5 research outputs found

    Parameterized Complexity of Critical Node Cuts

    Get PDF
    We consider the following natural graph cut problem called Critical Node Cut (CNC): Given a graph GG on nn vertices, and two positive integers kk and xx, determine whether GG has a set of kk vertices whose removal leaves GG with at most xx connected pairs of vertices. We analyze this problem in the framework of parameterized complexity. That is, we are interested in whether or not this problem is solvable in f(κ)nO(1)f(\kappa) \cdot n^{O(1)} time (i.e., whether or not it is fixed-parameter tractable), for various natural parameters κ\kappa. We consider four such parameters: - The size kk of the required cut. - The upper bound xx on the number of remaining connected pairs. - The lower bound yy on the number of connected pairs to be removed. - The treewidth ww of GG. We determine whether or not CNC is fixed-parameter tractable for each of these parameters. We determine this also for all possible aggregations of these four parameters, apart from w+kw+k. Moreover, we also determine whether or not CNC admits a polynomial kernel for all these parameterizations. That is, whether or not there is an algorithm that reduces each instance of CNC in polynomial time to an equivalent instance of size κO(1)\kappa^{O(1)}, where κ\kappa is the given parameter

    Parameterized Complexity Dichotomy for Steiner Multicut

    Get PDF
    The Steiner Multicut problem asks, given an undirected graph G, terminals sets T1,...,Tt \subseteq V(G) of size at most p, and an integer k, whether there is a set S of at most k edges or nodes s.t. of each set Ti at least one pair of terminals is in different connected components of G \ S. This problem generalizes several graph cut problems, in particular the Multicut problem (the case p = 2), which is fixed-parameter tractable for the parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. We provide a dichotomy of the parameterized complexity of Steiner Multicut. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). We highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for the parameter k+t on general graphs (but has no polynomial kernel, even on trees). We present two proofs: one using the randomized contractions technique of Chitnis et al, and one relying on new structural lemmas that decompose the Steiner cut into important separators and minimal s-t cuts. - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Hence, the results of Marx and Razgon, and Bousquet et al. do not generalize to Steiner Multicut. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).Comment: As submitted to journal. This version also adds a proof of fixed-parameter tractability for parameter k+t using the technique of randomized contraction

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement
    corecore