5,129 research outputs found

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    Demo Abstract: Securing Communication in 6LoWPAN with Compressed IPsec

    Get PDF
    With the inception of IPv6 it is possible to assign a unique ID to each device on planet. Recently, wireless sensor networks and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Real-world deployments of WSN demand secure communication. The receiver should be able to verify that sensor data is generated by trusted nodes and/or it may also be necessary to encrypt sensor data in transit. Available IPv6 protocol stacks can use IPsec to secure data exchanges. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this demo we will show the usage of our implemented lightweight IPsec. We will show how IPsec ensures end-to-end security between an IP enabled sensor networks and the traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of a 6LoWPAN extension for IPsec. This demo complements the full paper that will appear in the parent conference, DCOSS’11

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page

    Enabling Practical IPsec authentication for the Internet

    Get PDF
    On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops (First International Workshop on Information Security (IS'06), OTM Federated Conferences and workshops). Montpellier, Oct,/Nov. 2006There is a strong consensus about the need for IPsec, although its use is not widespread for end-to-end communications. One of the main reasons for this is the difficulty for authenticating two end-hosts that do not share a secret or do not rely on a common Certification Authority. In this paper we propose a modification to IKE to use reverse DNS and DNSSEC (named DNSSEC-to-IKE) to provide end-to-end authentication to Internet hosts that do not share any secret, without requiring the deployment of a new infrastructure. We perform a comparative analysis in terms of requirements, provided security and performance with state-of-the-art IKE authentication methods and with a recent proposal for IPv6 based on CGA. We conclude that DNSSEC-to-IKE enables the use of IPsec in a broad range of scenarios in which it was not applicable, at the price of offering slightly less security and incurring in higher performance costs.Universidad de Montpellier IIPublicad

    Securing Internet Protocol (IP) Storage: A Case Study

    Full text link
    Storage networking technology has enjoyed strong growth in recent years, but security concerns and threats facing networked data have grown equally fast. Today, there are many potential threats that are targeted at storage networks, including data modification, destruction and theft, DoS attacks, malware, hardware theft and unauthorized access, among others. In order for a Storage Area Network (SAN) to be secure, each of these threats must be individually addressed. In this paper, we present a comparative study by implementing different security methods in IP Storage network.Comment: 10 Pages, IJNGN Journa

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Automatic Intent-Based Secure Service Creation Through a Multilayer SDN Network Orchestration

    Full text link
    Growing traffic demands and increasing security awareness are driving the need for secure services. Current solutions require manual configuration and deployment based on the customer's requirements. In this work, we present an architecture for an automatic intent-based provisioning of a secure service in a multilayer - IP, Ethernet, and optical - network while choosing the appropriate encryption layer using an open-source software-defined networking (SDN) orchestrator. The approach is experimentally evaluated in a testbed with commercial equipment. Results indicate that the processing impact of secure channel creation on a controller is negligible. As the time for setting up services over WDM varies between technologies, it needs to be taken into account in the decision-making process.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN
    • …
    corecore