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ABSTRACT

Stochastic Analyses Arising from a New Approach for

Closed Queueing Networks. (May 2006)

Feng Sun, B.S., Beijing University of Aeronautics and Astronautics;

M.S., Beijing University of Aeronautics and Astronautics

Chair of Advisory Committee: Dr. Richard M. Feldman

Analyses are addressed for a number of problems in queueing systems and

stochastic modeling that arose due to an investigation into techniques that could

be used to approximate general closed networks.

In Chapter II, a method is presented to calculate the system size distribution at

an arbitrary point in time and at departures for a λ(n)/G/1/N queue. The analysis

is carried out using an embedded Markov chain approach. An algorithm is also

developed that combines our analysis with the recursive method of Gupta and Rao.

This algorithm compares favorably with that of Gupta and Rao and will solve some

situations when Gupta and Rao’s method fails or becomes intractable.

In Chapter III, an approach is developed for generating exact solutions of the

time-dependent conditional joint probability distributions for a phase-type renewal

process. Closed-form expressions are derived when a class of Coxian distributions

are used for the inter-renewal distribution. The class of Coxian distributions was

chosen so that solutions could be obtained for any mean and variance desired in the

inter-renewal times.

In Chapter IV, an algorithm is developed to generate numerical solutions for

the steady-state system size probabilities and waiting time distribution functions of

the SM/PH/1/N queue by using the matrix-analytic method. Closed form results
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are also obtained for particular situations of the preceding queue. In addition, it

is demonstrated that the SM/PH/1/N model can be implemented to the analysis

of a sequential two-queue system. This is an extension to the work by Neuts and

Chakravarthy.

In Chapter V, principal results developed in the preceding chapters are em-

ployed for approximate analysis of the closed network of queues with arbitrary ser-

vice times. Specifically, the λ(n)/G/1/N queue is applied to closed networks of a

general topology, and a sequential two-queue model consisting of the λ(n)/G/1/N

and SM/PH/1/N queues is proposed for tandem queueing networks.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

We are in a world of queueing systems. Phenomena of waiting lines or, by the British

version, queues, can be observed frequently in almost everyone’s daily life. People

are said to spend in average about five years of their lives waiting in lines and six

months at traffic lights [31, pp.469]. Stochastic processes arise from the two streams

of entities entering the system for service and exiting after completing service. The

interaction of the stochastic arrival and departure processes results in the complexity

of queueing systems. In terms of networks of queues, we generally refer to open or

closed, depending on if arrival streams to and departure streams from the network

may take place. Typically, the area of closed queueing networks is more challenging,

due to the fact that the total number of customers in the network is constrained to

be a constant.

In Chapters II, III and IV of this dissertation, both theoretical developments

and computational algorithms are presented for a number of problems involved in

queueing theory and stochastic processes. I am convinced by Tijms [46] that, “theory

is better understood when the algorithms that solve the problems the theory addresses

are presented at the same time”. Finally, the solutions proposed in the preceding

chapters are implemented in Chapter V for investigation on approximate analytical

methods for closed queueing networks.

The journal model is IEEE Transactions on Automatic Control.
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A. The λ(n)/G/1/N Queue

The λ(n)/G/1/N queue has wide application in modeling logistic and manufacturing

systems. Depending on the function λ(n), the model covers many special cases, such

as the M/G/1 system with finite waiting space or with balking probabilities. Courtois

and Georges [12] investigated a generalized model of which both the arrival and the

service rates are allowed to be arbitrary functions of the current queue size using an

embedded Markov chain approach. However, their results are difficult to be applied in

computation, as pointed out by Gupta and Rao [18]. By approximating the general

service distribution using the Cox-r (Cr) representation, a numerical solution was

obtained by Marie [29] and Marie and Pellaumail [30] and provides a particularly

efficient algorithm for Cox-2 and Erlang-r service processes. In addition, Marie [28]

proposed an approximate solution to general closed queueing networks, where each

node is analyzed iteratively as a λ(n)/Cr/1/N model. Stewart and Marie [44] and

Willits [49] extended the previous model to include multiple servers. See Appendix

A for a brief description of Gupta and Rao’s method.

Gupta and Rao [17, 18] developed a recursive algorithm to calculate the steady-

state probabilities at departures and at an arbitrary point in time for the λ(n)/G/1/N

queue. All the load-dependent arrival rates λ(n) must be either identical or all distinct

from each other. However, their approach can be modified to accommodate the situa-

tion where some of the λ(n) values are identical and some are distinct. For example, in

[17], Gupta and Rao calculated the system size probabilities of a M/G/1/N machine

interference problem with Y spares (Y < N). The running times of machines between

breakdowns follow an exponential distribution with a constant rate λ, and the repair

time distribution is arbitrary. This is essentially a λ(n)/G/1/(N + Y ) model, with

λ(n) = Nλ for 0 ≤ n ≤ Y and λ(n) = (N + Y − n)λ for Y + 1 ≤ n ≤ N + Y − 1. A
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difficulty with the procedure in [17, 18] is that whenever a new λ(n)/G/1/(N + Y )

system is analyzed with a different combination of identical and distinct values of

λ(n), their basic equations will be rewritten and the procedure to solve the equations

will be repeated.

In Chapter II, we develop an efficient algorithm for computing the steady-state

probabilities of the system size for the λ(n)/G/1/N queue. We apply an embed-

ded Markov chain approach and provide equations for obtaining numerical results.

Combining our analysis with that in [17, 18], we determine a unified algorithm that

applies to a broad range of λ(n) values, where an operation of partial fraction expan-

sion is easily performed with regard to whether or not the λ(n) values are distinct or

identical. The proposed algorithm compares favorably with that in [17, 18] in both

accuracy and stability.

B. Phase-Type Renewal Processes

A Phase-Type (PH) Renewal Process is a renewal process that has a PH distribution

for the inter-renewal times. For a PH renewal process, in Chapter III we propose a

procedure to generate the exact solution for the matrices of time-dependent condi-

tional joint probability distributions, denoted by P (n, t), for n ∈ N and t ∈ R+. (The

definition of P (n, t) will be given later in Chapter III. Throughout this dissertation,

N will denote the nonnegative integers and R+ will denote the nonnegative reals.)

The computation of the matrices P (n, t), for n ∈ N and t ∈ R+, is essential in many

queueing and stochastic process analyses (e.g., see [35] for the GI/PH/1 queue and

[37] for the SM/PH/1 system). One of the reasons for the popularity of PH-renewal

processes is the availability of computationally tractable algorithms for obtaining ap-

proximate values for the P (n, t) matrices [36]; however, if the algorithmic methods
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could be replaced by explicit forms for the P (n, t) terms, computational speed and

accuracy would become even more enhanced.

In particular, we shall choose a Coxian distribution [13] to match inter-renewal

times of arbitrary mean and variance and then derive the associated forms for P (n, t).

In addition, we compute the distribution for the counting process {N(t); t ≥ 0} of

PH renewals.

C. The SM/PH/1/N Queue

The SM/PH/1 queueing system (i.e., semi-Markov arrival process, PH service system,

single server) is very general, and the associated infinity capacity model has been

studied by Neuts and Chakravarthy [37] using the matrix-analytic method. Specifying

various arrival and service distributions of the preceding model, Neuts [35] provided

solutions for the GI/PH/1, SM/M/1, and PH/PH/1 queues.

The underlying processes of a variety of stochastic models that are rich in struc-

ture and of extensive application can be conveniently expressed in terms of matrix

solutions. As the principal pioneer in the discipline of matrix-analytic methods, Neuts

[36, 39] examined two primary classes of structured queueing systems, which are said

to be of the GI/M/1 type and M/G/1 type, respectively. (Also see [38] for an intro-

ductory description of matrix-analytic methods in queueing theory.) Matrix-analytic

methods have been widely used in the stochastic modeling and analysis of engineer-

ing and commercial problems, and theoretical developments fruitfully proposed along

with the applications (e.g., see [9, 27]).

In Chapter IV, we consider the finite-buffer SM/PH/1/N queueing system and

present numerically tractable solutions for its steady-state system size probabilities

and waiting time distribution functions. We also obtain closed form results for some
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types of semi-Markov arrival processes (those in which the Laplace-Stieltjes transform

of the semi-Markovian kernel can be obtained in closed form) with a Cox-2 service

process. In addition, we show that the SM/PH/1/N model can be used to study a

sequential two-queue system with finite waiting space in both queues. Upon complet-

ing service in the first queue, a customer leaves the whole system if observing that the

second queue is full. Literature concerned with two queues in series, but assuming

that a customer can not leave the first queue and a block occurs when the second

queue reaches full capacity, can be found in [25, 33, 34].

D. Closed Queueing Networks

Closed queueing networks are of increasing use in modeling and analysis of modern

manufacturing and computer systems, in particular, of such production control pro-

cesses as Kanban and CONWIP (e.g., see [21]) in which the amount of material being

processed remains constant. For the class of closed networks with exponentially dis-

tributed service times implementing a first-come first-served (FCFS) discipline, the

steady-state joint probabilities have a product-form solution and can be solved exactly

[8, 42]. However, the assumption of exponential service time distributions is often too

restrictive to appropriately model real-life systems. Therefore, the approximate anal-

ysis of non-product-form networks is historically an important research field, to which

much work has been devoted.

The literature on approximations for closed queueing networks can be divided

into two categories, depending on whether or not aggregation is employed. We first

review several techniques not using aggregation and then discuss those that utilize

aggregation techniques.

A number of approaches have been proposed in which the topology of the tar-
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geted network is not simplified. Kobayashi [22, 23] discussed both stationary and

transient solutions for open and closed networks via the diffusion process approxi-

mation. Whitt [48] investigated the relationship between open and closed queueing

networks and provided the fixed-population-mean (FPM) method, i.e., an approach

to use open models with specified expected equilibrium populations, to approximate

closed models. It is pointed out in [48] that the FPM approximation for the through-

put will be good if either the total population or the number of stations is sufficiently

large. Based on the principle of maximum entropy, Kouvatsos [24] and Walstra [47]

presented a product-form solution for open and closed queueing networks with FCFS

discipline and multiple job classes. By applying the Brownian system theory to closed

queueing networks, analytical approaches were proposed by Harrison et al. [19] and

Dai and Harrison [16]. However, the computational charge is very demanding and

thus, their approaches are limited to networks of very small size. A special situation

of the approaches of Brownian models was addressed by Schwerer and Van Mieghem

[43] for balanced three-station systems.

The principle of the other category of approaches is to substitute approximately

a subnetwork of the original network by a flow equivalent single queue. It is shown by

Dallery and Cao [15] and Baynat and Dallery [4] that, under moderate assumptions,

a closed network with a complex configuration can be suitably partitioned into a set

of subnetworks, each of which is aggregated into a load-dependent exponential single

queue. Thus, the original network is approximated by an equivalent product-form

network. The methods proposed by Chandy et al. [11] and Marie [28] are the typical

aggregation methods for single class networks. As pointed out by Baynat and Dallery

[5], these methods are distinguished essentially in the way the load-dependent rates

are estimated. Extensions of Marie’s method to load-dependent general networks was

presented by Akyildiz and Sieber [1] and to multiclass networks by Neuse and Chandy
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[32] and Baynat and Dallery [5].

Almost all of the approaches in the literature are developed by means of two-

moment approximations for the service times of the original closed network. However,

it has been empirically shown that the effect of the third moment of the service time

distribution becomes considerable for single queues such as the M/G/1, GI/G/1 and

λ(n)/G/1/N if the squared coefficient of variation (SCV ) is greater than 1 [2]. Even

though the effect on queueing networks is more complicated, it is worthwhile to find

a way to implement the third and higher moments.

In Chapter V, we will demonstrate a unique approach by using exact forms of

service time distributions. In addition, we attempt a sequential two-queue model for

the approximate analysis of tandem closed networks.



8

CHAPTER II

STEADY-STATE PROBABILITIES OF λ(n)/G/1/N QUEUE

We apply an embedded Markov chain approach to the analysis of a λ(n)/G/1/N

queue and develop an algorithm to calculate the system length distribution at an

arbitrary point in time and at departures. For the λ(n)/G/1/N queue to be con-

sidered, it is assumed that there exists an integer N ≥ 2 such that λ(n) > 0 for all

0 ≤ n ≤ N − 1, and λ(n) = 0 for all n ≥ N . (At times we shall represent λ(n) by

λn for ease of notation.) The service time distribution is arbitrary, where the only

requirement is its Laplace-Stieltjes transform can be obtained in closed form and its

mean value is finite. The proposed algorithm can be implemented for approximate

analysis of closed queueing networks with arbitrary service times and topology, which

will be demonstrated in Chapter V.

A. Analysis

Our analysis starts with the load-dependent distribution of interarrival times, denoted

by

αn(t) = 1 − e−λ(n)t, for 0 ≤ n ≤ N − 1, t ∈ R+. (2.1)

Let Bm,n(t) denote the probability that the total interarrival time of m successive

arrivals is less than or equal to t, i.e., there are at least m arrivals in (0, t], given

the initial state or customer population n, and there are no services during the time

interval. In other words, Bm,n is the generalized Erlang distribution, and is given by

Bm,n = αn ∗ αn+1 ∗ · · · ∗ αn+m−1, for m ≥ 1, 0 ≤ m + n ≤ N, (2.2)
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where “∗” represents the convolution operation. Obviously we have B0,n(t) = 1 for

0 ≤ n ≤ N .

Throughout this dissertation, the Laplace transform of a function will be denoted

by a superscript L; in other words,

FL(s) ≡
∫ ∞

0
e−stF (t)dt, for s ∈ R+, (2.3)

where F is a function with support in the nonnegative reals. We will denote by

F ∗(s) ≡
∫ ∞

0
e−st dF (t), for s ∈ R+, (2.4)

the Laplace-Stieltjes transform if in addition F is a non-decreasing function F . We

shall also need the factorial derivative and we denote these by F (n)(s) for n ∈ N ; in

other words,

F (n)(s0) ≡ F (n)(s)|s=s0 =
1

n!

dn

dsn
F (s)|s=s0, (2.5)

where F (0) = F .

We have

B∗
m,n(s)=

∫ ∞

0
e−st dBm,n(t)

=α∗
n(s)α∗

n+1(s) · · ·α∗
n+m−1(s)

=

∏m
i=1 λn+i−1

B(s)
, for m ≥ 1, 1 ≤ m+ n ≤ N, (2.6)

where B(s) =
∏m

i=1(s + λn+i−1). With regard to its repeating roots, we rewrite B(s)

as

B(s) =
u(m,n)∏

i=1

(s+ bi)
ki(m,n), (2.7)

where b1 6= b2 6= · · · 6= bu(m,n) and
∑u(m,n)

i=1 ki(m,n) = m. Instead of using the Laplace-

Stieltjes transform, it is straightforward for us to obtain the expression of Bm,n from
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its Laplace transform

BL
m,n(s) =

1

s
B∗

m,n(s). (2.8)

By taking the partial fraction expansion then inverse Laplace transformation of

BL
m,n(s), and noting that B∗

0,n(s) = 1 for 0 ≤ n ≤ N , we have

Bm,n(t) =





1, for m = 0, 0 ≤ n ≤ N ;

1 +
u(m,n)∑

i=1

ki(m,n)∑

v=1

ai,v(m,n)

(v − 1)!
tv−1e−bit, for m ≥ 1, 1 ≤ m+ n ≤ N ;

0, otherwise,

(2.9)

where

ai,v(m,n) =
[
(s+ bi)

ki(m,n) 1

s
B∗

m,n(s)
](ki(m,n)−v)

s=−bi

. (2.10)

The operation of the partial fraction expansion is given in algebra textbooks, see

for example [45], and is provided by computer softwares for symbolic mathematical

calculation, such as Maple r©.

Then we denote by

ψm,n(t) = Bm,n(t) −Bm+1,n(t) (2.11)

the probability that there are exactly m arrivals in (0, t], given the initial population

n, and yield its Laplace transform

ψL
m,n(s) =

1

s

(
B∗

m,n(s) − B∗
m+1,n(s)

)

=





1

s+ λn
, for m = 0, 0 ≤ n ≤ N − 1;

∏m
i=1 λn+i−1

D(s)
, for m ≥ 1, 1 ≤ m+ n ≤ N,

(2.12)

where D(s) =
∏m+1

i=1 (s+ λn+i−1). Re-arranging according to repeating roots yields

D(s) =
u(m+1,n)∏

i=1

(s+ di)
ki(m+1,n). (2.13)
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Therefore we have

ψm,n(t) =





1, for m = 0, n = N ;

e−λ(n)t, for m = 0, 0 ≤ n ≤ N − 1;
u(m+1,n)∑

i=1

ki(m+1,n)∑

v=1

ci,v(m,n)

(v − 1)!
tv−1e−dit, for m ≥ 1, 1 ≤ m + n ≤ N ;

0, otherwise,
(2.14)

where

ci,v(m,n) =
[
(s+ di)

ki(m+1,n)ψL
m,n(s)

](ki(m+1,n)−v)

s=−di

. (2.15)

For the λ(n)/G/1/N queue, let T0 = 0, T1, T2, · · · be the instants of successive de-

partures, and denote by Xi the number of customers left behind by the ith departure.

Then the stochastic process (X, T ) = {Xi, Ti; i ∈ N} is a Markov renewal process

with state space EN = {0, 1, · · · , N − 1}. As conventional, the process is assumed

time-homogeneous. That is,

Qkj(t) = P{Xi+1 = j, Ti+1 − Ti ≤ t|Xi = k} for j, k ∈ EN , t ∈ R+, (2.16)

which is independent of i. The service time distribution ϕ(·) is arbitrary, with its

Laplace-Stieltjes transform given by ϕ∗(s). Denote Q(t) to be the matrix whose

(k, j)th entry is Qkj(t); that yields

Q(t) =




p0(t) p1(t) p2(t) · · · pN−1(t)

q0,1(t) q1,1(t) q2,1(t) · · · qN−1,1(t)

q0,2(t) q1,2(t) · · · qN−2,2(t)

. . .
...

...

0 q0,N−1(t) q1,N−1(t)




, (2.17)

where

qm,n(t) =
∫ t

0
ϕ(dx)ψm,n(x), for 1 ≤ n ≤ N − 1, 1 ≤ m + n ≤ N, (2.18)
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pm(t) =
∫ t

0
λ0e

−λ(0)(t−x)qm,1(x) dx, for 0 ≤ m ≤ N − 1. (2.19)

Here we also have

qN−n,n(t) = ϕ(t) −
N−n−1∑

i=0

qi,1(t), for 1 ≤ n ≤ N − 1, (2.20)

pN−1(t) =
∫ t

0
λ0e

−λ(0)xϕ(t− x) dx−
N−2∑

i=0

pi(t). (2.21)

The single-step probability transition matrix of the embedded Markov chain {Xi; i ∈

N} is

Q̃=




q0,1 q1,1 q2,1 · · · qN−1,1

q0,1 q1,1 q2,1 · · · qN−1,1

q0,2 q1,2 · · · qN−2,2

. . .
...

...

0 q0,N−1 q1,N−1




, (2.22)

where

qm,n =
∫ ∞

0
ϕ(dt)ψm,n(t), for 1 ≤ n ≤ N − 1, 1 ≤ m+ n ≤ N. (2.23)

By (2.23) and substituting ψm,n(t) by the right-hand side of (2.14), then using the

final value property of the Laplace-Stieltjes transformation yields

qm,n = (2.24)



u(m+1,n)∑

i=1

ki(m+1,n)∑

v=1

(−1)v−1ci,v(m,n)ϕ∗(v−1)(di), for m ≥ 1, 1 ≤ n ≤ N −m;

ϕ∗(λn), for m = 0, 1 ≤ n ≤ N − 1;

0, otherwise,

Let Yt denote the number of customers in the system at time t. Then Y =

{Yt; t ≥ 0} is a semi-regenerative process, with state space EN+1 = {0, 1, · · · , N} and
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embedded Markov renewal process (X, T ). LetK(t, k, j) = P{Yt = j, T1 > t|X0 = k},

for 0 ≤ j ≤ N , 0 ≤ k ≤ N , and t ≥ 0. We have

K(t, k, j) =





e−λ(0)t, for k = j = 0;
∫ t

0
λ0e

−λ(0)(t−x)[1 − ϕ(x)]BN−1,0(x) dx, for k = 0, j = N ;
∫ t

0
λ0e

−λ(0)(t−x)[1 − ϕ(x)]ψj−1,0(x) dx, for k = 0, N − 1 ≥ j ≥ 1;

[1 − ϕ(t)]BN−k,k(t), for N = j ≥ k ≥ 1;

[1 − ϕ(t)]ψj−k,k(t), for N − 1 ≥ j ≥ k ≥ 1;

0, otherwise.
(2.25)

This is because, for k = j = 0, e−λ(0)t is the probability that there is no arrival in

(0, t]; for k = 0 and j = N , after the first arrival at some time t− x before t, during

the time interval (t−x, t] there are N−1 or more arrivals with probability BN−1,0(x),

and satisfying T1 > x with probability 1 − ϕ(x); for k = 0 and N − 1 ≥ j ≥ 1, after

the first arrival at t−x, the probability that there are j−1 arrivals during the interval

(t− x, t] is ψj−1,0(x); if there are already k ≥ 1 in the system, then T1 is the same as

the first service time. In addition, during the time interval (0, t], the probability that

there are j−k arrivals is BN−k,k(t) for N = j ≥ k; and is ψj−k,k(t) for N−1 ≥ j ≥ k.

From (2.25) and introducing the notation

g(s) =
1 − ϕ∗(s)

s
, (2.26)

we then have,

∫ ∞

0
K(t, k, j)dt =



14





lim
s→0

1

s+ λ0

, for k = j = 0;

lim
s→0

λ0

s+ λ0

[
g(s) +

u(N−1,0)∑

i=1

ki(N−1,0)∑

v=1

(−1)v−1ai,v(N − 1, 0)g(v−1)(s+ bi)
]
,

for k = 0, j = N ;

lim
s→0

λ0

s+ λ0
g(s+ λ0), for k = 0, j = 1;

lim
s→0

λ0

s+ λ0

u(j,0)∑

i=1

ki(j,0)∑

v=1

(−1)v−1ci,v(j − 1, 0)g(v−1)(s + di), for k = 0, N − 1 ≥ j ≥ 2;

lim
s→0

g(s), for j = k = N ;

lim
s→0

[
g(s) +

u(N−k,k)∑

i=1

ki(N−k,k)∑

v=1

(−1)v−1ai,v(N − k, k)g(v−1)(s+ bi)
]
,

for N = j > k ≥ 1;

lim
s→0

g(s+ λk), , for N − 1 ≥ j = k ≥ 1;

lim
s→0

u(j−k+1,k)∑

i=1

ki(j−k+1,k)∑

v=1

(−1)v−1ci,v(j − k, k)g(v−1)(s+ di), for N − 1 ≥ j > k ≥ 1;

0, otherwise
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= (2.27)



1

λ0

, for k = j = 0;

g(0) +
u(N−1,0)∑

i=1

ki(N−1,0)∑

v=1

(−1)v−1ai,v(N − 1, 0)g(v−1)(bi), for k = 0, j = N ;

g(λ0), for k = 0, j = 1;
u(j,0)∑

i=1

ki(j,0)∑

v=1

(−1)v−1ci,v(j − 1, 0)g(v−1)(di), for k = 0, N − 1 ≥ j ≥ 2;

g(0), for k = j = N ;

g(0) +
u(N−k,k)∑

i=1

ki(N−k,k)∑

v=1

(−1)v−1ai,v(N − k, k)g(v−1)(bi), for N = j > k ≥ 1;

g(λk), for N − 1 ≥ j = k ≥ 1;
u(j−k+1,k)∑

i=1

ki(j−k+1,k)∑

v=1

(−1)v−1ci,v(j − k, k)g(v−1)(di), for N − 1 ≥ j > k ≥ 1;

0, otherwise,

where g(0) can be obtained by observing that

g(0) ≡ lim
s→0

g(s) = − lim
s→0

d

ds
ϕ∗(s) ≡ −ϕ∗(1)(0) . (2.28)

The benefit of this last equality is that if one of the logic software systems that handle

symbolic computation is used, then it is possible that g(0) cannot be evaluated directly

since it involves a division by zero; however, ϕ∗(1)(0) may be possible if ϕ∗ is not too

complex.

Now we are ready to determine y(j) = limt→∞ P{Yt = j|X0}; that is, the steady-

state probability of j customers in the system at an arbitrary point of time. By [14,

Theorems 10.4.3 and 10.6.12], we have

y(j) =
j∑

k=0

η(k)
∫ ∞

0
K(t, k, j) dt, (2.29)
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where

η(k) =
ν(k)

∑N−1
i=0 ν(i)τ(i)

, (2.30)

which is the inverse of the mean recurrence time of state k in (X, T ). The vector

ν = (ν(0), ν(1), · · ·, ν(N − 1)) satisfies

νQ̃ = ν, (2.31)

and ν(k) = 0, for k ≥ N . The expected sojourn time for each visit to state i is given

by

τ(i) =




b +

1

λ
, for i = 0;

b, for i ≥ 1,

(2.32)

where b =
∫∞
0 [1 − ϕ(t)] dt is the mean service time. Therefore we have

y(j) =
j∑

k=0

ν(k)

ν(0)

λ0
+ b

N−1∑

i=0

ν(i)

∫ ∞

0
K(t, k, j) dt, for 0 ≤ j ≤ N. (2.33)

Denote by π(j) the steady-state probability of j customers remaining in the system

immediately after a service completion, for N−1 ≥ j ≥ 0. The normalizing condition

yields

π(j) =
ν(j)

N−1∑

i=0

ν(i)

, for N − 1 ≥ j ≥ 0. (2.34)

Before ending this section, we give explicit equations for the computation of qm,n

and
∫∞
0 K(t, k, j)dt for two particular cases, according to whether all the λ(n) values

are identical or distinct from each other.

Case 1. Assume λ0 = λ1 = · · · = λN−1 = λ. Then for each given n =

0, 1, · · · , N −1, and m such that m ≥ 1 and 1 ≤ m+n ≤ N , Bm,n is an Erlang (m, λ)
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distribution and ψm,n follows Poisson distribution. Now we have

qm,n =





(−λ)mϕ∗(m)(λ), for m ≥ 1, 1 ≤ m + n ≤ N − 1;

ϕ∗(0) −
m−1∑

i=0

(−λ)iϕ∗(i)(λ), for m ≥ 1, m+ n = N ;

ϕ∗(λ), for m = 0, N − 1 ≥ n ≥ 0;

0, otherwise,

(2.35)

∫ ∞

0
K(t, k, j)dt =





1

λ
, for k = j = 0;

g(0) −
N−2∑

i=0

(−λ)ig(i)(λ), for k = 0, j = N ;

g(λ), for k = 0, j = 1;

(−λ)j−1g(j−1)(λ), for k = 0, N − 1 ≥ j ≥ 2;

g(0), for k = j = N ;

g(0) −
N−k−1∑

i=0

(−λ)ig(i)(λ), for N = j > k ≥ 1;

g(λ), for N − 1 ≥ j = k ≥ 1;

(−λ)j−kg(j−k)(λ), for N − 1 ≥ j > k ≥ 1;

0, otherwise.

(2.36)

Case 2. On the other hand, if λ0 6= λ1 6= · · · 6= λN−1, then for each pair of m

and n we have

qm,n =





m+1∑

v=1

cv(m,n)ϕ∗(λn+v−1), for m ≥ 1, 1 ≤ n ≤ N −m;

ϕ∗(λn), for m = 0, 1 ≤ n ≤ N − 1;

0, otherwise,

(2.37)

∫ ∞

0
K(t, k, j) dt = (2.38)
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1

λ0
, for k = j = 0;

g(0) +
N−1∑

v=1

av(N − 1, 0)g(λv−1), for k = 0, j = N ;

g(λ0), for k = 0; j = 1;
j∑

v=1

cv(j − 1, 0)g(λv−1), for k = 0, N − 1 ≥ j ≥ 2;

g(0), for j = k = N ;

g(0) +
N−k∑

v=1

av(N − k, k)g(λk+v−1), for N = j > k ≥ 1;

g(λk), for N − 1 ≥ j = k ≥ 1;
j−k+1∑

v=1

cv(j − k, k)g(λk+v−1), for N − 1 ≥ j > k ≥ 1;

0, otherwise,

where

av(m,n)=−
k 6=v∏

k=1,2,···,m

λn+k−1

λn+k−1 − λn+v−1

, (2.39)

cv(m,n) =

∏m
k=1 λn+k−1

∏k 6=v
k=1,2,···,m+1(λn+k−1 − λn+v−1)

. (2.40)

The values of av(m,n) and cv(m,n) satisfy

m∑

v=1

av(m,n) = −1 (2.41)

m+1∑

v=1

cv(m,n) = 0. (2.42)

B. Algorithm

We observe that, for Case 1, our computation of π(j) and y(j) is exact. For Case 2

(i.e., the λn+v−1 values are distinct for 1 ≤ v ≤ m), as m goes large or some of the

λn+v−1 values are close to each other, av(m,n) and cv(m,n) may become extremely
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large, and their computed values no longer satisfy (2.41) and (2.42) due to round-off

errors. This brings incremental errors in succeeding computations. By substituting

cu(m,n) = −
v 6=u∑

v=1,2,···,m+1

cv(m,n) (2.43)

for (2.37), we obtain

qm,n = (2.44)




v 6=u∑

v=1,2,···,m+1

cv(m,n)[ϕ∗(λn+v−1) − ϕ∗(λn+u−1)], for m ≥ 1, 1 ≤ n ≤ N −m;

ϕ∗(λn), for m = 0, 1 ≤ n ≤ N − 1;

0, otherwise.

To assure smaller computational errors, given m and n, the index umay be determined

by picking from cv(m,n) computed by (2.40) for all v = 1, 2, · · · , m+ 1 the one with

greatest absolute value.

We observe also in computational experiments that, as m goes larger, the tran-

sition probabilities qm,n may appear to be negative or clearly unreasonable after their

row cumulative value in the matrix Q̃ approaches one. This causes inaccuracy of

π(j), obtained by (2.31) and (2.34). The inaccuracy of the computed π(j) and

∫∞
0 K(t, k, j) dt further deteriorates that of y(j) computed by (2.33).

Expand (2.31) as a system of equations, then for each j = 0, 1, · · · , N − 1, add

the equations for ν(0), · · · , ν(j) side by side and solve for ν(j + 1). This gives

ν(k) =





1

q0,1

(1 − q0,1)ν(0), for k = 1;

1

q0,k

[
(1 −

k−1∑

i=0

qi,1)ν(0) +
k−1∑

j=1

(1 −
k−j∑

i=0

qi,j)ν(j)
]
, for N − 1 ≥ k ≥ 2.

(2.45)

For a given j ≤ N − 2, if we meet some u ≤ N − j − 1 such that,
∑u−1

i=0 qi,j ≤ 1,

and
∑u

i=0 qi,j > 1, this indicates the computed value of qu,j is not correct. Except

for the situation that a number of λ(n) have very close values, usually the summa-
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tion of the remaining probabilities,
∑N−j−1

i=u qi,j, accounts for only a small portion of

the total cumulative which equals one. Assuming the computed values qi,j, for i =

0, 1, · · · , u−1, are trustable, we approximate
∑k

i=0 qi,j, for k = u, u+1, · · · , N − j−1,

by curve fitting. In practice, we let (x0, f0) = (0, q0,j), (x1, f1) = (1,
∑1

i=0 qi,j), · · ·,

(xu−1, fu−1) = (u− 1,
∑u−1

i=0 qi,j), and the equation to fit is

f(x) = 1 + (fu−1 − 1)(
xN−j − x

xN−j − xu−1
)a, (2.46)

where a is the parameter to be determined by using the least square method. For

a > 0, the equation is strictly increasing and satisfies f(xu−1) = fu−1 and f(xN−j) =

1.

Though (2.33) provides a numerically tractable solution for the system size prob-

ability at an arbitrary point in time, we choose an alternative approach that not only

requires less computational work but also improves outcome accuracy. This is accom-

plished by combining our results with that of Gupta and Rao [18]. By (19) and (20)

in [18], respectively,

p0 =
ν(1)ϕ∗(λ1)

λ0[1 − ϕ∗(λ1)]
, (2.47)

p1 =
ν(1)

λ1

, (2.48)

and recursively by (24) in [18],

pj =
1

λj

[λj−1 pj−1 + ν(j) − ν(j − 1)], for N − 1 ≥ j ≥ 2. (2.49)

The last unknown quantity pN is given by (25) in [18],

pN = −λN−1 p̂N−1, (2.50)
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where p̂N−1 is determined by (26) and (27) in [18]. That is,

p̂1 =
1

λ1
[−λ0 p0 b− ν(1) b+ p1], (2.51)

p̂j =
1

λj
[λj−1 p̂j−1 − ν(j) b+ pj], for N − 1 ≥ j ≥ 2, (2.52)

where b is the mean service time, specified in Section II.A. Finally we have

y(j) =
pj

N∑

i=0

pi

, for N ≥ j ≥ 0. (2.53)

We summarize the proposed algorithm in the following:

Step 1. For each n = 0, 1, · · · , N − 1, and each m such that m ≥ 0 and 1 ≤ m +

n ≤ N , compute qm,n using (2.24). In particular, if all the λn+i−1 values for

1 ≤ i ≤ m are identical, then compute qm,n using (2.35); if all the λn+i−1 for

1 ≤ i ≤ m are distinct from each other, then compute qm,n using (2.44).

Step 2. For each j = 1, 2, · · · , N − 2, and for k from 1 up to N − j − 1, compute

∑k
i=0 qi,j. If we meet some k = u such that,

∑u−1
i=0 qi,j ≤ 1, and

∑u
i=0 qi,j >

1, then approximate
∑u

i=0 qi,j = f(u),
∑u+1

i=0 qi,j = f(u + 1), · · · ,∑N−j−1
i=0 qi,j =

f(N − j − 1), where f(·) is given by (2.46). Note that
∑N−j

i=0 qi,j = 1, for all

j = 1, 2, · · · , N − 1.

Step 3. Set ν(0) = 1, then compute ν(j), for j = 1, 2, · · · , N − 1 using (2.45).

Step 4. For all j = 0, 1, · · · , N − 1, compute π(j) using (2.34).

Step 5. For all j = 0, 1, · · · , N , compute y(j) using (2.47) through (2.53).
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C. Numerical Examples

We compare results generated by [18], the proposed algorithm, and simulation, for

various λ(n) functions, and service time distributions with various effective traffic

intensities and squared coefficients of variation (SCV ), and different forms such as

exponential (M), deterministic (D), Cox-2 (C2) and Gamma. For almost all the

simulation outcomes given in this section, we have a 95% confidence interval with the

half-width of the interval being less than 2% of the mean estimate, or 0.00001 for

very small probabilities. In both the proposed algorithm and that in [18], the system

length probabilities π(j) and y(j) are normalized in the calculations and, thus, the

corresponding cumulative probabilities always equal one.

If all the arrival rates λ(n) = λ, for N − 1 ≥ n ≥ 0, this is a M/G/1/N

model. Both the proposed method and that of [18] generate exact results, as the

example shown in Table I. The columns 2 and 5 of Table I were given in [18] and we

recalculated them. The results in column 4 were obtained by applying the M/M/1/N

model given in queueing theory textbooks.
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Table I. Steady-state probabilities at arbitrary and at departures for λ(n) = λ, N = 11

M D C2

λ = 1, µ = 5 λ = 1, µ = 2 λ = 2, µ ≈ 1.24, SCV ≈ 3.42
(µ1 = 7, µ2 = 0.5, p = 1/3)

Gupta’s New Exact Gupta’s New Simu. Gupta’s New Simu.
π(0) 0.80000 0.80000 0.80000 0.50000 0.50000 0.49996 0.05054 0.05054 0.05052
π(1) 0.16000 0.16000 0.16000 0.32436 0.32436 0.32438 0.03807 0.03807 0.03799
π(2) 0.03200 0.03200 0.03200 0.12260 0.12260 0.12263 0.04061 0.04061 0.04049
π(3) 0.00640 0.00640 0.00640 0.03779 0.03779 0.03780 0.04826 0.04826 0.04820
π(4) 0.00128 0.00128 0.00128 0.01091 0.01091 0.01091 0.05879 0.05879 0.05883
π(5) 0.00026 0.00026 0.00026 0.00311 0.00311 0.00310 0.07200 0.07200 0.07198
π(6) 0.00005 0.00005 0.00005 0.00088 0.00088 0.00088 0.08827 0.08827 0.08828
π(7) 0.00001 0.00001 0.00001 0.00025 0.00025 0.00025 0.10825 0.10825 0.10839
π(8) 0.00000 0.00000 0.00000 0.00007 0.00007 0.00007 0.13275 0.13275 0.13284
π(9) 0.00000 0.00000 0.00000 0.00002 0.00002 0.00002 0.16280 0.16280 0.16268
π(10) 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 0.19965 0.19965 0.19979
y(0) 0.80000 0.80000 0.80000 0.50000 0.50000 0.49997 0.03027 0.03027 0.03021
y(1) 0.16000 0.16000 0.16000 0.32436 0.32436 0.32435 0.02280 0.02280 0.02274
y(2) 0.03200 0.03200 0.03200 0.12260 0.12260 0.12263 0.02432 0.02432 0.02430
y(3) 0.00640 0.00640 0.00640 0.03779 0.03779 0.03780 0.02891 0.02891 0.02886
y(4) 0.00128 0.00128 0.00128 0.01091 0.01091 0.01092 0.03521 0.03521 0.03519
y(5) 0.00026 0.00026 0.00026 0.00311 0.00311 0.00310 0.04312 0.04312 0.04310
y(6) 0.00005 0.00005 0.00005 0.00088 0.00088 0.00088 0.05287 0.05287 0.05284
y(7) 0.00001 0.00001 0.00001 0.00025 0.00025 0.00025 0.06484 0.06484 0.06488
y(8) 0.00000 0.00000 0.00000 0.00007 0.00007 0.00007 0.07951 0.07951 0.07962
y(9) 0.00000 0.00000 0.00000 0.00002 0.00002 0.00002 0.09751 0.09751 0.09752
y(10) 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 0.11958 0.11958 0.11961
y(11) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.40105 0.40105 0.40113

The tables that follow demonstrate that the proposed algorithm is stable for dis-

tinct λ(n) as well. This includes situations for which the method of [17, 18] produces

inaccurate results.

When all λ(n) are different from each other, we give comparisons for large N

in Table II and for close λ(n) values in Table III, respectively. As shown in Table

II, the proposed algorithm effectively eliminates both the number and the value of

negative probabilities in those situations where the small probabilities computed by

[18] become negative. Table III further tests the proposed algorithm for three specific

situations, in which the probabilities computed by [18] are all positive but with a

number of inaccurate values, shown in column 2; mostly positive but rather inaccu-

rate, with a few negative quantities which may have either small or large absolute
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Table II. Steady-state probabilities at arbitrary and at departures for λ(n) =

(1 − n/N)λ, N = 20

M D Gamma
λ = 2, µ = 5 λ = 2, µ = 2 λ = 15, µ ≈ 1.17, SCV = 3.5

(α = 2/7, β = 3)
Gupta’s New Simu. Gupta’s New Simu. Gupta’s New Simu.

π(0) 0.63118 0.63109 0.63118 0.14581 0.14581 0.14589 0.00000 0.00000 0.00000
π(1) 0.23985 0.23981 0.23985 0.23122 0.23121 0.23135 0.00000 0.00000 0.00000
π(2) 0.08635 0.08633 0.08635 0.21933 0.21933 0.21948 0.00001 0.00001 0.00000
π(3) 0.02936 0.02935 0.02935 0.16726 0.16726 0.16734 0.00002 0.00002 0.00000
π(4) 0.00939 0.00939 0.00939 0.11137 0.11137 0.11128 0.00005 0.00005 0.00000
π(5) 0.00282 0.00282 0.00282 0.06573 0.06573 0.06556 0.00012 0.00012 0.00001
π(6) 0.00077 0.00077 0.00079 0.03429 0.03429 0.03416 0.00029 0.00029 0.00004
π(7) 0.00032 0.00032 0.00021 0.01575 0.01572 0.01569 0.00064 0.00064 0.00012
π(8) -0.00041 0.00008 0.00005 0.00606 0.00628 0.00627 0.00141 0.00141 0.00035
π(9) 0.00142 0.00002 0.00001 0.00291 0.00217 0.00216 0.00299 0.00299 0.00096
π(10) -0.00344 0.00000 0.00000 -0.00113 0.00064 0.00064 0.00612 0.00612 0.00248
π(11) 0.00675 0.00000 0.00000 0.00317 0.00016 0.00016 0.01206 0.01206 0.00614
π(12) -0.01067 0.00000 0.00000 -0.00374 0.00003 0.00004 0.02279 0.02279 0.01419
π(13) 0.01342 0.00000 0.00000 0.00353 0.00001 0.00001 0.04097 0.04097 0.03045
π(14) -0.01314 0.00000 0.00000 -0.00247 0.00000 0.00000 0.06947 0.06947 0.05993
π(15) 0.00972 0.00000 0.00000 0.00134 0.00000 0.00000 0.10971 0.10971 0.10642
π(16) -0.00523 0.00000 0.00000 -0.00057 0.00000 0.00000 0.15837 0.15837 0.16642
π(17) 0.00192 0.00000 0.00000 0.00019 0.00000 0.00000 0.20234 0.20234 0.22108
π(18) -0.00043 0.00000 0.00000 -0.00005 0.00000 0.00000 0.21469 0.21469 0.23199
π(19) 0.00005 0.00000 0.00000 0.00001 0.00000 0.00000 0.15795 0.15795 0.15941
y(0) 0.61209 0.61206 0.61341 0.12726 0.12726 0.12728 0.00000 0.00000 0.00000
y(1) 0.24484 0.24482 0.24097 0.21241 0.21241 0.21249 0.00000 0.00000 0.00000
y(2) 0.09304 0.09303 0.09156 0.21269 0.21269 0.21283 0.00000 0.00000 0.00000
y(3) 0.03349 0.03349 0.03296 0.17174 0.17173 0.17182 0.00000 0.00000 0.00000
y(4) 0.01139 0.01139 0.01121 0.12150 0.12150 0.12153 0.00001 0.00001 0.00000
y(5) 0.00365 0.00365 0.00359 0.07648 0.07649 0.07635 0.00001 0.00001 0.00000
y(6) 0.00106 0.00106 0.00108 0.04275 0.04275 0.04261 0.00003 0.00003 0.00000
y(7) 0.00048 0.00048 0.00030 0.02114 0.02111 0.02103 0.00008 0.00008 0.00001
y(8) -0.00067 0.00013 0.00008 0.00881 0.00913 0.00912 0.00018 0.00018 0.00005
y(9) 0.00251 0.00004 0.00002 0.00462 0.00344 0.00344 0.00042 0.00042 0.00014
y(10) -0.00667 0.00001 0.00000 -0.00197 0.00112 0.00111 0.00095 0.00095 0.00039
y(11) 0.01455 0.00000 0.00000 0.00615 0.00031 0.00031 0.00209 0.00209 0.00106
y(12) -0.02588 0.00000 0.00000 -0.00816 0.00007 0.00007 0.00443 0.00443 0.00276
y(13) 0.03719 0.00000 0.00000 0.00879 0.00001 0.00001 0.00910 0.00910 0.00682
y(14) -0.04247 0.00000 0.00000 -0.00720 0.00000 0.00000 0.01801 0.01801 0.01559
y(15) 0.03771 0.00000 0.00000 0.00467 0.00000 0.00000 0.03413 0.03413 0.03326
y(16) -0.02534 0.00000 0.00000 -0.00250 0.00000 0.00000 0.06159 0.06159 0.06493
y(17) 0.01242 -0.00000 0.00000 0.00113 0.00000 0.00000 0.10492 0.10492 0.11512
y(18) -0.00420 -0.00000 0.00000 -0.00040 0.00000 0.00000 0.16698 0.16698 0.18123
y(19) 0.00088 -0.00000 0.00000 0.00010 0.00000 0.00000 0.24570 0.24570 0.24907
y(20) -0.00009 -0.00017 0.00482 -0.00001 -0.00001 0.00000 0.35137 0.35137 0.32957
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Table III. Steady-state probabilities at arbitrary and at departures for λ(n) =

3/2 + 1/21+n/8, N = 10

That is, λ(0) = 2.0, λ(1) ≈ 1.958502022, λ(2) ≈ 1.920448208, λ(3) ≈
1.885552706, λ(4) ≈ 1.853553391, λ(5) ≈ 1.824209889, λ(6) ≈ 1.797301779,

λ(7) ≈ 1.772626933, λ(8) = 1.75, λ(9) ≈ 1.729251011.

M D Gamma
µ = 1 µ ≈ 3.85 µ ≈ 1.17, SCV = 3.5

(mean = 0.26) (α = 2/7, β = 3)
Gupta’s New Simu. Gupta’s New Simu. Gupta’s New Simu.

π(0) 0.00142 0.00187 0.00187 0.04366 0.49554 0.49546 -0.02361 0.06628 0.04836
π(1) 0.00278 0.00366 0.00366 0.02899 0.32903 0.32904 -0.01735 0.04870 0.04355
π(2) 0.00533 0.00703 0.00703 0.01095 0.12430 0.12436 -0.01989 0.05583 0.05107
π(3) 0.01005 0.01325 0.01326 0.00329 0.03731 0.03731 -0.02377 0.06674 0.06206
π(4) 0.01863 0.02456 0.02457 0.00090 0.01020 0.01022 -0.02861 0.08032 0.07643
π(5) 0.03398 0.04479 0.04482 0.00023 0.00272 0.00269 -0.03439 0.09654 0.09380
π(6) 0.06110 0.08053 0.08053 0.00019 0.00068 0.00070 -0.04112 0.11571 0.11470
π(7) 0.10825 0.14318 0.14270 -0.00298 0.00017 0.00018 -0.05041 0.13603 0.13933
π(8) 0.17971 0.24976 0.24974 0.02579 0.00004 0.00004 -0.06882 0.15714 0.16828
π(9) 0.57875 0.43137 0.43183 0.88898 0.00001 0.00001 1.30798 0.17672 0.20242
y(0) 0.00071 0.00093 0.01287 0.07746 0.48796 0.48793 -0.01397 0.03722 0.02755
y(1) 0.00142 0.00187 0.00184 0.05252 0.33086 0.33083 -0.01048 0.02793 0.02536
y(2) 0.00277 0.00366 0.00361 0.02023 0.12747 0.12749 -0.01225 0.03265 0.03029
y(3) 0.00533 0.00702 0.00694 0.00619 0.03896 0.03899 -0.01492 0.03976 0.03764
y(4) 0.01004 0.01324 0.01309 0.00172 0.01084 0.01084 -0.01826 0.04867 0.04687
y(5) 0.01862 0.02453 0.02426 0.00045 0.00293 0.00290 -0.02230 0.05944 0.05854
y(6) 0.03397 0.04476 0.04423 0.00037 0.00075 0.00076 -0.02706 0.07231 0.07266
y(7) 0.06102 0.08070 0.07947 -0.00596 0.00019 0.00020 -0.03364 0.08620 0.08964
y(8) 0.10262 0.14259 0.14087 0.05229 0.00004 0.00005 -0.04652 0.10086 0.10948
y(9) 0.33445 0.24922 0.24653 1.82409 0.00001 0.00001 0.89477 0.11479 0.13312
y(10) 0.42905 0.43148 0.42629 -1.02936 -0.00002 0.00000 0.30463 0.38016 0.36885

values, as illustrated in column 5 for π(j) and y(j), respectively; mostly negative thus

not acceptable, as shown in column 8.

When some but not all of the λ(n) are distinct, we compare in Table IV the

proposed algorithm with simulation. Note that here we set λ(2) = λ(4) = λ(5), and

λ(3) = λ(8), the situation different from the machine interference model in [17] in

which the λ(n) values are identical for the first several, and distinct from each other

for the remaining rates.



26

Table IV. Steady-state probabilities at arbitrary and at departures for N = 9,

λ(0) = 1.5, λ(1) = 0.5, λ(2) = 0.7, λ(3) = 1.0, λ(4) = 0.7, λ(5) = 0.7,

λ(6) = 0.8, λ(7) = 0.3, λ(8) = 1.0

M D C2 C2

µ = 5 µ = 0.5 µ ≈ 1.24 µ ≈ 0.69
(mean = 2) SCV ≈ 3.42 SCV ≈ 0.67

(µ1 = 7, µ2 = 0.5) (µ1 = 1, µ2 = 1.5)
(p = 1/3) (p = 2/3)

New Simu. New Simu. New Simu. New Simu.
π(0) 0.89505 0.89501 0.00115 0.00116 0.49612 0.49610 0.10249 0.10257
π(1) 0.08950 0.08954 0.00198 0.00198 0.14175 0.14170 0.08199 0.08209
π(2) 0.01253 0.01253 0.00418 0.00419 0.09458 0.09457 0.08527 0.08537
π(3) 0.00251 0.00251 0.01903 0.01907 0.08629 0.08630 0.13147 0.13148
π(4) 0.00035 0.00035 0.04231 0.04237 0.06341 0.06341 0.13547 0.13541
π(5) 0.00005 0.00005 0.08746 0.08749 0.04754 0.04756 0.13790 0.13786
π(6) 0.00001 0.00001 0.23654 0.23636 0.03874 0.03877 0.16313 0.16303
π(7) 0.00000 0.00000 0.12254 0.12251 0.01617 0.01618 0.06496 0.06493
π(8) 0.00000 0.00000 0.48481 0.48487 0.01541 0.01542 0.09732 0.09727
y(0) 0.74896 0.74893 0.00038 0.00511 0.29006 0.29005 0.04517 0.04522
y(1) 0.22469 0.22471 0.00198 0.00197 0.24862 0.24865 0.10840 0.10851
y(2) 0.02247 0.02248 0.00298 0.00297 0.11849 0.11848 0.08052 0.08062
y(3) 0.00315 0.00315 0.00951 0.00949 0.07568 0.07565 0.08691 0.08694
y(4) 0.00063 0.00063 0.03021 0.03012 0.07945 0.07942 0.12793 0.12788
y(5) 0.00009 0.00009 0.06245 0.06218 0.05956 0.05954 0.13023 0.13016
y(6) 0.00001 0.00001 0.14778 0.14701 0.04246 0.04249 0.13479 0.13476
y(7) 0.00001 0.00000 0.20416 0.20310 0.04727 0.04732 0.14313 0.14303
y(8) 0.00000 0.00000 0.24231 0.24111 0.01351 0.01350 0.06433 0.06430
y(9) -0.00000 0.00000 0.29823 0.29692 0.02490 0.02491 0.07859 0.07859

D. Conclusion

Our numerical examples illustrate that the algorithm proposed in this chapter not

only is stable for M/G/1/N queue, but also for other queueing models where some or

all of the λ(n) values are distinct. In these models, the λ(n) may have relatively close

values, thus making the method that Gupta and Rao developed in [18] fail or not

work properly; or some of the λ(n) may be identical to a number of different values,

thus making the analogous technique by Gupta and Rao in [17] not convenient to

apply in that the basic equations in [17] will be rewritten and a different model will

be solved for each implementation. According to our experiments, if N ≤ 10 and

most of the λ(n) values have the relative difference greater than 1%, and if ϕ∗(i) can
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be easily obtained, then the proposed algorithm is fairly accurate, see Table III for

example. For unusual situations that some λ(n) values are extremely close to each

other, the proposed algorithm may not work accurately, depending on the complexity

of the Laplace-Stieltjes transform of the service time distribution and if N is large.

The proposed algorithm does not require a high demand for computer facilities.

Our numerical results in Section II.C were generated by a program coded using Maple

V and run on a Pentium 4 PC.
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CHAPTER III

TIME-DEPENDENT PROBABILITIES FOR

PHASE-TYPE RENEWAL PROCESSES

We assume that the PH distribution has representation given by (α, T ) where T is

a r × r matrix and α is a row vector of dimension r. (Note that T is a matrix with

negative diagonal elements and nonnegative off-diagonal elements such that Te ≤ 0

with at least one row sum being strictly less than zero and where e is a vector of

all 1s. Also, α is nonnegative such that αe = 1. The convention of using Greek

letters for row vectors and non-Greek letters for column vectors will be followed in

Chapter III and IV.) For an (α, T ) PH distribution, there exists a Markov process,

{Y (t); t ≥ 0} that eventually dies whose infinitesimal generator is given by T ; in

other words, we assume that all states of the Y process are transient, which implies

that T is nonsingular. There is also an associated Markov process, {J(t); t ≥ 0},

with state space {1, · · · , r} that is formed by “restarting” the Y process whenever it

dies according to the probabilities given by α. The infinitesimal generator for the J

process is given by Q◦ = T +t◦ ·α, where t◦ is a nonnegative column vector satisfying

Te + t◦ = 0. (Note that t◦ · α is a r × r matrix.) Denote by U(t) the number of

renewals in (0, t], which is equivalent to the number of times that the Y process was

restarted. The conditional joint probability distributions of the PH renewal process

are defined by

Pij(n, t) = P{U(t) = n, J(t) = j|U(0) = 0, J(0) = i}, (3.1)

for n ∈ N , t ∈ R+, i, j ∈ {1, · · · , r}. (See Neuts [36] for a more complete description

of PH renewal processes.) In this chapter, we propose a procedure to generate the



29

exact solution for the matrices P (n, t), for n ∈ N and t ∈ R+. Explicit expressions

of P (n, t) will be essential for the SM/PH/1/N queue addressed in Chapter IV.

A. Analysis

As given in Neuts [36], the matrices P (n, t), for n ∈ N and t ∈ R+, satisfy

P (0, t) = eT t, and (3.2)

P (n, t) =
∫ t

0
eT (t−x)(t◦ · α)P (n− 1, x)dx, for n ≥ 1. (3.3)

Since the Laplace transform PL(0, s) = (sI−T )−1 and the transform of a convolution

is the product of the transforms, it follows that

PL(n, s) = (sI − T )−1
[
(t◦ · α)(sI − T )−1

]n
, for n ∈ N . (3.4)

The probability mass function for the counting process will be denoted, for n ∈ N

and t ∈ R+, by

pn(t) = P{U(t) = n|U(0) = 0} = αP (n, t)e. (3.5)

Let βn(t) denote the probability that there is at least n renewals in (0, t], and by

noting that the Laplace transform of the PH distribution (α, T ) is α(sI − T )−1t◦/s,

we have

βL
0 (s) =

1

s
; (3.6)

βL
n (s) =

[
α(sI − T )−1t◦

]n−1 1

s
α(sI − T )−1t◦, for n ≥ 1. (3.7)

Since pn(t) is given by βn(t) − βn+1(t), its Laplace transform is given, for n ∈ N , by

pL
n(s) =

1

s

[
1 − α(sI − T )−1t◦

] [
α(sI − T )−1t◦

]n
, s ∈ R+. (3.8)
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B. Example

The availability of software that performs symbolic mathematics has the potential to

make these computations straight forward. For example, consider the PH distribution

with representation of α = (3/5, 2/5) and

T =



−3 2

1 −4


 .

The Maple software package has the capability of performing the matrix operations

given by Eq. (3.4) using symbolic logic. It also has an inverse Laplace transform

function so that the matrix of Eq. (3.1) can be obtained from (3.4) with very few

programming statements. Applying these Maple functions to the above example

yields

P (0, t) =




1
3
e−5t + 2

3
e−2t −2

3
e−5t + 2

3
e−2t

−1
3
e−5t + 1

3
e−2t 2

3
e−5t + 1

3
e−2t


 and

P (1, t) =

−1

9
t e−5t + 32

135
e−5t + 64

45
t e−2t − 32

135
e−2t 2

9
t e−5t + 56

135
e−5t + 64

45
t e−2t − 56

135
e−2t

1
9
t e−5t − 44

135
e−5t + 32

45
t e−2t + 44

135
e−2t −2

9
t e−5t − 32

135
e−5t + 32

45
t e−2t + 32

135
e−2t


 .

It is equally simple to obtain the time-dependent probabilities for the counting process

by applying these built-in Maple functions to Eq. (3.8) thus yielding

p0(t) = − 1

15
e−5t +

16

15
e−2t,

p1(t) =
1

45
t e−5t +

112

675
e−5t +

512

225
t e−2t − 112

675
e−2t.

As n increases in (3.8) the expressions become increasingly complex but the Maple

operations are straight-forward.
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C. Computational Considerations and Special Cases

The difficulty with using symbolic logic software is that numerical accuracy can

quickly become problematic. As the number of phases increases, round-off errors

will begin to accumulate; however, even with two phases, round-off errors will occur

when the eigenvalues are unequal but close to each other. For this reason, we obtain

closed-form expressions (i.e., computationally attractive expressions that do not in-

clude the Laplace transform) for two cases involving the Coxian distribution. These

cases were chosen so that a distribution that fits any given mean and variance can be

used.

A Coxian distribution [13] is a PH distribution where the transitions after each

phase are either to the next phase or out, and the initial probability vector, α, has a

one in the first component and zeros elsewhere. (In other words, a Coxian distribution

always starts with the first phase and then either moves to the next phase or is

finished. Figure 1 illustrates the general Coxian model.) A Coxian distribution with

two phases can be used to construct a distribution with any given positive mean EX

and any given SCV that is greater than or equal to 1/2, with parameters determined

by

p =
1

2SCV
; µ1 =

2

EX
; µ2 =

1

EX SCV
. (3.9)

A Coxian distribution with r phases, called a Cox-r model, with equal means for each

phase and transition probabilities after the first stage equal to one (i.e., p2 = p3 =

· · · = pr−1 = 1) can be used to represent a distribution with an arbitrary mean and

with SCV greater than or equal to 1/r and less than 1/(r − 1). The parameters are

given by

p = 1 − 2 r SCV + r − 2 −
√
r2 − 4 rSCV + 4

2(SCV + 1)(r − 1)
; (3.10)
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µ =
1 + p(r − 1)

EX
. (3.11)

(See Altiok [2] for a detailed description.) Thus, Case 1 below can be used for a

renewal process with SCV greater than 1/2, and Case 2 below can be used for SCV

less than 1.0. (There is an overlap in model choices when the SCV is between 1/2

and 1.)

���
µ1 ���

µ2 ���
µr- - -

A
A
AU

A
A
AU

A
A
AU -

p1

1 − p1

p2

1 − p2

pr−1

Fig. 1. A General Cox-r Model

Case 1. A Coxian Model with SCV > 1/2

We begin with the Cox-2 distribution with α = (1, 0) and

T =



−µ1 µ1p

0 −µ2


 , (3.12)

where µ1 6= µ2. If µ1 = µ2, Case 2 can be used. Using Eq. (3.4), we obtain an

expression for the Laplace transform:

PL(0, s) =




1

s + µ1

µ1p

(s+ µ1)(s+ µ2)

0
1

s+ µ2


 ; (3.13)

PL(n, s) =




µn
1 [(1 − p)s+ µ2]

n

(s+ µ1)n+1(s+ µ2)n

µn+1
1 p[(1 − p)s+ µ2]

n

(s+ µ1)n+1(s+ µ2)n+1

µn−1
1 µ2[(1 − p)s+ µ2]

n−1

(s+ µ1)n(s+ µ2)n

µn
1µ2p[(1 − p)s+ µ2]

n−1

(s+ µ1)n(s+ µ2)n+1



, for n ≥ 1.

(3.14)

If symbolic logic software is available and µ1 is not close to µ2, the inverse Laplace

transform function could be used with (3.13) and (3.14) to obtain the expressions for
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the conditional joint probability distributions in t. If symbolic logic software is not

available or if µ1 and µ2 are close, then the method of partial fraction expansion could

be used to obtain the inverse. For an (α, T ) PH distribution, each component of the

matrix function (sI − T )−1 is of the form of a rational function A(s)/B(s), where

both A(s) and B(s) are polynomials in s and A(s) is of degree less than that of B(s).

Thus, PL(n, s), for fixed n ∈ N , is a matrix of proper rational functions of s, and the

method of partial fraction expansion can be used. This leads to the following:

P (0, t) =



e−µ1t µ1p

µ1 − µ2

(−e−µ1t + e−µ2t)

0 e−µ2t


 ; (3.15)

P (n, t) =




µn
1f1,1,n(t) µn+1

1 p f1,2,n(t)

µn−1
1 µ2f2,1,n(t) µn

1µ2p f2,2,n(t)


 , for n ≥ 1, (3.16)

where

fm1,m2,n(t) =
2∑

h=1

a(m1 ,m2,n,h)∑

j=1

b(m1, m2, n, h, j)t
j−1e−µht. (3.17)

The parameters are determined by

a(m1, m2, n, h) =





n + 2 − h, for m1 = 1, m2 = 1;

n + 1, for m1 = 1, m2 = 2;

n, for m1 = 2, m2 = 1;

n + h− 1, for m1 = 2, m2 = 2,

(3.18)

b(m1, m2, n, h, j) =
b̄(m1, m2, n, h, j)

(a(m1, m2, n, h) − j)!(j − 1)!
, (3.19)

b̄(m1, m2, n, h, j) (3.20)
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=





dv1

dsv1

{
1

(s+ µ2)a(m1 ,m2,n,2)−u

[
(1 − p) +

p µ2

s+ µ2

]u}

s=−µ1

, for h = 1;

dv2

dsv2

{
1

(s+ µ1)a(m1 ,m2,n,1)−u

[
(1 − p) +

µ2 − (1 − p)µ1

s+ µ1

]u}

s=−µ2

,

for h = 2

=





u∑

ũ=0

(
ũ

u

)
(1 − p)ũ(pµ2)

u−ũ(−µ1 + µ2)
−a(m1 ,m2,n,2)+ũ, for h = 1, v1 = 0;

u∑

ũ=0

(
ũ

u

)
(1 − p)ũ(pµ2)

u−ũ
v1−1∏

ṽ=0

[−a(m1, m2, n, 2)+

ũ− ṽ](−µ1 + µ2)
−a(m1 ,m2,n,2)+ũ−v1 , for h = 1, v1 ≥ 1;

u∑

ũ=0

(
ũ

u

)
(1 − p)ũ[µ2 − (1 − p)µ1]

u−ũ(µ1 − µ2)
−a(m1,m2,n,1)+ũ,

for h = 2, v2 = 0;

u∑

ũ=0

(
ũ

u

)
(1 − p)ũ[µ2 − (1 − p)µ1]

u−ũ
v2−1∏

ṽ=0

[−a(m1, m2, n, 1)+

ũ− ṽ](µ1 − µ2)
−a(m1 ,m2,n,1)+ũ−v2 , for h = 2, v2 ≥ 1,

where u = n−m1 + 1, and vh = a(m1, m2, n, h) − j for h = 1, 2.

For a particular application, it may be that only the distribution of the counting

process is required. In this situation, Eq. (3.5) and together with Eqs. (3.13) and

(3.14) to obtain

pL
0 (s) =

s+ µ2 + µ1p

(s+ µ1)(s+ µ2)
; (3.21)

pL
n(s) =

µn
1(s+ µ2 + µ1p)[(1 − p)s+ µ2]

n

(s+ µ1)n+1(s+ µ2)n+1
, for n ≥ 1. (3.22)

Again, if symbolic logic software is available, Eqs. (3.21) and (3.22) can be used

directly; otherwise, the following provides the closed-form solutions.

p0(t) =
(
1 − µ1p

µ1 − µ2

)
e−µ1t +

µ1p

µ1 − µ2

e−µ2t; (3.23)
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pn(t) =
2∑

h=1

n+1∑

j=1

µn
1 b̂(n, h, j)

(n + 1 − j)!(j − 1)!
tj−1e−µht, for n ≥ 1, (3.24)

where

b̂(n, h, j) (3.25)

=





dn+1−j

dsn+1−j

{(
1 +

µ1p

s+ µ2

)[
(1 − p) +

p µ2

s+ µ2

]n}

s=−µ1

, for h = 1;

dn+1−j

dsn+1−j

{[
1 +

µ2 − (1 − p)µ1

s+ µ1

][
(1 − p) +

µ2 − (1 − p)µ1

s+ µ1

]n}

s=−µ2

, for h = 2

=





n∑

ñ=0

(
ñ

n

)
(1 − p)ñ(pµ2)

n−ñ[(−µ1 + µ2)
ñ−n + µ1p(−µ1 + µ2)

ñ−n−1],

for h = 1, j = n + 1;

n∑

ñ=0

(
ñ

n

)
(1 − p)ñ(pµ2)

n−ñ
n−j∏

ṽ=0

[(ñ− n− ṽ)(−µ1 + µ2)
ñ−2n−1+j+

µ1p(ñ− n− 1 − ṽ)(−µ1 + µ2)
ñ−2n−2+j], for h = 1, 1 ≤ j ≤ n;

n∑

ñ=0

(
ñ

n

)
(1 − p)ñ(µ2 − (1 − p)µ1)

n−ñ[(µ1 − µ2)
ñ−n+

(µ2 − (1 − p)µ1)(µ1 − µ2)
ñ−n−1], for h = 2, j = n+ 1;

n∑

ñ=0

(
ñ

n

)
(1 − p)ñ(µ2 − (1 − p)µ1)

n−ñ
n−j∏

ṽ=0

[(ñ− n− ṽ)(µ1 − µ2)
ñ−2n−1+j+

(µ2 − (1 − p)µ1)(ñ− n− 1 − ṽ)(µ1 − µ2)
ñ−2n−2+j], for h = 2, 1 ≤ j ≤ n.

Case 2. A Coxian Model with SCV < 1

A simplified version of the Cox-r distribution is considered since it is general

enough to model a distribution with any SCV < 1.0 and simple enough to obtain

the inverse Laplace transform. Our distribution has α = (1, 0, · · · , 0) and T with the
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form

T =




−µ µp 0

−µ µ

. . .
. . .

0 −µ




, (3.26)

Eq. (3.4) yields the Laplace transform as:

PL(0, s) =




1

s+ µ

µp

(s+ µ)2

µ2p

(s+ µ)3
· · · µr−1p

(s+ µ)r

1

s+ µ

µ

(s+ µ)2
· · · µr−2

(s+ µ)r−1

1

s+ µ
· · · µr−3

(s+ µ)r−2

. . .
...

0
1

s+ µ




; (3.27)

PL(n, s) = (3.28)



µn

s+ µ
f(s)n µn+1p

(s+ µ)2
f(s)n µn+2p

(s+ µ)3
f(s)n · · · µn+r−1p

(s+ µ)r
f(s)n

µn+r−2

(s+ µ)r
f(s)n−1 µn+r−1p

(s+ µ)r+1
f(s)n−1 µn+rp

(s+ µ)r+2
f(s)n−1 · · · µn+2r−3p

(s+ µ)2r−1
f(s)n−1

µn+r−3

(s+ µ)r−1
f(s)n−1 µn+r−2p

(s+ µ)r
f(s)n−1 µn+r−1p

(s+ µ)r+1
f(s)n−1 · · · µn+2r−4p

(s+ µ)2r−2
f(s)n−1

...
...

...
. . .

...

µn

(s+ µ)2
f(s)n−1 µn+1p

(s+ µ)3
f(s)n−1 µn+2p

(s+ µ)4
f(s)n−1 · · · µn+r−1p

(s+ µ)r+1
f(s)n−1




,

for n ≥ 1, where

f(s) =
1 − p

s+ µ
+

pµr−1

(s+ µ)r
. (3.29)

The components of this matrix are again a ratio of polynomials in s such that

partial fraction expansion can be used to obtain the inverse Laplace transform yielding
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the conditional joint probability distributions in t. Therefore,

P (0, t) =




e−µt µ p t e−µt µ2p

2!
t2e−µt · · · µr−1p

(r − 1)!
tr−1e−µt

e−µt µ t e−µt · · · µr−2

(r − 2)!
tr−2e−µt

e−µt · · · µr−3

(r − 3)!
tr−3e−µt

. . .
...

0 e−µt




; (3.30)

P (n, t) = (3.31)


µng1,n(t) µn+1pg2,n(t) µn+2pg3,n(t) · · · µn+r−1pgr,n(t)

µn+r−2gr,n−1(t) µn+r−1pgr+1,n−1(t) µn+rpgr+2,n−1(t) · · · µn+2r−3pg2r−1,n−1(t)

µn+r−3gr−1,n−1(t) µn+r−2pgr,n−1(t) µn+r−1pgr+1,n−1(t) · · · µn+2r−4pg2r−2,n−1(t)

...
...

...
. . .

...

µng2,n−1(t) µn+1pg3,n−1(t) µn+2pg4,n−1(t) · · · µn+r−1pgr+1,n−1(t)




,

for n ≥ 1, where

gm,n(t) =
n∑

j=0

c(m,n, j)trn−rj+j+m−1e−µt, (3.32)

and

c(m,n, j) =

(
j

n

)
(1 − p)j(pµr−1)n−j

(rn− rj + j +m− 1)!
. (3.33)

We also obtain the distribution for the counting process analogous to the pre-

ceding case:

pL
0 (s) =

1

s+ µ
+

µ p

s(s+ µ)
− µrp

s(s+ µ)r
; (3.34)

pL
n(s) =

[
1

s+ µ
+

µ p

s(s+ µ)
− µrp

s(s+ µ)r

]
µnf(s)n, for n ≥ 1, (3.35)
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and

p0(t) = (1 − p)e−µt − µrp
r∑

j=1

b̂(r, j)tj−1e−µt; (3.36)

pn(t) =µn
n∑

i=0

(
i

n

)
(1 − p)i(p µr−1)n−i

{
1

(rn− ri+ i)!
trn−ri+ie−µt +

µ p
[ rn−ri+i+1∑

j=1

b̂(rn− ri+ i+ 1, j)tj−1e−µt
]
−

µrp
[ rn−ri+r+i∑

j=1

b̂(rn− ri+ r + i, j)tj−1e−µt
]}
, for n ≥ 1, (3.37)

where

b̂(r, j) =
1

(j − 1)!

(
1

s

)(r−j)

s=−µ
= −µ

−r+j−1

(j − 1)!
. (3.38)

D. Conclusion

We proposed an approach to generate the distribution functions P (n, t) and pn(t), for

n ∈ N and t ∈ R+, for the PH renewal process. In particular, we provided closed-

form expressions for the Cox-2 and simplified Cox-r models, which are applicable for

a two-moment approximation of all distributions with SCV > 0. Both pn(t) and

components of matrices P (n, t) have up to r(n+ 1) terms. Note that the parameters

b̄(m1, m2, n, i, j) given by (3.20) and b̂(n, i, j) by (3.25) may become extremely large

and, thus, subject to round-off error when n is large and the values of µ1 and µ2 are

very close to each other.
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CHAPTER IV

COMPUTATIONAL ANALYSIS FOR SM/PH/1/N QUEUE

The analysis for the SM/PH/1/N queue is carried out by using the embedded Markov

approach and the matrix-analytic method. Computational algorithms are presented

for both the system size probabilities and the waiting time distributions. A new

approach applying the SM/PH/1/N model to tandem closed queueing networks will

be attempted in Chapter V.

We shall use the Kronecker product of matrices throughout this chapter. As a

reminder, assume that A = (aij) is an m× n matrix and B is an r× s matrix. Then

the Kronecker product A⊗B is a matrix of dimension mr× ns and is given, using a

block-partition form, as

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

...

am1B am2B · · ·amnB




.

In addition, I(n) denotes the n×n identity matrix and e(n) denotes an n-dimensioned

column vector of all ones; however, the subscripts will be omitted when the dimension

is obvious from the context.

A. Problem Statement

For the SM/PH/1/N queue, let T0 = 0, T1, T2, · · · be the instants of successive arrivals.

Denote by Vn ∈ {1, 2, · · · , ω} the state of the Markov renewal process of arrivals

immediately after the nth arrival. In other words, the stochastic process (V, T ) =

{Vn, Tn;n ∈ N} is a Markov renewal process with state space Eω = {1, 2, · · · , ω},
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where ω is assumed finite and arrivals to the queueing system occur at every transition

epoch of (V, T ). The semi-Markov kernel associated with (V, T ) is denoted by Q and

is defined by

Qij(t) = P{Vn+1 = j, Tn+1 − Tn ≤ t|Vn = i} for i, j ∈ Eω and t ∈ R+. (4.1)

The tilde will be used to denote limiting values for matrices so that Q̃ represents the

probability transition matrix of the embedded Markov chain, {Vn;n ∈ N}; that is,

Q̃ = lim
t→∞

Q(t). (4.2)

We assume that Q̃ is irreducible.

The service time has a PH distribution with representation (α, T ) of dimension

r and mean service time given by η = −αT−1e. For an (α, T ) PH distribution,

there exists a Markov process, {Z(t); t ≥ 0} that eventually dies whose infinitesimal

generator is given by T , which implies that T is nonsingular. If the Z process is

immediately “renewed” whenever it dies according to the probabilities given by α,

a recurrent Markov process will be formed, which we denote by {J(t); t ≥ 0}. The

J process has state space Er = {1, · · · , r} and its infinitesimal generator is given by

T = T + t◦ ·α, where t◦ is a nonnegative column vector satisfying Te+ t◦ = 0. (Note

that t◦ · α is a r × r matrix.) The number of times that the process is renewed in

the interval (0, t] is denoted by M(t), thus the M process is a PH Renewal Process

which we studied in Chapter III. The time-dependent probabilities associated with

this renewal process are defined, for t ∈ R+, n ∈ N , i, j ∈ Er, by

Pij(n, t) = P{M(t) = n, J(t) = j|M(0) = 0, J(0) = i}. (4.3)

If we sum over the values of n in (4.3), we have the time-dependent probabilities for
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the Markov process J yielding

∞∑

n=0

P (n, t) = eT t for t ∈ R+. (4.4)

The Laplace transform of Eq. (4.3) will be needed in our analysis, which is given by,

for each n ∈ N and s ∈ R+,

PL(n, s)≡
∫ ∞

0
e−stP (n, t)dt

= (sI − T )−1
(
(t◦ · α)(sI − T )−1

)n
. (4.5)

Denote by Un the number of customers in the system immediately prior to the

nth arrival and Jn the phase of service immediately after the nth arrival. The process

(U, J, V, T ) = {Un, Jn, Vn, Tn;n ∈ N} is a Markov renewal process on the lexico-

graphically ordered state space Ê = EN × Er × Eω, where EN = {0, 1, · · · , N − 1},

with semi-Markov kernel given by PN . (We ask the reader to be cautious here, the

subscripted matrix PN(t) for t ∈ R+ refers the time-dependent probabilities for the

Markov renewal process representing the entire queueing system, and the matrix

P (n, t) for t ∈ R+ and n ∈ N refers the time-dependent probabilities for the PH

renewal process representing the service system.) The semi-Markov kernel for the

infinite capacity SM/PH/1 system is given in [37], so after appropriate modifications

to their system, we have the following definition of the semi-Markov kernel,

PN(t) =




B0(t) A0(t) 0

B1(t) A1(t) A0(t)

...
...

...
. . .

BN−2(t) AN−2(t) · · · A1(t) A0(t)

BN−1(t) AN−1(t) · · · A2(t) A1(t) + A0(t)




for t ∈ R+ , (4.6)



42

where each component is a rω × rω submatrix given by, for k ∈ EN and t ∈ R+,

Ak(t) =
∫ t

0
P (k, x) ⊗ dQ(x) , (4.7)

Bk(t) =

(∫ t

0
eTx ⊗ dQ(x) −

k∑

n=0

An(t)

)(
(e(r) · α) ⊗ I(ω)

)
. (4.8)

The transition matrix of the embedded Markov chain {Un, Jn, Vn;n ∈ N}, is given

by taking the limit of PN (t) as t goes to infinity yielding

P̃N =




B̃0 Ã0 0

B̃1 Ã1 Ã0

...
...

...
. . .

B̃N−2 ÃN−2 · · · Ã1 Ã0

B̃N−1 ÃN−1 · · · Ã2 Ã1 + Ã0




, (4.9)

where, for k ∈ EN , Ãk = limt→∞Ak(t) and B̃k = limt→∞Bk(t). Its invariant proba-

bility vector satisfies

πP̃N = π and πe = 1, (4.10)

where π = (π0,π1, · · · ,πN−1), and is partitioned into N vectors, each of dimension

rω. Thus, for example, the scalar given by πke equals the probability that an arriving

customer (who may or may not enter the system) sees k customers in the queueing

system upon arrival (unless k = N − 1, in which case πN−1e is the probability that

the arriving customer sees N − 1 or N customers in the system).

Let y = (y0,y1, · · · ,yN ) denote the long-run state probabilities of the queueing

system at an arbitrary point in time. In other words,

ykjv = lim
t→∞

P{U(t) = k, J(t) = j, V (t) = v}, (4.11)

where for a time t ∈ R+, U(t) denotes the number of customers in the queueing
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system, J(t) denotes the phase of the server process, and V (t) denotes the state of

the arrival process. In the above, if for some time t, U(t) = 0, then J(t) is undefined

so that y0 is a vector with dimension ω and yk, for k = 1, · · · , N , are vectors with

dimension rω.

To obtain expressions for y, we need the invariant probability vector for the

arrival process and its fundamental mean. That is, define ν by

νQ̃ = ν and νe = 1, (4.12)

and let λ be mean arrival rate, i.e., the inverse of the mean time between arrivals;

namely,

λ =
1

ν
∫∞
0 t dQ(t)e

, (4.13)

where ν is a row vector of dimension ω and e is a column vector of dimension

ω. By making suitable adjustments to the results in [36] for the infinite capacity

SM/PH/1 system, we have the following expressions for the long-run probabilities of

the SM/PH/1/N queue

y0,v =λ
N−1∑

i=0

r∑

r=1

ω∑

`=1

πi,r,`

∫ ∞

0

∞∑

n=i+1

(P (n, t)e)r

(
Q̃−Q(t)

)
` v
dt; (4.14)

yk,j,v =λ
N−1∑

i=k−1

r∑

r=1

ω∑

`=1

πi,r,`

∫ ∞

0
Pr j(i− k + 1, t)

(
Q̃−Q(t)

)
` v
dt, (4.15)

for k = 1, · · · , N , j ∈ Er, v ∈ Eω, and where the subscripts refer to the associated

matrix or vector component. Rewriting (4.14) and (4.15), respectively, in concise

form and taking advantage of (4.4), we obtain

y0 =λ
N−1∑

i=0

πi



∫ ∞

0

∞∑

n=i+1

P (n, t) ⊗
(
Q̃−Q(t)

)
dt



(
e(r) ⊗ I(ω)

)

=λ
N−1∑

i=0

πi

(∫ ∞

0

(
eT t −

i∑

n=0

P (n, t)

)
⊗
(
Q̃−Q(t)

)
dt

)(
e(r) ⊗ I(ω)

)
(4.16)
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and

yk = λ
N−1∑

i=k−1

πi

∫ ∞

0
P (i− k + 1, t) ⊗

(
Q̃−Q(t)

)
dt for k = 1, · · · , N. (4.17)

The long-run probability that the system size is k at an arbitrary point in time is

given by the vector product yke for k = 0, · · · , N .

We are interested in obtaining both the long-run time in the queue and the virtual

time in the queue (i.e., the time a customer would wait if the customer arrived to the

system at an arbitrary time). The distribution function for the actual waiting per

customer and the virtual waiting time will be denoted by W (·) and Ŵ (·), respectively.

Extending [37, eq.(28)] to the SM/PH/1/N queue, we obtain the Laplace-Stieltjes

transform of W (·), by

W ∗(s) =
N−1∑

i=0

πi(I(r) ⊗ e(ω))
(
(sI − T )−1(t◦ · α)

)i
e(r)

=π0(I(r) ⊗ e(ω))e(r) +
N−1∑

i=1

πi(I(r) ⊗ e(ω))P
L(i− 1, s)t◦

=π0e +
N−1∑

i=1

πi(I(r) ⊗ e(ω))(sI − T )−1t◦gi−1(s), (4.18)

where g(s) = α(sI − T )−1t◦ for s ∈ R+. Upon differentiation and setting s = 0, we

obtain the expected waiting time in the queue as

E[W ] =− d

ds
W ∗(s)|s=0

=−
N−1∑

i=1

πi(I(r) ⊗ e(ω))[ − (sI − T )−2t◦gi−1(s)

+ (sI − T )−1t◦(i− 1)gi−2(s)(−α)(sI − T )−2t◦]s=0

=−
N−1∑

i=1

πi(I(r) ⊗ e(ω))T
−1e + η

N−1∑

i=2

(i− 1)πie . (4.19)

The final equality used the fact that t◦ = −Te and η = −αT−1e. Since the time in
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the system equals the time in the queue plus service time, we have

E[W̄ ] = E(W ) + η. (4.20)

For the virtual waiting time, we proceed in an analogous manner to the derivation

of Eqs.(4.18) and (4.19):

Ŵ ∗(s) = y0e +
N∑

i=1

yi(I(r) ⊗ e(ω))P
L(i− 1, s)t◦, (4.21)

E[Ŵ ] = −
N∑

i=1

yi(I(r) ⊗ e(ω))T
−1e + η

N∑

i=2

(i− 1)yie . (4.22)

B. Computational Considerations

The computational effort presented by these equations can be quite extensive; how-

ever, we shall show that if the service distribution has a squared coefficient of variation

(SCV ) greater than or equal to 1/2 there may exist closed form expressions for which

the computational effort is greatly reduced. It is common to use a Cox-2 distribution

to approximate a server whose SCV ≥ 1/2.

A function f(t) for t ∈ R+ is said to have a generalized exponential form if there

exist a real value a0, an integer k and for each i = 1, · · · , k there exist real values ai

and ui and a positive real value vi such that it is possible to write the function as

f(t) = a0 +
k∑

i=1

ai t
uie−vi t, (4.23)

Each component of the time-dependent probability matrix (Eq. 4.3) and each

term of the matrix eT t (Eq. 4.4) for the PH renewal process associated with a Cox-2

distribution has a generalized exponential form with its constant term being zero. It

also turns out that many practical semi-Markov kernels are made up of components

having a generalized exponential form. In particular, the output process from a
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λ(n)/PH/1/N queueing system forms a semi-Markov process with each component of

its kernel having this generalized exponential form. (The reason that we are interested

in the output process is that the interest in the SM/PH/1/N arises from an interest

in modeling a tandem queueing system.) The advantage of having the generalized

exponential form is that the function form for the integrals given by Eqs. (4.7), (4.8),

and (4.14) – (4.17) will also have a generalized exponential form and the constant

term equals zero so that the limit as t approaches infinity is zero. For example,

suppose that each component of Q and PN have a generalized exponential form and

we wish to evaluate the i, j component of Ãk for a fixed k. Further suppose that

F is a function such that F (dt) = (P (k, t) ⊗ dQ(t))ij for t ∈ R+, then F is of the

generalized exponential form and we have Ãk = F (∞) − F (0) = −F (0).

With the availability of relatively powerful symbolic logic software, it may not

be necessary to explicitly give solutions to the above equations. In particular, if the

T matrix for the service process is not too complex and the integer n is not large,

then the symbolic logic software Maple would be capable of obtaining expressions for

P (n, t), n ∈ N and t ∈ R+ by performing the inverse transform from Eq. (4.5). (Not

too complex means that, for example when representing a Coxian distribution, T is

upper triangular with the diagonal elements equal or unequal with no two elements

almost equal.) If symbolic software is to be used, the following steps summarize the

use of the previously developed equations when the service process is Coxian and the

kernel for the arrival process has the generalized exponential form:

Initialization. Obtain P (k, t), for k = 0, · · · , N − 1 and t ∈ R+, by taking the

inverse Laplace transformation of the right-hand side of (4.5).

Step 1. Compute P̃(N) defined by (4.9), where Ãk and B̃k, for k = 0, · · · , N − 1 are

the limiting matrices as t → ∞ of the matrices defined by (4.7) and (4.8). To
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evaluate the integral in (4.7), only the lower limit needs to be calculated since

the integrals evaluated at the upper limit are zero. If the service process further

conforms to a Cox-2 distribution, the calculation is also true for (4.8) where the

matrix eTx also has a generalized exponential form.

Step 2. Compute π defined by (4.10).

Step 3. Compute y0 using (4.16) and yk using (4.17) for k = 1, · · · , N . Again, for

evaluating the integrals in (4.17), only the lower limit needs to be calculated

since the integrals evaluated at the upper limit are zero, and this is also true

for (4.16) for the Cox-2 service process.

Step 4. The waiting time distributions W (·) and Ŵ (·) are obtained by taking the

inverse Laplace-Stieltjes transform of the right-hand sides of (4.18) and (4.21),

respectively.

Step 5. Compute mean waiting times E(W ) and E(Ŵ ) using (4.19) and (4.22),

respectively.

The difficulty with using some symbolic logic software packages such as Maple is

that numerical accuracy can quickly become problematic due to round-off errors, for

example, when T of the Coxian distribution has different but almost equal diagonal

elements. If symbolic logic software is not used, it may be convenient to obtain closed

form solutions to the above equations. In other words, we obtain solutions that do

not involve the demanding computation for the integrals and thus improve accuracy

but require less time in computation. This is possible when a Cox-2 distribution

is used for the service time, and the kernel of the arrival process has a closed form

solution to its Laplace-Stieltjes transform (note that this accommodates not only the

case of generalized exponential kernels but also other cases even if the kernel itself
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may not have a closed form expression). We shall also assume that the derivatives of

the transform are known. In the following derivation, we need the factorial derivative

and, for ease of notation, we shall modify the analogous definition (2.5) in Chapter

II as

Q
∗(n)

(s0) =
(−1)n

n!

dn

dsn
Q∗(s)|s=s0 for n ∈ N , (4.24)

where Q
∗(0)

= Q∗. (Also, remember that for fixed s and n, Q
∗(n)

(s) is a r×r matrix.)

The representation for the Cox-2 service time distribution is given by α = (1, 0)

and

T =



−µ1 µ1p

0 −µ2


 , (4.25)

where µ1 6= µ2. By Chapter III the time dependent probabilities are given, for t ∈ R+,

by

P (0, t) =



e−µ1t µ1p

µ1 − µ2

(−e−µ1t + e−µ2t)

0 e−µ2t


 , and (4.26)

P (k, t) = (4.27)

2∑

h=1




µk
1

a(1,1,k,h)∑

j=1

b(1, 1, k, h, j) µk+1
1 p

a(1,2,k,h)∑

j=1

b(1, 2, k, h, j)

µk−1
1 µ2

a(2,1,k,h)∑

j=1

b(2, 1, k, h, j) µk
1µ2p

a(2,2,k,h)∑

j=1

b(2, 2, k, h, j)



tj−1e−µht

for k = 1, · · · , N − 1. The parameters a(m1, m2, k, h) and b(m1, m2, k, h, j) are deter-

mined by Eqs. (3.18) and (3.19), respectively.

To compute the probability vector π (Eq. 4.10), we use the expressions given in

(4.26) and (4.27) to obtain expressions for Ãk and B̃k. The matrices Ãk are given by

Ã0 =



Q∗(µ1)

µ1p

µ1 − µ2

(
−Q∗(µ1) +Q∗(µ2)

)

0 Q∗(µ2)


 , and (4.28)
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Ãk = (4.29)

2∑

h=1




µk
1

a(1,1,k,h)∑

j=1

b(1, 1, k, h, j) µk+1
1 p

a(1,2,k,h)∑

j=1

b(1, 2, k, h, j)

µk−1
1 µ2

a(2,1,k,h)∑

j=1

b(2, 1, k, h, j) µk
1µ2p

a(2,2,k,h)∑

j=1

b(2, 2, k, h, j)



⊗Q

∗(j−1)
(µh)

for k = 1, · · · , N − 1.

To obtain expressions for B̃k, we must first obtain an expression for the integral

∫∞
0 eTx ⊗ dQ(x). Noting that

T =



−µ1p µ1p

µ2 −µ2


 ,

and

eTx =
1

µ1p+ µ2




µ2 + µ1p e
−(µ1p+µ2)x µ1p(1 − e−(µ1p+µ2)x)

µ2(1 − e−(µ1p+µ2)x) µ1p+ µ2e
−(µ1p+µ2)x




for x ∈ R+, we obtain,

∫ ∞

0
eTx ⊗ dQ(x) = (4.30)

1

µ1p+ µ2




µ2Q
∗(0) + µ1pQ

∗(µ1p+ µ2) µ1p
(
Q∗(0) −Q∗(µ1p+ µ2)

)

µ2

(
Q∗(0) −Q∗(µ1p+ µ2)

)
µ1pQ

∗(0) + µ2Q
∗(µ1p+ µ2)


 .

Eqs. (4.28) – (4.30) can be used together to determine the B̃k matrices through the

formula

B̃k =

(∫ ∞

0
eTx ⊗ dQ(x) −

k∑

n=0

Ãn

)(
(e(r) · α) ⊗ I(ω)

)
for k = 0, · · · , N − 1, (4.31)

where for the Cox-2 case

(
(e(r) · α) ⊗ I(ω)

)
=



I(ω) 0

I(ω) 0


 .
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This completes the computations for P̃N and thus for π.

The computation of the probability vector y using (4.16) and (4.17) will require

a function of the form (Q̃−Q∗(s))/s for s ∈ R+ and it factorial derivatives. For this

purpose, we define the matrix functions G and G
(n)

, for n ∈ N and s ∈ R+, and note

a nice property of G analogous to Eq. (2.28) as follows

G(s)=
Q̃−Q∗(s)

s
,

G
(n)

(s0)=
(−1)n

n!

dn

dsn
G(s)|s=s0 , and (4.32)

G(0) ≡ lim
s→0

G(s)=− lim
s→0

d

ds
Q∗(s) ≡ Q

∗(1)
(0) .

The last equality in (4.32) is seen by observing that Q̃ = Q∗(0). Thus in the matri-

ces below, the modeler may want to replace G(0) with Q
∗(1)

(0). The key integrals

involved in Eqs. (4.16) and (4.17) can be shown to be as follows:

∫ ∞

0
P (0, t) ⊗

(
Q̃−Q(t)

)
dt =



G(µ1)

µ1p

µ1 − µ2

(
−G(µ1) +G(µ2)

)

0 G(µ2)


 , (4.33)

∫ ∞

0
P (k, t) ⊗

(
Q̃−Q(t)

)
dt = (4.34)

2∑

h=1




µk
1

a(1,1,k,h)∑

j=1

b(1, 1, k, h, j) µk+1
1 p

a(1,2,k,h)∑

j=1

b(1, 2, k, h, j)

µk−1
1 µ2

a(2,1,k,h)∑

j=1

b(2, 1, k, h, j) µk
1µ2p

a(2,2,k,h)∑

j=1

b(2, 2, k, h, j)



⊗G

(j−1)
(µh) ,

for k = 1, · · · , N − 1, and

∫ ∞

0
eTx ⊗

(
Q̃−Q(x)

)
dx = (4.35)

1

µ1p+ µ2



µ2G(0) + µ1pG(µ1p+ µ2)µ1p

(
G(0) −G(µ1p+ µ2)

)

µ2

(
G(0) −G(µ1p+ µ2)

)
µ1pG(0) + µ2G(µ1p+ µ2)


 .
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To obtain an expression for the waiting time distributions, we will let L−1 denote

the inverse Laplace transform; in other words, L−1(WL(·)) = W (·). Recall that the

relationship between the Laplace transform and the Laplace-Stieltjes transform is

given as WL(s) = W ∗(s)/s for s ∈ R+. The distribution functions for the waiting

time distribution and the virtual waiting time distribution are

W (t)= π0e +
N−1∑

k=1

πk (I(r) ⊗ e(ω))L−1

(
PL(k − 1, s)

s

)
t◦ , and (4.36)

Ŵ (t)= y0e +
N−1∑

k=1

yk (I(r) ⊗ e(ω))L−1

(
PL(k − 1, s)

s

)
t◦ . (4.37)

Noting that L−1(PL(k, s)/s) =
∫ t
0 P (k, x)dx for t ∈ R+. By substituting (4.26) we

have,

L−1

(
PL(0, s)

s

)
=




1 − e−µ1t

µ1

p(µ1 − µ2 + µ2e
−µ1t − µ1e

−µ2t)

µ2(µ1 − µ2)

0
1 − e−µ2t

µ2



. (4.38)

For k ≥ 1, substituting (4.27) yields

L−1

(
PL(k, s)

s

)
= (4.39)

2∑

h=1




µk
1

a(1,1,k,h)∑

j=1

b(1, 1, k, h, j) µk+1
1 p

a(1,2,k,h)∑

j=1

b(1, 2, k, h, j)

µk−1
1 µ2

a(2,1,k,h)∑

j=1

b(2, 1, k, h, j) µk
1µ2p

a(2,2,k,h)∑

j=1

b(2, 2, k, h, j)




∫ t

0
xj−1e−µhxdx ,

where

∫ t

0
xje−µhxdx =

∏j−1
v=0(j − v)

µj+1
h

− 1

µh


tj +

j∑

u=1

∏u−1
v=0(j − v)

µu
h

tj−u


 e−µht. (4.40)

Thus, if the environmental process is such that its semi-Markov kernel’s Laplace-

Stieltjes transform can be obtained in closed form, the following procedure can be

used to describe the SM/C2/1/N queueing system where the two phases that describe
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the service process have unequal means.

Step 1. Compute the matrices Ãk for k = 0, · · · , N−1 using (4.28) and (4.29), where

Q∗ is the Laplace-Stieltjes transform of the arrival process kernel and Q
∗(j)

is

defined by (4.24). Compute
∫∞
0 eTx ⊗ dQ(x) from (4.30). Finally, compute B̃k,

for k = 0, · · · , N − 1 using (4.31).

Step 2. Build the matrix P̃N (4.9) and compute π defined by (4.10).

Step 3. Compute y0 using (4.16) and yk using (4.17) for k = 1, · · · , N , where the

integrals in those equations are the matrices of the right-hand-side of Eqs. (4.33),

(4.34), and (4.35).

Step 4. The waiting time distributions W (·) and Ŵ (·) are obtained from Eqs. (4.36)

and (4.37), respectively, where the inverse transform is given by (4.38) and

(4.39).

Step 5. The mean waiting time and mean virtual waiting time are given by Eqs. (4.19)

and (4.22), respectively.

The inverse of the T matrix (4.25) that is associated with the service distribution

takes a different form when µ1 = µ2 = µ. The following contains the analogous

quantities to the above that can be used when the SCV = 1/2 which will force

µ1 = µ2 = µ:

P (0, t) =



e−µt µ t e−µt

0 e−µt


 , (4.41)

P (k, t) =




µk
k∑

j=0

c(1, k, j)t2k−j µk+1p
k∑

j=0

c(2, k, j)t2k−j+1

µk
k−1∑

j=0

c(2, k − 1, j)t2k−j+1 µk+1p
k−1∑

j=0

c(3, k − 1, j)t2k−j+2



e−µt , (4.42)

for k = 1, · · · , N − 1 and where the parameter c(m, k, j) is given by (3.33).
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Continuing as before,

Ã0 =



Q∗(µ) µQ

∗(1)
(µ)

0 Q∗(µ)


 (4.43)

Ãk = (4.44)



µk
k∑

j=0

c(1, k, j)Q
∗(2k−j)

(µ) µk+1p
k∑

j=0

c(2, k, j)Q
∗(2k−j+1)

(µ)

µk
k−1∑

j=0

c(2, k − 1, j)Q
∗(2k−j+1)

(µ) µk+1p
k−1∑

j=0

c(3, k − 1, j)Q
∗(2k−j+2)

(µ)



,

for k = 1, · · · , N − 1 and

∫ ∞

0
eTx ⊗ dQ(x) =

1

2



Q∗(0) +Q∗(2µ)Q∗(0) −Q∗(2µ)

Q∗(0) −Q∗(2µ)Q∗(0) +Q∗(2µ)


 (4.45)

∫ ∞

0
P (0, x) ⊗ [Q̃−Q(x)]dx =



G(µ) µG

(1)
(µ)

0 G(µ)


 , (4.46)

∫ ∞

0
P (k, t) ⊗ [Q̃−Q(t)]dt = (4.47)




µk
k∑

j=0

c(1, k, j)G
(2k−j)

(µ) µk+1p
k∑

j=0

c(2, k, j)G
(2k−j+1)

(µ)

µk
k−1∑

j=0

c(2, k − 1, j)G
(2k−j+1)

(µ) µk+1p
k−1∑

j=0

c(3, k − 1, j)G
(2k−j+2)

(µ)



,

for k = 1, · · · , N − 1 and finally

∫ ∞

0
eTx ⊗ [Q̃−Q(x)]dx =

1

2



G(0) +G(2µ)G(0) −G(2µ)

G(0) −G(2µ)G(0) +G(2µ)


 . (4.48)

To compute the waiting-time distributions we again need the inverse Laplace trans-
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form which yields, for µ1 = µ2 = µ,

L−1

(
PL(0, s)

s

)
=




1 − e−µt

µ

p(1 − e−µt − µ t e−µt)

µ

0
1 − e−µt

µ


 , (4.49)

and for k = 1, · · · , N − 1,

L−1

(
PL(k, s)

s

)
= (4.50)




µk
k∑

j=0

c(1, k, j)
∫ t

0
x2k−je−µxdx µk+1p

k∑

j=0

c(2, k, j)
∫ t

0
x2k−j+1e−µxdx

µk
k−1∑

j=0

c(2, k − 1, j)
∫ t

0
x2k−j+1e−µxdx µk+1p

k−1∑

j=0

c(3, k − 1, j)
∫ t

0
x2k−j+2e−µxdx



.

If the environmental process is such that its semi-Markov kernel’s Laplace-Stieltjes

transform can be obtained in closed form, the following procedure can be used to

describe the SM/C2/1/N queueing system where the two phases that describe the

service process have equal means.

Step 1. Compute the matrices Ãk for k = 0, · · · , N−1 using (4.43) and (4.44), where

Q∗ is the Laplace-Stieltjes transform of the arrival process kernel and Q
∗(j)

is

defined by (4.24). Compute
∫∞
0 eTx ⊗ dQ(x) from (4.45). Finally, compute B̃k,

for k = 0, · · · , N − 1 using (4.31).

Step 2. Build the matrix P̃N (4.9) and compute π defined by (4.10).

Step 3. Compute y0 using (4.16) and yk using (4.17) for k = 1, · · · , N , where the

integrals in those equations are the matrices of the right-hand-side of Eqs. (4.46),

(4.47), and (4.48). (Remember that the matrices G
(j)

are defined by (4.32).)

Step 4. The waiting time distributions W (·) and Ŵ (·) are obtained from Eqs. (4.36)

and (4.37), respectively, where the inverse transform is given by (4.49) and

(4.50).
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Step 5. The mean waiting time and mean virtual waiting time are given by Eqs. (4.19)

and (4.22), respectively.

C. Two Queues in Series

-���
-���λ(n)/G/1/N SM/PH/1/N

-

Fig. 2. Two Queues in Series

We implement the proposed method for a queueing system consisting of two

queues in series (Figure 2). For the queue of the first stage, denoted by Q1, the

interarrival time distribution is exponential and load-dependent. That is, there exists

an integer N1 ≥ 2 such that λ(n1) > 0 for 0 ≤ n1 ≤ N1−1, and λ(n1) = 0 for all n1 ≥

N1, where n1 denotes the number of customers in Q1. The service time distribution ϕ

is arbitrary and its Laplace-Stieltjes transform ϕ∗ is given in closed-form. Therefore,

Q1 is of the λ(n)/G/1/N type addressed in Chapter II. Let T0 = 0, T1, T2, · · · be

the instants of successive departures, and denote by Xi the number of customers left

behind by the ith departure. Then the stochastic process (X, T ) = {Xi, Ti; i ∈ N} is

a Markov renewal process with state space {0, 1, · · · , N1−1}. The process is assumed

time-homogeneous, i.e., for 0 ≤ k, j ≤ N1 − 1 and t ∈ R+,

Qk j(t) = P{Xi+1 = j, Ti+1 − Ti ≤ t|Xi = k}, (4.51)
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which is independent of i. We obtain in Chapter II that, for t ∈ R+,

Q(t) =




p0(t) p1(t) p2(t) · · · pN1−1(t)

q0,1(t) q1,1(t) q2,1(t) · · · qN1−1,1(t)

q0,2(t) q1,2(t) · · · qN1−2,2(t)

. . .
...

...

0 q0,N1−1(t) q1,N1−1(t)




, (4.52)

where

qm,n(t) =
∫ t

0
ϕ(dx)ψm,n(x) for 1 ≤ n ≤ N1 − 1 and 1 ≤ m+ n ≤ N1, (4.53)

pm(t) =
∫ t

0
λ(0)e−λ(0)(t−x)qm,1(x) dx for 0 ≤ m ≤ N1 − 1. (4.54)

ψm,n(t) denotes the probability that there are exactly m arrivals in (0, t], given the

initial population n. The derivation and computation for ψm,n(t) are contained in

Chapter II. By (4.53) and substituting ψm,n(t) by the right-hand side of Eq. (2.14),

then taking the Laplace transformation yields

q∗m,n(s) = (4.55)




u(m+1,n)∑

i=1

ki(m+1,n)∑

v=1

ci,v(m,n)ϕ ∗(v−1)(s+ di), for m ≥ 1, 1 ≤ n ≤ N1 −m;

ϕ∗(s+ λ(n)), for m = 0, 1 ≤ n ≤ N1 − 1;

0, otherwise,

where ci,v(m,n) is the parameter given by (2.15). By (4.54) we have

p∗m(s) =
λ(0)q∗m,1(s)

s+ λ(0)
for 0 ≤ m ≤ N1 − 1. (4.56)

Note that Q is at the same time the semi-Markov kernel for the arrival process

of the queue Q2 of the second stage with finite buffer. If Q2 reaches full capacity, the

customer that completes service in Q1 is released from the whole system, instead of
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remaining inside and blocking the system. Upon obtaining the kernel Q or its Laplace-

Stieltjes transformationQ∗, and assuming Q2 has the PH service distribution, we solve

Q2 as the SM/PH/1/N queue and obtain its steady-state system size probabilities

and waiting time distributions by the method proposed in the preceding section.

D. Numerical Examples

We compare system size probabilities generated by the proposed method and simula-

tion. In addition, we obtain waiting-time distribution functions and associated mean

values. For all the simulation outcomes given in this section, we have 95% confidence

interval with the half-width of the interval being less than 2% of the mean estimate.

Note in the following tables y0,1,` is used to represent y0,` for ease of notation.

The SM/PH/1/N queue is degenerated as the GI/PH/1/N by letting Q̃ = 1

and the kernel Q represents the interarrival time distribution. In Table V and the

following, we solved again the example of the M/C2/1/N queue shown in Chapter II

by using the algorithm presented in this chapter.

W (t)= 1.00000 + (−0.05436 t9 − 0.01268 t8 + 0.04729 t7 + 0.10217 t6 + 0.12619 t5

+0.10999 t4 + 0.06836 t3 + 0.02702 t2 + 0.00235 t− 0.00407)e−7 t

+(−0.00000 t9 − 0.00000 t8 − 0.00000 t7 − 0.00000 t6 − 0.00003 t5

−0.00083 t4 − 0.01175 t3 − 0.09745 t2 − 0.45312 t− 0.96566)e−0.5 t,

Ŵ (t)= 1.00000 + (−0.00542 t10 − 0.00709 t9 − 0.00066 t8 + 0.01434 t7 + 0.03190 t6

+0.04222 t5 + 0.03907 t4 + 0.02505 t3 + 0.00875 t2 − 0.00236 t− 0.00461)e−7 t

+(−0.00000 t10 − 0.00000 t9 − 0.00000 t8 − 0.00000 t7 − 0.00000 t6 − 0.00005 t5
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Table V. Steady-state probabilities at arrivals and at an arbitrary point in time for

Q(t) = 1 − e−2t, µ1 = 7, µ2 = 0.5, p = 1/3, and N = 11

Our Method Simulation
i πi,1,1 πi,2,1 π(i) π(i)
0 0.03027 0 0.03027 0.03025
1 0.01179 0.01101 0.02280 0.02279
2 0.00803 0.01630 0.02432 0.02427
3 0.00821 0.02070 0.02891 0.02889
4 0.00965 0.02556 0.03521 0.03519
5 0.01173 0.03140 0.04312 0.04307
6 0.01436 0.03852 0.05287 0.05286
7 0.01760 0.04724 0.06484 0.06487
8 0.02158 0.05793 0.07951 0.07950
9 0.02646 0.07104 0.09751 0.09742
10 0.04173 0.47890 0.52063 0.52331

yi,1,1 yi,2,1 y(i) y(i)
0 0.03027 0 0.03027 0.03021
1 0.01179 0.01101 0.02280 0.02274
2 0.00803 0.01630 0.02432 0.02430
3 0.00821 0.02079 0.02891 0.02886
4 0.00965 0.02556 0.03521 0.03519
5 0.01173 0.03140 0.04312 0.04310
6 0.01436 0.03852 0.05287 0.05284
7 0.01760 0.04724 0.06484 0.06488
8 0.02158 0.05793 0.07951 0.07962
9 0.02646 0.07104 0.09751 0.09752
10 0.03245 0.08713 0.11958 0.11961
11 0.00927 0.39178 0.40105 0.40113
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−0.00096 t4 − 0.01241 t3 − 0.09838 t2 − 0.45193 t− 0.96512)e−0.5 t,

E(W ) = 7.43151, E(Ŵ ) = 7.75617.

We consider in the second example two queues in series. For the queue Q1,

the interarrival time distribution is exponential with load-dependent rates λ(0) = 3,

λ(1) = 2, λ(2) = 1, and λ(n) = 0 for all n ≥ 3. The service time distribution is given

by ϕ(t) = 1 − e−2 t. By (4.52) we obtain

Q(t) =


3
2e−4 t − 2 e−3 t + 1

2 −3 e−4 t + (−4 t + 8
3)e−3 t + 1

3
3
2e−4 t + (4 t + 4

3)e−3 t − 3 e−2 t + 1
6

−1
2e−4 t + 1

2 e−4 t − 4
3e−3 t + 1

3 −1
2e−4 t + 4

3e−3 t − e−2 t + 1
6

0 −2
3e−3 t + 2

3
2
3e−3 t − e−2 t + 1

3


 .

The performance characteristics computed for Q2 are shown in Table VI and the

following:

W (t)= 1.00000 + (−0.65399 t3 − 22.05811 t2 − 275.29775 t− 1283.16519)e−1.5 t

+(−2.85429 t3 + 44.31480 t2 − 367.27736 t+ 1282.16776)e−t,

Ŵ (t) =

1.00000 + (0.17630 t4 + 9.79802 t3 + 223.12824 t2 + 2479.27850 t+ 11332.24652)e−1.5 t

+(−1.06550 t4 + 27.78475 t3 − 400.51150 t2 + 3185.85093 t− 11333.24441)e−t,

E(W ) = 5.25033, E(Ŵ ) = 6.15351.
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Table VI. Steady-state probabilities at arrivals and at an arbitrary point in time for

Q2 with µ1 = 1, µ2 = 1.5, p = 2/3, and N2 = 5

Our Method Simulation
i πi,1,1 πi,1,2 πi,1,3 πi,2,1 πi,2,2 πi,2,3 π(i) π(i)
0 0.00024 0.00078 0.00155 0 0 0 0.00257 0.00259
1 0.00125 0.00312 0.00340 0.00019 0.00054 0.00081 0.00932 0.00931
2 0.00528 0.01009 0.00983 0.00106 0.00233 0.00254 0.03113 0.03110
3 0.02085 0.03307 0.02582 0.00443 0.00800 0.00720 0.09938 0.09936
4 0.24945 0.23014 0.09816 0.11724 0.11193 0.05068 0.85760 0.85763

yi,1,1 yi,1,2 yi,1,3 yi,2,1 yi,2,2 yi,2,3 y(i) y(i)
0 0.00013 0.00049 0.00149 0 0 0 0.00211 0.00212
1 0.00067 0.00209 0.00373 0.00010 0.00036 0.00081 0.00775 0.00781
2 0.00295 0.00728 0.01140 0.00058 0.00161 0.00281 0.02663 0.02661
3 0.01216 0.02551 0.03314 0.00252 0.00589 0.00863 0.08784 0.08780
4 0.05126 0.08555 0.08540 0.01057 0.02051 0.02414 0.27743 0.27742
5 0.11511 0.14649 0.10812 0.06711 0.09019 0.07121 0.59824 0.59824

E. Conclusion

An explicit algorithm that generates numerical solutions for the steady-state system

size probabilities and waiting time distribution functions of the SM/PH/1/N queue

is developed. The computation is proportional to (ω2r2N2). Moments of the waiting

time can also be easily obtained. In addition, we demonstrate an efficient technique

that implements the SM/PH/1/N model for the queue of the second stage of a se-

quential two-queue system without having to calculate performance characteristics of

the first queue.
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CHAPTER V

APPROXIMATE ANALYSIS FOR CLOSED QUEUEING NETWORKS

The queueing network under consideration is of single class, and its internal buffers

are assumed sufficiently large that no blocking occurs at any time. There is only

one server at each station. The service implements a first-come first-served (FCFS)

discipline. The distribution of service times at each station is independent and can

be any probability distribution as long as it has a closed-form Laplace transform and

finite mean value. The routing probabilities are pre-specified and thus independent

of the state of the network.

A. Norton’s Theorem and Closed Network Approximations

Chandy et al. [10] demonstrated how to apply Norton’s theorem in electrical circuit

theory to queueing networks. According to their analysis, a closed network with K

nodes and N customers can be substituted with a two-node cyclic system that consists

of any node k, k = 1, · · · , K, of the original network and an aggregated single node

with load-dependent service rates µ(k)(n), for n = 1, · · · , N . To illustrate, fix k to be

some given node and denote by τk(n), for each n = 1, · · · , N , the throughput of that

node when the original network is modified so that it contains n customers and the

service time of node k is set to zero (called a short-circuiting of node k by [7]). (The

network that contains all nodes with the same topology as the original network except

that node k has been short-circuited and all other nodes have exponential servers is

called the complementary subnetwork associated with node k.) Now consider the two-

node closed network with N customers where the first node is the same as node k from

the original network and the second node has a state-dependent exponential server
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with rate given by µ(k)(n) = τk(n) when the second node contains n customers. This

two-node network is called the aggregated cyclic network associated with node k. For

queueing networks that satisfy local balance [3], including networks with exponential

servers and a FCFS discipline at all queues, the substitution is exact. That is, the

system size and waiting time distributions of queue k in the original network are the

same as in its complementary subnetwork.

As a direct implementation of Norton’s theorem, Chandy et al. [11] further pre-

sented an approximate method for the analysis of closed queueing networks with

general server distributions. Their method is an iterative procedure that first de-

termines the system size and throughput at each node using the node’s aggregated

cyclic network which can be analyzed by the methods in [12, 20]. It should be noted

that the difficulty in using the aggregated cyclic network is in determining values for

τk(n) for k = 1, 2, · · · , K and n = 1, 2, · · · , N . However, for exponential servers, a

mean value analysis [42] or the convolution algorithm [8] can be easily applied, so

the first step in the iterative procedure is to replace the general service distributions

with exponential servers having the same mean service times. Because exponential

service times are used instead of the actual service distribution, it is unlikely that

the sum of all system sizes will equal N and the throughput at each node will satisfy

the network topology, so the procedure of [11] gives a method of adjusting the mean

service times for the next iteration based on the current computed system sizes and

throughputs at all nodes.

The iterative method proposed by Marie [28] is an extension of the preceding

method and has been shown to “behave very well both qualitatively and quantitatively

and is the method of choice” [15]. In Marie’s method, each node is analyzed as an

isolated λ(n)/Cr/1/N model. The load-dependent arrival rate at a specific node, call

it node k, is determined by forming the complementary subnetwork associated with
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node k and calculating the throughput rate, τk(n), at that (short-circuited) node when

there are n jobs in the network, where n varies from 1 to N . The load-dependent

arrival rate to node k, for k = 1, · · · , K, is thus given as

λk(n) = τk(N − n) for n = 0, · · · , N − 1 , (5.1)

in other words λk(n) is the mean arrival rate to node k when there are n jobs at node

k.

The main difference between Marie’s method and the method of Chandy et al.

is that Marie uses load-dependent (exponential) service rates for the complementary

subnetworks instead of a constant exponential rate. Let νk(n) be the load-dependent

departure rates at node k for 1 ≤ k ≤ K and 1 ≤ n ≤ N . νk(n) can be obtained

by analyzing the λ(n)/Cr/1/N queue using the algorithm in [29] where particularly

efficient algorithms have been developed for Cox-2 and Erlang-r service processes.

The load-dependent (exponential) service rates for each queue k of the complemen-

tary subnetwork are updated equal to νk(n) for n = 1, 2, · · · , N . The procedures to

compute λk(n) and νk(n) repeat iteratively until stopping conditions are fulfilled. See

Appendix B for the steps of Marie’s method.

It is known that, in two-moment approximations, a Coxian representation can

be used to fit an arbitrary distribution that has a rational Laplace transform with

SCV greater than zero. For 0 < SCV < 1, the number of phases of the Cox-r model

is chosen such that

1

r
≤ SCV <

1

r − 1
.

(In addition, Cox-2 can be used when SCV is greater than or equal to 1/2.) Obvi-

ously, when the SCV is close to zero, this approximation requires a large number of

phases and therefore, the method of phases may become unattractive or impractical
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in queueing applications. Nojo and Watanabe [41] proposed an alternative model

that requires only two exponential phases to fit a distribution with arbitrary SCV

(0 ≤ SCV <∞) by allowing negative value of routing probabilities between the two

phases. However, when applied to the λ(n)/Cr/1/N queue, the two-phase model with

negative probabilities may generate negative values for the steady-state queue length

probabilities.

B. Analysis and Algorithm

To avoid the difficulty that arises when the Coxian model causes Marie’s method to

be intractable (i.e., when the number of phases is large) or when it is important to

model higher moments, we propose a new approach for the approximate analysis of

closed queueing networks. Our approach follows that of Chandy et al. except that we

analyze each node in isolation as a λ(n)/G/1/N model addressed in Chapter II.

Using the results in Chapter II, the steady-state probabilities for the λ(n)/G/1/N

system can be obtained. In other words, we obtain yk(n), for k = 1, · · · , K and

n = 0, · · · , N , as the probability that n jobs are at node k, where the node is analyzed

in isolation after the state-dependent arrival rates are determined. Based on these

probabilities, we obtain both the net arrival rate to the node and the mean system

size for the node as

λk =
N−1∑

n=0

λk(n)yk(n) (5.2)

Lk =
N∑

n=1

nyk(n) (5.3)

where k denotes the node and k = 1, · · · , K. The values from Eqs. (5.2) and (5.3)

will indicate how good the approximation is. If these values indicate that the approx-

imation is not good, adjustments will be made to the exponential service rates in the
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complementary subnetworks and the procedures will be repeated.

The conditions for stopping the iteration are the same as that of Marie’s method.

In particular, a criterion will be established based on mean sizes; that is, we fix a

value for ε so that the mean size stopping criterion is given as

∣∣∣∣∣
N −∑K

k=1 Lk

N

∣∣∣∣∣ < ε . (5.4)

A second stopping criterion is established based on the net input rate to each

node. For closed queueing networks, the vector, x, of the relative input rates to each

node can be found by solving the matrix equation

xP = x (5.5)

where P is the routing matrix (in other words, P (i, j) is the probability that a job

will be routed to node j when it departs from node i). Eq. (5.5) is often called the

balance equations and so the vectors x and λ should only differ by a multiplicative

constant; thus this becomes the second stopping criterion. To write this, define θk, for

k = 1, · · · , K, to be the ratio of the computed arrival rate to node k, to the solution

to the balance equation; that is,

θk =
λk

xk
for k = 1, · · · , K . (5.6)

If the values for λ (Eq. 5.2) are exact the ratios from (5.6) should be equal for all k,

but if they are not, the algorithm should continue. Let θ denote the average value of

the θk terms; namely,

θ =
1

K

K∑

k=1

θk

so that the second stopping criterion is satisfied at node k when

∣∣∣∣∣
θk − θ

θ

∣∣∣∣∣ < ε . (5.7)
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The tolerance level ε does not necessarily have the same value for these two stopping

conditions.

We use the same terminology introduced by Chandy et al. [11]. If the first

condition (5.4) is not satisfied, the approximation is said to have an “insufficient-

queue-length” error for the closed network if
∑K

k=1 Lk < N and an “excessive-queue-

length” error if
∑K

k=1 Lk > N . If the second condition (5.7) is not satisfied at node k,

the approximation is said to have an “excessive-throughput” error at node k if θk > θ;

otherwise, node k is said to have an “insufficient-throughput” error.

The algorithm that combines the λ(n)/G/1/N analysis with the method of

Chandy et al. is as follows, with slight modifications in Steps 4, 5 and 6. For a

closed network with exponential service time distributions, the proposed method is

exact.

Step 1. Construct the substitute network that has the same topology as the original

one but load-independent service rates µk for k = 1, 2, · · · , K. For each node k,

the initial values of µk are set all equal to the inverse of the mean value of the

associated general service distribution.

Step 2. Determine load-dependent arrival rates λk(n) for k = 1, 2, · · · , K and n =

0, 1, · · · , N − 1. The value of λk(n) is set to τk(N − n) according to (5.1).

Specifically, for each fixed k, k = 1, 2, · · · , K, a complementary subnetwork is

constructed by short-circuiting the node k (i.e., simply setting the service times

of node k equal to zero) of the preceding substitute network. Then τk(N −n) is

the load-dependent throughput rate at the short-circuiting node k when there

are (N − n) customers in the complementary subnetwork and can be analyzed

by the methods for product-form closed networks ([8, 42]).

Step 3. Compute steady-state system length probabilities yk(n), for k = 1, 2, · · · , K
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and n = 0, 1, · · · , N , by analyzing the λ(n)/G/1/N model using the method

proposed in Chapter II.

Step 4. Check stopping conditions (5.4) and (5.7), where the tolerance level ε may

be typically set to 1% or 2%. The value of θk in the second condition is given by

(5.6), where λk is computed using (5.2). If both conditions are satisfied, then

stop the iteration; otherwise go to Step 5.

Step 5. If there exists insufficient or excessive queue-length error, then go to Step 6.

Otherwise, adjust the service rate µk of the equivalent exponential node by

µk(new) = µ
k(old)

θk

θ
, for k = 1, 2, · · · , K, (5.8)

then go to Step 2 starting the next iteration.

Step 6. For the case of excessive-queue-length error, identify all nodes with insufficient-

throughput error; for the case of insufficient-queue-length error, identify all

nodes with excessive-throughput error. If there exist such nodes, for each node

h identified in this manner its service rate is adjusted by

µh(new) = µ
h(old)

θh

θ
, (5.9)

then go to Step 2. If no such node is identified, go to Step 7.

Step 7. Adjust the service rates for all nodes by

µk(new) =
µ

k(old)

2

( N
∑K

k=1 Lk

+ 1
)
, for k = 1, 2, · · · , K, (5.10)

then go to Step 2.

It is pointed out by Bondi and Whitt [6] that the accuracy of Marie’s method is

achieved by accounting for the Coxian representation when the system length proba-
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bilities are computed at each queue in isolation, and by fitting the service times with

equivalent load-dependent service times used in analyzing the complementary sub-

network. From the positive aspect, the λ(n)/G/1/N model analyzed in our proposed

method uses the exact expression of the service distribution rather than the two-

moment Coxian approximation used in Marie’s method. From another aspect, when

constructing the complementary subnetwork using the proposed method, we substi-

tute the general service times at the queues by flow-equivalent exponential times

with independent rates, instead of the load-dependent rates used in Marie’s method.

Therefore, the likelihood for better approximate results obtained by the proposed

method primarily relies on whether or not its advantage of exactly using the ser-

vice time distributions outweighs its disadvantage of failing to apply load-dependent

service times to the complementary subnetwork.

C. Tandem Closed Networks

Recall in Chapter IV we provided a computational technique to analyze a sequential

two-queue system. The queue of the first stage is of the λ(n)/G/1/N type, and

the queue of the second stage can be analyzed in isolation as a SM/PH/1/N queue

as long as the semi-Markov departure process of the first queue is described. In this

section, we implement the preceding two-queue technique to the approximate analysis

of tandem closed networks (Figure 3). The service times at each node of the network

are assumed to conform to a phase-type distribution and thus, we use the notation

λ(n)/PH/1/N to stand for the λ(n)/G/1/N queue.

For each node k analyzed by the SM/PH/1/N model, steady-state joint prob-

abilities of the system length and service phase can be computed using the method

in Chapter IV. Then the load-dependent departure rates νk(n) are obtained straight-
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Fig. 3. The Two-Queue Technique

forwardly. However, if we substitute the arbitrary service distribution at each node

k of the original network by an exponential distribution with load-dependent rates

νk(n) and proceed along similar lines to Marie’s method, stopping conditions (5.4,

5.7) are generally not fulfilled within a finite number of iterations. We suppose the

failing of convergence is caused by the overflow taking place in the sequential system

of the λ(n)/PH/1/N and SM/PH/1/N queues. The customer leaves the whole sys-

tem when observing that the second queue is full, which violates the assumptions for

the closed network analyzed by Marie’s method. Therefore, we employ the approach

proposed in Section V.B with necessary modifications to accommodate the two-queue

technique.

The nodes of a tandem closed network are indexed sequentially from 1 to K. Be-

fore the steps of iteration, we determine the phase-type or Coxian representation for

the service distribution of each node k, k = 1, 2, · · · , K by two-moment approxima-

tion. These Coxian representations are required when analyzing the λ(n)/PH/1/N

and SM/PH/1/N system in Step 3. In Step 3, starting from some arbitrary node,

say, node 1 of the network, we obtain a queueing system that consists of node 1 and

node 2 in series and subjects to load-dependent arrivals with rates λ1(n) at node 1,

n = 0, 1, · · · , N − 1. The steady-state probabilities for node 2, denoted by y2(n) for

n = 0, 1, · · · , N , are produced by means of the two-queue technique in Chapter IV.
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The computation is repeated for each pair of sequential nodes, i.e., node 2 and node

3, · · ·, node (K − 1) and node K, node K and node 1, and system size probabilities

y3(n), · · ·, yK(n), y1(n) are obtained for each pair. Other steps of the second approach

in Section V.B shall be followed without changes.

As we pointed out in Section IV.D, for the SM/PH/1/N queue the computational

work increases significantly as the network population N , the dimension of the SM

kernel, or the number of phases for the PH distribution increase. Therefore, this

method is only practical for tandem closed networks of small size and with small

phase number at each node for the PH distribution of service times.

D. Numerical Examples

In the following tables, we use “T” to denote tandem closed networks, and use “G” to

denote the networks that have the same topology as that of Figure 4. (The tandem

closed network consists sequently of the nodes 1, 2, 3 and 4 of Figure 4.) The SCV

values for all the nodes of the “general” and tandem networks range between 0 and

1/2 for Table VII, are equal to 1/2 for Table VIII, range between 1/2 and 1 for Table

IX, and between 1 and 10 for Tables X and XI. The mean values of service times are

respectively 1/16, 1/20, 2/25, and 3/50 for the nodes 1, 2, 3 and 4 for all the tables.
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Fig. 4. A Closed Queueing Network with General Topology
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Let “New1” and “New2” denote the two methods proposed in Sections V.B and

V.C, respectively. In the Tables VII through XI, we compare the results generated

by the maximum entropy (ME) method [24, 47], Marie’s method and “New1” against

simulation. In the Table XII, we demonstrate the comparisons for using “New2” to

approximate the tandem networks given in Tables VII through XI. The results in

Table XII are shown only for the case of N = 3 since the computation using “New2”

becomes very laborious when the network population gets larger. The notation nk

stands for the mean number of customers at node k, and uk for the steady-state

utilization at queue k, k = 1, 2, 3 and 4. For all simulation outcomes, we have 95%

confidence intervals with half-width less than 2% of the mean estimate. We set the

tolerance level ε equal to 1.5% for our approximations. The relative deviations shown

in each table are computed by

δ(%) =
approximation − simulation

simulation
× 100.

The specified Gamma distributions are used in simulation and the “New1” method

for all the tables. Associated Coxian representations are used to approximate the gen-

eral service distributions at all nodes by Marie’s and “New2” methods. In addition,

for the situations shown in Tables VII and XII with SCV less than 1/2, when us-

ing Marie’s method and “New2” we set the SCV values equal to 1/2 for the service

distributions at all nodes so that a Cox-2 representation can be applied.

E. Conclusion

In general, all these methods are fairly accurate for the approximate values of utiliza-

tion at the nodes, and the maximum entropy method is as an alternative to Marie’s

method. Our numerical examples show that the approximation accuracy for sys-
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Table VII. Mean numbers in the system and utilizations for node 1 having service

times with constant value 1/16, and nodes k for k = 2, 3 and 4 having

Gamma(βk, αk)-distributed service times with β2 = 1/250, α2 = 25/2,

β3 = 6/625, α3 = 25/3, β4 = 6/375, α4 = 15/4

N = 3 N = 10 N = 18
δ(%) δ(%) δ(%)

T Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 0.716 -1.94 1.31 -0.15 1.012 3.14 96.58 83.03 1.012 3.31 142.08 114.24
n2 0.526 -2.36 2.39 1.27 0.644 -12.43 83.36 70.05 0.644 -12.46 105.14 81.20
n3 1.048 5.87 -0.92 -1.34 7.290 3.20 -31.23 -28.94 15.288 1.58 -20.99 -18.98
n4 0.710 -4.99 -0.79 -1.86 1.055 -17.52 69.28 71.72 1.056 -18.36 103.18 102.89
u1 0.648 1.93 -19.52 -17.05 0.781 0.00 -3.37 -1.23 0.781 -0.02 -0.20 1.14
u2 0.518 1.93 -19.56 -17.98 0.625 0.02 -3.39 -1.87 0.625 -0.01 -0.19 0.39
u3 0.829 1.94 -19.46 -17.68 1.000 0.00 -3.36 -2.42 1.000 0.00 -0.17 -0.09
u4 0.622 1.95 -19.52 -18.09 0.750 0.01 -3.38 -3.23 0.750 -0.02 -0.20 0.74

δ(%) δ(%) δ(%)
G Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 1.127 6.05 5.27 2.25 6.546 18.75 -9.05 -8.27 14.342 14.19 -4.96 -5.09
n2 0.322 1.99 6.87 5.56 0.406 -6.92 41.47 30.95 0.409 8.29 43.31 34.65
n3 0.885 -8.65 -10.20 -9.30 2.070 -49.87 -0.55 -4.22 2.261 -73.17 -0.96 -4.89
n4 0.666 0.29 -0.81 1.52 0.978 -17.05 49.85 47.71 0.988 -41.85 56.31 54.83
u1 0.794 2.44 -8.66 -6.64 0.993 0.67 -0.87 -0.26 1.000 0.02 -0.01 0.02
u2 0.317 2.46 -8.85 -7.69 0.397 0.68 -0.33 -0.28 0.400 0.02 -0.01 -0.31
u3 0.609 2.45 -8.73 -5.92 0.763 0.63 -0.30 0.84 0.768 -0.05 -0.08 0.64
u4 0.533 2.46 -8.78 -6.79 0.667 0.69 -0.30 0.33 0.672 0.03 -0.00 0.24

tem sizes tends to decrease as the network population increases. Marie’s method is

usually regarded as the method of choice. However, we would like to demonstrate

specific situations where Marie’s method may not produce accurate approximations.

We show in Tables VII and VIII that the effect of a bottleneck is significant for the

tandem closed network with a large network population as well as small values of SCV

(SCV ≤ 1/2) for the queueing nodes. In such situations, both Marie’s method and

the proposed method do not produce satisfying approximations, and the maximum

entropy method is shown to be a better choice. (Even though in Table VII the Cox-2

representation was used in Marie’s method, where the SCV values are not exactly as

specified, it is shown in Tables VIII through XI that the results of Marie’s method

may not be significantly better than those of the proposed method.) As we pointed

out in Section I.D, the maximum entropy method does not involve aggregation, which
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Table VIII. Mean numbers in the system and utilizations for nodes k, k = 1, 2, 3

and 4, having Gamma(βk, 2)-distributed service times with β1 = 1/32,

β2 = 1/40, β3 = 1/25, β4 = 3/100

N = 3 N = 10 N = 18
δ(%) δ(%) δ(%)

T Simu. ME Marie New Simu. ME Marie New Simu. ME Marie New
n1 0.725 -0.14 0.41 -0.41 1.831 0.76 8.85 13.71 2.080 2.45 17.84 37.02
n2 0.537 -1.12 0.74 -0.74 1.030 -0.68 14.85 16.80 1.084 -0.37 22.23 33.12
n3 1.055 1.23 -1.14 -1.71 5.543 1.05 -9.16 -12.11 13.065 0.30 -7.55 -12.55
n4 0.681 -0.59 1.03 0.15 1.596 -4.07 12.16 16.42 1.770 -4.80 21.19 38.02
u1 0.549 1.09 -4.74 -7.29 0.769 -0.13 -1.69 -2.34 0.781 0.00 -0.13 2.30
u2 0.439 1.14 -4.56 -7.52 0.614 0.00 -1.47 -2.44 0.624 0.16 0.00 0.96
u3 0.703 1.00 -4.69 -6.97 0.983 0.00 -1.63 -3.05 0.999 0.00 -0.10 -0.40
u4 0.527 1.14 -4.74 -7.40 0.738 -0.14 -1.76 -2.30 0.750 0.00 -0.13 1.47

δ(%) δ(%) δ(%)
G Simu. ME Marie New Simu. ME Marie New Simu. ME Marie New
n1 1.174 2.21 1.53 0.77 5.928 6.56 1.15 -3.49 13.381 8.13 1.87 -4.77
n2 0.335 0.30 3.28 0.90 0.517 -5.42 10.06 10.25 0.532 -9.77 10.15 11.47
n3 0.833 -3.48 -4.08 -4.32 2.232 -15.05 -10.39 -3.27 2.674 -32.54 -16.23 -2.95
n4 0.658 0.30 0.91 0.30 1.326 -2.11 8.30 13.20 1.413 -11.75 9.27 16.91
u1 0.727 1.38 0.00 -2.48 0.982 0.71 0.41 -0.81 0.999 0.10 0.10 -0.10
u2 0.291 1.37 0.00 -3.44 0.392 0.77 0.51 -0.51 0.399 0.25 0.25 -0.25
u3 0.559 1.25 -0.18 -2.68 0.752 0.93 0.66 0.27 0.767 0.13 0.13 -0.39
u4 0.489 1.23 0.00 -2.86 0.659 0.76 0.61 -0.15 0.671 0.15 0.15 0.15

is a principal technique employed in Marie’s method. In order to use the techniques of

aggregation and product-form approximations, it is assumed that the decomposition

for the closed network is such that the performance of each subnetwork depends only

on the state of this subnetwork (i.e., independent of the rest of the network). Since

the bottleneck is a form of state-dependent behavior, it is one of the main reasons

resulting in the inaccuracy of Marie’s method and the proposed method. See [4] for

detailed discussions regarding the assumptions required for a feasible decomposition

of the closed network.

Almost all the methods in the literature for general queueing networks are of

two-moment approximations. The proposed method applies exact forms of service

time distributions to queueing network analysis. Our experiments for closed networks

with various topologies and parameters show that the proposed method is expected
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Table IX. Mean numbers in the system and utilizations for nodes k, k = 1, 3 and 4,

having Gamma(βk, αk)-distributed service times with β1 = 1/32, α1 = 2,

β3 = 6/125, α3 = 5/3, β4 = 6/125, α4 = 5/4, and node 2 having exponential

service times with the mean value 1/20

N = 3 N = 10 N = 18
δ(%) δ(%) δ(%)

T Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 0.712 0.17 0.01 0.18 1.889 0.43 3.90 6.14 2.333 2.07 7.45 16.50
n2 0.554 -1.15 0.38 -0.88 1.214 -0.14 9.17 8.25 1.364 0.63 14.46 17.70
n3 1.046 0.49 -1.35 -1.32 5.122 0.09 -5.92 -7.37 12.153 -0.33 -5.45 -8.66
n4 0.689 0.01 1.04 0.28 1.775 -0.63 8.31 8.75 2.151 -0.76 13.56 21.49
u1 0.523 0.54 -2.66 -3.65 0.754 -0.17 -1.14 -1.70 0.780 -0.09 -0.22 0.05
u2 0.419 0.50 -2.75 -5.16 0.603 -0.18 -1.18 -2.75 0.624 -0.11 -0.25 0.12
u3 0.670 0.49 -2.67 -3.66 0.965 -0.19 -1.34 -2.16 0.998 -0.06 -0.20 -0.51
u4 0.500 1.04 -2.18 -4.16 0.720 0.36 -0.63 -1.86 0.745 0.44 0.30 -0.41

δ(%) δ(%) δ(%)
G Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 1.168 1.34 0.25 -0.33 5.738 0.43 0.23 -2.45 13.064 7.13 1.48 -2.46
n2 0.346 -0.23 2.08 0.46 0.571 -0.74 8.89 8.44 0.596 -11.35 8.78 13.18
n3 0.822 -2.70 -3.45 -3.04 2.243 -4.69 -7.50 -2.47 2.744 -24.49 -13.70 -3.33
n4 0.664 1.10 1.61 1.15 1.448 5.86 8.19 10.46 1.595 -11.95 8.21 17.05
u1 0.712 1.01 0.07 -1.40 0.975 0.13 0.42 -0.38 0.998 0.14 0.11 -0.03
u2 0.285 1.02 -0.07 -2.77 0.390 0.13 0.64 -0.82 0.399 0.10 0.08 -0.63
u3 0.547 0.97 0.00 -1.46 0.749 0.16 0.75 0.12 0.766 0.18 0.16 -0.42
u4 0.476 1.60 0.57 -1.72 0.651 0.71 1.21 -0.06 0.667 0.69 0.66 -0.45

to perform more accurately than Marie’s method in situations where the network

population is large, most of the nodes have SCV greater than 1.0, and the network

topology is complex (e.g., in Tables X and XI for the “general” closed networks with

N = 10 and 18). For these situations, we believe that the influence of the third and

higher moments is important for closed queueing networks.

Future research into an efficient way for estimating the load-dependent departure

rates ν(n) of the λ(n)/G/1/N queue is promising. (In the method of Marie [29], the

algorithm of computing ν(n) is derived by involving the fictitious phases of Coxian

representation.) Upon producing ν(n) by some efficient algorithm, then following

exact procedures of Marie’s method in which load-dependent service rates at each

queue k of the substitute network are updated by νk(n) in the iterative procedure, we

would expect to achieve convergence of iteration and to yield an approach with more
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Table X. Mean numbers in the system and utilizations for nodes k, k = 1, 2, 3 and 4,

having Gamma (βk, αk)-distributed service times with β1 = 1/2, α1 = 1/8,

β2 = 1/2, α2 = 1/10, β3 = 6/25, α3 = 1/3, β4 = 3/10, α4 = 1/5

N = 3 N = 10 N = 18
δ(%) δ(%) δ(%)

T Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 0.760 -1.72 -1.34 4.22 2.490 0.55 -0.72 9.05 4.371 1.43 0.59 11.04
n2 0.596 -1.39 -2.57 3.19 1.893 0.79 -5.25 2.28 3.203 2.65 -6.83 6.46
n3 0.965 0.36 1.35 -3.68 3.560 -2.92 1.33 -6.47 7.042 -4.27 0.90 -12.54
n4 0.678 2.64 1.84 0.65 2.057 3.66 3.29 0.64 3.385 4.54 3.84 0.68
u1 0.365 -7.29 3.56 9.23 0.523 -3.52 3.00 12.21 0.608 -1.63 4.05 8.74
u2 0.291 -6.97 3.92 9.34 0.418 -3.40 3.23 11.80 0.485 -1.37 4.33 7.65
u3 0.466 -6.87 3.97 10.72 0.668 -3.32 3.25 13.62 0.775 -1.36 4.38 7.72
u4 0.348 -6.69 4.19 10.16 0.501 -3.41 3.23 12.37 0.581 -1.27 4.48 9.54

δ(%) δ(%) δ(%)
G Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 1.191 -3.49 -3.48 5.26 4.651 -1.01 -6.11 9.34 9.360 0.49 -5.29 4.75
n2 0.398 -0.20 -3.80 -3.29 1.089 4.76 -6.10 -8.15 1.636 7.11 -9.33 0.96
n3 0.739 3.55 6.31 -1.16 2.162 -1.28 16.62 -3.85 3.517 -4.06 20.69 -4.53
n4 0.673 2.41 1.47 -2.14 2.098 1.10 -0.41 -10.72 3.487 -0.55 -2.27 -12.76
u1 0.545 -7.04 -2.18 2.48 0.774 -3.93 -3.85 3.05 0.874 -1.42 -2.15 0.18
u2 0.217 -6.72 -1.84 1.98 0.308 -3.54 -3.44 2.95 0.349 -1.27 -1.99 0.85
u3 0.417 -6.64 -1.80 3.17 0.593 -3.68 -3.58 2.51 0.669 -1.16 -1.86 0.58
u4 0.364 -6.33 -1.46 2.01 0.519 -3.66 -3.57 1.60 0.585 -1.08 -1.82 -1.24

Table XI. Mean numbers in the system and utilizations for nodes k, k = 1, 2, 3 and 4,

having Gamma (βk, αk)-distributed service times with β1 = 5/8, α1 = 1/10,

β2 = 1/2, α2 = 1/10, β3 = 2/5, α3 = 1/5, β4 = 3/10, α4 = 1/5

N = 3 N = 10 N = 18
δ(%) δ(%) δ(%)

T Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 0.761 -1.75 -1.46 3.44 2.517 0.09 -0.94 8.31 4.438 1.14 1.22 9.38
n2 0.585 -0.31 -1.98 0.94 1.842 1.14 -4.65 -3.09 3.129 2.16 -7.04 -2.79
n3 0.977 -0.40 1.36 1.59 3.577 -2.62 1.74 0.51 6.968 -3.56 2.53 -8.19
n4 0.676 2.80 1.38 -0.21 2.063 3.42 2.29 -4.20 3.465 3.74 -0.31 -3.45
u1 0.353 -7.75 4.36 8.46 0.501 -4.35 2.56 11.80 0.583 -2.25 3.88 10.65
u2 0.282 -7.62 4.50 9.32 0.401 -4.37 2.52 11.38 0.466 -2.19 3.97 9.57
u3 0.451 -7.43 4.70 11.69 0.641 -4.29 2.56 13.65 0.744 -1.96 4.21 5.75
u4 0.338 -7.48 4.64 12.36 0.480 -4.21 2.75 14.29 0.558 -1.99 4.21 7.69

δ(%) δ(%) δ(%)
G Simu. ME Marie New1 Simu. ME Marie New1 Simu. ME Marie New1

n1 1.190 -4.25 -3.98 6.15 4.604 -2.65 -7.30 9.44 9.141 -1.14 -6.47 4.78
n2 0.391 0.31 -3.30 -3.12 1.077 2.81 -6.91 -9.83 1.625 5.40 -11.24 -1.80
n3 0.751 5.19 6.91 1.96 2.250 6.28 18.31 2.52 3.754 5.47 24.45 -0.68
n4 0.669 1.57 1.26 -3.40 2.069 1.97 -0.06 -12.58 3.479 -5.43 -4.12 -14.74
u1 0.531 -8.05 -1.87 3.03 0.751 -5.65 -5.14 2.68 0.852 -2.99 -3.40 -0.90
u2 0.212 -7.80 -1.61 3.40 0.300 -5.60 -5.06 4.13 0.341 -2.94 -3.32 0.85
u3 0.406 -7.71 -1.53 1.95 0.574 -5.19 -4.64 1.24 0.653 -2.79 -3.14 -4.06
u4 0.356 -7.79 -1.63 2.81 0.504 -5.44 -4.91 2.72 0.572 -2.95 -3.32 -2.76
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Table XII. Mean numbers in the system and utilizations for nodes k, k = 1, 2, 3, and 4,

of tandem closed networks with N = 3

Table VII Table VIII Table IX Table X Table XI
δ(%) δ(%) δ(%) δ(%) δ(%)

Simu. New2 Simu. New2 Simu. New2 Simu. New2 Simu. New2

n1 0.716 3.03 0.725 0.83 0.711 3.04 0.760 0.85 0.761 1.12
n2 0.526 3.73 0.537 0.74 0.554 4.29 0.596 2.89 0.585 3.88
n3 1.048 -3.30 1.055 -4.83 1.046 -4.48 0.965 -3.33 0.977 -3.63
n4 0.710 -4.90 0.681 -1.47 0.689 1.41 0.678 5.35 0.676 3.68
u1 0.648 -23.63 0.549 -10.56 0.523 -6.03 0.365 22.18 0.353 25.69
u2 0.518 -23.58 0.439 -10.48 0.419 -7.12 0.291 22.59 0.282 25.87
u3 0.829 -23.93 0.703 -9.53 0.670 -5.69 0.466 23.81 0.451 27.12
u4 0.622 -23.83 0.527 -9.68 0.500 -5.72 0.348 23.07 0.338 26.54

accuracy than Marie’s method. In addition, the proposed method is promising for

networks that contain multi-server queues by making an extension of the λ(n)/G/1/N

queue to the associated model with multiple servers. In general, the multi-server

queues are not computationally tractable for exact solutions. Approximate techniques

for the M/G/c queues with both infinite and finite buffers can be found, for example,

in [46].

Comparing Table XII with corresponding results in Tables VII through XI, we

observe that the method proposed in Section V.C for tandem closed networks is less

accurate than Marie’s method and the method of Section V.B. We believe this is

primarily due to the overflows occuring in the sequential two-queue system.
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CHAPTER VI

SUMMARY OF CONTRIBUTIONS

A number of problems in queueing theory and stochastic processes are addressed in

this dissertation. These problems arise in an attempt to improve approximations for

closed queueing networks.

For the λ(n)/G/1/N queue, the method of Gupta and Rao is possibly the most

popular in the literature that provides computational solutions of system size prob-

abilities. However, there are two main difficulties in implementing their method.

First, whenever a new λ(n)/G/1/N system is analyzed with a different combination

of identical and distinct values of λ(n), n = 0, 1, · · · , N − 1, the basic equations of

their method need to be rewritten and the procedure to solve the equations repeated.

Second, when the values of λ(n) are distinct but close to each other, their method may

fail to produce accurate or reasonable results. Our algorithm developed in Chapter

II significantly eliminates these two difficulties and, thus, produces more stable and

accurate results for the λ(n)/G/1/N queue.

The computation of the time-dependent probability matrix P (n, t) for n ∈ N

and t ∈ R+ associated with a renewal process is essential in queueing and stochastic

analysis. However, there usually does not exist a concise explicit solution for P (n, t),

as pointed out by Neuts in [40, pp. 389] where he derived formulas for the moments

of U(t) for the counting process of PH renewals. An approach was also outlined by

Neuts in [36, pp. 68] to obtain the approximate value of P (n, t) for every point of t, t ∈

R+, which requires extensive calculations. In Chapter III, we presented a procedure

to generate the exact solution of P (n, t) for PH renewal processes. In particular,

we developed closed-form solutions for P (n, t) when the Cox-2 and simplified Cox-r



78

distributions are used to fit inter-renewal times of arbitrary mean and variance.

Extensive discussion for the SM/PH/1/N queue has not appeared in the litera-

ture so far. Based on Neuts and Chakravarthy’s analysis for the SM/PH/1 queue [37],

which has infinite waiting space, and our preceding work for obtaining exact expres-

sions for the P (n, t) terms, an explicit procedure has been proposed in Chapter IV

for the system length probabilities and waiting time distributions of the SM/PH/1/N

system. In addition, closed-form solutions are given for the case that the Laplace-

Stieltjes transform of the semi-Markov kernel can be obtained in closed form and the

service times conform to a Cox-2 distribution.

Among the numerous methods for the approximate analysis of general closed

queueing networks, Marie’s method is regarded as the best choice in accuracy and

computational efficiency, where each queue of the network is analyzed in isolation as a

λ(n)/Cr/1/N model. By implementing our preceding algorithm for the λ(n)/G/1/N

queue, in Chapter V we proposed a procedure to approximate the state probabilities

for the closed network with an arbitrary topology. The proposed procedure is unique

in that, to the best of our knowledge, almost all existing methods employ two-moment

approximations rather than exact forms of the service distributions of the queues of

the network. For tandem closed networks, we further developed a new approach using

the queueing model consisting of the λ(n)/PH/1/N and SM/PH/1/N in series.
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APPENDIX A

GUPTA AND RAO’S METHOD FOR λ(n)/G/1/N QUEUE

The method of Gupta and Rao [17, 18] is possibly the most popular in the literature

to analyze and produce numerical solutions for the λ(n)/G/1/N Queue. It is assumed

there exists an integer N such that λ(n) > 0 for all 0 ≤ n < N and λ(n) = 0 for all

n ≥ N . The service time distribution ϕ is arbitrary as long as its Laplace transform

ϕ∗ can be obtained in closed form and the mean service time is of finite value. Let

V (t) and U(t) denote the number of customers at present and the remaining service

time for the customer in service at time t, respectively, and define

pj(t) = P{V (t) = j} for j = 0, 1, · · · , N, and (A.1)

pj(u, t) du = P{V (t) = j, u < U(t) ≤ u+ du} for u ≥ 0, j = 1, 2, · · · , N. (A.2)

If the λ(n) values are either all identical or all distinct from each other, the basic

equations are given in Gupta and Rao [18] as follows:

d

dt
p0(t) = −λ(0)p0(t) + p1(0, t); (A.3)

(
∂

∂t
− ∂

∂u

)
p1(u, t) = −λ(1)p1(u, t) + λ(0)p0(t)ϕ(u) + p2(0, t)ϕ(u); (A.4)

(
∂

∂t
− ∂

∂u

)
pj(u, t) = −λ(j)pj(u, t) + λ(j − 1)pj−1(t) + pj+1(0, t)ϕ(u), (A.5)

for j = 2, 3, · · · , N − 1; and

(
∂

∂t
− ∂

∂u

)
pN(u, t) = −λ(N − 1)pN−1(u, t). (A.6)

The steady-state system size probability at an arbitrary point of time is then

given by yj = limt→∞ pj(t) for j = 0, 1, · · · , N . The following steps of a recursive



84

algorithm are derived after solving the preceding basic equations:

Step 1. Compute ν(1) by

ν(1) = λ(0)
[1 − ϕ∗(λ(1))]

ϕ∗(λ(1))
p0, (A.7)

where p0 is set equal to 1.

Step 2. Compute p1 by

p1 =
ν(1)

λ(1)
. (A.8)

Step 3. If the λ(n) values are all distinct, then for each j = 2, 3, · · · , N − 1 do the

Steps 3.1 through 3.3. Otherwise if λ(n) = λ for all n = 0, 1, · · · , N − 1, then

do Steps 3.4 through 3.6.

3.1. Compute p1(λ(j)) by

p1(λ(j)) =
1

λ(1) − λ(j)

[
λ(0) p0 (ϕ∗(λ(j)) − 1) + ν(1)ϕ∗(λ(j))

]
. (A.9)

3.2. If j = 2 then go to Step 3.3. Otherwise, for each i = 2, · · · , j− 1, compute

pi(λ(j)) by

pi(λ(j)) =
1

λ(i) − λ(j)

[
λ(i− 1) pi−1(λ(j)) + ν(i)ϕ∗(λ(j)) − ν(i− 1)

]
. (A.10)

3.3. Compute ν(j) using

ν(j) =
1

ϕ∗(λ(j))

[
ν(j − 1) − λ(j − 1) pj−1(λ(j))

]
. (A.11)

Go to Step 4.

3.4. For each i = 0, 1, · · · , N − 3, compute p̄1(i, λ) using

p̄1(i, λ) = − 1

i + 1
(λ p0 + ν(1))ϕ∗(i+1)(λ). (A.12)

3.5. For each j = 2, · · · , N − 2 and i = 0, 1, · · · , N − 2 − j, compute ν(j) and
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p̄j(i, λ) using Eq. (A.11) and

p̄j(i, λ) = − 1

i+ 1

[
λ p̄j−1(i+ 1, λ) + ν(j)ϕ∗(i+1)(λ)

]
. (A.13)

3.6. Set p̄j(λ) equal to p̄j(0, λ) for all j = 1, 2, · · · , N−2, then compute ν(N−1)

using Eq. (A.11).

Step 4. For all j = 2, 3, · · · , N − 1, compute pj using

pj =
1

λ(j)

[
λ(j − 1) pj−1 + ν(j) − ν(j − 1)

]
. (A.14)

Step 5. Compute pN using

pN = −λ(N − 1) p̂N−1, (A.15)

where p̂N−1 is determined by

p̂1 =
1

λ(1)

[
− λ(0) p0 b− ν(1) b+ p1

]
, (A.16)

p̂j =
1

λ(j)

[
λ(j − 1) p̂j−1 − ν(j) b + pj

]
, for N − 1 ≥ j ≥ 2, (A.17)

and b is the mean service time.

Step 6. For all j = 0, 1, · · · , N − 1, the steady-state probabilities immediately after

a departure, denoted by πj, are computed by

πj =
νj∑N−1

i=0 νi

, (A.18)

where ν(0) is equal to λ(0) p0.

Step 7. For all j = 0, 1, · · · , N , the steady-state probabilities yj are computed by

yj =
pj∑N
i=0 pi

. (A.19)
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The above procedure can be modified to accommodate the situation where some

of the λ(n) values are identical and some are distinct. For example, in [17], Gupta

and Rao calculated the system size probabilities of a M/G/1/N machine interference

problem with Y spares, which is essentially a λ(n)/G/1/(N + Y ) model with λ(n) =

Nλ for 0 ≤ n ≤ Y and λ(n) = (N + Y − n)λ for Y + 1 ≤ n ≤ N + Y − 1. The basic

equations are rewritten by,

d

dt
p0(t) = −N λp0(t) + p1(0, t); (A.20)

(
∂

∂t
− ∂

∂u

)
p1(u, t) = −N λp1(u, t) +N λp0(t)ϕ(u) + p2(0, t)ϕ(u); (A.21)

(
∂

∂t
− ∂

∂u

)
pj(u, t) = −N λpj(u, t) +N λpj−1(t) + pj+1(0, t)ϕ(u), (A.22)

for j = 2, 3, · · · , Y ;

(
∂

∂t
− ∂

∂u

)
pj(u, t) = −(N+Y −j)λ pj(u, t)+(N+Y −n+1)λ pj−1(t)+pj+1(0, t)ϕ(u),

(A.23)

for j = Y + 1, Y + 2, · · · , N + Y − 1; and

(
∂

∂t
− ∂

∂u

)
pN+Y −1(u, t) = −λ pN+Y −1(u, t). (A.24)

The analogous procedure is therefore derived for the new system with a different

combination of identical and distinct values of λ(n). See Gupta and Rao [17] for

detailed discussion.
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APPENDIX B

MARIE’S METHOD FOR GENERAL CLOSED QUEUEING NETWORKS

Marie’s method [28, 29] has been empirically shown to be the best choice for approx-

imate analysis of non-product-form closed queueing networks, and was extended for

networks of multi-server queues by Stewart and Marie [44] and Willits [49], respec-

tively. The principle of Marie’s method is to analyze each queue of the network (con-

sisting of K queueing nodes and having N customers inside) in isolation as a model

with load-dependent arrival rates λk(n) for k = 1, 2, · · · , K and n = 0, 1, · · · , N − 1.

To determine the unknown values λk(n), the non-product-form network is approx-

imated by a product-form network by substituting exponential service times with

load-dependent rates µk(n), n = 1, 2, · · · , N , for the original queues that have general

service times.

Step 1. Construct the substitute network which has the same topology as the orig-

inal one but load-dependent service rates µk(n) for k = 1, 2, · · · , K and n =

1, 2, · · · , N . For each queue k, the initial values of µk(n) are set all equal to the

inverse of the mean value of the associated general service distribution.

Step 2. Determine load-dependent arrival rates λk(n) for k = 1, 2, · · · , K and n =

0, 1, · · · , N − 1. The value of λk(n) is set to τk(N − n) according to (5.1).

Specifically, for each fixed k, k = 1, 2, · · · , K, a complementary subnetwork is

constructed by short-circuiting the queue k (i.e., simply setting the service times

of queue k equal to zero) of the preceding substitute network. Then τk(N−n) is

the load-dependent throughput rate at the short-circuiting queue k when there

are (N − n) customers in the complementary subnetwork, and can be analyzed

by the methods for product-form closed networks ([8, 42]).
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Step 3. Analyze each queue k for k = 1, 2, · · · , K as an individual λ(n)/Cr/1/N

queue. The computation for load-dependent departure rates νk(n) is given in

[29], which is particularly efficient for the Cox-2 and Erlang-r service distri-

butions. Then the steady-state system size probabilities yk(n) are determined

by

yk(n) = yk(0)
n−1∑

i=0

λk(i)

νk(i+ 1)
for n = 1, 2, · · · , N, and (B.1)

N∑

n=0

yk(n) = 1. (B.2)

Step 4. Check stopping conditions (5.4) and (5.7). If both conditions are satisfied,

then stop the iteration; otherwise go to Step 5.

Step 5. The load-dependent service rates µk(n) are updated equal to νk(n), for k =

1, 2, · · · , K and n = 1, 2, · · · , N , for the substitute network. Then return to Step

2.
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