109 research outputs found

    Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis

    Get PDF
    A single-chain nested fork-join queuing network (FJQN) model of mobility airfield ground processing is proposed. In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops into the embedded Markov chain of the synchronization station, then using Marie\u27s Method to decompose the network. Numerical studies show this strategy to be effective, with less than two percent relative error in the approximate performance measures in most realistic cases. The second contribution is the identification of a quick, efficient method for solving for the stationary probabilities of the λn/Ck/r/N queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie\u27s Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model is analyzed using the strategies described above, and accurate approximations of airfield performance measures are obtained in a fraction of the time needed for a simulation study. The proposed airfield modeling approach is especially effective for quick-look studies and sensitivity analysis

    Optimization of polling systems with Bernoulli schedules

    Get PDF
    Optimization;Polling Systems;Queueing Theory;operations research

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Shared-object System Equilibria: Delay and Throughput Analysis

    Full text link
    We consider shared-object systems that require their threads to fulfill the system jobs by first acquiring sequentially the objects needed for the jobs and then holding on to them until the job completion. Such systems are in the core of a variety of shared-resource allocation and synchronization systems. This work opens a new perspective to study the expected job delay and throughput analytically, given the possible set of jobs that may join the system dynamically. We identify the system dependencies that cause contention among the threads as they try to acquire the job objects. We use these observations to define the shared-object system equilibria. We note that the system is in equilibrium whenever the rate in which jobs arrive at the system matches the job completion rate. These equilibria consider not only the job delay but also the job throughput, as well as the time in which each thread blocks other threads in order to complete its job. We then further study in detail the thread work cycles and, by using a graph representation of the problem, we are able to propose procedures for finding and estimating equilibria, i.e., discovering the job delay and throughput, as well as the blocking time. To the best of our knowledge, this is a new perspective, that can provide better analytical tools for the problem, in order to estimate performance measures similar to ones that can be acquired through experimentation on working systems and simulations, e.g., as job delay and throughput in (distributed) shared-object systems

    Stochastic analyses arising from a new approach for closed queueing networks

    Get PDF
    Analyses are addressed for a number of problems in queueing systems and stochastic modeling that arose due to an investigation into techniques that could be used to approximate general closed networks. In Chapter II, a method is presented to calculate the system size distribution at an arbitrary point in time and at departures for a (n)/G/1/N queue. The analysis is carried out using an embedded Markov chain approach. An algorithm is also developed that combines our analysis with the recursive method of Gupta and Rao. This algorithm compares favorably with that of Gupta and Rao and will solve some situations when Gupta and Rao's method fails or becomes intractable. In Chapter III, an approach is developed for generating exact solutions of the time-dependent conditional joint probability distributions for a phase-type renewal process. Closed-form expressions are derived when a class of Coxian distributions are used for the inter-renewal distribution. The class of Coxian distributions was chosen so that solutions could be obtained for any mean and variance desired in the inter-renewal times. In Chapter IV, an algorithm is developed to generate numerical solutions for the steady-state system size probabilities and waiting time distribution functions of the SM/PH/1/N queue by using the matrix-analytic method. Closed form results are also obtained for particular situations of the preceding queue. In addition, it is demonstrated that the SM/PH/1/N model can be implemented to the analysis of a sequential two-queue system. This is an extension to the work by Neuts and Chakravarthy. In Chapter V, principal results developed in the preceding chapters are employed for approximate analysis of the closed network of queues with arbitrary service times. Specifically, the (n)/G/1/N queue is applied to closed networks of a general topology, and a sequential two-queue model consisting of the (n)/G/1/N and SM/PH/1/N queues is proposed for tandem queueing networks

    Performance evaluation of warehouses with automated storage and retrieval technologies.

    Get PDF
    In this dissertation, we study the performance evaluation of two automated warehouse material handling (MH) technologies - automated storage/retrieval system (AS/RS) and autonomous vehicle storage/retrieval system (AVS/RS). AS/RS is a traditional automated warehouse MH technology and has been used for more than five decades. AVS/RS is a relatively new automated warehouse MH technology and an alternative to AS/RS. There are two possible configurations of AVS/RS: AVS/RS with tier-captive vehicles and AVS/RS with tier-to-tier vehicles. We model the AS/RS and both configurations of the AVS/RS as queueing networks. We analyze and develop approximate algorithms for these network models and use them to estimate performance of the two automated warehouse MH technologies. Chapter 2 contains two parts. The first part is a brief review of existing papers about AS/RS and AVS/RS. The second part is a methodological review of queueing network theory, which serves as a building block for our study. In Chapter 3, we model AS/RSs and AVS/RSs with tier-captive vehicles as open queueing networks (OQNs). We show how to analyze OQNs and estimate related performance measures. We then apply an existing OQN analyzer to compare the two MH technologies and answer various design questions. In Chapter 4 and Chapter 5, we present some efficient algorithms to solve SOQN. We show how to model AVS/RSs with tier-to-tier vehicles as SOQNs and evaluate performance of these designs in Chapter 6. AVS/RS is a relatively new automated warehouse design technology. Hence, there are few efficient analytical tools to evaluate performance measures of this technology. We developed some efficient algorithms based on SOQN to quickly and effectively evaluate performance of AVS/RS. Additionally, we present a tool that helps a warehouse designer during the concepting stage to determine the type of MH technology to use, analyze numerous alternate warehouse configurations and select one of these for final implementation

    Performance Bounds for Synchronized Queueing Networks

    Get PDF
    Las redes de Petri estocásticas constituyen un modelo unificado de las diferentes extensiones de redes de colas con sincronizaciones existentes en la literatura, válido para el diseño y análisis de prestaciones de sistemas informáticos distribuidos. En este trabajo se proponen técnicas de cálculo de cotas superiores e inferiores de las prestaciones de redes de Petri estocásticas en estado estacionario. Las cotas obtenidas son calculables en tiempo polinómico en el tamaño del modelo, por medio de la resolución de ciertos problemas de programación lineal definidos a partir de la matriz de incidencia de la red (en este sentido, las técnicas desarrolladas pueden considerarse estructurales). Las cotas calculadas dependen sólamente de los valores medios de las variables aleatorias que describen la temporización del sistema, y son independientes de los momentos de mayor orden. Esta independencia de la forma de las distribuciones de probabilidad asociadas puede considerarse como una útil generalización de otros resultados existentes para distribuciones particulares, puesto que los momentos de orden superior son, habitualmente, desconocidos en la realidad y difíciles de estimar. Finalmente, las técnicas desarrolladas se aplican al análisis de diferentes ejemplos tomados de la literatura sobre sistemas informáticos distribuidos y sistemas de fabricación. ******* Product form queueing networks have long been used for the performance evaluation of computer systems. Their success has been due to their capability of naturally expressing sharing of resources and queueing, that are typical situations of traditional computer systems, as well as to their efficient solution algorithms, of polynomial complexity on the size of the model. Unfortunately, the introduction of synchronization constraints usually destroys the product form solution, so that general concurrent and distributed systems are not easily studied with this class of models. Petri nets have been proved specially adequate to model parallel and distributed systems. Moreover, they have a well-founded theory of analysis that allows to investigate a great number of qualitative properties of the system. In the original definition, Petri nets did not include the notion of time, and tried to model only the logical behaviour of systems by describing the causal relations existing among events. This approach showed its power in the specification and analysis of concurrent systems in a way independent of the concept of time. Nevertheless the introduction of a timing specification is essential if we want to use this class of models for the performance evaluation of distributed systems. One of the main problems in the actual use of timed and stochastic Petri net models for the quantitative evaluation of large systems is the explosion of the computational complexity of the analysis algorithms. In general, exact performance results are obtained from the numerical solution of a continuous time Markov chain, whose dimension is given by the size of the state space of the model. Structural computation of exact performance measures has been possible for some subclasses of nets such as those with state machine topology. These nets, under certain assumptions on the stochastic interpretation are isomorphic to Gordon and Newell's networks, in queueing theory terminology. In the general case, efficient methods for the derivation of performance measures are still needed. Two complementary approaches to the derivation of exact measures for the analysis of distributed systems are the utilization of approximation techniques and the computation of bounds. Approximate values for the performance parameters are in general more efficiently derived than the exact ones. On the other hand, "exactness" only exists in theory! In other words, numerical algorithms must be applied in practice for the computation of exact values, therefore making errors is inevitable. Performance bounds are useful in the preliminary phases of the design of a system, in which many parameters are not known accurately. Several alternatives for those parameters should be quickly evaluated, and rejected those that are clearly bad. Exact (and even approximate) solutions would be computationally very expensive. Bounds become useful in these instances since they usually require much less computation effort. The computation of upper and lower bounds for the steady-state performance of timed and stochastic Petri nets is considered in this work. In particular, we study the throughput of transitions, defined as the average number of firings per time unit. For this measure we try to compute upper and lower bounds in polynomial time on the size of the net model, by means of proper linear programming problems defined from the incidence matrix of the net (in this sense, we develop structural techniques). These bounds depend only on the mean values and not on the higher moments of the probability distribution functions of the random variables that describe the timing of the system. The independence of the probability distributions can be viewed as a useful generalization of the performance results, since higher moments of the delays are usually unknown for real cases, and difficult to estimate and assess. From a different perspective, the obtained results can be applied to the analysis of queueing networks extended with some synchronization schemes. Monoclass queueing networks can be mapped on stochastic Petri nets. On the other hand, stochastic Petri nets can be interpreted as monoclass queueing networks augmented with synchronization primitives. Concerning the presentation of this manuscript, it should be mentioned that chapter 1 has been written with the object of giving the reader an outline of the stochastic Petri net model: its definition, terminology, basic properties, and related concepts, together with its deep relation with other classic stochastic network models. Chapter 2 is devoted to the presentation of the net subclasses considered in the rest of the work. The classification presented here is quite different from the one which is usual in the framework of Petri nets. The reason lies on the fact that our classification criterion, the computability of visit ratios for transitions, is introduced for the first time in the field of stochastic Petri nets in this work. The significance of that criterion is based on the important role that the visit ratios play in the computation of upper and lower bounds for the performance of the models. Nevertheless, classical important net subclasses are identified here in terms of the computability of their visit ratios from different parameters of the model. Chapter 3 is concerned with the computation of reachable upper and lower bounds for the most restrictive subclass of those presented in chapter 2: marked graphs. The explanation of this fact is easy to understand. The more simple is the model the more accessible will be the techniques an ideas for the development of good results. Chapter 4 provides a generalization for live and bounded free choice nets of the results presented in the previous chapter. Quality of obtained bounds is similar to that for strongly connected marked graphs: throughput lower bounds are reachable for bounded nets while upper bounds are reachable for 1-bounded nets. Chapter 5 considers the extension to other net subclasses, like mono-T-semiflow nets, FRT-nets, totally open deterministic systems of sequential processes, and persistent nets. The results are of diverse colours. For mono-T-semiflow nets and, therefore, for general FRT-nets, it is not possible (so far) to obtain reachable throughput bounds. On the other hand, for bounded ordinary persistent nets, tight throughput upper bounds are derived. Moreover, in the case of totally open deterministic systems of sequential processes the exact steady-state performance measures can be computed in polynomial time on the net size. In chapter 6 bounds for other interesting performance measures are derived from throughput bounds and from classical queueing theory laws. After that, we explore the introduction of more information from the probability distribution functions of service times in order to improve the bounds. In particular, for Coxian service delay of transitions it is possible to improve the throughput upper bounds of previous chapters which held for more general forms of distribution functions. This improvement shows to be specially fruitful for live and bounded free choice nets. Chapter 7 is devoted to case studies. Several examples taken from literature in the fields of distributed computing systems and manufacturing systems are modelled by means of stochastic Petri nets and evaluated using the techniques developed in previous chapters. Finally, some concluding remarks and considerations on possible extensions of the work are presented

    Steady State Analysis of Load Balancing Algorithms in the Heavy Traffic Regime

    Get PDF
    abstract: This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the Sub-Halfin-Whitt regime with exponential service time; 2) load balancing in the Beyond-Halfin-Whitt regime with exponential service time; 3) load balancing in the Sub-Halfin-Whitt regime with Coxian-2 service time. When in the Sub-Halfin-Whitt regime, the sufficient conditions are established such that any load balancing algorithm that satisfies the conditions have both asymptotic zero waiting time and zero waiting probability. Furthermore, the number of servers with more than one jobs is o(1), in other words, the system collapses to a one-dimensional space. The result is proven using Stein’s method and state space collapse (SSC), which are powerful mathematical tools for steady-state analysis of load balancing algorithms. The second system is in even “heavier” traffic regime, and an iterative refined procedure is proposed to obtain the steady-state metrics. Again, asymptotic zero delay and waiting are established for a set of load balancing algorithms. Different from the first system, the system collapses to a two-dimensional state-space instead of one-dimensional state-space. The third system is more challenging because of “non-monotonicity” with Coxian-2 service time, and an iterative state space collapse is proposed to tackle the “non-monotonicity” challenge. For these three systems, a set of load balancing algorithms is established, respectively, under which the probability that an incoming job is routed to an idle server is one asymptotically at steady-state. The set of load balancing algorithms includes join-the-shortest-queue (JSQ), idle-one-first(I1F), join-the-idle-queue (JIQ), and power-of-d-choices (Pod) with a carefully-chosen d.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes

    Get PDF
    Two approximative fixed-point iterative methods based on decomposition for closed queueing networks with Coxian service distributions and arbitrary buffer sizes are extended to include phase-type service distributions. The irreducible Markov chain associated with each subnetwork in the respective decompositions is represented hierarchically using Kronecker products. The two methods are implemented in a software tool capable of computing the steady-state probability vector of each subnetwork by a multilevel method at each fixed-point iteration and are compared with other methods for accuracy and efficiency. Numerical results indicate that there is a niche filled by the two approximative methods
    corecore