the PASR is −20.4754 dB and the 

standard deviation is 0.6808 dB. The average value of the PCCR is −20.6389 dB, and the 

standard deviation is 0.6885 dB. They are much lower than that of IN-OFDM. The 

standard deviation of the 10 sets of data does not exceed 0.7 dB, which means that the 

result of the proposed method is stable. The convergence curves of the objective function 

are shown in Figure 10. The horizontal axis is the number of iterations. When the number 

of iterations is odd, the objective function values are obtained by the PSO algorithm. 

When the number of iterations is even, the objective function values are obtained by the 

BCD algorithm. The objective function is max [PASR, PCCR] as in Equation (24). Ac-

cording to the results of 10 experiments, the initial objective function value ranges from 

−7.06 dB to −14.27 dB. After the proposed algorithm has been executed, the objective 

function value decreases to values around −20.00 dB. The results show that the proposed 

algorithm based on alternating optimization can obtain the MIMO radar OFDM-NLFM 

waveform set with low PASR and PCCR. 

 

Figure 10. Convergence curve of objective function of OFDM-NLFM waveform set when randomly 

initialized. 

4.3. The Effect of Time-Domain Segmentation Parameters 

Here we keep the radar system parameters unchanged, as shown in Table 1. This 

section analyzes the influence of time-domain segmentation parameters on the results of 

the OFDM-NLFM waveform set. This section changes the time-domain segmentation 

parameters to a uniform division as 1.00 s, 1,2,...,8m

n
t  n   . The results are obtained 

after initializing 10 sets of random solutions. The PASR and PCCR values of the obtained 

waveform set are shown in Table 5. It can be seen from the results that the average value 

of the PASR obtained by the alternating optimization design is −19.0154 dB, with a 

standard deviation being 1.0923 dB. The average value of PCCR is −19.0118 dB, and the 

standard deviation is 1.0925 dB. Except for the time-domain segmentation parameters, 

other settings of the above 10 tests are the same as in Table 4. It can be seen that the av-

Figure 10. Convergence curve of objective function of OFDM-NLFM waveform set when randomly initialized.



Sensors 2021, 21, 7704 19 of 22

4.3. The Effect of Time-Domain Segmentation Parameters

Here we keep the radar system parameters unchanged, as shown in Table 1. This
section analyzes the influence of time-domain segmentation parameters on the results
of the OFDM-NLFM waveform set. This section changes the time-domain segmentation
parameters to a uniform division as tm

n = 1.00 µs, n = 1, 2, . . . , 8. The results are obtained
after initializing 10 sets of random solutions. The PASR and PCCR values of the obtained
waveform set are shown in Table 5. It can be seen from the results that the average value of
the PASR obtained by the alternating optimization design is −19.0154 dB, with a standard
deviation being 1.0923 dB. The average value of PCCR is −19.0118 dB, and the standard
deviation is 1.0925 dB. Except for the time-domain segmentation parameters, other settings
of the above 10 tests are the same as in Table 4. It can be seen that the average value of PASR
and PCCR in Table 5 is higher than that in Table 4, and the standard deviation is higher
in Table 5. Therefore, the time-domain segmentation parameters should be appropriately
selected when using the proposed algorithm to design the OFDM-NLFM waveform set.

Table 5. OFDM-NLFM waveform set design results when the segmentation parameters set to
tm
n = 1.00 µs, n = 1, 2, . . . , 8 .

Number 1 2 3 4 5

PASR −18.1208 −19.7324 −17.9071 −19.7083 −18.9741
PCCR −18.1192 −19.733 −17.9083 −19.7083 −18.937

6 7 8 9 10
PASR −18.1787 −19.8441 −18.5468 −21.2277 −17.9141
PCCR −18.1789 −19.8441 −18.5468 −21.2279 −17.9149

4.4. The Effect of MIMO System Parameters

In order to analyze the result of the proposed OFDM-NLFM waveform set design
algorithm based on alternating optimization under different MIMO system parameters,
this section changes the number of transmit signals M and the number of sub-bands N,
respectively. The bandwidth, pulse width, and sampling frequency are still the same
as in Table 1. Set the number of transmit signals M to {2,3,4}, and the number of sub-
bands N to {2,3,4,5,6,7,8}. The time-frequency segmentation parameters are set to a uniform
segmentation. The indicator values of the waveform set obtained by the proposed algorithm
are shown in Figure 11. Figure 11a shows the curve of the PASR with different M and
N, and Figure 11b shows the curve of PCCR with different M and N. From the results
in the previous section, it is known that the proposed algorithm is less affected by the
initialization. The following results are obtained by a single test. It can be seen that the
larger the M, the larger the PASR and PCCR, which match the common facts. However,
when M = 2, N = 2, PCCR is the lowest. No matter how large the N is, it seems that there
cannot be a lower cross-correlation function peak. The reason is that the cross-correlation
function between an up-chirp signal and a down-chirp signal is the lowest. When M > 2,
the larger the N is, the lower the peak value of the cross-correlation function. Furthermore,
the PASR and PCCR will increase rapidly as M increase. The design freedoms of the
OFDM-NLFM waveform set are low when M is larger than 4.
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5. Conclusions

This paper constructs a signal model of the MIMO radar OFDM-NLFM waveform set,
and the task is modeled as a complex NP-hard nonlinear and non-convex optimization
problem. To solve this optimization problem, we propose an OFDM-NLFM waveform
set design algorithm based on alternating optimization. The proposed algorithm uses the
PSO algorithm to optimize the continuous NLFM parameters and uses the BCD algorithm
to optimize the discrete sub-chirp rate PM code matrix and sub-chirp sequence code
matrix. The two sub-steps are executed alternately until the objective function converges.
The numerical simulation results show that the OFDM-NLFM waveform set designed by
the proposed optimization algorithm is better than that of currently the best IN-OFDM
waveform set. The value of PASR is 4.03 dB lower than that of the IN-OFDM waveform set.
The PCCR is 5.2845 dB lower than that of the IN-OFDM waveform set. In addition, we also
compare the obtained waveform set under different time-domain segmentation parameters
and MIMO radar system parameters. Results show that the time-domain segmentation
parameters have an influence on the results, and therefore a proper selection is required.
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