159 research outputs found

    An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain

    Get PDF

    A Speech Distortion and Interference Rejection Constraint Beamformer

    Get PDF
    Signals captured by a set of microphones in a speech communication system are mixtures of desired and undesired signals and ambient noise. Existing beamformers can be divided into those that preserve or distort the desired signal. Beamformers that preserve the desired signal are, for example, the linearly constrained minimum variance (LCMV) beamformer that is supposed, ideally, to reject the undesired signal and reduce the ambient noise power, and the minimum variance distortionless response (MVDR) beamformer that reduces the interference-plus-noise power. The multichannel Wiener filter, on the other hand, reduces the interference-plus-noise power without preserving the desired signal. In this paper, a speech distortion and interference rejection constraint (SDIRC) beamformer is derived that minimizes the ambient noise power subject to specific constraints that allow a tradeoff between speech distortion and interference-plus-noise reduction on the one hand, and undesire d signal and ambient noise reductions on the other hand. Closed-form expressions for the performance measures of the SDIRC beamformer are derived and the relations to the aforementioned beamformers are derived. The performance evaluation demonstrates the tradeoffs that can be made using the SDIRC beamformer

    Transmit Beamforming in Dense Networks-A Review

    Get PDF
    Communication technology has prospered in manifolds over the last decade. The scarcity of spectrum as well as the demand for higher data rates and increase in capacity has become a matter of concern. Newer technologies have evolved time and again, the latest of which is Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) systems more commonly known as 4G technology. The striking feature of LTE/LTE-A is the deployment of smaller cells (femto cells) in the vicinity of a large macro cells resulting in a dense network. As a result the data rate as well as capacity has increased in manifolds but the detrimental factor is the issue of interference between the various cells. Beamforming provides a solution in removing the issues of interference in dense networks. This paper focuses on the interference scenario in LTE dense networks and gives an overview of different beamforming methods that can provide a solution to the interference problem. Further, a review of several such methods so far proposed in available literature has been presented in this paper.Keywords:LTE/LTE-A, Dense Network, Interference,Beamformin

    Improved change prediction for combined beamforming and echo cancellation with application to a generalized sidelobe canceler

    Get PDF
    Adaptive beamforming and echo cancellation are often necessary in hands-free situations in order to enhance the communication quality. Unfortunately, the combination of both algorithms leads to problems. Performing echo cancellation before the beamformer (AEC-first) leads to a high complexity. In the other case (BF-first) the echo reduction is drastically decreased due to the changes of the beam-former, which have to be tracked by the echo canceler. Recently, the authors presented the directed change prediction algorithm with directed recovery, which predicts the effective impulse response after the next beamformer change and therefore allows to maintain the low complexity of the BF-first structure and to guarantee a robust echo cancellation. However, the algorithm assumes an only slowly changing acoustical environment which can be problematic in typical time-variant scenarios. In this paper an improved change prediction is presented, which uses adaptive shadow filters to reduce the convergence time of the change prediction. For this enhanced algorithm, it is shown how it can be applied to more advanced beamformer structures like the generalized sidelobe canceler and how the information provided by the improved change prediction can also be used to enhance the performance of the overall interference cancellation

    Partially adaptive array signal processing with application to airborne radar

    Get PDF

    Simulation of Multi-element Antenna Systems for Navigation Applications

    Get PDF
    The application of user terminals with multiple antenna inputs for use with the global satellite navigation systems like GPS and Galileo becomes more and more attraction in last years. Multiple antennas may be spread over the user platform and provide signals required for the platform attitude estimation or may be arranged in an antenna array to be used together with array processing algorithms for improving signal reception, e.g. for multipath and interference mitigation. In order to generate signals for testing of receivers with multiple antenna inputs and corresponding receiver algorithms in a laboratory environment a unique HW signal simulation tool for wavefront simulation has been developed. The signals for a number of antenna elements in a flexible user defined geometry are first generated as digital signals in baseband and then mixed up to individual RF-outputs. The paper describes the principle function of the system and addresses some calibration issues. Measurement set-ups and results of data processing with simulated signals for different applications are shown and discussed

    Aperture-Level Simultaneous Transmit and Receive (STAR) with Digital Phased Arrays

    Get PDF
    In the signal processing community, it has long been assumed that transmitting and receiving useful signals at the same time in the same frequency band at the same physical location was impossible. A number of insights in antenna design, analog hardware, and digital signal processing have allowed researchers to achieve simultaneous transmit and receive (STAR) capability, sometimes also referred to as in-band full-duplex (IBFD). All STAR systems must mitigate the interference in the receive channel caused by the signals emitted by the system. This poses a significant challenge because of the immense disparity in the power of the transmitted and received signals. As an analogy, imagine a person that wanted to be able to hear a whisper from across the room while screaming at the top of their lungs. The sound of their own voice would completely drown out the whisper. Approaches to increasing the isolation between the transmit and receive channels of a system attempt to successively reduce the magnitude of the transmitted interference at various points in the received signal processing chain. Many researchers believe that STAR cannot be achieved practically without some combination of modified antennas, analog self-interference cancellation hardware, digital adaptive beamforming, and digital self-interference cancellation. The aperture-level simultaneous transmit and receive (ALSTAR) paradigm confronts that assumption by creating isolation between transmit and receive subarrays in a phased array using only digital adaptive transmit and receive beamforming and digital self-interference cancellation. This dissertation explores the boundaries of performance for the ALSTAR architecture both in terms of isolation and in terms of spatial imaging resolution. It also makes significant strides towards practical ALSTAR implementation by determining the performance capabilities and computational costs of an adaptive beamforming and self-interference cancellation implementation inspired by the mathematical structure of the isolation performance limits and designed for real-time operation
    corecore