7 research outputs found

    Gamification Framework for Sensor Data Analytics

    Get PDF
    Data in all of its form is becoming a central part of our existence, it is being captured in every facets of our everyday life: social media, pictures, smartphones, wearable devices, smart building etc. One of the main drivers of this Big Data Revolution is the Internet of Things, which enables inert objects to communicate through a multitude of sensors. The data amassed fuels a thirst for information, the extraction of such knowledge is rendered possible through Data Analytics Techniques. However, when it comes to sensor data our large-scale ability to perform analytics is highly limited by the difficulties associated with collecting sensor data labels. Current crowdsourcing platforms historically used to gather labels are unable to process sensor data due to its low level nature. The solution proposed in this thesis enables the deployment of a crowdsourcing platform for sensor data. This research presents a novel solution to acquire sensor labels by leveraging the power of crowdsourcing using gamification. The work in this thesis describes not only a framework that facilitates the capture of sensor data label through a flexible gamification architecture but also a solution that outlines the mechanics required to integrate gamification in a variety of contexts. Additionally, the framework is designed in a flexible manner to support any type of sensor data given that human can readily interact with them. Additionally, the work presented describes and supports both real time and historical data analytics through the captured data and associated labels. This work was successfully evaluated in the context of a case study where the gamification implementation was tested for a number of electrical sensors. Real time and historical data analytics were successfully performed with the use of the framework. The robustness of the solution was evaluated though the injection of invalid data and the result showed that the framework is effectively capable of reducing the level of noise in the data labels

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Database Streaming Compression on Memory-Limited Machines

    Get PDF
    Dynamic Huffman compression algorithms operate on data-streams with a bounded symbol list. With these algorithms, the complete list of symbols must be contained in main memory or secondary storage. A horizontal format transaction database that is streaming can have a very large item list. Many nodes tax both the processing hardware primary memory size, and the processing time to dynamically maintain the tree. This research investigated Huffman compression of a transaction-streaming database with a very large symbol list, where each item in the transaction database schema’s item list is a symbol to compress. The constraint of a large symbol list is, in this research, equivalent to the constraint of a memory-limited machine. A large symbol set will result if each item in a large database item list is a symbol to compress in a database stream. In addition, database streams may have some temporal component spanning months or years. Finally, the horizontal format is the format most suited to a streaming transaction database because the transaction IDs are not known beforehand This research prototypes an algorithm that will compresses a transaction database stream. There are several advantages to the memory limited dynamic Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms. In many instances a second pass over the data is not possible, such as with streaming databases. Previous dynamic Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the number of distinct item IDs. Memory is required to grow to fit the n items. The improvement of the new memory limited Dynamic Huffman algorithm is that it would have an O(k) asymptotic memory requirement; where k is the maximum number of nodes in the Huffman tree, k \u3c n, and k is a user chosen constant. The new memory limited Dynamic Huffman algorithm compresses horizontally encoded transaction databases that do not contain long runs of 0’s or 1’s

    Accelerating Event Stream Processing in On- and Offline Systems

    Get PDF
    Due to a growing number of data producers and their ever-increasing data volume, the ability to ingest, analyze, and store potentially never-ending streams of data is a mission-critical task in today's data processing landscape. A widespread form of data streams are event streams, which consist of continuously arriving notifications about some real-world phenomena. For example, a temperature sensor naturally generates an event stream by periodically measuring the temperature and reporting it with measurement time in case of a substantial change to the previous measurement. In this thesis, we consider two kinds of event stream processing: online and offline. Online refers to processing events solely in main memory as soon as they arrive, while offline means processing event data previously persisted to non-volatile storage. Both modes are supported by widely used scale-out general-purpose stream processing engines (SPEs) like Apache Flink or Spark Streaming. However, such engines suffer from two significant deficiencies that severely limit their processing performance. First, for offline processing, they load the entire stream from non-volatile secondary storage and replay all data items into the associated online engine in order of their original arrival. While this naturally ensures unified query semantics for on- and offline processing, the costs for reading the entire stream from non-volatile storage quickly dominate the overall processing costs. Second, modern SPEs focus on scaling out computations across the nodes of a cluster, but use only a fraction of the available resources of individual nodes. This thesis tackles those problems with three different approaches. First, we present novel techniques for the offline processing of two important query types (windowed aggregation and sequential pattern matching). Our methods utilize well-understood indexing techniques to reduce the total amount of data to read from non-volatile storage. We show that this improves the overall query runtime significantly. In particular, this thesis develops the first index-based algorithms for pattern queries expressed with the Match_Recognize clause, a new and powerful language feature of SQL that has received little attention so far. Second, we show how to maximize resource utilization of single nodes by exploiting the capabilities of modern hardware. Therefore, we develop a prototypical shared-memory CPU-GPU-enabled event processing system. The system provides implementations of all major event processing operators (filtering, windowed aggregation, windowed join, and sequential pattern matching). Our experiments reveal that regarding resource utilization and processing throughput, such a hardware-enabled system is superior to hardware-agnostic general-purpose engines. Finally, we present TPStream, a new operator for pattern matching over temporal intervals. TPStream achieves low processing latency and, in contrast to sequential pattern matching, is easily parallelizable even for unpartitioned input streams. This results in maximized resource utilization, especially for modern CPUs with multiple cores

    Towards a big data reference architecture

    Get PDF

    Structural Generative Descriptions for Temporal Data

    Get PDF
    In data mining problems the representation or description of data plays a fundamental role, since it defines the set of essential properties for the extraction and characterisation of patterns. However, for the case of temporal data, such as time series and data streams, one outstanding issue when developing mining algorithms is finding an appropriate data description or representation. In this thesis two novel domain-independent representation frameworks for temporal data suitable for off-line and online mining tasks are formulated. First, a domain-independent temporal data representation framework based on a novel data description strategy which combines structural and statistical pattern recognition approaches is developed. The key idea here is to move the structural pattern recognition problem to the probability domain. This framework is composed of three general tasks: a) decomposing input temporal patterns into subpatterns in time or any other transformed domain (for instance, wavelet domain); b) mapping these subpatterns into the probability domain to find attributes of elemental probability subpatterns called primitives; and c) mining input temporal patterns according to the attributes of their corresponding probability domain subpatterns. This framework is referred to as Structural Generative Descriptions (SGDs). Two off-line and two online algorithmic instantiations of the proposed SGDs framework are then formulated: i) For the off-line case, the first instantiation is based on the use of Discrete Wavelet Transform (DWT) and Wavelet Density Estimators (WDE), while the second algorithm includes DWT and Finite Gaussian Mixtures. ii) For the online case, the first instantiation relies on an online implementation of DWT and a recursive version of WDE (RWDE), whereas the second algorithm is based on a multi-resolution exponentially weighted moving average filter and RWDE. The empirical evaluation of proposed SGDs-based algorithms is performed in the context of time series classification, for off-line algorithms, and in the context of change detection and clustering, for online algorithms. For this purpose, synthetic and publicly available real-world data are used. Additionally, a novel framework for multidimensional data stream evolution diagnosis incorporating RWDE into the context of Velocity Density Estimation (VDE) is formulated. Changes in streaming data and changes in their correlation structure are characterised by means of local and global evolution coefficients as well as by means of recursive correlation coefficients. The proposed VDE framework is evaluated using temperature data from the UK and air pollution data from Hong Kong.Open Acces

    Localized Events in Social Media Streams: Detection, Tracking, and Recommendation

    Get PDF
    From the recent proliferation of social media channels to the immense amount of user-generated content, an increasing interest in social media mining is currently being witnessed. Messages continuously posted via these channels report a broad range of topics from daily life to global and local events. As a consequence, this has opened new opportunities for mining event information crucial in many application domains, especially in increasing the situational awareness in critical scenarios. Interestingly, many of these messages are enriched with location information, due to the wide- spread of mobile devices and the recent advancements of today’s location acquisition techniques. This enables location-aware event mining, i.e., the detection and tracking of localized events. In this thesis, we propose novel frameworks and models that digest social media content for localized event detection, tracking, and recommendation. We first develop KeyPicker, a framework to extract and score event-related keywords in an online fashion, accounting for high levels of noise, temporal heterogeneity and outliers in the data. Then, LocEvent is proposed to incrementally detect and track events using a 4-stage procedure. That is, LocEvent receives the keywords extracted by KeyPicker, identifies local keywords, spatially clusters them, and finally scores the generated clusters. For each detected event, a set of descriptive keywords, a location, and a time interval are estimated at a fine-grained resolution. In addition to the sparsity of geo-tagged messages, people sometimes post about events far away from an event’s location. Such spatial problems are handled by novel spatial regularization techniques, namely, graph- and gazetteer-based regularization. To ensure scalability, we utilize a hierarchical spatial index in addition to a multi-stage filtering procedure that gradually suppresses noisy words and considers only event-related ones for complex spatial computations. As for recommendation applications, we propose an event recommender system built upon model-based collaborative filtering. Our model is able to suggest events to users, taking into account a number of contextual features including the social links between users, the topical similarities of events, and the spatio-temporal proximity between users and events. To realize this model, we employ and adapt matrix factorization, which allows for uncovering latent user-event patterns. Our proposed features contribute to directing the learning process towards recommendations that better suit the taste of users, in particular when new users have very sparse (or even no) event attendance history. To evaluate the effectiveness and efficiency of our proposed approaches, extensive comparative experiments are conducted using datasets collected from social media channels. Our analysis of the experimental results reveals the superiority and advantages of our frameworks over existing methods in terms of the relevancy and precision of the obtained results
    corecore