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Abstract—Signals captured by a set of microphones in a speech
communication system are mixtures of desired and undesired
signals and ambient noise. Existing beamformers can be divided
into those that preserve or distort the desired signal. Beam-
formers that preserve the desired signal are, for example, the
linearly constrained minimum variance (LCMV) beamformer
that is supposed, ideally, to reject the undesired signal and
reduce the ambient noise power, and the minimum variance
distortionless response (MVDR) beamformer that reduces the
interference-plus-noise power. The multichannel Wiener filter, on
the other hand, reduces the interference-plus-noise power without
preserving the desired signal. In this paper, a speech distortion
and interference rejection constraint (SDIRC) beamformer is
derived that minimizes the ambient noise power subject to specific
constraints that allow a tradeoff between speech distortion and
interference-plus-noise reduction on the one hand, and undesired
signal and ambient noise reductions on the other hand. Closed-
form expressions for the performance measures of the SDIRC
beamformer are derived and the relations to the aforemen-
tioned beamformers are derived. The performance evaluation
demonstrates the tradeoffs that can be made using the SDIRC
beamformer.

Index Terms—Beamforming, frequency domain, linearly con-
strained minimum variance (LCMV), minimum variance dis-
tortionless response (MVDR), noise reduction, parameterized
multichannel Wiener filter, speech enhancement.

I. INTRODUCTION

D ISTANT or hands-free speech acquisition is required in
many applications such as hearing aids and teleconfer-

encing. Microphone arrays are often used for the acquisition
and consist of sets of microphones that are arranged in
specific geometries. The received microphone signals usually
consist of a mixture of desired source signals, undesired
source signals, and ambient noise. As the acoustic interference
degrades the quality and intelligibility of the desired sources,
the received signals are processed (i.e., filtered and summed)
in order to extract the desired signals or in other words, reduce
the interference.
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In the last four decades, numerous spatio-temporal filters
have been proposed to process the received microphone signals
(see [1] and [2] and the references therein). The process of
filtering the received microphone signals and summing up
all filtered output signals is widely known as beamform-
ing and the filter-and-sum system is called a beamformer.
Many filters were originally developed for, and used in,
wireless communication systems. More recently filters were
developed specifically for speech communication systems.
Existing beamformers can be divided into those that pre-
serve or distort the desired signal. Beamformers that preserve
the desired signal are, for example, the minimum variance
distortionless response (MVDR) beamformer (also known as
Capon’s beamformer) [3] that reduces the interference-plus-
noise power, and the linearly constrained minimum variance
(LCMV) beamformer [4] that is supposed, ideally, to reject
the undesired signal and reduce the ambient noise power. The
LCMV is a generalization of the MVDR and commonly aims
at minimizing the beamformer’s output power while satis-
fying multiple constraints such as rejecting the interference
and passing the desired signal through undistorted. Another
beamformer that consists of a weighted sum of the LCMV and
a matched filter (i.e., an MVDR that reduces ambient noise
only) has been recently proposed by Souden et al. [5]. The
proposed beamformer allows a tradeoff between the undesired
signal and ambient noise reductions. The multichannel Wiener
filter (MWF), on the other hand, reduces the interference-plus-
noise power without exactly preserving the desired signal. In
order to control the amount of distortion, the parameterized
multichannel Wiener filter (also know as speech-distortion
weighted multichannel Wiener filter) has been proposed [6],
[7].

In addition to closed-form beamformers, adaptive beam-
formers have been proposed. In [8], Frost proposed an adaptive
scheme of the MVDR beamformer, which is based on a
constrained least-mean-square-type adaptation. To avoid the
constrained adaptation of the MVDR beamformer, Griffiths
and Jim [9] proposed the generalized sidelobe canceller (GSC)
structure that separates the output power minimization and the
application of the constraint. While Griffiths and Jim only con-
sidered one constraint, it was later shown in [10] that the GSC
structure can also be used in the case of multiple constraints.
The original GSC structure is based on the assumption that the
different microphones receive a delayed version of the desired
signal. The GSC structure was later re-derived in the frequency
domain, and extended to deal with general acoustic transfer
functions (ATFs) [11].

Besides the great endeavors to develop reliable beamformers
to reduce interference, many contributions have been made
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to understand their functioning and accurately quantify their
gains and losses in terms of speech distortion and noise
reduction. In this context, it is worthwhile noting that the
choice of the desired signal can have a significant impact on
the information required to compute the beamformer and on
the performance of the beamformer. In [12], the authors anal-
ysed the performance of the MVDR in different noise fields
(coherent and non-coherent) and studied the effectiveness of
the MVDR when designed to remove both additive noise and
reverberation. The study showed that a tradeoff between noise
reduction and dereverberation has to be made. In [13], Bitzer et
al. investigated the theoretical performance limits of the GSC
in the case of a spatially diffuse noise. The tradeoff between
noise reduction and speech distortion in the parameterized
multichannel Wiener filtering was established in [7]. Another
notable effort to understand the functioning of the TF ratios-
based GSC beamformer was published by Gannot and Cohen
in [2]. They found that it is theoretically possible to achieve
infinite noise reduction when only a coherent interference is
added to the desired source. In the presence of ambient noise,
the latter can also be achieved by the LCMV beamformer.
Unfortunately, rejecting the coherent interference comes at a
price as the noise reduction of the LCMV is always smaller
than that of the MVDR [14].

In this paper, we assume that both an undesired source
and an ambient noise coexist with the desired source. This
assumption is very plausible in the context of hearing aids and
hands-free communication devices that are installed within a
teleconferencing room. In the latter situation for instance, the
desired sound can originate from a speaker while the undesired
sound originates from a loudspeaker or devices such as an
air conditioner or a computer located within the same room.
In addition, ambient noise as well as sensor noise is always
present and should therefore be taken into account. To design
an effective speech acquisition system, a clear understanding
of the functioning of noise reduction filters as well as the
ability to control various tradeoffs is paramount. In this con-
tribution, a novel speech distortion and interference rejection
constraint (SDIRC) beamformer is derived that minimizes
the ambient noise power subject to specific constraints that
allow a tradeoff between speech distortion and interference-
plus-noise reduction on the one hand, and undesired signal
and ambient noise reductions on the other hand. Closed-
form expressions for the performance measures of the SDIRC
beamformer are derived and the relations to some of the
aforementioned beamformers are deduced. The performance
evaluation demonstrates the tradeoffs that can be made using
the SDIRC beamformer.

This paper is organized as follows. Section II describes the
signal model, definitions, and fundamental assumptions made
in this paper. The proposed SDIRC beamformer is derived in
Section III. In Section IV, the relationship between the SDIRC
beamformer and the MVDR, LCMV, and parameterized MWF
are established. In Section V performance measures are de-
fined and closed-form expressions for the aforementioned
beamformers are deduced. Section VI investigates the perfor-
mance of the new SDIRC beamformer with a special focus
on the tradeoff between speech distortion and interference-

plus-noise reduction on the one hand, and undesired signal
and ambient noise reductions on the other hand. Finally,
Section VII provides some concluding remarks.

II. SIGNAL MODEL

Consider the signal model in which an M -element micro-
phone array captures one desired and one undesired coherent
source signal in some ambient noise field. We assume that
all signals are broadband, and that all source signals and
ambient noise are mutually independent and zero mean. The
desired and undesired source signals as received by the mth
microphone can be expressed as

dm(t) = g
d,m(t) ⇤ s

d

(t) (1)

and
um(t) = g

u,m(t) ⇤ s
u

(t), (2)

where ⇤ is the convolution operation, and g
d,m(t) and g

u,m(t)
are the acoustic impulse responses between the desired source
signal s

d

(t) and undesired source signal s
u

(t), respectively.
The microphone signals are given by

ym(t) = dm(t) + um(t) + vm(t), m = 1, 2, . . . , M, (3)

where vm(t) denotes the ambient noise received by the mth
microphone.

In the discrete-time Fourier transform (DTFT) domain the
received signals are expressed as

Ym(!) = G
d,m(!)S

d

(!) + G
u,m(!)S

u

(!) + Vm(!) (4)
= Dm(!) + Um(!) + Vm(!), m = 1, 2, . . . , M,

where Ym(!), G
d,m(!), G

u,m(!), S
d

(!), S
u

(!), Dm(!),
Um(!), and Vm(!) are the DTFTs of ym(t), g

d,m(t), g
u,m(t),

s
d

(t), s
u

(t), dm(t), um(t), and vm(t), at angular frequency !
(�⇡ < !  ⇡).

We now express the M microphone signals in the frequency
domain as a function of the desired and undesired signals as
received by the first microphone1 in a vector notation as

y(!) = a
d

(!)D
1

(!) + a
u

(!)U
1

(!) + v(!) (5)
= d(!) + u(!) + v(!),

where

y(!) =
⇥

Y
1

(!) Y
2

(!) · · · YM (!)
⇤T

,

a
d

(!) =
h

1 Gd,2(!)

Gd,1(!)

· · · Gd,M (!)

Gd,1(!)

iT

, (6)

a
u

(!) =
h

1 Gu,2(!)

Gu,1(!)

· · · Gu,M (!)

Gu,1(!)

iT

, (7)

d(!) =
⇥

D
1

(!) D
2

(!) · · · DM (!)
⇤T

,

u(!) =
⇥

U
1

(!) U
2

(!) · · · UM (!)
⇤T

,

v(!) =
⇥

V
1

(!) V
2

(!) · · · VM (!)
⇤T

,

and superscript T denotes transpose of a vector or a matrix.
It is important to note that a

d

(!) and a
u

(!) contain the
relative transfer functions (RTFs) from the M microphones to

1Here the first microphone was chosen as a reference. In principle, any
other microphone can be used as a reference.
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the reference microphone (in this case the first microphone) for
the desired source and undesired source, respectively. These
RTFs can be estimated online using for example the methods
described in [11], [15].

The beamforming is then performed by applying a complex
weight to each microphone and summing across all micro-
phones:

Z(!) = hH(!)y(!) (8)
= hH(!) [a

d

(!)D
1

(!) + a
u

(!)U
1

(!) + v(!)] , (9)

where Z(!) is the beamformer output, h(!) =
[H

1

(!)H
2

(!) . . . HM (!)]T is the beamforming weight
vector which is suitable for performing spatial filtering at
frequency !, and superscript H denotes transpose conjugation
of a vector or a matrix.

Let us define the power spectral density (PSD) of a random
variable B(!) and the PSD matrix of a column vector b(!)
of length M as

�b(!) = E
h

|B(!)|2
i

(10)

and
�b(!) = E

⇥

b(!)bH(!)
⇤

, (11)

with E(·) denoting mathematical expectation. The PSD of the
received signal at the mth microphone can be expressed as

�ym(!) = �dm(!) + �um(!) + �vm(!), (12)

where �ym(!), �dm(!), �um(!), and �vm(!) are the PSDs
of the mth microphone signal, the desired signal at the mth
microphone, the undesired signal at the mth microphone and
the ambient noise signal at the mth microphone, respectively.
The PSD of the beamformer output is given by

�z(!) = hH(!)�d(!)h(!)

+ hH(!)�u(!)h(!) + hH(!)�v(!)h(!), (13)

where

�d(!) = �d1(!)ad

(!)aH
d

(!), (14)
�u(!) = �u1(!)au

(!)aH
u

(!), (15)

and

�v(!) = E
⇥

v(!)vH(!)
⇤

(16)

is the PSD matrix of the noise field. In the rest of this paper, we
assume that �v(!) is a full-rank matrix such that its inverse
exists.

In this paper, we assume that the ambient noise is suffi-
ciently stationary and that we can identify periods where only
the noise is active, other periods where either the desired or
the undesired source is active (in addition to the noise), and
other periods where all sources are active (in addition to the
noise). Based on these assumptions, one can take advantage of
the fact that the signals are mutually independent to calculate
�d(!), �u(!), and �v(!) separately. These PSD matrices
are required in the sequel to compute the beamformers.

III. SPEECH-DISTORTION AND INTERFERENCE-REJECTION
CONSTRAINT BEAMFORMER

In this section, we derive a speech-distortion and
interference-rejection constraint beamformer that is able to
tradeoff between speech distortion and interference-plus-noise
reduction on the one hand, and undesired signal and ambient
noise reductions on the other hand.

In general, the aforementioned tradeoffs can be realized
by modifying the optimization problem. In earlier work the
speech distortion was controlled by augmenting the classical
mean-square error (MSE) cost function [6] or by imposing a
linear inequality constraint [7], [16], [17]. It should be noted
that the inequality constraint on the PSD of the desired signal
at the beamformer’s output (as used in [7], [17]) is binding.
Consequently, the same solution is obtained if the inequality
constraint is replaced by an equality constraint. Therefore, we
propose to control the distortion of the desired speech signal as
received by the first microphone using the following equality
constraint:

hH(!)a
d

(!) = ↵(!), (17)

where ↵(!) is a complex number. The closer is the value
of |↵(!)|2 to one, the less the amplitude response of desired
signal is distorted; for ↵(!) = 1, there is no distortion. When
the phase response of ↵(!) is linear the desired signal at
the beamformer’s output is a delayed version of the desired
signal as received by the reference microphone. For other
phase responses of ↵(!) (unequal to zero) the desired signal
might contain audible distortions. The parameter ↵(!) in (17)
can be varied with respect to the frequency depending on, for
example, the PSDs of the desired signal and ambient noise.
It it worthwhile noting that multiplying ↵(!) by a frequency
independent scale factor controls the gain of the desired signal
at the output of the beamformer.

The same idea can be applied in order to tradeoff between
reduction of the undesired signal and ambient noise. Thus, we
have

hH(!)a
u

(!) = �(!), (18)

where �(!) is a complex number. The closer the value of
|�(!)|2 is to zero, the more the undesired signal is reduced;
for �(!) = 0, the undesired signal is completely removed.
Putting these constraints together we obtain

AH(!)h(!) = q(!), (19)

where

A(!) =
⇥

a
d

(!) a
u

(!)
⇤

,

q(!) =
⇥

↵(!) �(!)
⇤H

.

The SDIRC beamformer is obtained by minimizing the
power at the beamformer output subject to (19), i.e.,

h
SDIRC

(!) = argmin
h(!)

hH(!)�y(!)h(!)

subject to AH(!)h(!) = q(!), (20)
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for which the solution is given by2

h
SDIRC

(!)

= ��1

y (!)A(!)
⇥

AH(!)��1

y (!)A(!)
⇤�1

q(!). (21)

Alternatively, one can minimize the power of the ambient
noise at the beamformer output subject to (19) yielding

h
SDIRC

(!)

= ��1

v (!)A(!)
⇥

AH(!)��1

v (!)A(!)
⇤�1

q(!). (22)

Using the Woodbury’s matrix identity, it can be shown that
(21) and (22) are mathematically equivalent.

The SDIRC beamformer can be interpreted as a two stage
spatial processor that first computes two signals given by
AH(!)��1

v (!)y(!). Finally, these signals are combined us-
ing qH(!)

⇥

AH(!)��1

v (!)A(!)
⇤�1 to compute the output

of the SDIRC beamformer Z(!).

IV. RELATION TO LCMV, MVDR, AND PMWF
In this section, we show how the proposed SDIRC beam-

former is related to the well known LCMV, MVDR, and
parameterized multichannel Wiener filter (PMWF).

For convenience, we first rewrite (22) as

h
SDIRC

(!) = ↵⇤(!)h
1

(!) + �⇤(!)h
2

(!), (23)

where
⇥

h
1

(!) h
2

(!)
⇤

= ��1

v (!)A(!)
⇥

AH(!)��1

v (!)A(!)
⇤�1

. (24)

A. LCMV
The LCMV beamformer completely rejects the undesired

signal while preserving the desired signal. This can be
achieved using

↵
LCMV

(!) = 1, (25)
�

LCMV

(!) = 0. (26)

Using (23) we directly obtain the well-known solution of the
LCMV beamformer [1], [18]:

h
LCMV

(!) = h
1

(!). (27)

B. MVDR
The MVDR beamformer can be obtained by jointly preserv-

ing the desired signal (i.e., by setting ↵(!) = 1) and minimiz-
ing either the total signal output power of beamformer or the
interference-plus-noise power at the output of the beamformer.
Therefore, the MVDR beamformer can be expressed as

h
MVDR

(!) = h
1

(!) + �⇤
MVDR

(!)h
2

(!). (28)

Since aH
d

(!)h
MVDR

(!) = 1 and aH
d

(!)h
LCMV

(!) =
aH

d

(!)h
1

(!) = 1, we deduce that aH
d

(!)h
2

(!) = 0 and

2Strictly speaking the SDIRC is also an LCMV beamformer. Similar to
other works [1], [4], we follow the protocol of referring to the LCMV when
we aim at completely suppressing the interference [i.e., �(!) = 0 8!].

therefore �
MVDR

(!) cannot be found from (28). However,
since the output signal-to-interference-plus-noise ratio (SINR)
is upper bounded and its maximum is obtained with the
MVDR beamformer [1], we can derive �

MVDR

(!) using the
output SINR of the SDIRC beamformer which is given by3

oSINR [h
SDIRC

]

=
hH

SDIRC

�dhSDIRC

hH
SDIRC

[�u +�v]hSDIRC

=
�d1 |↵|2

�u1 |�|2 + hH
SDIRC

�vhSDIRC

=
�d1 |↵|2

m
1

|↵|2 + [�u1 + m
2

] |�|2 + 2Re{m
12

↵�} , (29)

where

m
1

(!) = hH
1

(!)�v(!)h1

(!), (30)
m

2

(!) = hH
2

(!)�v(!)h2

(!), (31)
m

12

(!) = hH
1

(!)�v(!)h2

(!) (32)

and Re{·} provides the real part of the argument.
Now we can find �

MVDR

(!) by taking ↵(!) = 1 and
maximizing oSINR [h

SDIRC

(!)] with respect to �(!). It is
important to note that the narrowband output SINR is a real
function with complex variables. Following Brandwood [19]
the derivative with respect to �(!) or �⇤(!) (where the
subscript ⇤ denotes complex conjugation)can be used to find a
stationary point of a real function. Subsequently, equating the
derivate with respect to either �(!) or �⇤(!) to 0 and solving
�(!) yields

�
MVDR

(!) = � m
12

(!)

�u1(!) + m
2

(!)
. (33)

As a result, another way to write the MVDR is

h
MVDR

(!) = h
1

(!)� m⇤
12

(!)

�u1(!) + m
2

(!)
h

2

(!). (34)

The latter expression shows that �
MVDR

(!) depends on
h

1

(!), h
2

(!), �v(!), and the PSD of the undesired source
as received by the first microphone, denoted by �u1(!). It
is worthwhile to note that in this form the MVDR uses the
RTFs a

u

(!) and �u1(!) separately while the classic MVDR
beamformer uses �u(!) = �u1(!)au

(!)aH
u

(!).

C. PMWF
Finally, we show the relation between the SDIRC beam-

former and the the PMWF that is given by [7]:

h
PMWF

(!; �) = (�d(!) + �[�u(!) +�v(!)])
�1 �d(!)i1

=
[�u(!) +�v(!)]

�1 �d(!)

� + tr
n

[�u(!) +�v(!)]
�1 �d(!)

o i
1

,

(35)

where � (� � 0) controls the amount of speech distortion and

i
1

=
⇥

1 0 · · · 0
⇤T

.

3Where ! has been omitted for conciseness.
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To show the relation between the parameterized MWF filter
and the SCIRC beamformer we use the following relation
between the MVDR and PMWF:

h
PMWF

(!; �) = H
PW

(!; �)h
MVDR

(!). (36)

The gain H
PW

(!; �) can be seen as a parameterized single-
channel Wiener gain that is given by

H
PW

(!; �) =
tr
n

[�u(!) +�v(!)]
�1 �d(!)

o

� + tr
n

[�u(!) +�v(!)]
�1 �d(!)

o , (37)

where tr{·} denotes the trace of a square matrix. When � = 0
we obtain H

PW

(!; 0) = 1, 8! such that h
PMWF

(!; 0) =
h

MVDR

(!).
Using (36) and (34), we can also deduce another form for

the PMWF:

h
PMWF

(!; �) = H
PW

(!; �)h
1

(!)

� H
PW

(!; �)
m⇤

12

(!)

�u1(!) + m
2

(!)
h

2

(!). (38)

Hence,

↵
PMWF

(!; �) = H
PW

(!; �), (39)

�
PMWF

(!; �) = �H
PW

(!; �)
m

12

(!)

�u1(!) + m
2

(!)
. (40)

To obtain results with the SDIRC beamformer equal to those
obtained by the parameterized MWF we require �u(!) in
addition to �v(!) and the RTFs a

d

(!) and a
u

(!).

V. PERFORMANCE MEASURES AND ANALYSES

We define and use different performance measure to analyze
how the SDIRC beamforming operates in an acoustic envi-
ronment. The performance measures will also be used for the
performance evaluation in Section VI. In addition, we deduce
the performance measures of existing beamformer using the
relations derived in Section IV. The SDIRC beamformer
and the aforementioned relations provide significantly simpler
derivations of the important performance measures, some of
which have been presented elsewhere [1], [2].

Since the signal we want to recover is the clean (but
convolved) signal received at microphone 1, i.e., d

1

(t), mi-
crophone 1 is serving as the reference microphone.

A. Input and Output Signal-to-Interference-plus-Noise Ratios

We define the narrowband input signal-to-noise ratio (SNR),
signal-to-interference ratio (SIR), and signal-to-interference-
plus-noise ratio (SINR) as

iSNR(!) =
�d1(!)

�v1(!)
, (41)

iSIR(!) =
�d1(!)

�u1(!)
, (42)

and

iSINR(!) =
�d1(!)

�u1(!) + �v1(!)
(43)

=
iSIR(!) iSNR(!)

iSIR(!) + iSNR(!)
,

respectively.
Fullband performance measures can be obtained by integrat-

ing the numerator and denominator across !, e.g., the fullband
iSINR is given by

iSINR =

R

+⇡

�⇡
�d1(!) d!

R

+⇡

�⇡
[�u1(!) + �v1(!)] d!

. (44)

To quantify the level of noise remaining in the output signal
of the beamformer, Z(!), we define the narrowband output
SNR, SIR, and SINR as the ratio of the power of the filtered
desired signal over the power of the residual noises, i.e.,

oSNR [h(!)] =
hH(!)�d(!)h(!)

hH(!)�v(!)h(!)

=
�d1(!)

�

�hH(!)a
d

(!)
�

�

2

hH(!)�v(!)h(!)
, (45)

oSIR [h(!)] =
hH(!)�d(!)h(!)

hH(!)�u(!)h(!)

=
�d1(!)

�

�hH(!)a
d

(!)
�

�

2

�u1(!) |hH(!)a
u

(!)|2
, (46)

and

oSINR [h(!)]

=
hH(!)�d(!)h(!)

hH(!)[�u(!) +�v(!)]h(!)

=
�d1(!)

�

�hH(!)a
d

(!)
�

�

2

�u1(!) |hH(!)a
u

(!)|2 + hH(!)�v(!)h(!)
. (47)

Because the oSINR depends on both the speech distortion and
the interference-plus-noise, it will be used later to demonstrate
the tradeoff between these two quantities. The oSINR is related
to the oSNR and oSIR in a similar way the iSINR is related
to the iSNR and iSIR, i.e.,

oSINR [h(!)] =
oSIR [h(!)] oSNR [h(!)]

oSIR [h(!)] + oSNR [h(!)]
. (48)

Let us consider a scenario with one undesired source
and spatially white ambient noise such that �u(!) =
�u1(!)au

(!)aH
u

(!) and �v(!) = �v1(!) I. We can now
write h

1

(!) and h
2

(!) explicitly as:

h
1

(!) =
a

d

(!)ka
u

(!)k2 � a
u

(!)aH
u

(!)a
d

(!)

�(!)
, (49)

h
2

(!) =
a

u

(!)ka
d

(!)k2 � a
d

(!)aH
d

(!)a
u

(!)

�(!)
, (50)

with

�(!) = ka
d

(!)k2ka
u

(!)k2 � |aH
d

(!)a
u

(!)|2. (51)
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Furthermore, we obtain for m
1

(!), m
2

(!) and m
12

(!):

m
1

(!) =
�v1(!)kau

(!)k2

�(!)
, (52)

m
2

(!) =
�v1(!)kad

(!)k2

�(!)
, (53)

m
12

(!) = ��v1(!)a
H
d

(!)a
u

(!)

�(!)
. (54)

Using (29) and (52)-(54) we can now deduce the output
SINR for the SDIRC beamformer:3

oSINR [h
SDIRC

]

=
�d1 |↵|2

�u1 |�|2 + hH
SDIRC

�vhSDIRC

=
�d1 |↵|2

m
1

|↵|2 + [�u1 + m
2

] |�|2 + 2Re{m
12

↵�}

=
�d1 |↵|2

�u1 |�|2 + �v1�
�1

, (55)

where

(!) = |↵(!)|2ka
u

(!)k2 + |�(!)|2ka
d

(!)k2

� 2Re
�

aH
d

(!)a
u

(!)↵(!)�(!)
 

. (56)

Using the previous definitions for ↵(!) and �(!) given in
Section IV, we find the output SINR for the MVDR, LCMV,
and PMWF given by

oSINR [h
LCMV

(!)]

=
�d1(!)

hH
LCMV

(!)�v(!)hLCMV

(!)

=
�d1(!)

hH
1

(!)�v(!)h1

=
�d1(!)�(!)

�v1(!)kau

(!)k2

= iSNR(!)
✓

ka
d

(!)k2 � |aH
d

(!)a
u

(!)|2

ka
u

(!)k2

◆

, (57)

oSINR [h
MVDR

(!)]

=
�d1(!)

hH
MVDR

(!)[�u(!) +�v(!)]hMVDR

(!)

= �d1(!)a
H
d

(!) [�u(!) +�v(!)]
�1 a

d

(!)

= iSNR(!)

0

@ka
d

(!)k2 � |aH
d

(!)a
u

(!)|2
�v1 (!)

�u1 (!)

+ ka
u

(!)k2

1

A , (58)

oSINR [h
PMWF

(!; �)]

=
H2

PW

(!)�d1(!)

hH
PMWF

(!) [�u(!) +�v(!)]hPMWF

(!)

=
H2

PW

(!)�d1(!)

H2

PW

(!)hH
MVDR

(!) [�u(!) +�v(!)]hMVDR

(!)

= oSINR [h
MVDR

(!)] . (59)

where for oSINR [h
MVDR

(!)] we have used the fact that

[�u(!) +�v(!)]
�1 =

1

�v1(!)

0

@I� a
u

(!)aH
u

(!)
�v1 (!)

�u1 (!)

+ ka
u

(!)k2

1

A .

(60)
Hence, for the considered scenario, the narrowband output
SINRs of the MVDR and PMWF are equal. In addition, their
value is always larger than or equal to the output SINR of the
LCMV as the ratio �v1(!)/�u1(!) is always positive, i.e.,

oSINR [h
PMWF

(!; �)] = oSINR [h
MVDR

(!)]

� oSINR [h
LCMV

(!)] . (61)

To demonstrate the tradeoff between undesired signal and
ambient noise reductions we define the input and output noise-
to-interference ratios (NIRs) as

iNIR(!) =
�v1(!)

�u1(!)
(62)

and

oNIR [h(!)] =
hH(!)�v(!)h(!)

hH(!)�u(!)h(!)
. (63)

B. Noise Reduction
The narrowband noise-reduction factor [20], or narrowband

noise-rejection factor [21] quantifies the amount of noise being
rejected by the beamformer. This quantity is defined as the
ratio of the power of the noise at the reference microphone
over the power of the noise remaining at the beamformer
output, i.e.,

⇠
nr

[h(!)]

=
�u1(!) + �v1(!)

hH(!)[�u(!) +�v(!)]h(!)

=
�u1(!) + �v1(!)

�u1(!) |hH(!)a
u

(!)|2 + hH(!)�v(!)h(!)
. (64)

The noise-rejection factor is expected to be lower bounded
by 1. Otherwise, the beamformer amplifies the noise received
at the microphones. It should be noted however that in some
scenarios the noise-reduction factor can become lower than 1.
The higher the value of the noise-rejection factor, the more
the noise is rejected.

For the SDIRC beamformer we have3

⇠
nr

[h
SDIRC

]

=
�u1 + �v1

m
1

|↵|2 + [�u1 + m
2

] |�|2 + 2Re{m
12

↵ �} . (65)

Hence, the narrowband noise-reduction factor of the SDIRC
beamformer depends on ↵(!) and �(!) and approaches infin-
ity when ↵(!) and �(!) approach zero.

Let us again investigate the previously discussed scenario
when �u(!) = �u1(!)au

(!)aH
u

(!) and �v(!) = �v1(!) I.
For the LCMV beamformer we then obtain

⇠
nr

[h
LCMV

(!)] =

✓

�u1(!)

�v1(!)
+ 1

◆

✓

ka
d

(!)k2

2

� |aH
d

(!)a
u

(!)|2

ka
u

(!)k2

2

◆

. (66)
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The narrowband noise reduction for the MVDR beamformer
is given by

⇠
nr

[h
MVDR

(!)] =

✓

�u1(!)

�v1(!)
+ 1

◆

0

@ka
d

(!)k2

2

� |aH
d

(!)a
u

(!)|2
�v1 (!)

�u1 (!)

+ ka
u

(!)k2

2

1

A . (67)

When |aH
d

(!)a
u

(!)|2 6= 0 the narrowband noise-reduction
factor of the MVDR and LCMV differ depending on the ratio
�v1(!)/�u1(!). From these expressions we also see that the
noise-reduction factor of the MVDR and LCMV are similar
when �u1(!) is much larger than �v1(!).

Finally, the narrowband noise reduction for the PMWF is
given by [7]

⇠
nr

[h
PMWF

(!; �)] =
1

iSINR(!)
· [� + ⇢(!)]2

⇢(!)
, (68)

with
⇢(!) = tr

n

[�u(!) +�v(!)]
�1 �d(!)

o

. (69)

Using the matrix inversion lemma it can be shown that for the
considered scenario

⇢(!) =
�d1(!)

�v1(!)

0

@ka
d

(!)k2

2

� |aH
d

(!)a
u

(!)|2
�v1 (!)

�u1 (!)

+ ka
u

(!)k2

2

1

A . (70)

Analyzing (68) we find that for a given situation and hence
⇢(!) (⇢(!) > 0) and iSINR(!), the noise reduction of the
PMWF increases monotonically with �.

Because the ratio �v1(!)/�u1(!) is always positive the
following holds:

⇠
nr

[h
PMWF

(!)] � ⇠
nr

[h
MVDR

(!)] � ⇠
nr

[h
LCMV

(!)] .
(71)

Hence, for the considered scenario the narrowband noise-
reduction factor of the parameterized MWF is always larger
or equal than the narrowband noise-reduction factor of the
MVDR, which is always larger or equal to the narrowband
noise reduction of the LCMV.

C. Speech Distortion
Many beamforming algorithms distort the desired signal.

Even when the beamformer is designed to preserve the desired
signal, distortions might be introduced due to estimation
errors. In order to quantify the level of this distortion, we
define the narrowband desired-signal-reduction factor [22]
or narrowband desired-signal-cancellation factor [21] as the
ratio of the variance of the desired signal at the reference
microphone over the variance of the filtered desired signal at
the beamformer output, i.e.,

⇠
dsc

[h(!)] =
�d1(!)

hH(!)�d(!)h(!)

=
1

|hH(!)a
d

(!)|2
. (72)

Broadband beamformers that do not cancel the broadband de-
sired signal require that the desired-signal-cancellation factor

is equal to 1. When ⇠
dsc

[h(!)] is greater than 1 the desired
signal is distorted.

Another useful performance measure is the speech-
distortion index [20], [23] defined as

�
sd

[h(!)] =
E
h

�

�hH(!)a
d

(!)D
1

(!)� D
1

(!)
�

�

2

i

�d1(!)

=
�

�hH(!)a
d

(!)� 1
�

�

2

. (73)

The speech-distortion index is always greater than or equal
to 0 and should be upper bounded by 1; so the higher is the
value of �

sd

[h(!)], the more the desired signal is distorted.
By substituting (17) in (72) and (73), we obtain the distor-

tion measures for the SDIRC beamformer

⇠
dsc

[h
SDIRC

(!)] =
1

|↵(!)|2 , (74)

�
sd

[h
SDIRC

(!)] = [↵(!)� 1]2 . (75)

Hence, the distortion of the desired signal depends only on
↵(!).

For the LCMV and MVDR beamformer, we obtain

⇠
dsc

[h
LCMV

(!)] = ⇠
dsc

[h
MVDR

(!)] = 1, (76)
�

sd

[h
MVDR

(!)] = �
sd

[h
SDIRC

(!)] = 0. (77)

Now using the fact that ↵(!) = H
PW

(!; �), we directly
find

⇠
dsc

[h
PMWF

(!; �)] =
[� + ⇢(!)]2

⇢2(!)
. (78)

�
sd

[h
PMWF

(!; �)] =
�2

[� + ⇢(!)]2
. (79)

For a given situation and hence ⇢(!), we find using (79) and
(70) that the speech-distortion index increases monotonically
with increasing �.

D. Array Gain
The role of the beamformer is to produce a signal whose

SINR is higher than that which was received at the reference
microphone. To that end, the array gain is defined as the ratio
of the output SINR (after beamforming) over the input SINR
(at the reference microphone) [24]. It is therefore equal to the
SINR improvement that is often presented. This leads to the
following definition:

A [h(!)] =
oSINR [h(!)]

iSINR(!)
(80)

=

�

�hH(!)a
d

(!)
�

�

2

[�u1(!) + �v1(!)]

�u1(!) |hH(!)a
u

(!)|2 + hH(!)�v(!)h(!)

=

�

�hH(!)a
d

(!)
�

�

2

[1 + iNIR(!)]

|hH(!)a
u

(!)|2 + ��1

u1 (!)hH(!)�v(!)h(!)
.

By making the appropriate substitutions, one can derive the
following relationship between the array gain, noise-rejection
factor, and desired-signal-cancellation factor:

A [h(!)] =
⇠
nr

[h(!)]

⇠
dsc

[h(!)]
. (81)
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Hence, when no distortion occurs (i.e., ⇠
dsc

[h(!)] = 1), the
array gain coincides with the noise-reduction factor.

By substituting (43) and (29) in (80), we obtain the array
gain of the SDIRC beamformer:3

A [h
SDIRC

] =

(�u1 + �v1)|↵|2

m
1

|↵|2 + [�u1 + m
2

] |�|2 + 2Re{m
12

↵�} . (82)

Clearly, the array gain depends on ↵(!) and �(!).

VI. PERFORMANCE EVALUATION

The performance of the SDIRC beamformer in two environ-
ments, viz., anechoic and reverberant, is evaluated in this sec-
tion. The tradeoff between speech distortion and interference-
plus-noise reduction on the one hand, and undesired signal and
ambient reductions on the other hand will be demonstrated.
For comparison, we will show the performance obtained by
the LCMV, MVDR, and PMWF.

The results of our simulations are presented in terms of the
performance measures described in Section V. Most results are
presented in terms of the fullband version of these performance
measures, which are defined in a similar way the fullband input
SINR is defined in (44). Because the filters are applied on a
frame-by-frame basis, as will be explained shortly, the per-
formance measures are evaluated per frame and subsequently
averaged over all frames. The SNRs, SIRs, SINRs, and NIRs
are averaged in the logarithm domain while other performance
measures are averaged in the linear domain. In reverberant
environments, the performance depends on the absolute spatial
location of the sources and microphones in the enclosed space.
To alleviate this spatial dependency, Monte Carlo simulations
were conduced by rotating and translating the source-array
geometry inside the room. The final results were obtained by
averaging the results of 50 Monte Carlo trials.

It is important to note that the expressions of the frequency-
domain filters involve divisions by some quantities that might
approach zero due to speech absence or common-zeros be-
tween the channels. Therefore, all quantities in the denomina-
tors are kept above a certain threshold that was experimentally
set to 10�6.

A. Experimental Setup and Implementation
A uniform linear array (ULA) was used with 4 microphones

and an inter-microphone distance of 2.5 cm. The distance
between the floor and the microphone array is 1.6 m.

In the first scenario, it is assumed that the desired and unde-
sired sources are located in the far-field with no reverberation.
The corresponding steering vectors are given by g

d

(!) =
h

1 e�j!�c�1
cos(✓d) · · · e�j!(M�1)�c�1

cos(✓d)

iT

and g
u

(!) =
h

1 e�j!�c�1
cos(✓u) · · · e�j!(M�1)�c�1

cos(✓u)

iT

, where � =

0.025 is equal to the distance between the microphones of
the ULA, c = 343 ms�1 is the speed of sound, and ✓

d

and ✓
u

determine the azimuth of the desired and undesired sources
as shown in Fig. 1. Here the attenuation of the propagating
sounds, which depends on the source-receiver distance, is

Desired

Undesired

r
d

r
u

✓
u

✓
d

Fig. 1. Schematic drawing showing the array configuration and the location
of the desired and undesired sources.

taken into account in the power of the sources rather than the
steering vector. From (6) and (7) it follows that ad(!) = gd(!)
and au(!) = gu(!), respectively.

In the second scenario, we consider a reverberant environ-
ment. The acoustic impulse responses (each with a duration
of 500 ms) were generated using an efficient implementation
[25] of the image-method [26] with some necessary modifi-
cations that ensure correct inter-microphone phase delays by
using fractional decays [27]. The room size is 5 ⇥ 4 ⇥ 6 m
(length⇥width⇥height) and the reflection coefficients of the
walls, ceiling, and floor are set to achieve a reverberation
time T

60

= 400 ms measured using the backward integration
method [28]. The distance between the first microphone and
the desired and undesired sources are denoted respectively by
r
d

and r
u

as shown in Fig. 1. The vectors ad(!) and au(!)
are computed per frequency using

ad(!) =
E{d(!)D⇤

1

(!)}
�d1(!)

(83)

and

au(!) =
E{u(!)U⇤

1

(!)}
�u1(!)

, (84)

respectively.
The desired source consists of 10 minutes of male and

female speech composed of data from the APLAWD speech
database [29] sampled at 8 kHz and is located at (✓

d

=
50 degrees, r

d

= 1 m). The undesired source, located at
(✓

u

= 130 degrees, r
u

= 1.5 m), consists of an USASI
noise sequence that exhibits the same spectral properties as
speech. The ambient noise consists of spatially homogeneous
and spatially and temporally white Gaussian noise with a long-
term input SNR of 20 dB, evaluated at the first microphone.
The microphone signals are generated using (1), (2), and (3).

The microphone signals are processed in the discrete Fourier
transform domain using the overlap-save [30] method. Specif-
ically, the signals are divided into 50% overlapping frames
of duration 512 ms. Once the microphone signals are filtered
in the frequency domain, they are transformed into the time
domain and only those samples are kept that correspond to
a linear convolution [30]. Finally, a finite-impulse-response
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(FIR) constraint was applied to the filter in the time domain
[11], [31]. Because small estimation errors can result in pre-
echoes (i.e., echoes that arrive before the arrival of the direct
sound), an asymmetric FIR constraint was applied that was
determined experimentally. Specifically, the length of the anti-
causal part was set to 64 ms and the length of the causal part
was set to 128 ms.

In this study, we put aside the problem of estimating the
statistics of the sources and ambient noise because we are
interested in assessing the performance of various beamform-
ers and the different tradeoffs. The PSD of the source signals
�d(k) and �u(k), where k denotes the discrete frequency
bin, are estimated recursively using the signal vectors d(k)
and u(k) with a forgetting factor of 0.98. The ambient noise
PSD matrix �v(k) is estimated from the signal vector v(k)
using the Welch’s modified periodogram [32].

For the SDIRC beamformer we have two design parameters,
viz., ↵(!) and �(!). These parameters can be chosen in many
ways, some of which perceptually motivated. Rather than
evaluating the beamformer over the entire parameter space,
we propose to investigate another parameter space such that
it includes the MVDR, LCMV, and PMWF. Specifically, we
investigate the influence of � and therefore define ↵(!) as
follows:

↵(!; �) = H
PW

(!; �). (85)

Furthermore, we define �(!) as follows:

�(!;�0) = ��0 m
12

(!)

�u1(!) + m
2

(!)
, (86)

such that we can investigate the behavior of the SDIRC
beamformer as a function of �0. For (� = 0, �0 = 0),
we then obtain the LCMV and for (� = 0, �0 = 1), we
then obtain the MVDR. For (� � 0, �0 = 1), we obtain
solutions of the PMWF. Previously unexplored solutions that
allow a tradeoff between speech distortion and interference-
plus-noise reduction on the one hand, and undesired signal
and ambient noise reductions on the other hand are given by
(� � 0, 0 < �0 < 1).

B. Anechoic Environment
Let us first investigate the beamformer’s performance in

terms of the SINR improvement (i.e., array gain), NIR im-
provement and speech-distortion index as a function of � and
�0 in an anechoic environment with a SIR of 10 dB and �5 dB.

The results obtained with an SIR of 10 dB are shown in
Fig. 2. The SINR improvement shown in Fig. 2(a) demon-
strates that the SINR increases monotonically with increasing
�0 and/or �. As mentioned in Section V, the SINR of the
LCMV (� = 0, �0 = 0) is smaller than that of the MVDR
(� = 0, �0 = 1). The effect of �0 becomes evident when
analyzing the NIR shown in Fig. 2(b) (note that the axes
have been changed to improve the visualization). While � has
almost no influence on the NIR, the NIR decreases mono-
tonically with increasing �0. When �0 = 0, the beamformer
is designed to cancel the undesired source completely and
in theory the NIR is infinity. The speech-distortion index
is shown in Fig. 2(c) and demonstrates that only � has an
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(a) SINR improvement.
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(c) Speech-distortion index.

Fig. 2. Performance measures as a function of �0 and � for M = 4, T60 = 0
(i.e., anechoic), SNR = 20 dB and SIR = 10 dB.

influence on the speech distortion. As discussed in Section V
the speech distortion increases monotonically with increasing
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(b) NIR improvement.
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(c) Speech-distortion index.

Fig. 3. Performance measures as a function of �0 and � for M = 4, T60 = 0
(i.e., anechoic), SNR = 20 dB and SIR = �5 dB.

�. These results demonstrate that we can control independently
the undesired signal and ambient noise reductions and the

speech distortion and interference-plus-noise reduction.
The results obtained with an SIR of �5 dB are shown in

Fig. 3. In this scenario, the power of the undesired signal is
much larger than the power of the ambient noise. While the
results for the SINR improvement and the speech-distortion
index have not changed much, we see that the influence of �0

on the NIR improvement changed. While the trend remains
the same, we observe that the range in which the NIR varies
as a function of �0 has reduced. As mentioned in Section V,
the MVDR (� = 0, �0 = 1) maximizes the output SINR, and
in case the power of the undesired source is much larger than
the power of ambient noise the performance of the LCMV
(� = 0, �0 = 0) and MVDR (� = 0, �0 = 1) are comparable.

C. Simulated Reverberant Environment
Now we investigate the beamformer’s performance in terms

of the SINR improvement, NIR improvement and speech-
distortion index as a function of � and �0 in a simulated
reverberant environment with T

60

= 400 ms and a SIR
of 10 dB. The obtained results are shown in Fig. 4. The
behavior of the SINR improvement, NIR improvement and
speech-distortion index is very similar to the beamformer’s
behavior observed in the anechoic environment discussed in
the previous subsection. For the considered scenario the range
in which we can vary the NIR using �0 is about 8 dB.
In general, we found that the amount of speech distortion
obtained in the reverberant environment is higher than that
obtained in an anechoic environment. This effect can be
attributed to the finite filter length used in our simulations.

D. Real Reverberant Environment
Finally, we studied the performance of the SDIRC beam-

former in a real reverberant environment. The room impulse
responses were measured in the varechoic chamber at Bell
Labs [33]. The chamber is a rectangular room (6.7 m⇥6.1 m⇥
2.9 m) with 368 electronically controlled panels that vary
the acoustic absorption of the walls, floor, and ceiling [34].
Therefore, the level of room reverberation is well controlled
by the percentage of open panels. In this experiment, 89%
of the panels are open, which leads to a reverberation time
of approximately 130 ms. We consider a scenario with one
desired source that consists of a female speaker and one
undesired source (SIR = 5 dB) that consists of a male speaker
– both source signals are taken from the APLAWD speech
database [29]. The desired source is active between 0 and 2 s
and between 3.5 and 5 s, and the undesired source is active
between 2 and 5 s. Therefore, both the desired and undesired
sources are active between 3.5 and 5 s. The ambient noise
is spatially homogeneous and spatially and temporally white
Gaussian (SNR = 15 dB). The source and interference were
position at approximately the same location with respect to
the array as in our previous experiments and correspond to
locations v12 and v14 in [33].

The spectrograms and waveforms of the desired source
signal and the first microphone signal are depicted in Fig. 5(a)
and (b), respectively. The results obtained after processing the
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(c) Speech-distortion index.

Fig. 4. Performance measures as a function of �0 and � for M = 4, T60 = 400 ms, SNR = 20 dB and SIR = 10 dB.

received signals using the proposed SDIRC beamformer with
� = 0 and �0 2 {0, 0.5, 1} are shown in Fig. 5(c)-(e) and the
result obtained with � = 1 and �0 = 1 is shown in Fig. 5(f).

The output signal shown in Fig. 5(c) corresponds to the
output of an LCMV beamformer. While the undesired speech
signal (between 2 and 3.25 s) is almost canceled we can see
that the ambient noise in the low frequencies has increased
significantly. Results of an informal listening test, conducted
using 5 subjects and a Sennheiser HD650 headphone, showed
that undesired signal was inaudible. The residual noise at the
output of the LCMV beamformer is very stationary (as it
mainly consists of residual ambient noise that is stationary)
but the power at low frequencies is significant. Reducing
the residual noise power to an acceptable level using ↵(!)
would cause significant speech distortion. The output signal
shown in Fig. 5(d) corresponds to the output of the proposed
SDIRC beamformer with (� = 0, �0 = 0.5). We notice that
the ambient noise has not been amplified as much compared
to the LCMV, and we notice a small amount of residual
undesired signal which was hardly audible. In Fig. 5(e), the

output signal is shown that corresponds to the output of an
MVDR beamformer. While this signal has the largest output
SINR with low speech distortion we can clearly see the
residual undesired signal. The results of the informal listening
test showed that the undesired signal was clearly audible.
Further reducing the interference-plus-noise power is possible
at the cost of increased speech distortion. Unfortunately, the
residual interference-plus-noise is highly nonstationary and
further reducing it using ↵(!) might be difficult as we need to
estimate the PSD of the residual noise first. The interference-
plus-noise obtained using (� = 0, �0 = 0.5) is fairly stationary
and less strong compared to that observed at the output of
the LCMV. Using ↵(!) we can further reduce the residual
interference-plus-noise power to an acceptable level without
introducing too much speech distortion. As an example the
output signal for � = 1, �0 = 0.5 is shown in Fig. 5(f).
We observe that the ambient noise at very low and very
high frequencies is significantly reduced compared to all other
beamformers. Compared to the result obtained for � = 0 and
�0 = 0.5, we observe that the interference-plus-noise power



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, PP. 854-867, MARCH 2012 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

Time [s]

A
m

p
lit

u
d
e

F
re

q
u
e
n
cy

 (
kH

z)

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Desired signal at the first microphone.
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(b) First microphone signal.
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(c) Processed signal with (� = 0,�0 = 0).
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(d) Processed signal with (� = 0,�0 = 0.5).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

Time [s]

A
m

p
lit

u
d
e

F
re

q
u
e
n
cy

 (
kH

z)

0

0.5

1

1.5

2

2.5

3

3.5

4

(e) Processed signal with (� = 0,�0 = 1).
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(f) Processed signal with (� = 1,�0 = 0.5).

Fig. 5. Spectrogram and waveform of the signal received by the first microphone, the SDIRC beamformer with �0 2 {0, 0.5, 1} and � = {0, 1} for M = 4,
T60 = 130 ms, SNR = 15 dB and SIR = 5 dB.

is also reduced between 0.1 and 3.75 kHz. The results of
the informal listening test confirms that the ambient noise
is significantly reduced and the undesired source remains
inaudible.

We now analyze the speech-distortion index when both the
desired and undesired source are active (i.e., between 3.5 and
5 s). In Fig. 6(a), the speech-distortion index is depicted as
a function of time (top figure) and frequency (bottom figure).

Across time and frequency we see that the speech-distortion
index is almost independent of �0 (only a slight increase in
the the speech-distortion index is observed when �0 decreases
from one to zero). Finally, we analyze the NIR improvement
when both the undesired source and the ambient noise are
present (i.e., between 2 and 5 s). In Fig. 6(b), the NIR
improvement is depicted as a function of time (top figure)
and frequency (bottom figure). In general we observe that NIR
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(a) Speech-distortion index as a function of time (top) and frequency
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Fig. 6. NIR and speech-distortion index as a function of time and frequency for the SDIRC beamformer with �0 2 {0, 0.5, 1} and � = 0 for M = 4,
T60 = 130 ms, SNR = 15 dB and SIR = 5 dB.

improvement increases when �0 decreases. Hence, using �0 we
can control the undesired signal and ambient noise reductions
without significantly affecting the speech distortion.

VII. CONCLUSIONS

A speech distortion and interference rejection constraint
beamformer was proposed that generalizes existing beam-
formers and allows a tradeoff between speech distortion and
interference-plus-noise reduction on the one hand, and unde-
sired signal and ambient noise reductions on the other hand.
The conducted performance evaluation has demonstrated that
this tradeoff can be achieved. Furthermore, relations between
the proposed SDIRC beamformer and existing beamformers
have been derived and frequently used performance measures
were deduced and analyzed. In addition, it was shown that
these relations provide an alternative way to compute per-
formance measures of existing beamformers. The tradeoffs
facilitated by the proposed beamformer can be used in the
development of effective speech acquisition systems and in
the design of perceptually motivated beamformers.
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