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ABSTRACT

This dissertation studies load balancing algorithms for many-server systems (with

N servers) and focuses on the steady-state performance of load balancing algorithms

in the heavy traffic regime such that the load of system is λ = 1−N−α for 0 < α <

1. The framework of Stein’s method and (iterative) state space collapse (SSC) are

used to analyze three load balancing systems: 1) load balancing in the traffic regime

(0 < α < 0.5) with exponential service time; 2) load balancing in the traffic regime

(0.5 ≤ α < 1) with exponential service time; 3) load balancing in the traffic regime

(0 < α < 0.5) with Coxian-2 service time.

When 0 < α < 0.5, i.e. the traffic load is lighter than the Halfin-Whitt regime,

the sufficient conditions are established such that any load balancing algorithm that

satisfies the conditions have both asymptotic zero waiting time and zero waiting prob-

ability. Furthermore, the number of servers with more than one jobs is o(1), in other

words, the system collapses to a one-dimensional space. The result is proven using

Stein’s method and state space collapse (SSC), which are powerful mathematical tools

for steady-state analysis of load balancing algorithms. The second system is in even

“heavier” traffic regime (0.5 ≤ α < 1), and an iterative refined procedure is proposed

to obtain the steady-state metrics. Again, asymptotic zero delay and waiting are

established for a set of load balancing algorithms. Different from the first system, the

system collapses to a two-dimensional state-space instead of one-dimensional state-

space. The third system is more challenging because of “non-monotonicity” with

Coxian-2 service time, and an iterative state space collapse is proposed to tackle the

“non-monotonicity” challenge. For these three systems, a set of load balancing algo-

rithms is established, respectively, under which the probability that an incoming job

is routed to an idle server is one asymptotically (as N → ∞) at steady-state. The

set of load balancing algorithms includes join-the-shortest-queue (JSQ), idle-one-first
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(I1F), join-the-idle-queue (JIQ), and power-of-d-choices (Pod) with a carefully-chosen

d.
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Chapter 1

INTRODUCTION

The rapid development of cloud computing, social networking, Internet-of-things

(IOT) and machine learning brings intensive volume of internet traffic to data centers.

Load balancer is an indispensable component in data center to optimize resource al-

location and support high quality of service (e.g. job delay). Load balancing in data

centers routes incoming jobs to servers to balance the load across servers and to min-

imize response times to improve user experience. It has been reported in Schurman

and Brutlag (2009) that an extra delay of 500 ms led to 1.2% loss of users and revenue,

and low delay (i.e. short response time) is very important in modern data centers

networks.

1.1 Background

Load balancing reconciles two priory objectives in many-server systems, efficiency

and quality of service Leverich and Kozyrakis (2014): on one hand, data center aims to

maintain high quality of service by keeping workload per server (efficiency) low; on the

other hand, data center should keep high efficiency to reduce the operation cost (e.g.

power and cooling down), which may sacrifice quality of service. The efficiency-quality

trade-off motivates researchers to consider heavy traffic regime in large-scale server

systems (N servers), where workload per server is λ = 1 − N−α and α is a positive

constant in (0, 1). In this regime, λ (efficiency) becomes high as N increases, which

even approaches to one as N becomes large. In the heavy-traffic regime, the important

questions to be answered are: what load balancing algorithms should be used in this

regime? how do these algorithms perform (e.g. job delay)? In this dissertation,
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we aim to address the two fundamental questions in the regime for 0 < α < 1.

Moreover, job size (e.g. machine learning training task) in load balancing systems

are highly-dynamic and the distributions of service time are general. Therefore, the

conventional assumption of exponential service time needs to be relaxed. However,

performance analysis of load balancing systems with non-exponential service is much

more challenging Harchol-Balter (2013). This dissertation takes a first step to tackle

this challenging problem by considering load balancing systems in heavy traffic regime

0 < α < 0.5 with Coxian-2 service time.

1.2 Literature Review

Steady-state analysis of many-server systems is one of the most fundamental and

widely-studied problems in queueing theory. The stationary distribution of the classic

M/M/N system (or called Erlang-C model) is one of the earliest subjects. For systems

with distributed queues where each server maintains a separate queue, it is well

known that the join-the-shortest-queue (JSQ) algorithm is delay optimal Winston

(1977); Weber (1978) under fairly general conditions. However, the exact stationary

distribution of many-server systems under JSQ remains to be an open problem. A

recent breakthrough in this area is Eschenfeldt and Gamarnik (2018), which shows

that in the Halfin-Whitt regime (α = 0.5) Halfin and Whitt (1981), the diffusion-

scaled process converges to a two-dimensional diffusion limit, from which it can be

shown that most servers have one job in service and O
(√

N
)

servers have two jobs

(one in service and one in buffer). This seminal work has led to several significant

developments: (i) Braverman (2018) proved that the stationary distribution indeed

converges to the stationary distribution of the two-dimensional diffusion limit based

on Stein’s method; and (ii) via stochastic coupling, Mukherjee et al. (2018) showed

that the diffusion limit of Pod converges to that of JSQ in the Halfin-Whitt regime at

2



the process level (over finite time) when d = Θ(
√
N logN); and (iii) when α < 1/6,

Liu and Ying (2018) proved that the waiting probability of a job is asymptotically

zero with d = Ω
(

logN
1−λ

)
at the steady-state based on Stein’s method.

Motivated by the observation in the server system (e.g. call center) that waiting

time is comparable with the service time, Atar (2012) also studied a centralized

server model in even heavier traffic regime with α = 1 and proved that the total

queue length with proper scaling converges to diffusion process as N →∞. He (2015)

extended the results in Atar (2012) to general service time and obtained the diffusion

approximation of the waiting time by joint scaling of the space and time. Braverman

et al. (2016) provided steady-state analysis of M/M/N system in the universal regime

for any 0 ≤ α ≤ 1 by using Stein’s method. For distributed server system, Gupta

and Walton (2019) considered load balancing in the regime α = 1 as considered in

Atar (2012), and it shown that the scaled total queue length weakly converges to a

stochastic differential equation (diffusion process). Based on the diffusion process,

various load balancing algorithms, JSQ, JIQ and I1F are compared in terms of the

total queue length.

Most of previous analysis of load balancing in heavy traffic regime, e.g. Eschen-

feldt and Gamarnik (2018), Mukherjee et al. (2018), Liu and Ying (2018) and Gupta

and Walton (2019), assume exponential service time. With general service time dis-

tributions, performance analysis of load balancing algorithms with distributed queues

is a much more challenging problem, and remains to be an active research area in

queueing theory Harchol-Balter (2013). Mitzenmacher (1996) proposed a mean-field

model of the Pod policy with gamma service time distributions without proving the

convergence of the stochastic system to the mean-field model. Aghajani et al. (2017);

Vasantam et al. (2017); Hellemans and Van Houdt (2018) proposed a set of PDE

models to approximate load balancing polices with general service times and numer-
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ically analyzed key performance metrics (e.g. mean response time). They proved

the convergence of the stochastic systems to the corresponding ODEs or PDEs at

process-level (over a finite time interval instead of at steady state).

1.3 Summary of Contributions

In Chapter 3, we study load balancing systems (N servers) assuming exponential

service time. Each server has a buffer of size b− 1 i.e. a server can have at most one

job in service and b−1 jobs in queue. Jobs are served in first-come-first-serve (FIFO)

order. We focus on the steady-state performance of load balancing algorithms in the

heavy traffic regime such that the load of system is λ = 1 − N−α for 0 < α < 0.5,

which we call Sub-Halfin-Whitt regime (α = 0.5 is the so-called Halfin-Whitt regime).

We establish a set of load balancing algorithms under which the probability that an

incoming job is routed to an idle server is one asymptotically (as N →∞) at steady-

state. The set of load balancing that satisfy the condition includes JSQ, I1F, JIQ,

and Pod with d ≥ Nα logN. The proof of the main result is based on Stein’s method

and state space collapse.

In Chapter 4, we study load balancing systems (N servers) in even “heavier”

traffic regime (0.5 ≤ α < 1), which we call Beyond-Halfin-Whitt regime, assuming

exponential service time and finite buffer size b − 1. By an iterative moment proce-

dure, we obtained high-order moment bounds on a distant function of total queue

length, which is used to refine the steady-state metrics (e.g. waiting time and waiting

probability). Interestingly, we establish a set of “zero-delay” load balancing, which

also includes JSQ, I1F, JIQ, and Pod with d ≥ Nα log2N.

We plot our contributions in Chapter 3 and 4 in terms of the waiting jobs Ns2

and a log-scaled version of logNs2/ logN to summarize the key results in Fig. 1.1.

The result in Chapter 3 shows that Ns2 can be O(1/N) for 0 < α < 0.5 at steady

4



Figure 1.1: Our Contributions in Chapter 3 and 4.

state, which is purple line; Chapter 4 shows Ns2 is O(Nα logN) at steady-state for

0.5 ≤ α < 1, which is blue line; Braverman (2018) shown that Ns2 is O(
√
N) for

Halfin-Whitt regime α = 0.5 at steady state, which is red dot; Gupta and Walton

(2019) shown that Ns2 is O(N) for α = 1 at diffusion level, which is green dot.

In Chapter 5, we study load balancing systems (N servers) in Sub-Halfin-Whitt

regime assuming Coxian-2 service time and finite buffer with size b− 1. We propose

an iterative state space collapse to tackle “non-monotonicity” with Coxian-2 service

time. We also identify a similar set of load balancing policies as in exponential service

(only differs in “constant”) that achieves asymptotic zero waiting. The results suggest

“insensitive” property (to service distribution) holds for load balancing system in

heavy traffic regime as N →∞.

We would emphasis the analysis framework in the dissertation combines three

interesting and powerful tools for steady-state analysis: Stein’s method, iterative

state space collapse and iterative moment bounds. The framework helps tackle non-

exponential challenges and establish high-order moments on total queue length to

refine steady-state metrics (e.g. waiting time) in “heavier” traffic regime.
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Chapter 2

STEIN’S METHOD AND STATE SPACE COLLAPSE

2.1 Load Balancing System

Consider a many-server system with N homogeneous servers, where job arrival

follows a Poisson process with rate λN and service times are i.i.d. exponential random

variables with rate one (here we take exponential service as an example to showcase

our framework). We consider the traffic regime such that λ = 1 − N−α for some

0 < α < 1. As shown in Figure 2.1, each server maintains a separate queue and we

assume buffer size b − 1 (i.e., each server can have one job in service and b − 1 jobs

in queue). Jobs are severed in first-in-first-come (FIFO) order.

Load Balancer

Server 2 Server 1 Server N 

Figure 2.1: Load Balancing in Many-Server Systems.

Let Si(t) denote the fraction of servers with at least i jobs at time t ≥ 0. Under the

finite buffer assumption with buffer size b− 1, we define Si(t) = 0, ∀i ≥ b+ 1, ∀t ≥ 0

6



for notational convenience. Furthermore, define set S ⊆ Rb such that

S = {s ∈ Rb | 1 ≥ s1 ≥ · · · ≥ sb ≥ 0 and Nsi ∈ N, ∀i}.

We then have S(t) = [S1(t), S2(t), · · · , Sb(t)]T ∈ S for any t ≥ 0. We consider load

balancing algorithms which route each incoming job to a server upon its arrival based

on S(t) so that (S(t) : t ≥ 0) is a finite-state and irreducible continuous-time Markov

chain (CTMC), which implies that (S(t) : t ≥ 0) has a unique stationary distribution.

2.2 Generator Approximation

Define ei ∈ Rb to be a b-dimensional vector such that the ith entry is 1/N and all

other b− 1 entries are zero. Furthermore, define Ai(s) to be the probability that an

incoming job is routed to a server with at least i jobs when the system is in state s,

i.e.

Ai(s) = Pr (an incoming job is routed to a server with at least i jobs|S(t) = s) .

From this definition, we have A0(s) = 1. Given the definition above, the CTMC

transits from state s to s+ ei with rate λN (Ai−1(s)− Ai(s)) , which occurs when an

arrival comes and is routed to an server with i− 1 jobs; and transits from state s to

s− ei with rate N(si − si+1), which occurs when a job leaves a server with i jobs.

Let G be the generator of CTMC (S(t) : t ≥ 0). Given function f : S → R, we

have

Gf(s) =
b∑
i=1

λN(Ai−1(s)− Ai(s))(f(s+ ei)− f(s))

+N(si − si+1)(f(s− ei)− f(s)). (2.1)

For any bounded function f : S→ R,

E[Gf(S)] = 0, (2.2)
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which can be easily verified by using the global balance equations and the fact that

S represents steady-state of the CTMC.

To understand the steady-state performance of load balancing system, we will

establish moment bounds on the following function:

max

{
b∑
i=1

Si − η, 0

}
,

where η is understood to be an “estimator” of
∑b

i=1 Si. The moment bounds measure

the likelihood that the total number of jobs in the system (N
∑b

i=1 Si) exceeds ηN.

For example, η = λ+ k logN√
N

in load balancing system in the Sub-Halfin-Whitt regime

in Chapter 3. The metric measures N
∑b

i=1 Si exceeds Nλ + k
√
N logN at steady

state, and can be used to bound the probability that an incoming job is routed to an

idle server.

We consider a simple fluid system with arrival rate λ and departure rate λ + δ,

i.e.

ẋ = −δ,

and function g(x) which is the solution of the following Stein’s equation in Ying

(2016):

g′(x) (−δ) = (max {x− η, 0})r ∀x, (2.3)

where g′(x) = dg(x)
dx

and r is a positive integer. The left-hand side of (2.3) is to apply

the generator of the simple fluid system to function g(x), i.e.

dg(x)

dt
= g′(x)ẋ = g′(x) (−δ) .

It is easy to verify that the solution to (2.3) is

g(x) = −(x− η)r+1

δ(r + 1)
Ix≥η, (2.4)
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and

g′(x) = −(x− η)r

δ
Ix≥η. (2.5)

Note that the simple fluid system is a one-dimensional system and the stochastic

system is b-dimensional. In order to couple these two systems, we define

f(s) = g

(
b∑
i=1

si

)
, (2.6)

and use f(s) defined above in Stein’s method.

Since
∑b

i=1 si ≤ b for s ∈ S, f(s) is a bounded for s ∈ S. So

E[Gf(S)] = E

[
Gg

(
b∑
i=1

Si

)]
= 0. (2.7)

Recall η = λ+ k logN√
N

and define

hk(x) = max

{
x− λ− k logN√

N
, 0

}
.

Based on (2.3) and (2.7), we obtain

E

[
hrk

(
b∑
i=1

Si

)]
=E

[
g′

(
b∑
i=1

Si

)
(−δ)−Gg

(
b∑
i=1

Si

)]
. (2.8)

Note that according to the definition of f(s) in (2.6) and ej, we have

f(s+ ej) = g

(
b∑
i=1

si +
1

N

)
and

f(s− ej) = g

(
b∑
i=1

si −
1

N

)
for any 1 ≤ j ≤ b. Therefore,

Gg

(
b∑
i=1

si

)
=Nλ(1− Ab(s))

(
g

(
b∑
i=1

si +
1

N

)
− g

(
b∑
i=1

si

))

+Ns1

(
g

(
b∑
i=1

si −
1

N

)
− g

(
b∑
i=1

si

))
.
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Substituting the equation above to (2.8), we have

E

[
hrk

(
b∑
i=1

Si

)]

=E

[
g′

(
b∑
i=1

Si

)
(−δ)−Nλ(1− Ab(S))

(
g

(
b∑
i=1

Si +
1

N

)
− g

(
b∑
i=1

Si

))

−NS1

(
g

(
b∑
i=1

Si −
1

N

)
− g

(
b∑
i=1

Si

))]
. (2.9)

From the closed-forms of g and g′ in (2.4) and (2.5), note that for any x < η,

g(x) = g′ (x) = 0.

Also note that when x > η + 1
N
,

g′(x) = −(x− η)r

δ
, (2.10)

so for x > η + 1
N
,

g′′(x) = −r (x− η)r−1

δ
. (2.11)

By using mean-value theorem in the region [η − 1
N
, η + 1

N
] and Taylor theorem in

the region (η + 1
N
,∞), we have

g(x+
1

N
)− g (x) =

(
g(x+

1

N
)− g (x)

)(
1η− 1

N
≤x≤η+ 1

N
+ 1x>η+ 1

N

)
=
g′(ξ)

N
1η− 1

N
≤x≤η+ 1

N
+

(
g′(x)

N
+
g′′(ζ)

2N2

)
1x>η+ 1

N
(2.12)

g(x− 1

N
)− g (x) =

(
g(x− 1

N
)− g (x)

)(
1η− 1

N
≤x≤η+ 1

N
+ 1x>η+ 1

N

)
=− g′(ξ̃)

N
1η− 1

N
≤x≤η+ 1

N
+

(
−g
′(x)

N
+
g′′(ζ̃)

2N2

)
1x>η+ 1

N
(2.13)

where ξ, ζ ∈ (x, x + 1
N

) and ξ̃, ζ̃ ∈ (x − 1
N
, x). Substitute (2.12) and (2.13) into the

generator difference in (2.9), we summarize the generator difference the following

lemma and it will be used in Chapter 3 and Chapter 4.
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Lemma 1.

E

[
hrk

(
b∑
i=1

Si

)]

=E

[
g′

(
b∑
i=1

Si

)
(λAb(S)− λ− δ + S1) I∑b

i=1 Si>η+ 1
N

]
(2.14)

+ E

[(
g′

(
b∑
i=1

Si

)
(−δ)− λ(1− Ab(S))g′(ξ) + S1g

′(ξ̃)

)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]
(2.15)

− E
[

1

2N

(
λ(1− Ab(S))g′′(ζ) + S1g

′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]
. (2.16)

Note in (2.14) and (2.16), we have random variables ξ, ζ ∈
(∑b

i=1 Si,
∑b

i=1 Si + 1
N

)
and ξ̃, ζ̃ ∈

(∑b
i=1 Si −

1
N
,
∑b

i=1 Si

)
whose values depend on

∑b
i=1 Si.

2.3 State Space Collapse

To study the generator difference in Lemma 1, we need to understand the system

behavior in the region where total queue length is larger than η, which is related

to the term (2.14). In this region, we have an key observation that the system state

collapses to a restricted region, called state space collapse (SSC). The SSC observation

is critical to bound the term (2.14), therefore, the generator difference in (2.9). In the

following, we provide an intuitive argument on SSC by using the system in Chapter

4 as an example: Load balancing in Beyond-Halfin-Whitt regime (note η = 1 + k logN
N1−α

and δ = 1
Nα are chosen in Chapter 4).

For ease of exposition, we consider JSQ load balancing in a simplified system

with buffer size b = 1, where only s1 and s2 exists. Given the system state (s1, s2)

and s1 < 1, the drift of idle servers under JSQ is 1 − s1 and that of s2 is −s2,

because all arrivals are allocated to idle servers under JSQ when s1 < 1. Specify

(s1, s2) = (0.5, 0.5) and the drifts are (0.5,−0.5). Therefore, s1 increases very fast

11



and approaches close to 1, as shown in the green region. Since most of servers are

busy (s1 is close to 1) in the green region, the total queue length per server s1 + s2

has a small (negative) drift λ− s1, where λ is the arrival rate and s1 is the departure

rate. In other words, the process s1 is in fast time-scale outside the green region and

s1 + s2 is in slow time-scale within the green region, it implies that the system would

live in the green region with a high probability.

Figure 2.2: Illustration of State Space Collapse

The SSC argument above is justified in Lemma 2, where given a set Π2 of load

balancing (e.g. JSQ), either s1 is larger than 1 − 1
2Nα (most of servers are busy)

or
∑b

i=1 si is less than k logN
N1−α (the number of waiting jobs are small). This is rea-

sonable for JSQ-like load balancing because s2 will not build up if idle servers ex-

ist. Lemma 2 is proved by Lyapunov drift analysis of Lyapunov function V (s) =

min
{∑b

i=2 si −
k logN
N1−α , 1− s1

}
. The details can be found in the Appendix B.3.

Lemma 2. For any load balancing in Π2, we have

Pr

(
min

{
b∑
i=2

Si −
k logN

N1−α , 1− S1

}
≥ 1

2Nα

)
≤ e−

(k−1) logN
16b .

Given SSC statement in Lemma 2, we study the system in the green region, where

most of servers are busy (s1 is close to 1), and we are able to bound the key term
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of (2.14) in generator difference in Lemma 1. In fact, SSC observation motivates us

to approximate the original system with a simple system, where arrival rate λ and

departure rate λ+ δ with δ = 1
Nα i.e.,

ẋ = λ− (λ+ δ) = − 1

Nα
.

We would expect that in the green region, the original system behaves “close” to

the simple system, which implies the steady-state metric of these two systems is also

“close” and the simple system is a good approximation.

In summary, Stein’s method enables us to couple an approximated simple system

with the original system associated with certain metrics. To established the metric

of the original system (at steady-state), we need to study the gradient bound terms

in (2.15) and (2.16) and SSC term in (2.14).
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Chapter 3

STEADY-STATE ANALYSIS OF LOAD BALANCING IN SUB-HALFIN-WHITT

REGIME

This chapter studies the steady-state performance of load balancing algorithms

in many-server systems. We consider a system with N identical servers with buffer

size b − 1 such that b = O
(√

logN
)
, in other words, each server can hold at most

b jobs, one job in service and b − 1 jobs in buffer. We assume jobs arrive according

to a Poisson process with rate λN, where λ = 1 − N−α for 0 < α < 0.5 and have

i.i.d. exponential service times with mean one. When a job arrives, the load balancer

immediately routes the job to one of the servers. If the server’s buffer is full, the

job is discarded. We study a class of load balancing algorithms, which includes

join-the-shortest-queue (JSQ), idle-one-first (I1F) Gupta and Walton (2019), join-

the-idle-queue (JIQ) Lu et al. (2011); Stolyar (2015a) and power-of-d-choices (Pod)

with d ≥ rNα logN Mitzenmacher (1996); Vvedenskaya et al. (1996), and establish

moment bounds on some function of the queue lengths. From the moment bounds,

we show that under JSQ, I1F, JIQ, and Pod with d ≥ rNα logN, both the probability

that a job is routed to a non-idle server and the expected waiting time per job are

O
(

b
Nr(0.5−α)

)
, where r is any positive integer such that r ≤ logN

72(b−1)2 .

Let Si denote the fraction of servers with at least i jobs, including the one in

service, at steady state. In this chapter, we prove that if a load balancing algorithm

routes an incoming job to an idle server with probability at least 1 − 1√
N

when the

fraction of busy servers is no more than η = λ + k̄ logN√
N
, then the following bound
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holds for any positive integer r ≤ logN
72(b−1)2 ,

E

[(
max

{
b∑
i=1

Si − λ−
k̄ logN√

N
, 0

})r]
≤ 10

(
5r(b− 1)√
N logN

)r
, k̄ = 1 +

1

2(b− 1)
.

(3.1)

This result implies that (i)

E

[
b∑
i=1

Si

]
≤ λ+

11λb+ 11

N r(0.5−α)
, (3.2)

i.e, the expected queue length per server exceeds λ by at most 11λb+11
Nr(0.5−α) and (ii) under

JSQ, I1F, JIQ and Pod (d ≥ rNα logN), the stationary probability that an incoming

job is routed to a non-idle server is asymptotically zero (as N → ∞), which will be

proved in Corollary 1.

From the best of our knowledge, there are only a few papers that deal with

the steady-state analysis of many-server systems with distributed queues Braverman

(2018); Banerjee and Mukherjee (2019); Liu and Ying (2018). Braverman (2018);

Banerjee and Mukherjee (2019) analyze the steady-state distribution of JSQ in the

Halfin-Whitt regime and Liu and Ying (2018) studies the Pod with α < 1/6. This

chapter complements Braverman (2018); Banerjee and Mukherjee (2019); Liu and

Ying (2018), as it applies to a class of load balancing algorithms and to any sub-

Halfin-Whitt regime.

Similar to Braverman (2018); Liu and Ying (2018), the result of this chapter

is proved using the mean-field approximation (fluid-limit approximation) based on

Stein’s method. The execution of Stein’s method in this chapter, however, is quite

different from Braverman (2018); Liu and Ying (2018).

In our proof, we consider a simple fluid system with arrival rate λ and departure

rate λ+ δ with δ = logN√
N

such that

ẋ = − logN√
N

. (3.3)
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x can be viewed as a fluid approximation of the normalized queue length
∑b

i=1 Si

and ẋ is the derivative of x with respect to time t. The dynamic of this fluid system

(3.3) is a good approximation of the generator of the stochastic system only when

the normalized service rate of the stochastic system is close to λ + logN√
N
, i.e. when

S1 ≈ λ+ logN√
N
. Our analysis consider three regimes of the state space:

• Regime 1: S1 is close to λ + logN√
N
. In this regime, the simple fluid system can

approximate the generator of the stochastic system. Via Stein’s method, we

can quantify the approximation error.

• Regime 2:
∑b

i=2 Si ≤
c logN√

N
for some c > 0. Since S1 ≤ 1, in this regime, the

normalized queue length is close to one.

• Regime 3: The state is not in regime 1 or regime 2. In this case, we apply

the tail bound in Bertsimas et al. (2001) to prove that the probability it occurs

is small and negligible as N increases. This is equivalent to the state-space-

collapse argument, which shows that at steady-state, the system “lives” in a

lower-dimensional space instead of in the full state space.

Pioneered in Stolyar (2015b) (called drift-based-fluid-limits (DFL) method) for

fluid-limit analysis and in Braverman et al. (2016); Braverman and Dai (2017) for

steady-state diffusion approximation, the power of Stein’s method for steady-state

approximations has been recognized in a number of recent papers Stolyar (2015b);

Braverman et al. (2016); Ying (2016); Braverman and Dai (2017); Ying (2017); Gast

(2017); Gast and Van Houdt (2018); Braverman (2018).

The surprising part of our analysis is that the simple fluid system, which only

“partailly” approximates the generator of the stochastic system, is sufficient for exe-

cuting Stein’s method when combing with the state-space-collapse. The advantage of

using such a simple fluid system is that Stein’s equation can be easily solved (in ex-
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plicit forms), which is often the key difficulty of applying Stein’s method for complex

queueing systems.

Finally, we would like to comment that all proofs in this chapter are elemen-

tary. Therefore, this chapter is another an example that demonstrates the power of

Stein’s method for analyzing complex queueing systems with elementary probability

methods.

3.1 Main Results

Let Si(t) denote the fraction of servers with at least i jobs at time t ≥ 0 and

S ∈ S be the random variables having the stationary distribution of (S(t) : t ≥ 0).

Let A1(s) denote the probability that an incoming job is routed to a busy server when

the system is in state s ∈ S; i.e.

A1(s) = Pr (an incoming job is routed to a busy server|S(t) = s) .

Define a set of load balancing Π1 to be

Π1 =

{
π | under load balancing π,A1(s) ≤ 1√

N
for s such that s1 ≤ λ+

k̄ logN√
N

}
.

Our first main result of this chapter is the following theorem with respect to the first-

order moment. Here the first-order moment result is for the purpose of introduction

to Stein’s method and state space collapse framework.

Theorem 1. Assume λ = 1−N−α for 0 < α < 0.5 and b ≤ 1 +
√

logN
9

. Given a load

balancing in Π1, then for any N such that N ≥
(
4k̄ logN

) 1
0.5−α , the following bound

holds

E

[
max

{
b∑
i=1

Si − λ−
k̄ logN√

N
, 0

}]
≤ 50(b− 1)√

N logN
,

where k̄ = 1 + 1
2(b−1)

. �
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Note the expectation in Theorem 1 is with respect to the stationary distribution of

the CTMC (S(t) : t ≥ 0) according to the definition of S. The condition A1(s) ≤ 1√
N

when s1 ≤ λ + k̄ logN√
N

requires the following: for any given state s in which at least

1
Nα − k̄ logN√

N
fraction of servers are idle, an incoming job should be routed to an

idle server with probability at least 1 − 1√
N

. Note N ≥
(
4k̄ logN

) 1
0.5−α implies

1
Nα ≥ 4k̄ logN√

N
, which guarantee that λ+ k̄ logN√

N
< 1 and 1

Nα >
k̄ logN√

N
. There are several

well-known policies that satisfy this condition.

• Join-the-Shortest-Queue (JSQ): JSQ routes an incoming job to the least loaded

server in the system, so A1(s) = 0 when s1 ≤ λ+ k̄ logN√
N
.

• Idle-One-First (I1F): I1F routes an incoming job to an idle server if available

and else to a server with one job if available. Otherwise, the job is routed to a

randomly selected server. Therefore, A1(s) = 0 when s1 ≤ λ+ k̄ logN√
N
.

• Join-the-Idle-Queue (JIQ): JIQ routes an incoming job to an idle server if pos-

sible and otherwise, routes the job to a server chosen uniformly at random.

Therefore, A1(s) = 0 when s1 ≤ λ+ k̄ logN√
N
.

• Power-of-d-Choices (Pod): Pod samples d servers uniformly at random and

dispatches the job to the least loaded server among the d servers. Ties are broken

uniformly at random. Given d ≥ Nα logN, A1(s) ≤ 1√
N

when s1 ≤ λ+ k̄ logN√
N
.

3.2 Proof of Theorem 1

In this section, we present the proof of our main theorem. As modularized in

Chapter 2, we study gradient bounds and state space collapse (SSC).
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Let η = λ+ k logN√
N

and δ = logN√
N

in Lemma 1, we have

E

[
hk

(
b∑
i=1

Si

)]

= E

[
g′

(
b∑
i=1

Si

)(
λAb(S)− λ− logN√

N
+ S1

)
I∑b

i=1 Si>η+ 1
N

]
(3.4)

+ E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
− λ(1− Ab(S))g′(ξ) + S1g

′(ξ̃)

)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]
(3.5)

− E
[

1

2N

(
λ(1− Ab(S))g′′(ζ) + S1g

′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]
. (3.6)

Note in (3.4) and (3.6), we have random variables ξ, ζ ∈
(∑b

i=1 Si,
∑b

i=1 Si + 1
N

)
and

ξ̃, ζ̃ ∈
(∑b

i=1 Si −
1
N
,
∑b

i=1 Si

)
whose values depend on

∑b
i=1 Si.

Next, we study g′ and g′′ to bound the terms (3.5) and (3.6), and SSC to bound

the term (3.4).

3.2.1 Gradient Bounds

Let η = λ + k logN√
N

and δ = logN√
N

in Lemma 21 and Lemma 22. We have the

following two lemmas.

Lemma 3. For any x ∈
[
λ+ k logN√

N
− 2

N
, λ+ k logN√

N
+ 2

N

]
, we have

|g′(x)| ≤ 2√
N logN

.

Lemma 4. For x > λ+ k logN√
N
, we have

|g′′(x)| ≤
√
N

logN
.

Based on Lemma 3 and Lemma 4, we have the following lemma.

Lemma 5.

(3.5) + (3.6) ≤ 5√
N logN
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Proof. Based on Lemma 3, we bound the term (3.5)

E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
− λ(1− Ab(S))g′(ξ) + S1g

′(ξ̃)

)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]

≤
(
λ+

logN√
N

+ 1

)
2√

N logN
,

where λ + logN√
N
≤ 1 in the first inequality according to the assumption that N ≥(

4k̄ logN
) 1

0.5−α in Theorem 1.

Based on Lemma 4, we bound the term (3.6)

− E
[

1

2N

(
λ(1− Ab(S))g′′(ζ) + S1g

′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]
≤E

[
1

2N

(
λ|g′′(ζ)|+ S1|g′′(ζ̃)|

)
I∑b

i=1 Si>η+ 1
N

]
≤

1 + 1
N√

N logN
.

These two terms collectively prove Lemma 5.

3.2.2 State Space Collapse (SSC)

In this section, we study the SSC term in (3.4). As mentioned in Chapter 2, we

proved SSC by Lyapunov drift analysis. Define

V (s) = min

{
b∑
i=2

si, λ+
k logN√

N
− s1

}
, (3.7)

where k̄ − r√
N logN

≤ k ≤ k̄. We have the following lemma on state space collapse.

Lemma 6. Given the Lyapunov function defined in (3.7) and denote k̃ = 1 + 1
4(b−1)

,

we have

Pr

(
V (S) ≥ k̃ logN√

N

)
≤ e

− log2 N

32(b−1)2
+ logN

16(b−1) .

Based on Lemma 6, we establish an upper bound on (3.4) by splitting two regions:

Ω and its complementary Ω̄, where

Ω =

{
s | V (s) ≤ k̃ logN√

N

}
,

and have the following lemma.
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Lemma 7.

(3.4) ≤
(

1− 1

5(b− 1)

)
E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]

+
b
√
N

logN
e
− log2 N

32(b−1)2
+ logN

16(b−1) .

The proofs of two lemmas are in Appendix B.2

3.2.3 Proving Theorem 1

Based on Lemma 5 and Lemma 7, we have

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]

≤
(

1− 1

5(b− 1)

)
E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]

+
b
√
N

logN
e
− log2 N

32(b−1)2
+ logN

16(b−1) +
5√

N logN
,

≤
(

1− 1

5(b− 1)

)
E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
+

10√
N logN

,

where the last inequality holds because b ≤ 1 +
√

logN
9

implies

b
√
N

logN
e
− log2 N

32(b−1)2
+ logN

16(b−1) ≤ 5√
N logN

.

Therefore, we have

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
≤ 50(b− 1)√

N logN
,

which proves Theorem 1.

So far, we already see the application of Stein’s method and SSC in establishing

Theorem 1. In fact, by using an iterative refined procedure in Chapter 4, we are able

to obtain a high-order moment bound in the following theorem (here we only state

the theorem and the proof is clear after introducing the iterative refined procedure in

Chapter 4), which helps establish “zero-delay” results in Corollary 1.
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Theorem 2. Assume λ = 1−N−α for 0 < α < 0.5 and b ≤ 1 +
√

logN
9

. Given a load

balancing in Π1, then for any integers N and r such that N ≥
(
4k̄ logN

) 1
0.5−α and

1 ≤ r ≤ logN
72(b−1)2 , the following bound holds

E

[(
max

{
b∑
i=1

Si − λ−
k̄ logN√

N
, 0

})r]
≤ 10

(
5r(b− 1)√
N logN

)r
,

where k̄ = 1 + 1
2(b−1)

. �

Note JSQ, JIQ, I1F and Pod with d ≥ rNα logN are all in Π1. A direct conse-

quence of Theorem 2 is asymptotic zero waiting (N → ∞) at steady-state. Let W

denote the event that an incoming job is routed to a busy server, and pW denote the

probability of this event at steady-state. Let B denote the event that an incoming

job is blocked (discarded) and pB denote the probability of this event at steady-state.

Note the B ⊆ W because an incoming job is blocked when being routed to a busy

server with b jobs. Furthermore, let W denote the waiting time of jobs, which are not

blocked, at steady-state. We have the following results based on the main theorem.

Corollary 1. Assume λ = 1−N−α for 0 < α < 0.5 and b ≤ 1 +
√

logN
9

. Given a load

balancing in Π1, then the following results hold for any integers N and r such that

N ≥
(
4k̄ logN

) 1
0.5−α and 1 ≤ r ≤ logN

72(b−1)2 :

Waiting Time per Job: E [W ] ≤ 11b

N r(0.5−α)
(3.8)

Waiting Probability: pW ≤
11

N r(0.5−α)
(3.9)

Fraction of Busy Servers: λ− 11

N r(0.5−α)
≤E [S1] ≤ λ (3.10)

Number of Buffered Jobs per Server: E

[
b∑
i=2

Si

]
≤11λb+ 11

N r(0.5−α)
. (3.11)

The proof of this lemma is an application of the Markov inequality and Little’s

Law, which can be found in Section 3.3. We remark that the corollary above requires
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A1(s) ≤ 1
N0.5r for any s ∈ S such that s1 ≤ λ + k logN√

N
, which is more restrictive

than the assumption in the theorem which only requires A1(s) ≤ 1/
√
N for the same

s. However, it is easy to verify that JSQ, I1F, JIQ and Pod with d ≥ rNα logN

also satisfy this condition. We further remark that the probability of waiting and

the expected waiting time are both O
(

b
Nr(0.5−α)

)
. Under the assumption that b =

O
(√

logN
)
, for any positive integer r, we can find a sufficiently large N such that r

satisfies the condition in the corollary. The significance of this is that it implies that

the waiting probability and the mean waiting time decay faster than any polynomial

function of 1/N in the sub-Halfin-Whitt regime. Furthermore, from (3.11), we have

E

[
b∑
i=2

NSi

]
≤ 11λb+ 11

N r(0.5−α)−1
.

Note that
∑b

i=2NSi is the total number of jobs in the buffers at steady state, so our

result shows that for sufficiently large N, not only the expected number of buffered

jobs per server is almost zero, but also the total number of buffered jobs in all N

servers is almost zero.

3.3 Proof of Corollary 1

Based on the moment bound in Theorem 2, we study waiting probability pW ,

waiting time E[W ], E[S1] and E[
∑b

i=2 Si] for JSQ, I1F, and JIQ. The analysis for
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Pod is similar and will be provided later. We begin with the waiting probability pW

pW = Pr (S1 = 1) ≤ Pr

(
b∑
i=1

Si ≥ 1

)

≤Pr

(
hrk̄

(
b∑
i=1

Si

)
≥
(

1

Nα
− k̄ logN√

N

)r
k̄

)

≤
E
[
hr
k̄

(∑b
i=1 Si

)]
(

1
Nα − k̄ logN√

N

)r (3.12)

≤
E
[
hr
k̄

(∑b
i=1 Si

)]
(

1
2Nα

)r (3.13)

≤10

(
10r(b− 1)

N0.5−α logN

)r
(3.14)

≤ 10

N r(0.5−α)
(3.15)

where (3.12) is from Markov’s inequality, (3.13) holds because N ≥
(
4k̄ logN

) 1
0.5−α

implies k̄ logN√
N
≤ 1

2Nα , (3.14) holds by substituting Theorem 2, and (3.15) holds because

r ≤ logN
72(b−1)2 implies logN ≥ 10r(b− 1).

From pW , we can obtain an upper bound of E[W ] :

E[W ] =E[W | a job routed to busy servers]×pW ≤ bpW

where the last inequality holds because the expected waiting time for a job routed to

a busy server is at most b− 1.

Moreover, for jobs that are not discarded, the average queueing delay according

to Little’s law is

E[W ] =
E
[∑b

i=1 Si

]
λ(1− pB)

− 1.

Therefore, we have

E

[
b∑
i=1

Si

]
=λ (1− pB) (E[W ] + 1) ≤ λE[W ] + λ

≤λb · pW + λ ≤ 10λb

N r(0.5−α)
+ λ.
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Further, according to the work conservation law, we have the following lower bound

on E[S1]

E[S1] = λ(1− pB) ≥ λ(1− pW) ≥ λ− 10

N r(0.5−α)

which yields an upper bound on E
[∑b

i=2 Si

]
:

E

[
b∑
i=2

Si

]
≤ 10λb+ 10

N r(0.5−α)
.

The analysis for Pod with d ≥ rNα logN is similar, except the waiting probability

pW in the first step becomes

pW = Pr

(
W
∣∣∣∣S1 ≤ 1− 1

2Nα

)
Pr

(
S1 ≤ 1− 1

2Nα

)
+ Pr

(
W
∣∣∣∣S1 > 1− 1

2Nα

)
Pr

(
S1 > 1− 1

2Nα

)
≤Pr

(
W
∣∣∣∣S1 ≤ 1− 1

2Nα

)
+ Pr

(
S1 > 1− 1

2Nα

)
≤
(

1− 1

2Nα

)rNα logN

+ Pr

(
b∑
i=1

Si > 1− 1

2Nα

)

≤N−
r
2 + Pr

(
hrk̄

(
b∑
i=1

Si

)
≥
(

1

2Nα
− k̄ logN√

N

)r)
(3.16)

≤ 1

N0.5r
+
E
[
hr
k̄

(∑b
i=1 Si

)]
(

1
2Nα − k̄ logN√

N

)r (3.17)

≤ 1

N0.5r
+
E
[
hr
k̄

(∑b
i=1 Si

)]
(

1
4Nα

)r (3.18)

≤ 1

N0.5r
+ 10

(
20r(b− 1)

N0.5−α logN

)r
(3.19)

≤ 1

N0.5r
+

10

N r(0.5−α)
(3.20)

≤ 11

N r(0.5−α)
(3.21)

where (3.16) holds because (1 − 1
x
)x ≤ 1

e
for x ≥ 1, (3.17) is a result of the Markov

inequality; (3.18) holds because N ≥
(
4k̄ logN

) 1
0.5−α implies 1

4Nα ≥ k̄ logN√
N

; (3.19)

25



holds by substituting Theorem 2; (3.21) holds because r ≤ logN
72(b−1)2 implies logN ≥

20r(b − 1). The remaining analysis to obtain E[W ], E[S1] and E[
∑b

i=1 Si] are the

same as analysis in JSQ.

3.4 Summary

In this chapter, we studied the steady-state performance of load balancing systems

in the Sub-Halfin-Whitt regime (α < 0.5). We showcase Stein’s method and SSC are

powerful tools to obtain the upper bound on a distance function of total queue length

and we established a set of load balancing algorithms, where waiting probability and

waiting time are asymptotic zero.

This chapter studied the Sub-Halfin-Whitt regime (α < 0.5), one interesting ex-

tension is to consider a “heavier” traffic regimes where 0.5 ≤ α < 1. In such a regime,

the state space collapse result in this chapter does not hold. It would require a differ-

ent fluid model and a different state-space collapse analysis and we study this regime

in Chapter 4.
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Chapter 4

STEADY-STATE ANALYSIS OF LOAD BALANCING IN

BEYOND-HALFIN-WHITT REGIME

In Chapter 3, we already have “zero-delay” load balancing in the Sub-Halfin-

Whitt regime (0 < α < 0.5). This chapter studies the steady-state performance of

load balancing in the Beyond-Halfin-Whitt regime for 0.5 ≤ α < 1, and we have

several main results:

• We first obtained a high-order moment bound at steady-state on a distant

function of total queue length (per server) under a set Π2 of load balancing

algorithms (including JSQ, JIQ, I1F and Pod).

• We then established under any load balancing in Π2, the waiting probability and

the expected waiting time is O
(

logN
N1−α

)
, which approaches to zero asymptotically

as N increases.

• We also proved under any load balancing in Π̃2, only busy servers and servers

with only exactly two jobs exist in the system. Interestingly and surprisingly, the

result coincides with Eschenfeldt and Gamarnik (2018) in Halfin-Whitt regime

(α = 0.5), which suggests, the proper scaled version of idle servers and servers

with exactly two jobs are very likely to converge into a two-dimensional stochas-

tic process as in Eschenfeldt and Gamarnik (2018).

We use Fig. 1.1 as in Fig. 4.1 to explain our main contribution. Our results show

Ns2 is O(Nα logN) at steady-state for 0.5 ≤ α < 1, which is blue line; Braverman

(2018) shown that Ns2 is O(
√
N) for Halfin-Whitt regime α = 0.5 at steady state,
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Figure 4.1: Illustration of Our Contribution and Related Work.

which is red dot; Gupta and Walton (2019) shown that Ns2 is O(N) for α = 1

at diffusion level, which is green dot; Chapter 3 shown that Ns2 can be O(1/N)

for 0 < α < 0.5 at steady state, which is purple line; In Fig. 4.1, we observed

an interesting phase transition phenomenon at α = 0.5, where Ns2 vanishes for

α < 0.5 and scaled with Nα for 0.5 ≤ α ≤ 1. The intuitive explain is as follows: we

approximate load balancing system to be M/M/1 system with arrival rate λN and

service rate N, where the number of “waiting” jobs in M/M/1 is λ/(1−λ) = O(Nα).

In load balancing systems, we compare the number of waiting jobs O(Nα) with the

number of “idle” servers N(1− λ) = O(N1−α) when 0 < α < 1 :

• For α < 0.5, we have O(Nα)� O(N1−α), and “waiting” jobs are close to zero;

• For α = 0.5, we have O(Nα) = O(N1−α), and “waiting” jobs are O(
√
N);

• For 0.5 < α < 1, we have O(Nα)� O(N1−α), and “waiting” jobs are O(Nα).

4.1 Main Results

Let Si(t) denote the fraction of servers with at least i jobs at time t ≥ 0 and

S ∈ S be the random variables having the stationary distribution of (S(t) : t ≥ 0).
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Let A1(s) denote the probability that an incoming job is routed to a busy server when

the system is in state s ∈ S; i.e.

A1(s) = Pr (an incoming job is routed to a busy server|S(t) = s) .

Define a set of load balancing Π2 to be

Π2 =

{
π | under load balancing π,A1(s) ≤ 1√

N
for s such that s1 ≤ 1− 1

4Nα

}
.

A load balancing algorithm in Π implies that for any given state s in which at least

1
4Nα fraction of servers are idle, an incoming job should be routed to an idle server

with probability at least 1− 1√
N

. There are several well-known algorithms that satisfy

this condition.

• Join-the-Shortest-Queue (JSQ): JSQ routes an incoming job to the least loaded

server in the system, so A1(s) = 0 when s1 ≤ 1− 1
4Nα .

• Idle-One-First (I1F): I1F routes an incoming job to an idle server if available

and else to a server with one job if available. Otherwise, the job is routed to a

randomly selected server. Therefore, A1(s) = 0 when s1 ≤ 1− 1
4Nα .

• Power-of-d-Choices (Pod): Pod samples d servers uniformly at random and

dispatches the job to the least loaded server among the d servers. Ties are broken

uniformly at random. Given d ≥ Nα log2N, A1(s) ≤ 1√
N

when s1 ≤ 1− 1
4Nα .

• Join-the-Idle-Queue (JIQ): JIQ routes an incoming job to an idle server if pos-

sible and otherwise, routes the job to a server chosen uniformly at random.

Therefore, A1(s) = 0 when s1 ≤ 1− 1
4Nα .

We first have the following moment bounds which are instrumental for establishing

the main results of this paper.
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Theorem 3. Assume λ = 1 − N−α for 0.5 ≤ α < 1 and buffer size b. For any load

balancing algorithms in Π2, the following bound holds at steady-state

E

[(
max

{
b∑
i=1

Si − 1− k̄ logN

N1−α , 0

})r]
≤ 10

(
2r

N1−α

)r
,

where r is a positive integer and k̄ = 32rb+ 1.

Note the expectation in Theorem 3 is with respect to the stationary distribution

of the CTMC (S(t) : t ≥ 0) according to the definition of S. Based on Theorem 3, we

have the universal scaling results and asymptotic zero waiting results in Corollary 1.

These results hold for load balancing algorithms that satisfy additional conditions,

defined below. Define a set of load balancing Π̃2 to be

Π̃2 =

{
π ∈ Π2,

∣∣∣∣A2(s) ≤ 10

(
2r

N1−α

)r
∀s ∈ S such that s2 ≤ 0.95,

and Ab(s) ≤ sb,∀s ∈ S} .

The additional conditions require: (i) when at least 5% servers have one job or less,

the probability an incoming job is routed to a server with at least two jobs should be

no more than 10
(

2r
N1−α

)r
, and (ii) given state s, the probability that a job is dropped

because of being routed to a server with full buffer is is upper bounded by that under

a random routing algorithm, which is sb. It is easy to see that JSQ, I1F and Pod with

d ≥ Nα log2N are in Π̃2, but JIQ is not.

To establish the universal scaling results, in Corollary 2, we first show that almost

no server has more than two jobs under a load balancing algorithm in Π̃2. Though

JIQ is not in Π̃2, a weaker result is presented.

Corollary 2. Assume λ = 1 − N−α for 0.5 ≤ α < 1. The following results hold for

any N such that N1−α

k̄ logN
≥ 5,

• Under any load balancing algorithm in Π̃2,

E[S3] ≤ 20

(
3r

N1−α

)r
.
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• Under JIQ,

E[S3] ≤ k̄ logN

N1−α +
16r

N
r(1−α)
r+1

.

.

Next, we analyze the waiting time, waiting probability for algorithms in Π̃2, and

the steady-state queues. Let W denote the event that an incoming job is routed

to a busy server, and pW denote the probability of this event at steady-state. Let

B denote the event that an incoming job is blocked (discarded) and pB denote the

probability of this event at steady-state. Note the B ⊆ W because an incoming job is

blocked when being routed to a busy server with b jobs. Furthermore, let W denote

the steady-state waiting time of those jobs that are not blocked.

Corollary 3. Assume λ = 1−N−α for 0.5 ≤ α < 1. Given any positive constant r,

the following results hold for a sufficiently large N

• Under load balancing algorithm in Π̃2 and assume N1−α ≥ 3(40)
r
2 r, we have

E [W ] ≤ 4k̄ logN

N1−α ,

and

pW ≤ 20

(
3r

N1−α

) r
2

+
2k̄ logN

N1−α .

We furthermore have

λN − 10N

(
3r

N1−α

) r
2

≤ E [NS1] ≤ λN,

and

E [NS2] ≤ 10N

(
3r

N1−α

) r
2

+ 2k̄Nα logN = O(Nα logN).
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• Consider JIQ and assume logN ≥ 5b(2r)r

k̄
. We have

E [W ] ≤ 7k̄ logN

N
r(1−α)
r+1

,

and

pW ≤
12k̄

b

logN

N
r(1−α)
r+1

+
2k̄ logN

N1−α .

We furthermore have

λ− 6k̄

b

logN

N
r(1−α)
r+1

≤ E [S1] ≤ λ,

and

E

[
b∑
i=2

Si

]
≤ 6k̄

b

logN

N
r(1−α)
r+1

+
2k̄ logN

N1−α .

In the M/M/N system where a centralized queue is maintained for complete re-

source pooling, the average waiting time per job is O
(

1
N1−α

)
. In load balancing sys-

tems, Corollary 1 suggests the waiting time to be O
(
k̄ logN
N1−α

)
. Therefore, the expected

waiting of a load balancing algorithms in Π̃2 is close to that in the M/M/N system

when N is large. Therefore, load balancing algorithms in Π̃2 have near optimal delay

performance since the mean waiting time of the M/M/N system is a lower bound

on that of any many-server systems with distributed queues. We conjecture that

the average waiting time of load balancing algorithms in Π̃2 is Θ
(

1
N1−α

)
as in the

M/M/N system. The additional term k̄ logN, howerver, is needed in establishing a

state-space-collapse result due to technical reasons.

4.2 Proof of Theorem 3

In this section, we present the proof of Theorem 3. As modularized in Chapter 2,

we study gradient bounds and state space collapse (SSC).
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Let η = 1 + k logN
N1−α and δ = 1

Nα in Lemma 1, where k̄ − r
Nα logN

≤ k ≤ k̄. The

generator difference is summarized in the following lemma.

Lemma 8.

E

[
hrk

(
b∑
i=1

Si

)]

=E

[
g′

(
b∑
i=1

Si

)(
λAb(S)− λ− 1

Nα
+ S1

)
I∑b

i=1 Si>η+ 1
N

]
(4.1)

+ E

[(
g′

(
b∑
i=1

Si

)(
− 1

Nα

)
− λ(1− Ab(S))g′(ξ) + S1g

′(ξ̃)

)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]
(4.2)

− E
[

1

2N

(
λ(1− Ab(S))g′′(ζ) + S1g

′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]
. (4.3)

Here ξ, ζ ∈
(∑b

i=1 Si,
∑b

i=1 Si + 1
N

)
and ξ̃, ζ̃ ∈

(∑b
i=1 Si −

1
N
,
∑b

i=1 Si

)
are random

variables whose values depend on
∑b

i=1 Si.

The following sections provide upper bounds on (4.1), (4.2) and (4.3).

4.2.1 Gradient Bounds

Let η = 1+ k logN
N1−α and δ = 1

Nα in Lemma 21 and Lemma 22. We have the following

two lemmas.

Lemma 9. For any x ∈
[
1 + k logN

N1−α − 2
N
, 1 + k logN

N1−α + 2
N

]
, we have

|g′(x)| ≤ 2r

N r−0.5 logN
.

Lemma 10. For x > 1 + k logN
N1−α , we have

|g′′(x)| ≤ r
√
N

logN
hr−1(x).

Based on Lemma 9 and Lemma 10, we bound the term (4.2) and (4.3), respectively,

and have the following lemma.
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Lemma 11.

(4.2) + (4.3) ≤ 2r+1

N r−α +
rE
[
hr−1
k

(∑b
i=1 Si + 1

N

)]
N1−α .

Proof. Based on Lemma 9, the term (4.2) is bounded by

E

[(
g′

(
b∑
i=1

Si

)(
− 1

Nα

)
− λ(1− Ab(S))g′(ξ) + S1g

′(ξ̃)

)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]

≤
(
λ+

1

Nα
+ 1

)
2r

N r−α ≤
2r+1

N r−α ;

Based on Lemma 10, the term (4.3) is bounded by

− E
[

1

2N

(
λ(1− Ab(S))g′′(ζ) + S1g

′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]

≤E
[

1

2N

(
λ|g′′(ζ)|+ S1|g′′(ζ̃)|

)
I∑b

i=1 Si>η+ 1
N

]
≤
rE
[
hr−1
k

(∑b
i=1 Si + 1

N

)]
N1−α .

The two terms collectively prove Lemma 11.

4.2.2 State Space Collapse

In this section, we study SSC term in (4.1). As discussed in Chapter 2, we proved

state space collapse by Lyapunov drift analysis. Define

V (s) = min

{
b∑
i=2

si −
k logN

N1−α , 1− s1

}
, (4.4)

we have the following lemma on state space collapse.

Lemma 12. For any load balancing in Π2, we have

Pr

(
min

{
b∑
i=2

Si −
k logN

N1−α , 1− S1

}
≥ 1

2Nα

)
≤ e−

(k−1) logN
16b .

According to Lemma 12, we split SSC term (4.1) into two regions, Ω and its

complementary Ω̄, where

Ω =

{
s

∣∣∣∣ min

{
b∑
i=2

si −
k logN

N1−α , 1− S1

}
≤ 1

2Nα

}
.
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For (4.1) in the region Ω, we have the key observation 1− S1 ≤ 1
2Nα ; For (4.1) in the

region Ω̄ (outside Ω), we apply the probability tail in Lemma 12; the upper bounds

in the two regions collectively provide the following lemma.

Lemma 13.

(4.1) ≤ 1

2
E

[
hrk

(
b∑
i=1

Si

)]
+Nαbre−

(k̄−1) logN
16b .

The proofs of Lemma 12 and Lemma 13 are in Appendix B.3.

4.2.3 Iterative Moment Bounds

From Lemma 11 and Lemma 13, we have the upper bound on E
[
hrk

(∑b
i=1 Si

)]
that

E

[
hrk

(
b∑
i=1

Si

)]
≤ (4.2) + (4.3) + (4.1),

where E
[
hr−1
k

(∑b
i=1 Si

)]
in Lemma 13 gives an iterative relation. We specify the

iterative relation between E
[
hrk

(∑b
i=1 Si

)]
and E

[
hr−1
k

(∑b
i=1 Si

)]
in the following

lemma, which is used to prove Theorem 3.

Lemma 14. Assume λ = 1 − N−α, 0.5 ≤ α < 1. The following bound holds at

steady-state for any positive integer r such that:

E

[
hrk

(
b∑
i=1

Si

)]
≤ 2r+2

N r−α +
2r

N1−αE

[
hr−1
k

(
b∑
i=1

Si +
1

N

)]
.

Proof. Given Lemma 11 and Lemma 13, we have

E

[
hrk

(
b∑
i=1

Si

)]
≤1

2
E

[
hrk

(
b∑
i=1

Si

)]
+Nαbre−

(k̄−1) logN
16b

+
2r+1

N r−α +
r

N1−αE

[
hr−1
k

(
b∑
i=1

Si +
1

N

)]

≤1

2
E

[
hrk

(
b∑
i=1

Si

)]
+

2r+1 + 1

N r−α +
r

N1−αE

[
hr−1
k

(
b∑
i=1

Si +
1

N

)]
(4.5)
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where the second inequality holds because that

Nαbre−
(k̄−1) logN

16b ≤ 1

N r−α ,

under the assumption of k̄ = 1 + 32rb. Finally, by moving 1
2
E
[
hrk

(∑b
i=1 Si

)]
in (4.5)

to the left-hand side, we have

E

[
hrk

(
b∑
i=1

Si

)]
≤ 2r+2 + 2

N r−α +
2r

N1−αE

[
hr−1
k

(
b∑
i=1

Si +
1

N

)]
.

4.2.4 Proving Theorem 3

Base on Lemma 14, we carefully expand the iteration and establish Theorem 3.

Denote wr = 2r
N1−α and zr = 2r+2+2

Nr−α in Lemma 14, and we have

E

[
hrk

(
b∑
i=1

Si

)]
≤ wr · E

[
hr−1
k

(
b∑
i=1

Si +
1

N

)]
+ zr.

Expand E
[
hr
(∑b

i=1 Si

)]
iteratively until r = 1 that

E

[
hr

(
b∑
i=1

Si

)]
≤

r∏
j=1

wj +
r−1∑
i=1

zi

r∏
j=i+1

wj + zr

≤
r∏
j=1

wj + rz1

r∏
j=2

wj

≤ (r + 1)z1

r∏
j=2

wj

≤ (r + 1)z1(wr)
r−1

≤ 10

(
2r

N1−α

)r
where the second inequality holds because zi

∏r
j=i+1 wj is decreasing for 2 ≤ i ≤ r

that

zi
∏r

j=i+1 wj

zi−1

∏r
j=iwj

=
zi

zi−1wi
=

2i+2+2
N i−α

2i+1+2
N i−1−α

2i
N1−α

≤ 1

2iNα
≤ 1;
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the third inequality holds because w1 = 2
N1−α ≤ z1 = 10

N1−α implies

r∏
j=1

wj ≤ z1

r∏
j=2

wj;

the forth inequality holds because wr is increasing in r.

4.3 Proof of Corollary 3

We prove Corollary 1 by following the main steps: i) bound the blocking probabil-

ity pB; ii) study the expected waiting time E[W ] based on pB; iii) study the waiting

probability pW based on pB and E[W ].

4.3.1 Load Balancing Algorithms in Π̃2

Let δb =
√

10
(

3r
N1−α

) r
2 , we study pB by splitting into two regions:

pB = Pr (B |Sb ≤ δb ) Pr (Sb ≤ δb)

+ Pr (B |Sb > δb ) Pr (Sb > δb)

≤Pr (B |Sb ≤ δb ) + Pr (Sb > δb) .

For load balancing in Π̃2, we have

pB ≤δb + Pr (Sb > δb)

≤δb + Pr (S3 > δb)

≤δb +
E[S3]

δb

≤10

(
3r

N1−α

) r
2

where the first inequality holds because Ab(s) ≤ sb for load balancing in Π̃2; the third

inequality holds by Markov inequality; the last inequality holds because of the upper

bound on E[S3] in Π̃2 in Corollary 2.
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For jobs that are not discarded, the average queueing delay according to Little’s

law is
E
[∑b

i=1 Si

]
λ(1− pB)

.

Therefore, the average waiting time is

E[W ] =
E
[∑b

i=1 Si

]
λ(1− pB)

− 1

≤
1 + k̄ logN

N1−α + 20
N1−α

λ(1− pB)
− 1

=
k̄ logN
N1−α + 20

N1−α + 1
Nα + λpB

λ(1− pB)

≤ 3k̄ logN

λ(1− pB)
≤ 4k̄ logN

N1−α

where the first inequality holds by letting r = 1 in Theorem 3 ; the last inequality

holds because the upper bound of pB for a large N such that N1−α ≥ 3(40)
2
r r.

From the work conservation law, we have

E[S1] = λ(1− pB),

which implies

λ− 10

(
3r

N1−α

) r
2

≤ E[S1] ≤ λ.

The bound on E[S2] is established

E[S2] ≤ E

[
b∑
i=2

Si

]
≤ 10

(
3r

N1−α

) r
2

+
(k̄ + 20) logN

N1−α ,

by the fact

E

[
b∑
i=1

Si

]
≤ 1 +

k̄ logN

N1−α +
20

N1−α , k̄ = 32rb.

Going forward, we study the waiting probability pW . Define W to be the event

that a job entered into the system (not blocked) and waited in the buffer and pW is
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the steady-state probability of W . Applying Little’s law to the jobs waiting in the

buffer,

λpWE[TQ] = E

[
b∑
i=2

Si

]
,

where TQ is the waiting time for the jobs waiting in the buffer. Since E[TQ] is lower

bounded by one, we have

pW ≤
E
[∑b

i=2 Si

]
λ

.

Finally, a job not routed to an idle server is either blocked or waited in the buffer

pW =pB + pW

≤pB +
E
[∑b

i=2 Si

]
λ

≤20

(
3r

N1−α

) r
2

+
2k̄ logN

N1−α .

4.3.2 JIQ

For JIQ, it requires more steps to establish the upper bound on pB. Let ε =

N−
r(1−α)
r+1 and δb = 3k̄ε logN

b−1
(the reason to define the two quantities will become clear

as going forward). We study pB by splitting into two terms as above:

pB ≤ δb + Pr (Sb > δb) .
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Consider Pr (Sb > δb) by splitting state space S according to state space collapse in

Lemma 12 and the high-moment bound in Theorem 3 as follows

Pr (Sb > δb) = Pr

(
Sb > δb, V (S) ≥ 1

2Nα

)
+ Pr

(
Sb > δb, hk̄

(
b∑
i=1

Si

)
≥ ε, V (S) <

1

2Nα

)

+ Pr

(
Sb > δb, hk̄

(
b∑
i=1

Si

)
< ε, V (S) <

1

2Nα

)

≤Pr

(
V (S) ≥ 1

2Nα

)
+ Pr

(
hk̄

(
b∑
i=1

Si

)
≥ ε

)

+ Pr

(
Sb > δb, hk̄

(
b∑
i=1

Si

)
< ε, V (S) <

1

2Nα

)

≤ 1

N2r
+

10(2r)r

N
r(1−α)
r+1

where the last inequality holds because

• the first term yields from

Pr

(
V (S) ≥ 1

2Nα

)
≤ 1

N2r
,

according to Lemma 12.

• the second term yields from

Pr

(
hk̄

(
b∑
i=1

Si

)
≥ ε

)
= Pr

(
hrk̄

(
b∑
i=1

Si

)
≥ εr

)

≤
E
[
hr
k̄

(∑b
i=1 Si

)]
εr

≤10

(
2r

εN1−α

)r
= 10

(
2r

N
1−α
r+1

)r
,

according to Theorem 3.
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• The third term is 0 because

Z =

{
s | sb > δb, hk̄

(
b∑
i=1

si

)
< ε, V (s) <

1

2Nα

}
is an empty set as we will show in the following.

Since V (S) < 1
2Nα implies that

S1 > 1− 1

2Nα
or

b∑
i=2

Si <
k̄ logN

N1−α +
1

2Nα
,

we have Z ⊆ Z1 with

Z1 =

{
s | Sb > δb,

b∑
i=1

Si ≤
k̄ logN

N1−α + ε+
1

2Nα

}
,

because

hk̄

(
b∑
i=1

Si

)
< ε and S1 > 1− 1

2Nα

implies

b∑
i=1

Si ≤
k̄ logN

N1−α + ε+
1

2Nα
.

However, we also have

b∑
i=2

Si >(b− 1)Sb ≥ (b− 1)δb ≥ 3k̄ε logN

≥ k̄ logN

N1−α + ε+
1

2Nα
.

which implies Z1 = ∅.

Finally, we have upper bound on pB that

pB ≤
3k̄

b

logN

N
r(1−α)
r+1

+
1

N2r
+

10(2r)r

N
r(1−α)
r+1

≤3k̄

b

logN

N
r(1−α)
r+1

+
1

N2r
+

2k̄

b

logN

N
r(1−α)
r+1

≤6k̄

b

logN

N
r(1−α)
r+1

,

where the second inequality holds because logN ≥ 5b(2r)r

k̄
.
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4.4 Proof of Corollary 2

Let the test function f(s) =
∑b

i=3 si in

E[Gf(S)] = 0,

and we have E[S3] under JSQ, I1F, and Pod, respectively.

• For JSQ,

E[S3] = λE [1(S2 = 1)− 1(Sb = 1)] .

• For I1F,

E[S3] = λE [1(S2 = 1)(S2 − S3)] .

• For Pod,

E[S3] = λE
[
Sd2 − Sdb

]
.

We then provide the upper bound of E[S3] under load balancing algorithms in Π̃2.

E[S3] ≤E [A2(S)]

=E [A2(S)|S2 ≥ 0.95] Pr(S2 ≥ 0.95)

+ E [A2(S)|S2 < 0.95] Pr(S2 < 0.95)

≤Pr(S2 ≥ 0.95) + E [A2(S)|S2 < 0.95] . (4.6)
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The probability in (4.6) is bounded

Pr(S2 ≥ 0.95) ≤Pr(S1 + S2 ≥ 1.9)

≤Pr

(
hk̄

(
b∑
i=1

Si

)
≥ 0.9− k̄ logN

N1−α

)

= Pr

(
hrk

(
b∑
i=1

Si

)
≥
(

0.9− k̄ logN

N1−α

)r)

≤
E
[
hr
k̄

(∑b
i=1 Si

)]
(

0.9− k̄ logN
N1−α

)r
≤10

(
3r

N1−α

)r
where the last inequality holds because N1−α

k̄ logN
≥ 5.

The conditional expectation in (4.6) is bounded

E [A2(S)|S2 < 0.95] ≤ 10

(
2r

N1−α

)r
for any load balancing algorithms in Π̃2.

Next, we show JSQ, I1F, and Pod are in Π̃2, respectively.

• For JSQ,

A2(s) = 1{s2=1,s3<1} = 0,

for s2 < 0.95.

• For I1F,

A2(s) = I{s2=2}s2 = 0,

for s2 < 0.95.

• For Pod with d ≥ Nα log2N,

A2(s) =sd2 ≤ (0.95)d

≤10

(
2r

N1−α

)r
.
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For JIQ,

A2(s) = I{s1=1}s2,

which might not be in Π̃2. However, we can still study E[S3] by using Theorem 3.

Let ε = 3
(

3r
N1−α

) r
r+1 and we have

E[S3] ≤E
[
I{S1=1}S2

]
≤E

[
I{S1=1}S2 | hk̄

(
b∑
i=1

Si

)
≤ ε

]
+ Pr

(
hk̄

(
b∑
i=1

Si

)
> ε

)

≤ k̄ logN

N1−α + ε+ Pr

(
hk̄

(
b∑
i=1

Si

)
> ε

)

≤ k̄ logN

N1−α + ε+
E
[
hr
k̄

(∑b
i=1 Si

)]
εr

≤ k̄ logN

N1−α +
16r

N
r(1−α)
r+1

where the first inequality holds by substituting A2(s) = I{s1=1}s2 in JIQ; the third

inequality holds because of the definition of h(·) and I{s1=1} = 1; the fourth inequality

holds by Markov inequality.

4.5 Summary

In this chapter, we studied the steady-state performance of load balancing bal-

ancing systems in the Beyond-Halfin-Whitt regime (0.5 ≤ α < 1). We established

high-order moments on a distance function of total queue length for a set of load

balancing algorithm Π2. Based on the high-order moments, the waiting probability

and waiting time of incoming job under JSQ, JIQ, I1F and Pod are proved to be

asymptotic zero. Further, under JSQ, I1F and Pod, only servers with one or two jobs

exist asymptotically.
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Chapter 5

STEADY-STATE ANALYSIS OF LOAD BALANCING WITH COXIAN-2

SERVICE

The exponential service has a nice “monotonicity property”, which states a partial

order of two mean-field systems starting from two initial conditions to be maintained

over time. In particular, letting x(t, y) denote the system state at time t with initial

state y, given two initial conditions y1 � y2, where ”�” is a certain partial order,

“monotonicity” states that the partial order x(t, y1) � x(t, y2) holds for any t ≥ 0.

Monotonicity does hold under several load balancing algorithms with some non-

exponential service time distributions. Typically, it holds when the service time dis-

tribution has a decreasing hazard rate (DHR) Bramson et al. (2012); Stolyar (2015a);

Foss and Stolyar (2017), where the hazard rate is defined to be f(x)
1−F (x)

and f(x) is

the density function of the service time and F (x) is the corresponding cumulative

distribution function.

With monotonicity, Bramson et al. (2012) studied Pod load balancing assuming

the arrival load per server λ < 1/4 under any general service time (the second order

moment exists) and shown the servers are asymptotic independent as the number of

servers N →∞ to obtain the steady-state performance, where the proof of asymptotic

independence relies heavily on the monotonicity. Stolyar (2015a) shown JIQ achieved

asymptotic optimality under the service time with decreasing hazard rate (DHR)

for any λ < 1 , where monoticity holds for JIQ under DHR assumption. Foss and

Stolyar (2017) relaxed DHR assumption in Stolyar (2015a) to any general service

distribution and proved the asymptotic optimality of JIQ when the average load per

server λ < 0.5. Houdt (2018) proved the global stability of the mean-filed model of
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load balancing policies (e.g. Pod) under hyper-exponential distribution. The key

step in Houdt (2018) is to represent hyper-exponential distribution by a constrained

Coxian distribution, where µi(1− pi) is decreasing in phase i (µi is the service rate in

phase i and pi is the probability that a job finishing service in phase i and entering

phase i + 1). With the alternative representation, monotonicity holds in a certain

partial order and the global stability is established.

The Coxian-2 distribution considered in this chapter does not necessarily satisfy

DHR. Each job has two phases (phase 1 and phase 2) under the Coxian-2 service

time distribution. When in service, a job finishes phase 1 with rate µ1; and after

finishing phase 1, the job leaves the system with probability 1 − p or enters phase

2 with probability p. If the job enters phase 2, it finishes phase 2 with rate µ2, and

leaves the system.

Now consider a simple system with two servers. Assume the Coxian-2 service

time distribution and JSQ is used for load balancing. Consider the system states

as shown in Figure 5.1, where jobs in phase 1 are in red color and jobs in phase 2

are in green color. The state of each server can be represented by its queue length

and the expected remaining service time of the job in service. Let Q(i,j)(t) denote

the queue length of server i at time t in system j, and T (i,j)(t) ∈
{

1
µ1

+ p
µ2
, 1
µ2
, 0
}

denotes the expected remaining service time of the job in service at server i in system

j. At time 0, we have Q(i,1)(0) ≥ Q(i,2)(0) and T (i,1)(0) ≥ T (i,2)(0) for all i. During

the time period (t0, t1], two jobs arrive and were routed to servers according to JSQ,

which resulted in the state shown in Figure 5.1. Suppose that (1 − p)µ1 < µ2, then

at time t1, we have T (2,1)(t1) = 1
µ2

< T (2,2)(t1) = 1
µ1

+ p
µ2
, so the system does not

have mononticity. This is because Coxian-2 distribution does not satisfy the DHR

property when (1− p)µ1 < µ2.

46



Server 2 Server 1 

 

Phase 2

Server 2 Server 1 

 

Phase 2Phase 1

Phase 1

Server 2 Server 1 

Phase 1 Phase 1

Server 2 Server 1 

Figure 5.1: Non-Monotocity of JSQ under Coxian-2 Distribution.

Due to the non-monotonicity challenge, there are only a few papers that deal with

the steady-state analysis of load balancing systems under non-exponential service

time distribution. In this chapter, we analyzed the steady-state performance of load

balancing algorithms in the heavy traffic regime, where λ = 1−N−α for 0 < α < 0.5,

under Coxian-2 service time. To overcome the non-monotonicity challenge, we develop

an iterative state space collapse (SSC) to show the steady-state “lives” in a restricted

region (with a high probability), in which the original system is coupled with a simple

system by Stein’s method. With iterative SSC and Stein’s method, we are able to

establish several key performance metrics at steady state, the expected queue length,

the probability that a job is allocated to a busy server (waiting probability) and the

waiting time. We summarize our results as follows:

• For any load balancing policy in Π3 (please refer to (5.2) for the formal defini-

tion), including JSQ, JIQ, I1F and Pod with d = O(Nα logN), the mean queue

length is λ+O
(

logN√
N

)
.

• For JSQ and Pod with d = O(Nα logN), the waiting probability and the ex-

pected waiting time per job are both O
(

logN√
N

)
.

• For JIQ and I1F, the waiting probability is O
(

1
N0.5−α logN

)
.
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5.1 Model and Main Results

We consider load balancing system with N homogeneous servers, where job arrival

follows a Poisson process with rate λN with λ = 1 − N−α, 0 < α < 0.5 and service

times follow Coxian-2 distribution (µ1, µ2, p) as shown in Figure 5.2, where µm > 0 is

the rate a job finishes phase m when in service and 0 ≤ p < 1 is the probability that

a job enters phase 2 after finishing phase 1. Without loss of generality, we assume

the mean service time to be one, i.e.

1

µ1

+
p

µ2

= 1.

Each server has a buffer of size b− 1, so can hold at most b jobs (b− 1 in the buffer

and one in service). Jobs are served in FIFO order.

Figure 5.2: Coxian-2 Distribution.

Let Qj,m(t) (m = 1, 2) denote the fraction of servers which have j jobs at time

t and the one in service is in phase m. For convenience, we define Q0,1(t) to be

the fraction of servers that are idle at time t and Q0,2(t) = 0. Furthermore define

Q(t) to be a b × 2 matrix such that the (j,m)th entry of the matrix is Qj,m(t).

Define Si,m(t) =
∑

j≥iQj,m(t) and Si(t) =
∑2

m=1 Si,m(t). In other words, Si,m(t) is the

fraction of servers which have at least i jobs and the job in service is in phase m at time

t and Si(t) is the fraction of servers with at least i jobs at time t. Furthermore define
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Figure 5.3: Load Balancing in Many-Server Systems under Coxian-2.

S(t) to be a b×2 matrix such that the (j,m)th entry of the matrix is Sj,m(t). Note Q(t)

and S(t) have one-to-one mapping. We consider a load balancing algorithm which

dispatches jobs to servers based on Q(t) (or S(t)) and under which, {Q(t), t ≥ 0} (or

{S(t), t ≥ 0}), which is a finite-state CTMC, is irreducible so has a unique stationary

distribution. This class of algorithms include JSQ, JIQ, I1F and Pod.

Let Qj,m denote Qj,m(t) in steady state. We further define Si,m =
∑

j≥iQj,m and

Si =
∑

m Si,m. In other words, Si,m is the fraction of servers which have at least i jobs

and the job in service is in phase m and Si is the fraction of servers with at least i

jobs at steady state. We illustrate the state representation Si,m in Figure 5.4.
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Figure 5.4: Illustrations of States Si,m.

Define S to be a b× 2 random matrix such that the (i,m)th entry is Si,m and let

s ∈ Rb×2 denote a realization of S. Define S to be a set of s such that

S =

{
s

∣∣∣∣∣ 1 ≥ s1,m ≥ · · · ≥ sb,m ≥ 0, 1 ≥
2∑

m=1

s1,m; Nsi,m ∈ N, ∀i,m

}
. (5.1)

Let A1(s) denote the probability that an incoming job is routed to a busy server

conditioned on that the system is in state s ∈ S; i.e.

A1(s) = Pr (an incoming job is routed to a busy server|S(t) = s) .

Among load balancing policy (or algorithm) considered in this chapter, define a subset

Π3 =

{
π

∣∣∣∣ under π,A1(s) ≤ 1√
N
∀s ∈ S, s1 ≤ λ+

1 + µ1 + µ2

min{(1− p)µ1, µ2}
logN√
N

}
.

(5.2)

Our main result of this chapter is the following theorem.

Theorem 4. Define wu = max{(1 − p)µ1, µ2}, wl = min{(1 − p)µ1, µ2}, µmax =

max{µ1, µ2}, and k =
(

1 + wub
wl

)(
1+µ1+µ2

wl
+ 2µ1

)
. Under any load balancing pol-

icy in Π3, the following bound holds when a large N satisfying wlN
0.5−α

1+µ1+µ2
≥ logN ≥

3.5

min(µ1
16
,
µ2
12
,
µ1µ2

40 )

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
≤ 7µmax√

N logN
. (5.3)
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Note that the condition A1(s) ≤ 1√
N

for s such that s1 ≤ λ+ 1+µ1+µ2

wl

logN√
N

means

that an incoming job is routed to an idle server with probability at least 1− 1√
N

when

at least 1
Nα − 1+µ1+µ2

wl

logN√
N

fraction of servers are idle. There are several well-known

policies that satisfy this condition.

• Join-the-Shortest-Queue (JSQ): JSQ routes an incoming job to the least loaded

server in the system. Therefore, A1(s) = 0 when s1 < 1.

• Idle-One-First (I1F) Gupta and Walton (2019): I1F routes an incoming job to

an idle server if available; and otherwise to a server with one job if available.

If all servers have at least two jobs, the job is routed to a randomly selected

server. Therefore, A1(s) = 0 when s1 < 1.

• Join-the-Idle-Queue (JIQ) Lu et al. (2011): JIQ routes an incoming job to an

idle server if possible and otherwise, routes a server chosen uniformly at random.

Therefore, A1(s) = 0 when s1 < 1.

• Power-of-d-Choices (Pod) Mitzenmacher (1996); Vvedenskaya et al. (1996): Pod

samples d servers uniformly at random and dispatches the job to the least

loaded server among the d servers. Ties are broken uniformly at random. When

d ≥ µ1N
α logN, A1(s) ≤ 1√

N
when s1 ≤ λ+ 1+µ1+µ2

wl

logN√
N
.

A direct consequence of Theorem 4 is asymptotic zero waiting at steady state. Let

W denote the event that an incoming job is routed to a busy server in a system with

N servers, and pW denote the probability of this event at steady-state. Let B denote

the event that an incoming job is blocked (discarded) and pB denote the probability

of this event at steady-state. Note event W occurs implies B occurs because a job is

blocked when being routed to a server with b jobs. Furthermore, let W denote the
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waiting time of a job (when the job is not dropped). We have the following results

based on the main theorem.

Corollary 4. The following results hold when a large N satisfying wlN
0.5−α

1+µ1+µ2
≥ logN ≥

3.5

min(µ1
16
,
µ2
12
,
µ1µ2

40 )
,

• Under JSQ and Pod with d = µ1N
α logN, we have

E [W ] ≤2k logN√
N

+
14µmax + 16µmax

b−λ√
N logN

,

pW ≤
µmax

λ

(
k logN√

N
+

7µmax + 8µmax

b−λ√
N logN

)
.

• Under JIQ and I1F,

pW ≤
14µmax

N0.5−α logN
.

�

The proof of this corollary is an application of Little’s law and Markov’s inequality,

and can be found in Section 5.4.

5.2 Proof of Theorem 4 under JSQ

In this section, we present the proof of our main theorem for JSQ, which is or-

ganized along the three key ingredients: 1) generator approximation; 2) gradient

bounds; 3) state space collapse. The proof for other load balancing algorithms is

similar and will be discussed in Section 5.3. Since load balancing under Coxian-2

service is more complex than load balancing under exponential service, we derive the

generator approximation from the beginning.

52



5.2.1 Generator Approximation

Define ei,m ∈ Rb×2 to be a b × 2-dimensional matrix such that the (i,m)th entry

is 1/N and all other entries are zero.

Given the state of the CTMC s and q, there are possible events under JSQ as

listed below.

• Event 1: A job arrives and is routed to a server such that it has i− 1 jobs and

the job in service is in phase 1. When this occurs, qi,1 increases by 1/N, and

qi−1,1 decreases by 1/N, so the CTMC has the following transition:

q → q + ei,1 − ei−1,1,

s→ s+ ei,1.

This transition occurs with rate

λN
qi−1,1

qi−1

1{si−1=1,si<1},

where
qi−1,1

qi−1
is the probability that the server which receives the job is serving

a job in phase 1 conditioned on the job is routed to a server with i − 1 jobs,

and {si−1 = 1, si < 1} implies that the shortest queue in the system has length

i− 1.

• Event 2: A job arrives and is routed to a server such that it has i− 1 jobs and

the job in service is in phase 2. When this occurs, qi,2 increases by 1/N, and

qi−1,2 decreases by 1/N, so the CTMC has the following transition:

q → q + ei,2 − ei−1,2,

s→ s+ ei,2.
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This transition occurs with rate

λN
qi−1,2

qi−1

1{si−1=1,si<1},

where
qi−1,2

qi−1
is the probability that the server which receives the job is serving

a job in phase 2 conditioned on the job is routed to a server with i − 1 jobs,

and {si−1 = 1, si < 1} implies that the shortest queue in the system has length

i− 1.

• Event 3: A server, which has i jobs, finishes phase 1 of the job in service. The

job leaves the system without entering into phase 2. When this occurs, qi,1

decreases by 1/N and qi−1,1 increases by 1/N, so the CTMC has the following

transition:

q → q − ei,1 + ei−1,1,

s→ s− ei,1.

This transition occurs with rate

µ1Nqi,1(1− p),

where (1 − p) is the probability that a job finishes phase 1 and departures

without entering phase 2.

• Event 4: A server, which has with i jobs, finishes phase 1 of the job in service.

The job enters phase 2. When this occurs, a server in state (i, 1) transits to

state (i, 2), so qi,1 decreases by 1/N and qi,2 increases by 1/N. Therefore, the

CTMC has the following transition:

q → q − ei,1 + ei,2,

s→ s−
i∑

j=1

ej,1 +
i∑

j=1

ej,2,
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where the transition of s can be verified based on the definition si,m =
∑

j≥i qj,m

so sj,1 decreases by 1/N for any j ≤ i and sj,2 increases by 1/N for any j ≤ i.

This event occurs with rate

µ1Nqi,1p,

where p is the probability that a job enters phase 2 after finishing phase 1.

• Event 5: A server, which has i jobs, finishes phase 2 of the job in service.

The job leaves the system. When this occurs, qi,2 decreases by 1/N and qi−1,1

increases by 1/N (because the server starts a new job in phase 1), so the CTMC

has the following transition:

q → q − ei,2 + ei−1,1,

s→ s−
i∑

j=1

ej,2 +
i−1∑
j=1

ej,1.

This transition occurs with rate

µ2Nqi,2.

We illustrate local state transitions related to state s in Fig. 5.5.
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Figure 5.5: Illustrations of State Transitions for any i with 1 ≤ i ≤ b.

Let G be the generator of CTMC (S(t) : t ≥ 0). Given function f : S → R, we

have

Gf(s) =
b∑
i=1

[
λN

qi−1,1

qi−1

1{si−1=1,si<1}(f(s+ ei,1)− f(s)) (5.4)

+λN
qi−1,2

qi−1

1{si−1=1,si<1}(f(s+ ei,2)− f(s)) (5.5)

+ (1− p)µ1Nqi,1(f(s− ei,1)− f(s)) (5.6)

+ pµ1Nqi,1

(
f

(
s−

i∑
j=1

ej,1 +
i∑

j=1

ej,2

)
− f(s)

)
(5.7)

+µ2Nqi,2

(
f

(
s−

i∑
j=1

ej,2 +
i−1∑
j=1

ej,1

)
− f(s)

)]
(5.8)

For any bounded function f : S→ R,

E[Gf(S)] = 0, (5.9)

which can be easily verified by using the global balance equations and the fact that

S represents the steady-state of the CTMC.
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To understand the steady-state performance of a load balancing algorithm, we

will establish an upper bound on the following function:

max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}
.

The upper bounds measure the quantity that the total number of jobs in the system

(N
∑b

i=1 Si) exceeds Nλ+ k
√
N logN at steady state, and can be used to bound the

probability that an incoming job is routed to an idle server in Corollary 4.

We consider a simple fluid system with arrival rate λ and departure rate λ + δ

with δ = logN√
N
, i.e.

ẋ = − logN√
N

,

and function g(x) which is the solution of the following Stein’s equation in Ying

(2016):

g′(x)

(
− logN√

N

)
= max

{
x− λ− k logN√

N
, 0

}
,∀x, (5.10)

where g′(x) = dg(x)
dx

. The left-hand side of (5.10) can be viewed as applying the

generator of the simple fluid system to function g(x), i.e.

dg(x)

dt
= g′(x)ẋ = g′(x)

(
− logN√

N

)
.

We note that the simple fluid system is a one-dimensional system and the stochas-

tic system is b× 2-dimensional. In order to couple these two systems, we define

f(s) = g

(
b∑
i=1

2∑
m=1

si,m

)
, (5.11)

and use f(s) defined above in Stein’s method.

Since
∑b

i=1

∑2
m=1 si,m =

∑b
i=1 si ≤ b for s ∈ S, and f(s) is a bounded for s ∈ S.

So

E[Gf(S)] = E

[
Gg

(
b∑
i=1

2∑
m=1

Si,m

)]
= 0. (5.12)

57



Now define

h(x) = max

{
x− λ− k logN√

N
, 0

}
.

Based on (5.10) and (5.12), we obtain

E

[
h

(
b∑
i=1

2∑
m=1

Si,m

)]
=E

[
g′

(
b∑
i=1

2∑
m=1

Si,m

)(
− logN√

N

)
−Gg

(
b∑
i=1

2∑
m=1

Si,m

)]
.

(5.13)

Note that according to the definition of f(s) in (5.11), ej,1 and ej,2, we have

f(s+ ej,1) = g

(
b∑
i=1

si,1 +
1

N

)
, f(s+ ej,2) = g

(
b∑
i=1

si,2 +
1

N

)

and

f(s− ej,1) = g

(
b∑
i=1

si −
1

N

)
, f(s− ej,2) = g

(
b∑
i=1

si −
1

N

)
for any 1 ≤ j ≤ b. Therefore,

Gg

(
b∑
i=1

2∑
m=1

si,m

)

=Nλ
(
1− 1{sb=1}

)(
g

(
b∑
i=1

2∑
m=1

si,m +
1

N

)
− g

(
b∑
i=1

2∑
m=1

si,m

))

+N ((1− p)µ1s1,1 + µ2s1,2)

(
g

(
b∑
i=1

2∑
m=1

si,m −
1

N

)
− g

(
b∑
i=1

2∑
m=1

si,m

))
,

where the first term represents the transitions when a job arrives and the second term

represents the transitions when a job leaves the system.
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Substituting the equation above to (5.13), we have

E

[
h

(
b∑
i=1

2∑
m=1

Si,m

)]

=E

[
g′

(
b∑
i=1

2∑
m=1

Si,m

)(
− logN√

N

)

−Nλ(1− 1{Sb=1})

(
g

(
b∑
i=1

2∑
m=1

Si,m +
1

N

)
− g

(
b∑
i=1

2∑
m=1

Si,m

))

−N ((1− p)µ1S1,1 + µ2S1,2)

(
g

(
b∑
i=1

2∑
m=1

Si,m −
1

N

)
− g

(
b∑
i=1

2∑
m=1

Si,m

))]
.

(5.14)

Define η = λ + k logN√
N

to simplify notation. From the definition of g and g′, for

any x < η,

g(x) = g′ (x) = 0.

Also when x > η + 1
N
,

g′(x) = −
√
N

logN

(
x− λ− k logN√

N

)
, (5.15)

so for x > η + 1
N
,

g′′(x) = −
√
N

logN
. (5.16)

By using mean-value theorem in the region [η − 1
N
, η + 1

N
] and Taylor theorem in

the region (η + 1
N
,∞), we have

g(x+
1

N
)− g (x) =

(
g(x+

1

N
)− g (x)

)(
1η− 1

N
≤x≤η+ 1

N
+ 1x>η+ 1

N

)
=
g′(ξ)

N
1η− 1

N
≤x≤η+ 1

N
+

(
g′(x)

N
+
g′′(ζ)

2N2

)
1x>η+ 1

N
(5.17)

g(x− 1

N
)− g (x) =

(
g(x− 1

N
)− g (x)

)(
1η− 1

N
≤x≤η+ 1

N
+ 1x>η+ 1

N

)
=− g′(ξ̃)

N
1η− 1

N
≤x≤η+ 1

N
+

(
−g
′(x)

N
+
g′′(ζ̃)

2N2

)
1x>η+ 1

N
(5.18)
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where ξ, ζ ∈ (x, x + 1
N

) and ξ̃, ζ̃ ∈ (x − 1
N
, x). Substitute (5.17) and (5.18) into the

generator difference in (5.14), we have

E

[
h

(
b∑
i=1

Si

)]

=E

[
g′

(
b∑
i=1

Si

)(
λ1{Sb=1} − λ−

logN√
N

+ (1− p)µ1S1,1 + µ2S1,2

)
I∑b

i=1 Si>η+ 1
N

]
(5.19)

+ E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
− λ(1− 1{Sb=1})g

′(ξ)

+ ((1− p)µ1S1,1 + µ2S1,2)g′(ξ̃)
)
Iη− 1

N
≤
∑b
i=1 Si≤η+ 1

N

]
(5.20)

− E
[

1

2N

(
λ(1− 1{Sb=1})g

′′(ζ) + ((1− p)µ1S1,1 + µ2S1,2)g′′(ζ̃)
)
I∑b

i=1 Si>η+ 1
N

]
.

(5.21)

Note in (5.20) and (5.21), we have random variables ξ, ζ ∈
(∑b

i=1 Si,
∑b

i=1 Si + 1
N

)
and ξ̃, ζ̃ ∈

(∑b
i=1 Si −

1
N
,
∑b

i=1 Si

)
whose values depend on

∑b
i=1 Si.

To establish the main result in Theorem 4, we need to provide the upper bounds

on (5.19), (5.20) and (5.21). In the following subsection 5.2.2, we study g′ and g′′ to

bound the terms in (5.20) and (5.21); In the subsection 5.2.3, we study SSC to bound

the term in (5.19).

5.2.2 Gradient Bounds

Let η = λ + k logN√
N

and δ = logN√
N

in Lemma 21 and Lemma 22. We have the

following two lemmas.

Lemma 15. Given x ∈
[
λ+ k logN√

N
− 2

N
, λ+ k logN√

N
+ 2

N

]
, we have

|g′(x)| ≤ 2√
N logN

.
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Lemma 16. For x > λ+ k logN√
N
, we have

|g′′(x)| ≤
√
N

logN
.

Based on the bounds on g′ in Lemma 21 and g′′ in Lemma 22, we provide the

upper bound on (5.20) + (5.21) in the following lemma.

Lemma 17. For g(·) defined in (5.10), we have

(5.20) + (5.21) ≤ 6µmax√
N logN

.

Proof. Note ((1− p)µ1S1,1 + µ2S1,2) ≤ µmaxS1 ≤ µmax, then we have

(5.20) + (5.21) ≤E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
+ λ|g′(ξ)|+ µmax|g′(ξ̃)|

)
I∑b

i=1 Si∈ΩR

]

+ E

[
1

N
(λ|g′′(η)|+ µmax|g′′(η̃)|) I∑b

i=1 Si∈ΩL

]
≤ 4µmax√

N logN
+
λ+ µmax

N

√
N

logN

≤ 6µmax√
N logN

5.2.3 State Space Collapse (SSC)

In this subsection, we analyze (5.19):

E

[
g′

(
b∑
i=1

Si

)(
λ1{Sb=1} − η + (1− p)µ1S1,1 + µ2S1,2

)
I∑b

i=1 Si>η+ 1
N

]

=E

[ √
N

logN
h

(
b∑
i=1

Si

)(
−λ1{Sb=1} + η − (1− p)µ1S1,1 − µ2S1,2

)
I∑b

i=1 Si>η+ 1
N

]

≤E

[ √
N

logN
h

(
b∑
i=1

Si

)
(η − (1− p)µ1S1,1 − µ2S1,2) I∑b

i=1 Si>η+ 1
N

]
, (5.22)
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where the equality is due to Stein’s equation (5.10), and the inequality holds because

√
N

logN
h

(
b∑
i=1

Si

)
I∑b

i=1 Si>η+ 1
N
≥ 0.

We first focus on

(η − (1− p)µ1s1,1 − µ2s1,2) I∑b
i=1 si>η+ 1

N
, (5.23)

where (1 − p)µ1s1,1 and µ2s1,2 are the rates at which jobs leave the system when

in phase 1 and phase 2, respectively. Therefore, (1 − p)µ1s1,1 + µ2s1,2 is the total

departure rate when the system in state S = s.

We consider two cases: s ∈ Sssc and s 6∈ Sssc, where

Sssc = Sssc1
⋃

Sssc2 ,

and

Sssc1 =

{
s

∣∣∣∣s1 ≥ λ+
1 + µ1 + µ2

wl

logN√
N

, s1,1 ≥
λ

µ1

− logN√
N

, s1,2 ≥
pλ

µ2

− µ1 logN√
N

}
,

Sssc2 =

{
s

∣∣∣∣∣
b∑
i=1

si ≤ λ+
k logN√

N

}
.

• Case 1: Sssc1 is shown as the gray region in Fig. 5.6. Any s ∈ Sssc1 satisfies

(1− p)µ1s1,1 + µ2s1,2 ≥ λ+
logN√
N

,

so (5.23) ≤ 0 for any s ∈ Sssc1 . The details are presented in Lemma 18. When

s ∈ Sssc2 ,

I∑b
i=1 si>η+ 1

N
= 0

so (5.23) = 0 for any s ∈ Sssc2 .

• Case 2: We will show that

Pr (S /∈ Sssc) ≤
3

N2

in Lemma 19 using an iterative state space collapse approach.
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Figure 5.6: State Space Collapse in Sssc1 .

Lemma 18. For any s ∈ Sssc1 ,(
λ+

logN√
N
− (1− p)µ1s1,1 − µ2s1,2

)
I∑b

i=1 si>λ+ k logN√
N

+ 1
N
≤ 0

�

Proof. We consider the following problem

min
(s1,1,s1,2)∈Sssc1

(1− p)µ1s1,1 + µ2s1,2,

which is a linear programming in terms of variables s1,1 and s1,2. Therefore, we only

need to consider the extreme points of set Sssc1 . In fact, from Figure 5.6, it is clear

that we only need to consider the following two extreme points.

• Case 1: s1,1 = λ
µ1
− logN√

N
, s1,2 = λ+ 1+µ1+µ2

wl

logN√
N
−s1,1 = pλ

µ2
+
(

1+µ1+µ2

wl
+ 1
)

logN√
N
,
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where we use the fact 1
µ1

+ p
µ2

= 1. In this case,

(1− p)µ1s1,1 + µ2s1,2 =λ+

(
−(1− p)µ1 + µ2

(
1 + µ1 + µ2

wl
+ 1

))
logN√
N

≥λ+ (−(1− p)µ1 + (1 + µ1 + 2µ2))
logN√
N

(5.24)

≥λ+ (1 + pµ1 + 2µ2)
logN√
N

≥λ+
logN√
N

,

where (5.24) holds because wl = min{(1− p)µ1, µ2}.

• Case 2: s1,2 = pλ
µ2
−µ1 logN√

N
, s1,1 = λ+1+µ1+µ2

wl

logN√
N
−s1,2 = λ

µ1
+
(

1+µ1+µ2

wl
+ µ1

)
logN√
N

At this extreme point, we have

(1− p)µ1s1,1 + µ2s1,2 =λ+

(
(1− p)µ1

(
1 + µ1 + µ2

wl
+ µ1

)
− µ2µ1

)
logN√
N

≥λ+
(
1 + µ1 + µ2 + (1− p)µ2

1 − µ2µ1

) logN√
N

(5.25)

≥λ+
logN√
N

, (5.26)

where (5.25) holds because wl = min{(1 − p)µ1, µ2} and (5.26) holds because

µ1 + µ2 ≥ pµ1 + µ2 = µ1µ2.

Lemma 19. For a large N such that logN ≥ 3.5

min(µ1
16
,
µ2
12
,
µ1µ2

40 )
, we have

Pr (S /∈ Sssc) ≤
3

N2
.

�

Based on Lemma 18 and Lemma 19, we can establish the following bound on

(5.19), in the following lemma.
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Lemma 20. Under JSQ, we have

(5.19) ≤ 3b

N1.5 logN

for a sufficiently large N such that logN ≥ 3.5

min(µ1
16
,
µ2
12
,
µ1µ2

40 )
.

Proof.

(5.19) ≤ (5.22)

=E

[ √
N

logN

(
b∑
i=1

Si − η

)
(λ+ δ − (1− p)µ1S1,1 − µ2S1,2) IS∈SsscI∑b

i=1 Si>η+ 1
N

]

+ E

[ √
N

logN

(
b∑
i=1

Si − η

)
(λ+ δ − (1− p)µ1S1,1 − µ2S1,2) IS/∈SsscI∑b

i=1 Si>η+ 1
N

]

≤ 3b

N1.5 logN
(5.27)

where (5.27) holds because of Lemma 18 on S ∈ Sssc and Lemma 19 on S /∈ Sssc.

5.2.4 Proving Theorem 4 under JSQ

Based on Lemma 17 and Lemma 20, we are ready to establish Theorem 4 under

JSQ.

E

[
max

{
b∑
i=1

Si − η, 0

}]
= (5.19) + (5.20) + (5.21) ≤ 3b

N1.5 logN
+

6µmax√
N logN

,

which implies

E

[
max

{
b∑
i=1

Si − η, 0

}]
≤ 7µmax√

N logN
.

Remark: An important contribution of this chapter is the iterative state collapse

method we use to prove Lemma 19. The method continues refining the state space in

which the system stays at steady-state with a high probability. Figure 5.7 illustrates

the first few steps of the iterative state-space collapse proof. We first show that with

a high probability, S1,2 ≤ p
µ2

+ logN

2
√
N

at steady-state. Then in the reduced state space
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(
S1,2 ≤ p

µ2
+ logN

2
√
N

)
, we further show S1,1 ≥ λ

µ1
− logN√

N
with a high probability at steady

state. We then further establish S1,2 ≥ pλ
µ2
− µ1 logN√

N
with a high probability at steady

state in the reduced state space. Similar steps are taken to finally prove that S ∈ Sssc

with a high probability at steady state.

Figure 5.7: Iterative State-Space Collapse to Show that S1,1 and S1,2 are in a

Smaller State-Space (Gray Region) at Steady-State

5.3 Extension to Policy Set Π3

In this section, we extend the analysis of JSQ to any policy in Π3. Most steps are

the same for a policy in Π3 as for JSQ, except minor differences in proving Lemma

28 and Lemma 30. We next list the places where minor changes are needed.

In Lemma 28, under the condition s1 ≤ λ+ 1+µ1+µ2

wl

logN√
N
,

• For JSQ,

∇V (s) =− λ1{S1<1} + µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2

=− λ+ µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2

• For a policy in Π3,

∇V (s) =− λ (1− A1(s)) + µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2

≤ 1√
N
− λ+ µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2
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Therefore, Lemma 28 still holds for policies in Π3.

In Lemma 30, under the condition s1 ≤ λ+ 1+µ1+µ2

wl

logN√
N
,

• For JSQ,

– If λ+ k logN√
N
− s1 ≥

∑b
i=2 si,

∇V (s) ≤− λ1{S1=1} − (1− p)µ1s2,1 − µ2s2,2

=− (1− p)µ1s2,1 − µ2s2,2

– If
∑b

i=2 si > λ+ k logN√
N
− s1,

∇V (s) ≤− λ1{S1<1} + (1− p)µ1s1,1 + µ2s1,2 − (1− p)µ1s2,1 − µ2s2,2

=− λ+ (1− p)µ1s1,1 + µ2s1,2 − (1− p)µ1s2,1 − µ2s2,2

• For a policy in Π3,

– If λ+ k logN√
N
− s1 ≥

∑b
i=2 si,

∇V (s) ≤− λ(A1(s)− 1{sb=1})− (1− p)µ1s2,1 − µ2s2,2

≤ 1√
N
− (1− p)µ1s2,1 − µ2s2,2

– If
∑b

i=2 si > λ+ k logN√
N
− s1,

∇V (s) ≤− λ(1− A1(s)) + (1− p)µ1s1,1 + µ2s1,2 − (1− p)µ1s2,1 − µ2s2,2

≤ 1√
N
− λ+ (1− p)µ1s1,1 + µ2s1,2 − (1− p)µ1s2,1 − µ2s2,2

Therefore, Lemma 30 still holds for policies in Π3.

67



5.4 Proof of Corollary 4

Under JSQ, a job is discarded or blocked only if all buffers are full, i.e. when

N
∑b

i=1 Si = Nb. From Theorem 3, we have

pB = Pr

(
N

b∑
i=1

Si = Nb

)
= Pr

(
b∑
i=1

Si ≥ b

)
(5.28)

≤Pr

(
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}
≥ b− λ− k logN√

N

)
(5.29)

≤
E
[
max

{∑b
i=1 Si − λ−

k logN√
N
, 0
}]

b− λ− k logN√
N

(5.30)

≤8µmax

b− λ
1√

N logN
(5.31)

where (5.29) to (5.30) holds due to the Markov inequality; and (5.30) to (5.31) holds

because of Thereom 3 and b− λ ≥ k logN√
N

;

For jobs that are not discarded, the average queueing delay according to Little’s

law is
E
[∑b

i=1 Si

]
λ(1− pB)

.

Therefore, the average waiting time is

E[WN ] =
E
[∑b

i=1 Si

]
λ(1− pB)

− 1

≤
k logN√

N
+ 7µmax√

N logN
+ λpBN

λ(1− pBN )

≤2k logN√
N

+
14µmax + 16µmax

b−λ√
N logN

,

where the last inequality holds because λ(1− pBN ) ≥ 0.5.

From the work-conserving law, we have

E[S1] = λ(1− pBN ) ≥ λ

(
1− 8µmax

b− λ
1√

N logN

)
.
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Therefore, we have

λ− 8µmax

b− λ
1√

N logN
≤ E[S1] ≤ λ,

which implies

E

[
b∑
i=2

Si

]
≤ k logN√

N
+

7µmax + 8µmax

b−λ√
N logN

,

due to the fact

E

[
b∑
i=1

Si

]
≤ λ+

k logN√
N

+
7µmax√
N logN

.

Next, we study the waiting probability pW . Define WN to be the event that a

job entered into the system (not blocked) and waited in the buffer and pW is the

steady-state probability of WN . Applying Little’s law to the jobs waiting in the

buffer,

λpWE[TQ] = E

[
b∑
i=2

Si

]
,

where TQ is the waiting time for the jobs waiting in the buffer. Since E[TQ] is lower

bounded by TQ = min
{

1
µ1
, 1
µ2

}
, we have

pW ≤
E
[∑b

i=2 Si

]
λTQ

.

Finally, a job not routed to an idle server is either blocked or waited in the buffer

pW = pBN + pW ≤ pB +
E
[∑b

i=2 Si

]
λTQ

≤ 1

λTQ

k logN√
N

+
1

λTQ

7µmax + 8µmax

b−λ√
N logN

.
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The analysis for Pod is similar, except that

pB = Pr

(
B
∣∣∣∣Sb ≤ 1− 1

µ1Nα

)
Pr

(
Sb ≤ 1− 1

µ1Nα

)
+ Pr

(
B
∣∣∣∣Sb > 1− 1

µ1Nα

)
Pr

(
Sb > 1− 1

µ1Nα

)
≤Pr

(
B
∣∣∣∣Sb ≤ 1− 1

µ1Nα

)
+ Pr

(
Sb > 1− 1

µ1Nα

)
≤
(

1− 1

µ1Nα

)µ1Nα logN

+ Pr

(
b∑
i=1

Si > b− b

µ1Nα

)

≤8µmax

b− λ
1√

N logN
.

The remaining analysis is the same.

Finally, for JIQ and I1F, we have not been able to bound pB. However,

pW = Pr (S1 = 1) ≤ Pr

(
b∑
i=1

Si ≥ 1

)

≤Pr

(
max

{
b∑
i=1

Si − λ−
k logN√

N

}
≥ 1

Nα
− k logN√

N

)
.

The result follows from the Markov inequality.

5.5 Summary

In this chapter, we considered load balancing under Coxian-2 service time in

the Sub-Halfin-Whitt regime. We developed an iterative SSC to overcome the non-

monotonicity challenge and establish a policy set Π3, in which any policy can achieve

zero delay asymptotically. The set Π3 includes JSQ, JIQ, I1F and Pod with d ≥

µ1N
α logN.
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Chapter 6

CONCLUSION

In this dissertation, we studied steady-state performance of load balancing algo-

rithms for many-server systems (N servers) in heavy traffic regime. We developed

Stein’s method and (iterative) state space collapse (SSC) framework to analyze load

balancing systems in various traffic regime (Sub-Halfin-Whitt and Beyound-Halfin-

Whitt regime) and service assumption (exponential service and Coxian-2 service).

Chapter 3 studied load balancing in the Sub-Halfin-Whitt regime under expo-

nential service. Stein’s method and state space collapse (SSC) are introduced in this

chapter and demonstrated to be a potential framework in steady-state analysis of load

balancing. With the framework, a set of “zero-delay” load balancing are established,

under which the waiting time and waiting probability achieve zero asymptotically (as

N →∞). JSQ, JIQ, I1F, and Pod belong to “zero-delay” load balancing.

Chapter 4 studied load balancing in the Beyond-Halfin-Whitt regime under expo-

nential service. Though in “heavier” traffic regime, state space collapse is still proved

by Lyapunov drift analysis with a carefully-designed Lyapunov function. Combine

with an iterative refined procedure, high-order bound on total queue length are ob-

tained, and a set of “zero-delay” load balancing is also established.

Chapter 5 studied load balancing in the Sub-Halfin-Whitt regime under Coxian-

2 service. Load balancing under Coxian-2 service is challenging because of “non-

monotonicity”. To tackle the “non-monotonicity” challenge, an interesting iterative

state space collapse is proposed to reduce state space step by step, and it helps

establish a similar set of “zero-delay” load balancing as in exponential service.
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GRADIENT BOUNDS
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A.1 The First-Order Gradient g′

Lemma 21. For any x ∈
[
η − 2

N
, η + 2

N

]
, we have

|g′(x)| ≤ 2r

δN r
.

Proof. For any x ∈
[
η − 2

N
, η + 2

N

]
, we have from the closed-form expression of g′,

|g′(x)| ≤|x− η|
r

δ

≤
(

2
N

)r
δ

=
2r

δN r

A.2 The Second-Order Gradient g′′

Lemma 22. For x > η, we have

|g′′(x)| ≤ r

δ
(max {x− η, 0})r−1 .

Proof. For x > η, we have

g′(x) =
(x− η)r

−δ
,

which implies

g′′(x) =
r (x− η)r−1

−δ
.

and

|g′′(x)| =

∣∣∣∣∣r (x− η)r−1

−δ

∣∣∣∣∣ ≤ r

δ
(max {x− η, 0})r−1 .
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B.1 A Tail Bound from Bertsimas et al. (2001)

First, we present the following result from Bertsimas et al. (2001). The following
version of the lemma is from Wang et al. (2017), but the result was proven in Bertsimas
et al. (2001).

Lemma 23. Let (X(t) : t ≥ 0) be a continuous-time Markov chain over a countable
state space X. Suppose that it is irreducible, nonexplosive and positive-recurrent,
and X denotes the steady state of (X(t) : t ≥ 0). Consider a Lyapunov function
V : X→ R+ and define the drift of V at a state i ∈ X as

∆V (i) =
∑

i′∈X :i′ 6=i

qii′(V (i′)− V (i)),

where qii′ is the transition rate from i to i′. Suppose that the drift satisfies the following
conditions:

(i) There exists constants γ > 0 and B > 0 such that ∆V (i) ≤ −γ for any i ∈ X
with V (i) > B.

(ii) νmax := sup
i,i′∈X:qii′>0

|V (i′)− V (i)| <∞.

(iii) q̄ := sup
i∈X

(−qii) <∞.

Then for any non-negative integer j, we have

Pr (V (X) > B + 2νmaxj) ≤
(

qmaxνmax

qmaxνmax + γ

)j+1

,

where
qmax = sup

i∈X

∑
i′∈X:V (i)<V (i′)

qii′ .

B.2 SSC in Sub-Haffin-Whitt Regime

B.2.1 Proof of Lemma 6

Consider a Lyapunov function in (3.7)

V (s) = min

{
b∑
i=2

si, λ+
k logN√

N
− s1

}
. (B.1)

Lemma 24. Under any load balancing algorithm such that A1(s) ≤ 1√
N

when s1 ≤

λ+ k̄ logN√
N

, we have for N ≥
(

4k̄ logN
γ

) 1
0.5−α

that

OV (s) ≤ − 1

2(b− 1)

logN√
N

+
1√
N
,

for any state s ∈ S such that V (s) ≥ logN√
N
.
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Proof. For the Lyapunov function defined in (B.1), the Lyapunov drift is

OV (s) = E [GV (S)|S = s]

=
b∑
i=1

λN(Ai−1(s)− Ai(s))(V (s+ ei)− V (s)) +N(si − si+1)(V (s− ei)− V (s)).

Given V (s) ≥ logN√
N
, we consider the following two cases.

• Case 1: Assume
∑b

i=2 si ≤ λ+ k logN√
N
− s1. Note that

V (s+ e1) ≤
b∑
i=2

si, V (s− e1) =
b∑
i=2

si,

V (s+ ej) ≤
b∑
i=2

si +
1

N
, V (s− ej) =

b∑
i=2

si −
1

N
, ∀ 2 ≤ j ≤ b.

Furthermore, V (s) =
∑b

i=2 si ≥
logN√
N
, which implies s2 ≥ 1

b−1
logN√
N

because

s2 ≥ s3 ≥ · · · ≥ sb. Therefore, we have

OV (s) ≤ λ(A1(s)− Ab(s))− s2 ≤ −
1

b− 1

logN√
N

+
1√
N
,

where the last inequality holds because
∑b

i=1 si ≤ λ + k logN√
N

implies that s1 ≤
λ+ k logN√

N
which further implies that A1(s) ≤ 1√

N
.

• Case 2: Assume
∑b

i=2 si > λ+ k logN√
N
− s1. Note that

V (s+ e1) = λ+
k logN√

N
− s1 −

1

N
, V (s− e1) ≤ λ+

k logN√
N
− s1 +

1

N
,

V (s+ ej) = λ+
k logN√

N
− s1, V (s− ej) ≤ λ+

k logN√
N
− s1, ∀ 2 ≤ j ≤ b.

In this case
∑b

i=2 si ≥ V (s) = λ + k logN√
N
− s1 ≥ logN√

N
, which also implies

s2 ≥ 1
b−1

logN√
N
. Therefore, we have

OV (s) ≤− λ(1− A1(s)) + (s1 − s2)

=s1 − s2 − λ+ λA1(s)

≤(k − 1)
logN√
N
− s2 + λA1(s)

≤
(
k − 1− 1

b− 1

)
logN√
N

+
1√
N

≤− 1

2(b− 1)

logN√
N

+
1√
N
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where the second inequality holds because s1 ≤ λ + (k − 1) logN√
N

and it implies

A1(s) ≤ 1√
N

; the last inequality holds because s2 ≥ 1
b−1

logN√
N

; the last equality

holds because k̄ − r√
N logN

≤ k ≤ k̄.

From Lemma 24, we have

B =
logN√
N

and γ =
1

2(b− 1)

logN√
N
− 1√

N
,

and it is easy to verify

qmax ≤ N and vmax ≤
1

N
.

Based on Lemma 23 with j =
√
N logN
8(b−1)

, we have

Pr

(
V (S) ≥ k̃ logN√

N

)
≤

(
1

1 + 1
2(b−1)

logN√
N
− 1√

N

)√N logN
8(b−1)

+1

≤
(

1− 1

4(b− 1)

logN√
N

+
1

2
√
N

)√N logN
8(b−1)

≤e−
log2 N

32(b−1)2
+ logN

16(b−1) .

where the second inequality holds because 1
2(b−1)

logN√
N
≤ 1 + 1√

N
for a large N.

B.2.2 Proof of Lemma 7

Given the SSC result in Lemma 6, we now bound (3.4) by considering two regimes,

V (s) ≤ k̃ logN√
N

and V (s) > k̃ logN√
N

, as follows

E

[ √
N

logN

(
b∑
i=1

Si − λ−
k logN√

N

)(
λ+

logN√
N
− S1

)
I∑b

i=1 Si>η+ 1
N

]

=E

[ √
N

logN

(
b∑
i=1

Si − λ−
k logN√

N

)(
λ+

logN√
N
− S1

)
I
V (S)≤ k̃ logN√

N

I∑b
i=1 Si>η+ 1

N

]
(B.2)

+E

[ √
N

logN

(
b∑
i=1

Si − λ−
k logN√

N

)(
λ+

logN√
N
− S1

)
I
V (S)> k̃ logN√

N

I∑b
i=1 Si>η+ 1

N

]
.

(B.3)
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To bound (B.2), we consider state s such that I
V (s)≤ k̃ logN√

N

= 1 and I∑b
i=1 si>η+ 1

N
= 1

because otherwise (B.2) = 0. For any state s such that
∑b

i=1 si > η+ 1
N

= λ+ k logN√
N

+
1
N
, we have

V (s) = λ+
k logN√

N
− s1. (B.4)

Given (B.4), V (s) ≤ k̃ logN√
N

means

λ+
logN√
N
− s1 ≤

(
k̃ − k + 1

) logN√
N

≤
(

1− 1

4(b− 1)

)
logN√
N

.

Therefore, we have

(B.2) ≤
(

1− 1

4(b− 1)

)
E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
. (B.5)

To bound (B.3), we have

(B.3) ≤ b
√
N

logN
E

[
I
V (S)> k̃ logN√

N

]
≤ b
√
N

logN
e
− log2 N

32(b−1)2
+ logN

16(b−1) (B.6)

where the first inequality holds because
∑b

i=1 si − λ − k logN√
N
≤
∑b

i=1 si ≤ b and

λ+ logN√
N
− s1 ≤ 1 for a large N ; and the second inequality holds due to Lemma 6.

Based on (B.5) and (B.6), we obtain the following upper bound on (3.4):

E

[
g′

(
b∑
i=1

Si

)(
λB(S)− λ− logN√

N
+ S1

)
I∑b

i=1 Si>η

]

≤
(

1− 1

4(b− 1)

)
E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]

+
b
√
N

logN
e
− log2 N

32(b−1)2
+ logN

16(b−1) , (B.7)

B.3 SSC in Beyond-Haffin-Whitt Regime

B.3.1 Proof of Lemma 12

Consider Lyapunov function in (4.4)

V (s) = min

{
b∑
i=2

si −
k logN

N1−α , 1− s1

}
,
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to study its drift in the following lemma.

Lemma 25. Given any load balancing in Π2, we have

OV (s) ≤ 2√
N
− k̄

b

logN

N1−α ,

for any state s ∈ S such that

V (s) ≥ 1

4Nα
.

Proof. Given V (s) ≥ 1
4Nα , we have two cases.

• Case 1: 1− s1 ≥ V (s) =
∑b

i=2 si −
k logN
N1−α ≥ 1

4Nα , we have

OV (s) ≤λ(A1(s)− Ab(s))− s2

≤ 1√
N
− s2

≤ 1√
N
− 1

4bNα
− k

b

logN

N1−α

≤ 1√
N
− k̄

b

logN

N1−α

where the second inequality holds because we consider load balancing in Π; the

third inequality holds because s2 ≥
∑b
i=2 si
b
≥ 1

4bNα + k
b

logN
N1−α .

• Case 2:
∑b

i=2 si −
k logN
N1−α ≥ V (s) = 1− s1 ≥ 1

4Nα , we have

OV (s) ≤− λ(1− A1(s)) + (s1 − s2)

=s1 − s2 − λ+ λA1(s)

≤ 3

4Nα
− s2 + λA1(s)

≤ 1√
N

+
3

4Nα
− 1

4bNα
− k

b

logN

N1−α

≤ 2√
N
− k̄

b

logN

N1−α

where the second inequality holds because s1 ≤ 1 − 1
4Nα ; the third inequality holds

because we consider load balancing in Π and s2 ≥
∑b
i=2 si
b
≥ 1

4bNα + k
b

logN
N1−α .

From Lemma 25, we have

B =
1

4Nα
, γ =

k̄ − 1

b

logN

N1−α , qmax ≤ N and vmax ≤
1

N
.
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Based on Lemma 23 with j = N1−α

8
, we have

Pr

(
V (S) ≥ 1

2Nα

)
≤

(
1

1− k̄−1
b

logN
N1−α

)N1−α
8

≤
(

1− k̄ − 1

2b

logN

N1−α

)N1−α
8

≤e−
(k̄−1) logN

16b .

B.3.2 Proof of Lemma 13

According to Lemma 12, we split SSC term (4.1) into two regions, Ω and its
complementary Ω̄ as follows

E

[
Nα

(
b∑
i=1

Si − λ−
k logN

N1−α

)r (
λ+

1

Nα
− S1

)
I∑b

i=1 Si>η+ 1
N

]

=E

[
Nα

(
b∑
i=1

Si − λ−
k logN

N1−α

)r (
λ+

1

Nα
− S1

)
IV (S)≤ 1

2Nα
I∑b

i=1 Si>η+ 1
N

]
(B.8)

+E

[
Nα

(
b∑
i=1

Si − λ−
k logN

N1−α

)r (
λ+

1

Nα
− S1

)
IV (S)> 1

2Nα
I∑b

i=1 Si>η+ 1
N

]
. (B.9)

The term (B.8) is related to the region in Ω, where V (s) ≤ 1
2Nα .Given

∑b
i=1 si > η+ 1

N
,

then V (s) = 1− s1 and V (s) ≤ 1
2Nα implies s1 ≥ 1− 1

2Nα . Therefore, we have

(B.8) ≤ 1

2
E

[(
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

})r]
.

The term (B.9) is related to the region in Ω̄, where we use Lemma 12 and have

(B.9) ≤ Nαbre−
(k−1) logN

16b .

These two terms give Lemma 13.
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C.1 A Conditional Tail Bound

To prove the space space collapse results, we first introduce Lemma 26, which
will be repeatedly used to obtain probability tail bounds. Lemma 26 allows us to
apply Lyapunov drift analysis to in reduced state spaces instead of the complete
state space. The lemma is an extension of the tail bound in Bertsimas et al. (2001).
This Lyapunov drift analysis on reduced state space enables us to iteratively refine
the state space in which the system stays at steady state. The lemma was proven in
Wang et al. (2017). We include the proof so the dissertation is self-contained.

Lemma 26. Let (S(t) : t ≥ 0) be a continuous-time Markov chain over a finite state
space S and is irreducible, so it has a unique stationary distribution π. Consider a
Lyapunov function V : S → R+ and define the drift of V at a state s ∈ S as

∇V (s) =
∑

s′∈S:s′ 6=s

qs,s′(V (s′)− V (s)),

where qs,s′ is the transition rate from s to s′. Assume

νmax := max
s,s′∈S:qs,s′>0

|V (s′)− V (s)| <∞ and q̄ := max
s∈S

(−qs,s) <∞

and define

qmax := max
s∈S

∑
s′∈S:V (s)<V (s′)

qs,s′ .

If there exits a set E with B > 0, γ > 0, δ ≥ 0 such that the following conditions
satisfy:

• ∇V (s) ≤ −γ when V (s) ≥ B and s ∈ E .

• ∇V (s) ≤ δ when V (s) ≥ B and s /∈ E .
Then

Pr (V (s) ≥ B + 2νmaxj) ≤ αj + β Pr (s /∈ E) , ∀j ∈ N,
with

α =
qmaxνmax

qmaxνmax + γ
and β =

δ

γ
+ 1.

Proof. Let C ≥ B − νmax and consider Lyapunov function

V̂ (s) = max{C, V (s)}.

At steady state, we have

0 =
∑

V (s)≤C−νmax

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
+

∑
C−νmax<V (s)≤C+νmax

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
+

∑
V (s)>C+νmax

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
. (C.1)
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Note ∇V̂ (s) =
∑

s′ 6=s qs,s′
(
V̂ (s′)− V̂ (s)

)
. We consider three terms in (C.1) as

follows:

• The first term is 0 because V (s) ≤ C − νmax and V (s′) ≤ C imply V̂ (s) =

V̂ (s′) = C.

• The second term is bounded∑
C−νmax<V (s)≤C+νmax

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
≤

∑
C−νmax<V (s)≤C+νmax

π(s)qmaxνmax

≤qmaxνmax (Pr(V (s) > C − νmax)− Pr(V (s) > C + νmax))

• The third term is divided into two regions s ∈ E and s /∈ E∑
V (s)>C+νmax

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
=

∑
V (s)>C+νmax

s∈E

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)

+
∑

V (s)>C+νmax

s/∈E

π(s)
∑
s′ 6=s

qs,s′
(
V̂ (s′)− V̂ (s)

)
≤− γ Pr (V (s) > C + νmax, s ∈ E) + δ Pr (V (s) > C + νmax, s /∈ E)

=− γ Pr (V (s) > C + νmax) + (δ + γ) Pr (V (s) > C + νmax, s /∈ E)

where the inequality holds because of two conditions (i) and (ii).

Combine three terms above, we have

(qmaxνmax + γ) Pr(V (s) > C + νmax)

≤qmaxνmax Pr(V (s) > C − νmax) + (δ + γ) Pr (V (s) > C + νmax, s /∈ E)

which implies

Pr(V (s) > C + νmax)

≤ qmaxνmax
qmaxνmax + γ

Pr(V (s) > C − νmax) +
δ + γ

qmaxνmax + γ
Pr (V (s) > C + νmax, s /∈ E)

≤ qmaxνmax
qmaxνmax + γ

Pr(V (s) > C − νmax) +
δ + γ

qmaxνmax + γ
Pr (s /∈ E)

=αPr(V (s) > C − νmax) + κPr (s /∈ E)
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where

α =
qmaxνmax

qmaxνmax + γ
and κ =

δ + γ

qmaxνmax + γ
.

Let C = B + (2j − 1)νmax,∀j ∈ N and we have

Pr (V (s) > B + 2νmaxj)

≤αPr (V (s) > B + 2(j − 1)νmax) + κPr (s /∈ E) (C.2)

By recursively using the inequality (C.2), we have

Pr (V (s) > B + 2νmaxj) ≤αj + κPr (s /∈ E)

j∑
i=0

αi

≤αj +
κ

1− α
Pr (s /∈ E)

=αj + β Pr (s /∈ E)

As mentioned above, Lemma 26 is an extension of Theorem 1 in Bertsimas et al.
(2001), where E = S is the entire state space and Pr (s /∈ E) = 0. As suggested in
Lemma 26, constructing proper Lyapunov functions are critical to establish the tail
bounds. In the following lemmas, we construct a sequence of Lyapunov functions and
apply Lemma 26 to establish SSC results.

C.2 SSC under Coxian-2

The proof of this lemma is based on an “iterative” procedure to establish SSC,
which is achieved by proving a sequence of four lemmas.

Lemma 27 (An Upper Bound on S1,2).

Pr

(
S1,2 ≤

p

µ2

+
logN

2
√
N

)
≥ 1− e−

µ1µ2 log2 N
40 .

Lemma 28 (A Lower Bound on S1,1).

Pr

(
S1,1 ≥

λ

µ1

− logN√
N

)
≥ 1− 5

µ1

√
N

logN
e−min(µ1

16
,
µ1µ2

40 ) log2 N .

Lemma 29 (A Lower Bound on S1,2).

Pr

(
S1,2 ≥

pλ

µ2

− µ1 logN√
N

)
≥ 1− 16

µ1µ2

N

log2N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2N .
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Lemma 30 (A Lower Bound on S1 via
∑b

i=2 Si).

Pr

(
min

{
λ+

k logN√
N
− S1,

b∑
i=2

Si

}
≤ (c1 + µ1) logN√

N

)

≥ 1− 34

µ2
1µ2

N1.5

log3N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2N

for min{µ1, µ2} ≥ 1
logN

, where

k =

(
1 +

wub

wl

)(
1 + µ1 + µ2

wl
+ 2µ1

)
and c1 =

wub

wl

(
1 + µ1 + µ2

wl
+ 2µ1

)
+ 2µ1.

Define sets S̃1 and S̃2 such that

S̃1 =

{
s

∣∣∣∣s1,1 ≥
λ

µ1

− logN√
N

and s1,2 ≥
pλ

µ2

− µ1 logN√
N

}
S̃2 =

{
s

∣∣∣∣∣min

{
λ+

k logN√
N
− s1,

b∑
i=2

si

}
≤ (c1 + µ1) logN√

N

}
.

According to the union bound and Lemmas 28-30, we have

Pr
(
S /∈ S̃1 ∩ S2

)
≤ 5

µ1

√
N

logN
e−min(µ1

16
,
µ1µ2

40 ) log2N +
16

µ1µ2

N

log2N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2 N

+
34

µ2
1µ2

N1.5

log3N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2N

≤ 3

N2
,

where the second inequality holds for a large N such that logN ≥ 3.5

min(µ1
16
,
µ2
12
,
µ1µ2

40 )
.

We note that S̃1 ∩ S̃2 is a subset of Sssc. This is because for any s which satisfies

min

{
λ+

k logN√
N
− s1,

b∑
i=2

si

}
≤ (c1 + µ1) logN√

N
,

we either have

λ+
k logN√

N
− s1 ≤

(c1 + µ1) logN√
N

,

which implies

s1 ≥ λ+
1 + µ1 + µ2

wl

logN√
N

or
b∑
i=2

si ≤ λ+
k logN√

N
− s1,
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which implies
b∑
i=1

si ≤ λ+
k logN√

N
.

Note that

S̃1 ∩
{
s

∣∣∣∣s1 ≥ λ+
1 + µ1 + µ2

wl

logN√
N

}
= Sssc1

and

S̃1 ∩

{
s

∣∣∣∣∣
b∑
i=1

si ≤ λ+
k logN√

N

}
⊆ Sssc1 .

We, therefore, have
S̃1 ∩ S̃2 ⊆ Sssc,

and

Pr (S /∈ Sssc) ≤ Pr
(
S /∈ S̃1 ∩ S2

)
≤ 3

N2
,

so Lemma 19 holds.
We next present the iterative SSC approach for proving Lemma 27-Lemma 30. The

first three lemmas are on the upper and lower bounds on S1,1 and S1,2, illustrated in
Fig. C.1, which shows that both S1,1 and S1,2 are close to its equilibrium values, in

particular, with a high probability, S1,1 ≥ λ/µ1 − logN√
N

and S1,2 ≥ pλ/µ2 − µ1 logN√
N

.

However, these two low bounds do not guarantee the total departure rate, which is
(1− p)µ1S1,1 +µ2S1,2, is larger than the arrival rate λ. Therefore, we need Lemma 30
to guarantee sufficient fraction of busy servers S1 such that the total departure rate
is ”larger than” the arrival rate λ. We therefore need Lemma 30 to further establish
a lower bound on S1 unless the total normalized queue length

∑b
i=1 Si is small.

Figure C.1: Bounds (Red Lines) on S1,1 and S1,2.

C.2.1 Proof of Lemma 27: An Upper Bound on S1,2.

To prove Lemma 27, we first establish a Lyaponuv drift analysis for E = S (the
entire state space) in Lemma 31.
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Lemma 31. Consider Lyapunov function

V (s) = s1,2 −
p

µ2

.

When V (s) ≥ logN

4
√
N
, we have

∇V (s) ≤ −µ1µ2

4

logN√
N

.

Proof. When V (s) = s1,2 − p
µ2
≥ logN

4
√
N
, we have

∇V (s) =pµ1s1,1 − µ2s1,2 (C.3)

≤pµ1 − (pµ1 + µ2)s1,2 (C.4)

=µ1(p− µ2s1,2) ≤ −µ1µ2

4

logN√
N

(C.5)

(C.3) to (C.4) holds because s1,1 = s1 − s1,2 ≤ 1− s1,2; (C.4) to (C.5) holds because
1
µ1

+ p
µ2

= 1 implies pµ1 + µ2 = µ1µ2.

From Lemma 31, we know B = logN

4
√
N

and γ = µ1µ2

4
logN√
N
. According to the definition

of qmax and νmax, we have qmax = N and νmax = 1
N
. Since E = S is the entire space,

then Pr (s /∈ E) = 0, we use Lemma 26 (or Theorem 1 in Bertsimas et al. (2001)) to

obtain the following tail bound with j =
√
N logN

8
,

Pr (V (S) ≥ B + 2νmaxj) = Pr

(
S1,2 −

p

µ2

≥ logN

2
√
N

)
(C.6)

≤

(
1

1 + µ1µ2

4
logN√
N

)√N logN
8

(C.7)

≤
(

1− µ1µ2

5

logN√
N

)√N logN
8

(C.8)

≤e−
µ1µ2 log2 N

40

• (C.6) holds by substituting B = logN

4
√
N
, νmax = 1

N
and j =

√
N logN

8
;

• (C.6) to (C.7) holds based on Lemma 31;

• (C.7) to (C.8) holds because µ1µ2 ≤
√
N

logN
for a large N.
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C.2.2 Proof of Lemma 28: A Lower Bound on S1,1.

To prove Lemma 28, we first establish a Lyaponuv drift analysis in Lemma 32.

Lemma 32. Consider Lyapunov function

V (s) =
λ

µ1

− s1,1

we have

• ∇V (s) ≤ −µ1

3
logN√
N
, when

V (s) ≥ logN

2
√
N

and s1,2 ≤
p

µ2

+
logN

2
√
N

;

• ∇V (s) ≤ 1, when

V (s) ≥ logN

2
√
N

and s1,2 ≥
p

µ2

+
logN

2
√
N
.

Proof. Assuming s1,2 ≤ p
µ2

+ logN

2
√
N

and λ
µ1
− s1,1 ≥ logN

2
√
N
, we have

s1 = s11 + s12 ≤
p

µ2

+
λ

µ1

= 1− 1

µ1Nα
≤ λ+

1 + µ1 + µ2

wl

logN√
N

< 1.

Therefore, the drift of V (s) is

∇V (s) =− λ1{s1<1} + µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2 (C.9)

≤− λ+ µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2 (C.10)

≤− λ+ µ1s1,1 (C.11)

≤− µ1

2

logN√
N

(C.12)

≤− µ1

3

logN√
N

,

where

• (C.9) to (C.10) holds because 1{s1<1} = 1 under JSQ;

• (C.11) to (C.12) holds because s1,1 ≤ λ
µ1
− logN

2
√
N
.

Assuming s12 >
p
µ2

+ logN

2
√
N

and s1,1 ≤ λ
µ1
− logN

2
√
N
, we have

∇V (s) = −λ1{s1<1} + µ1s1,1 − (1− p)µ1s2,1 − µ2s2,2 ≤ µ1s1,1 < 1.
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Let E =
{
s | s ≤ p

µ2
+ logN

2
√
N

}
. we have V (s) = λ

µ1
− s1,1 satisfying two conditions:

• ∇V (s) ≤ −µ1

3
logN√
N

when V (s) ≥ logN

2
√
N

and s1,2 ∈ E .

• ∇V (s) ≤ 1 when V (s) ≥ logN

2
√
N

and s1,2 /∈ E .

Define B = logN

2
√
N

, γ = µ1

3
logN√
N
, and δ = 1. Combining qmax ≤ N and νmax ≤ 1

N
, we

have

α =
1

1 + µ1

3
logN√
N

and β =
1

µ1

3
logN√
N

+ 1.

Based on Lemma 26 with j =
√
N logN

4
, we have

Pr (V (s) ≥ B + 2νmaxj) = Pr

(
λ

µ1

− S1,1 ≥
logN√
N

)
(C.13)

≤

(
1

1 + µ1

3
logN√
N

)√N logN
4

+ β Pr (S1,2 /∈ E) (C.14)

≤
(

1− µ1

4

logN√
N

)√N logN
4

+
4

µ1

√
N

logN
e−

µ1µ2 log2 N
40 (C.15)

≤e−
µ1 log2 N

16 +
4

µ1

√
N

logN
e−

µ1µ2 log2 N
40

≤ 5

µ1

√
N

logN
e−min(µ1

16
,
µ1µ2

40 ) log2N ,

where

• (C.13) holds by substituting B = logN

2
√
N
, νmax = 1

N
and j =

√
N logN

4
;

• (C.13) to (C.14) holds based on Lemma 32;

• (C.14) to (C.15) holds because (i) in the first term in (C.15), µ1 ≤
√
N

logN
for a

large N, and (ii) the second term in (C.14) can be bounded by applying Lemma
27.
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C.2.3 Proof of Lemma 29: A Lower Bound on S1,2.

Lemma 33. Consider Lyapunov function

V (s) =
pλ

µ2

− s1,2,

we have

• ∇V (s) ≤ −µ2

2
logN√
N
, when

V (s) ≥
(
pµ1

µ2

+
1

2

)
logN√
N

and s1,1 ≥
λ

µ1

− logN√
N

;

• ∇V (s) ≤ 1, when

V (s) ≥
(
pµ1

µ2

+
1

2

)
logN√
N

and s1,1 ≤
λ

µ1

− logN√
N

.

Proof. Assuming V (s) = pλ
µ2
− s1,2 ≥

(
pµ1

µ2
+ 1

2

)
logN√
N

and s1,1 ≥ λ
µ1
− logN√

N
, we have

∇V (s) =− (pµ1s1,1 − µ2s1,2) (C.16)

≤−
(
pλ− pµ1 logN√

N
− µ2s1,2

)
(C.17)

≤− µ2

2

logN√
N

, (C.18)

where

• (C.16) to (C.17) holds because s1,1 ≥ λ
µ1
− logN√

N
;

• (C.17) to (C.18) holds because s1,2 ≤ pλ
µ2
−
(
pµ1

µ2
+ 1

2

)
logN√
N
.

Next, assuming pλ
µ2
− s1,2 ≥

(
pµ1

µ2
+ 1

2

)
logN√
N

and s1,1 <
λ
µ1
− logN√

N
, we have

∇V (s) = −(pµ1s1,1 − µ2s1,2) ≤ µ2s1,2 ≤ pλ ≤ 1.

Defining E =
{
s | s ≥ λ

µ1
− logN√

N

}
, we have V (s) = pλ

µ2
− s1,2 satisfying two condi-

tions:

• ∇V (s) ≤ −µ2

2
logN√
N

when V (s) ≥
(
pµ1

µ2
+ 1

2

)
logN√
N

and s1,1 ∈ E .

• ∇V (s) ≤ 1 when V (s) ≥
(
pµ1

µ2
+ 1

2

)
logN√
N

and s1,1 /∈ E .
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Define B =
(
pµ1

µ2
+ 1

2

)
logN√
N

, γ = µ2

2
logN√
N

and δ = 1. Combining qmax ≤ N and

νmax ≤ 1
N
, we have

α =
1

1 + µ2

2
logN√
N

and β =
2

µ2

√
N

logN
+ 1.

Based on Lemma 26 with j =
√
N logN

4
, we have

Pr (V (s) ≥ B + 2νmaxj) = Pr

(
pλ

µ2

− S1,2 ≥
(
pµ1

µ2

+ 1

)
logN√
N

)
(C.19)

≤

(
1

1 + µ2

2
logN√
N

)√N logN
4

+
2

µ2

√
N

logN
Pr (S1,1 /∈ E) (C.20)

≤
(

1− µ2

3

logN√
N

)√N logN
4

+
3

µ2

√
N

logN
Pr (S1,1 /∈ E) (C.21)

≤e−
µ2 log2 N

12 +
15

µ1µ2

N

log2N
e−min(µ1

16
,
µ1µ2

40 ) log2 N (C.22)

≤ 16

µ1µ2

N

log2N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2N ,

where

• (C.19) holds by substituting B, νmax and j;

• (C.19) to (C.20) holds due to Lemma 33;

• (C.20) to (C.21) holds because µ2 ≤
√
N

logN
for a large N for the first term in

(C.21);

• (C.21) to (C.22) holds by applying Lemma 28 to obtain the tail bound in the
second term in (C.22).

Recall pµ1

µ2
+ 1 = µ1 and the proof is completed.

C.2.4 Proof of Lemma 30: SSC on S1 and
∑b

i=2 Si.

Define L1,1 = λ
µ1
− logN√

N
and L1,2 = pλ

µ2
− µ1 logN√

N
. Recall

wu = max((1− p)µ1, µ2) and wl = min((1− p)µ1, µ2),

k =

(
1 +

wub

wl

)(
1 + µ1 + µ2

wl
+ 2µ1

)
and c1 =

wub

wl

(
1 + µ1 + µ2

wl
+ 2µ1

)
+ 2µ1.
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Lemma 34. Consider Lyapunov function

V (s) = min

{
λ+

k logN√
N
− s1,

b∑
i=2

si

}
,

we have

• ∇V (s) ≤ −wuµ1 logN√
N

, when V (s) ≥ c1 logN√
N

with s1,1 ≥ L1,1 and s1,2 ≥ L1,2;

• ∇V (s) ≤ wu, when V (s) ≥ c1 logN√
N

with s1,1 ≤ L1,1 or s1,2 ≤ L1,2.

Proof. When V (s) ≥ c1 logN√
N

, the following two inequalities hold

s1 ≤ λ+
(k − c1) logN√

N
= λ+

1 + µ1 + µ2

wl

logN√
N

, (C.23)

b∑
i=2

si ≥
c1 logN√

N
. (C.24)

We have two observations based on (C.23) and (C.24):

• (C.23) implies 1{s1<1} = 1 under JSQ;

• (C.24) implies s2 ≥ c1
b

logN√
N

because s2 ≥ s3 ≥ · · · ≥ sb, and we have

(1− p)µ1s2,1 + µ2s2,2 ≥ wls2 ≥
wlc1

b

logN√
N

(C.25)

We study the Lyapunov dirft and consider two cases:

• Supppose λ+ k logN√
N
− s1 ≥

∑b
i=2 si ≥

c1 logN√
N

. In this case, V (s) =
∑b

i=2 si, and

∇V (s) ≤λ1{s1=1} − (1− p)µ1s2,1 − µ2s2,2 (C.26)

≤− (1− p)µ1s2,1 − µ2s2,2 (C.27)

≤− wlc1

b

logN√
N

(C.28)

≤− 2wuµ1 logN√
N

(C.29)

where

– (C.26) to (C.27) holds because 1{s1=1} = 0 under JSQ;

– (C.27) to (C.28) holds because (C.25);

– (C.28) to (C.29) holds because c1 ≥ wub
wl

2µ1.
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• Suppose
∑b

i=2 si > λ+ k logN√
N
− s1 ≥ c1 logN√

N
. In this case, V (s) = λ+ k logN√

N
− s1,

and

∇V (s) ≤− λ1{s1<1} + (1− p)µ1s1,1 + µ2s1,2 − (1− p)µ1s2,1 − µ2s2,2 (C.30)

≤− λ+ wus1 − (wu − (1− p)µ1) s1,1 − (wu − µ2) s1,2

− (1− p)µ1s2,1 − µ2s2,2 (C.31)

≤− λ+ wu(s1 − L1,1 − L1,2) + ((1− p)µ1L1,1 + µ2L1,2)

− (1− p)µ1s2,1 − µ2s2,2 (C.32)

= (wu(k − c1 + 1 + µ1)− (1− p)µ1 − µ1µ2)
logN√
N

− (1− p)µ1s2,1 − µ2s2,2 (C.33)

≤ (wu(k − c1 + 1 + µ1)− (1− p)µ1 − µ1µ2)
logN√
N
− wlc1

b

logN√
N

(C.34)

=wu

(
k −

(
1 +

wl
wub

)
c1 + µ1

)
logN√
N
− ((1− p)µ1 + µ1µ2 − wu)

logN√
N

(C.35)

≤wu
(
k −

(
1 +

wl
wub

)
c1 + µ1

)
logN√
N

(C.36)

≤− wuµ1 logN√
N

, (C.37)

where

– (C.30) to (C.31) holds by adding and substructing wus1 = wu(s1,1 + s1,2);

– (C.31) to (C.32) holds because s1,1 and s1,2 taking the lower bounds at L1,1

and L1,2 gives an upper bound;

– (C.32) to (C.33) holds by substituting L1,1 = λ
µ1
− logN√

N
, L1,2 = pλ

µ2
− µ1 logN√

N

and s1 ≤ λ+ (k−c1) logN√
N

. We have s1 − L1,1 − L1,2 = (k − c1 + 1 + µ1) logN√
N

and (1− p)µ1L1,1 + µ2L1,2 = λ− ((1− p)µ1 + µ1µ2) logN√
N
.

– (C.33) to (C.34) holds by substituting the lower bound of (1− p)µ1s2,1 +
µ2s2,2 in (C.25);

– (C.34) to (C.35) holds by combining the terms with c1;

– (C.35) to (C.36) holds because (1− p)µ1 + µ1µ2−wu = µ1 + µ2−wu ≥ 0;

– (C.36) to (C.37) holds because k −
(

1 + wl
wub

)
c1 ≤ −2µ1.
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Let E = {s | s1,1 ≥ L1,1, s1,2 ≥ L1,2} and V (s) = min
{
λ+ k logN√

N
− s1,

∑b
i=2 si

}
satisfying the following two conditions based on Lemma 34:

• ∇V (s) ≤ −wuµ1 logN√
N

when V (s) ≥ c1 logN√
N

and s ∈ E .

• ∇V (s) ≤ wu when V (s) ≥ c1 logN√
N

and s /∈ E .

Define B = c1 logN√
N

, γ = wuµ1 logN√
N

and δ = wu. Combining qmax ≤ N and νmax ≤ 1
N
,

we have

α =
1

1 + wuµ1 logN√
N

and β =

√
N

µ1 logN
+ 1.

Based on Lemma 26 with j = µ1

√
N logN
2

, we have

Pr (V (S) ≥ B + 2νmaxj)

= Pr

(
V (S) ≥ c1 logN√

N
+
µ1 logN√

N

)
(C.38)

≤

(
1

1 + wuµ1 logN√
N

)µ1
√
N logN
2

+

( √
N

µ1 logN
+ 1

)
Pr (s /∈ E) (C.39)

≤
(

1− wuµ1

2

logN√
N

)µ1
√
N logN
2

+

( √
N

µ1 logN
+ 1

)
Pr (s /∈ E) (C.40)

≤e−
wuµ

2
1 log2 N

4 +

( √
N

µ1 logN
+ 1

)
32

µ1µ2

N

log2N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2 N (C.41)

≤ 34

µ2
1µ2

N1.5

log3N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2 N ,

where

• (C.38) holds holds by substituting B, νmax and j;

• (C.38) to (C.39) holds based on Lemma 34;

• (C.39) to (C.40) holds wuµ1 ≤
√
N

logN
for a large N for the first term in (C.40);

• (C.40) to (C.41) holds by applying the union bound on Pr (s /∈ E) such that

Pr (s /∈ E) ≤Pr (s1,1 < L1,1) + Pr (s1,2 < L1,2)

≤ 32

µ1µ2

N

log2N
e−min(µ1

16
,
µ2
12
,
µ1µ2

40 ) log2N .
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