Accelerating Event Stream
Processing in On- and Offline
Systems

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universitat Marburg
vorgelegt von

M.Sc. Informatik
Michael Korber

geboren in GieBen

Marburg, im September 2021

Originaldokument gespeichert auf dem Publikationsserver der
Philipps-Universitat Marburg
http://archiv.ub.uni-marburg.de

©10El0

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons
Namensnennung
Keine kommerzielle Nutzung
Weitergabe unter gleichen Bedingungen
3.0 Deutschland Lizenz.

Die vollstandige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by—-nc-sa/3.0/de/

http://archiv.ub.uni-marburg.de
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Vom Fachbereich Mathematik und Informatik der Philipps-Universitat Marburg

(Hochschulkennziffer 1180) als Dissertation am 01.12.2021 angenommen.

Erstgutachter: Prof. Dr. Bernhard Seeger, Philipps-Universitat Marburg

Zweitgutachter: Prof. Dr. Thorsten Papenbrock, Philipps-Universitat Marburg

Tag der Einreichung: 17.09.2021.

Tag der miindlichen Prufung: 17.12.2021.

— Dedicated to Jeannine, Lara € Ella.

Abstract

Due to a growing number of data producers and their ever-increasing data volume, the ability to
ingest, analyze, and store potentially never-ending streams of data is a mission-critical task in
today’s data processing landscape. A widespread form of data streams are event streams, which
consist of continuously arriving notifications about some real-world phenomena. For example, a
temperature sensor naturally generates an event stream by periodically measuring the temper-
ature and reporting it with measurement time in case of a substantial change to the previous
measurement.

In this thesis, we consider two kinds of event stream processing: online and offline. Online
refers to processing events solely in main memory as soon as they arrive, while offline means
processing event data previously persisted to non-volatile storage. Both modes are supported
by widely used scale-out general-purpose stream processing engines (SPEk) like Apache Flink or
Spark Streaming. However, such engines suffer from two significant deficiencies that severely
limit their processing performance. First, for offline processing, they load the entire stream from
non-volatile secondary storage and replay all data items into the associated online engine in order
of their original arrival. While this naturally ensures unified query semantics for on- and offline
processing, the costs for reading the entire stream from non-volatile storage quickly dominate
the overall processing costs. Second, modern focus on scaling out computations across the
nodes of a cluster, but use only a fraction of the available resources of individual nodes. This
thesis tackles those problems with three different approaches.

First, we present novel techniques for the offline processing of two important query types (win-
dowed aggregation and sequential pattern matching). Our methods utilize well-understood index-
ing techniques to reduce the total amount of data to read from non-volatile storage. We show that
this improves the overall query runtime significantly. In particular, this thesis develops the first
index-based algorithms for pattern queries expressed with the MATCH_RECOGNIZE clause, a new
and powerful language feature of SQL that has received little attention so far.

Second, we show how to maximize resource utilization of single nodes by exploiting the ca-
pabilities of modern hardware. Therefore, we develop a prototypical shared-memory CPU-
GPU-enabled event processing system. The system provides implementations of all major
event processing operators (filtering, windowed aggregation, windowed join, and sequential pat-
tern matching). Our experiments reveal that regarding resource utilization and processing
throughput, such a hardware-enabled system is superior to hardware-agnostic general-purpose
engines.

Finally, we present TPStream, a new operator for pattern matching over temporal intervals.
TPStream achieves low processing latency and, in contrast to sequential pattern matching, is
easily parallelizable even for unpartitioned input streams. This results in maximized resource
utilization, especially for modern with multiple cores.

Zusammenfassung

Die stetig wachsende Anzahl an Datenproduzenten und deren sténdig wachsendes Datenvo-
lumen macht die Erfassung, Analyse und das Speichern potenziell unendlicher Datenstrome
zu entscheidenden Aufgaben der heutigen Datenverarbeitungslandschaft. Eine weit verbreite-
te Form von Datenstrémen sind Ereignisstrome, die aus kontinuierlich eintreffenden Meldungen
iiber bestimmte Ereignisse der realen Welt bestehen. So erzeugt beispielsweise ein Tempera-
tursensor einen Ereignisstrom, indem er regelméfig die Temperatur misst und diese mit der
Messzeit meldet, falls sich eine wesentliche Anderung gegeniiber der vorherigen Messung er-
gibt.

In dieser Arbeit betrachten wir zwei Arten der Ereignisstromverarbeitung: online und offline.
Online bedeutet, dass die Ereignisse verarbeitet werden, sobald sie eintreffen. Die Verabeitung
erfolgt hierbei ausschliellich im Hauptspeicher. Offline bedeutet hingegen, dass die Ereignisdaten
zuvor in einem nichtfliichtigen Speicher abgelegt werden. Moderne scale-out Datenstromsysteme
wie Apache Flink oder Spark Streaming unterstiitzen beide Verarbeitungsmodi. Allerdings weisen
solche Systeme zwei gravierende Schwichen auf, welche Thre Leistung negativ beeintrichtigen.
Erstens laden sie fiir die Offline-Verarbeitung den gesamten Datenstrom vom Sekundérspeicher
und iiberfithren alle Daten sequentiell in die zugehérige Online-Engine. Hierbei dominieren die
Kosten fiir den Sekundérspeicherzugriff schnell die gesamten Verarbeitungskosten. Zweitens kon-
zentrieren sich diese Systeme auf die Verteilung von Berechnungen iiber die Knoten eines Clusters,
nutzen jedoch die verfiigbaren Resourcen einzelner Knoten nur zu einem Bruchteil. Diese Arbeit
beschreibt drei Ansiitze zum Losen dieser Probleme.

Zunichst werden neuartige Techniken zur Offline-Verarbeitung von zwei wichtigen Anfragetypen
(fensterbasierte Aggregation und sequenzieller Musteranfragen) vorgestellt. Wir nutzen gut er-
forschte Indexierungstechniken, um die Gesamtmenge der aus dem Sekundérspeicher zu lesenden
Daten zu reduzieren und zeigen, dass sich dadurch die Gesamtlaufzeit der Anfragen erheblich ver-
bessert. Insbesondere entwickeln wir die ersten indexbasierten Algorithmen fiir Musteranfragen,
die mit der MATCH_RECOGNIZE-Klausel ausgedriickt werden, einem neuen und leistungsstarken
SQL Feature, das bisher nur wenig Beachtung gefunden hat.

Zweitens zeigen wir, wie man die Ressourcenauslastung einzelner Knoten maximieren kann, in-
dem man die Moglichkeiten moderner Hardware voll ausschopft. Zu diesem Zweck entwickeln wir
ein prototypisches Shared-Memory-CPU-GPU Ereignisverarbeitungssystem. Das System bietet
Implementierungen aller wichtigen Ereignisverarbeitungsoperatoren (Filterung, fensterbasierte
Aggregation, fensterbasierter Join und sequenzielle Musteranfragen). In Experimenten zeigen wir,
dass ein solch hardwarenahes System in Bezug auf die Ressourcennutzung und den Verarbeitungs-
durchsatz den hardwareunabhéngigen Systemen iiberlegen ist.

SchlieBlich stellen wir T'PStream vor, einen neuen Operator fiir Musteranfragen iiber zeitliche
Intervalle. T'PStream bendtigt zum Erstellen von Ergebnissen nur eine sehr geringe Latenz und
ist im Gegensatz zu sequenziellen Musteranfragen auch fiir unpartitionierte Eingabestrome leicht
parallelisierbar. Dies fiihrt zu einer gesteigerten Ressourcennutzung, insbesondere bei modernen
[CPTk mit mehreren Kernen.

vi

Erklarung

Hiermit versichere ich, dass ich meine Dissertation mit dem Titel
Accelerating Event Stream Processing in On- and Offline Systems

selbstandig und ohne fremde Hilfe verfasst, nicht andere als die in ihr angegebenen
Quellen oder Hilfsmittel benutzt, alle vollstandig oder sinngemafl iibernommenen
Zitate als solche gekennzeichnet sowie die Dissertation in der vorliegenden oder
einer ahnlichen Form noch bei keiner anderen in- oder auslandischen Hochschule
anlasslich eines Promotionsgesuchs oder zu anderen Priifungszwecken eingereicht
habe. Dies ist mein erster Versuch einer Promotion.

Marburg, den 17.09.2021 Michael Koérber

vii

Acknowledgments

When I started my academic journey back in 2010, I never thought that I would
end up here. However, without the help and support from my colleagues, family,
and friends, this work would not have been possible.

First of all, I want to thank my thesis advisor Prof. Dr. Bernhard Seeger, for
guiding me through the course of this thesis. The discussions with him were

always inspiring and helped me to generate new ideas and overcome the problems
I faced.

I also want to thank my colleagues from the Database Research Group of the
University of Marburg. Whether I got stuck with theoretical problems, required
help with an implementation, or asked for proofreading of a manuscript, I received
support from everyone. I particularly want to thank my roommate Nikolaus “Niki”
Glombiewski and Jana Holznigenkemper. Niki supported me in all my research,
and his superpower to find every single weak spot of an idea or manuscript greatly
strengthened my work. Jana always helped me out with her math skills and greatly
improved my writings due to her careful proofreading.

I would like to thank my family and friends. They motivated me to take this
step and always supported me during this journey. Ahead of everyone, I thank
my wife, Jeannine. She set me straight whenever I got stuck and took care of
our two girls, Lara and Ella, during my nightly writing sessions. Finally, I also
have to thank my two little girls. Some of the best ideas popped up while push-
ing them on the swing, building yet another Lego castle, or brushing Barbie’s
hair.

viil

Contents

[Abstract] 1
[Zusammentfassung| fvil
i
[Acknowledgments| viiil
(1__Introductionl 1l
[I.T Continuous Queries|
[1.2° On- and Offline Processing|
[L3 Motivation & Contributiond 4
(1.3.1 Index-Supported Otfline Processing| 0]

(1.3.2 1GPU-Accelerated Online Processing (§

(1.3.3 Pattern Matching on Temporal Intervalsf @

[L4 Publications)
[L5 Thesis Structurel. 11
[2__Preliminaries| 12
2.1 Data Streams| 12
2.2 FEvent Streams|. 1B
2.3 Event Stream Processing| o000 14
231 Windowsl. 16

2.3.2 Filtering| 18

2.3.3 Windowed Aggregation|. 20

2.3.4 Windowed Joinlo 21

[2.3.5 Sequential Pattern Matchingl 23]

2.4 Situationd 28

[3 Index-Supported Offline Processing 29
3.1 Related Workl 311
[3.1.1 Windowed Aggregation|. 31

[3.1.2 Sequential Pattern Matchingl.

B.2 _Chronicle DBl 34
[3.2.1 Lightweight Indexes|. 351

[3.2.2 Replay-Based Continuous Query Evaluation| 30

[3.3 Index-Based Windowed Aggregation| 37
[3.3.1 Index-Based Processing|. 37

X

Contents

[3.3.3 Arbitrary Slide Sizes and Count Windows|

[3.4 Index-Based Pattern Matching/.

[3.4.1 Preliminaries . .

[3.5 Experimental Evaluation|
[3.0.1 System Setup| . .

[3.0.2 Windowed Aggregation|.

[3.5.3 Sequential Pattern Matching

[3.6 Summary|

1IGPU-Accelerated Online Processing|

[4.2.1 Memory Management|.

4.2.2 Signals|.
4.2.3 Data Exchange| .
[4.3 Implementation|
[4.3.1 Event Queues| . .
4.3.2 Filtering

4.3.3 Windowed Aggregation|.

4.3.4 Windowed Joing.

4.3.5 Sequential Pattern Matchingl

[4.4 Experimental Evaluation|

4.4.3 Operator Evaluation.|

[4.5 Summary|

Pattern Matching on Temporal Intervals|

I;i,l :ilﬂlfé-!lt—lh,gz—[LI!'

[>.1.1 Straw Man’s Approach:.

[>.3 Query Language|.
[>.3.1 Syntax|
[5.3.2 Expressiveness|. .

Algebral

98
100
100

100

103
106

109

Contents

[5.5 Algorithms & Implementationl
[5.5.1 Deriving Situations|
[5.5.2 Matching the Patternl.
[5.5.3 Low-Latency Matchingl
[5.5.4 Computing the Evaluation Order|

(0.6 Parallel TPStream| oo

[5.6.3 Unpartitioned Datal
[b.6.4 Auto-Tuningl.

[>.7 Experimental Evaluation|
. 7.1 Setup|
[b.7.2 Processing Time| 0000
p.7.3 Low Latency|
(b.7.4 Plan Quality & Adaption|
[>.7.5 Parallel Approaches|.

[>.8 Summary|

[6 Summary, Conclusion and Outlook]

[Cist of Figures|

[List of Tables

[Cist of Algorithms|

Lisi of Abbreviations

X1

Introduction

Due to a growing number of data producers and their ever-increasing data vol-
ume, the ability to ingest, analyze and store potentially never-ending streams of
data has become a mission-critical task in today’s data processing landscape. A
widespread form of data streams are event streams. Conceptionally, an event is a
notification that something happened in the real world at a specific point in time.
When ordered by time, a sequence of these notifications forms an event stream.
For example, a temperature sensor naturally generates an event stream by peri-
odically measuring the temperature and reporting it with the measurement time.
Technically, an event is composed of structured information (e.g., the temperature
value) and a timestamp.

Many application domains dealing with massive event streams, like infrastructure
monitoring, air traffic monitoring, health care, and financial applications, apply
event processing technology{l} The following examples highlight some of the man-
ifold use cases for this technology.

Infrastructure Monitoring. Large technical infrastructures employ a wide vari-
ety of sensors to monitor the proper functioning of servers, cooling systems, power
supply, or computer networks [Ept+99|. Event processing technology allows con-
suming reports from heterogeneous sensors, expressing complex rules that involve
readings from multiple sensors, and triggering actions based on rule evaluation
results. For instance, the infrastructure monitoring system at the European Orga-
nization for Nuclear Research (CERNI) continuously evaluates more than 1,300 rules
over readings from more than 91 thousand senors [Bral5|.

Airspace Monitoring. Airborne flights produce massive event streams by con-
tinuously reporting status information (e.g., position, velocity, altitude). More-
over, air traffic volume is steadily increasing [Orgl§|. In order to manage the
increasingly crowded air space and keep the workload of air traffic controllers at

Tn this thesis, we use the term event stream processing (or simply event processing) to refer
to any tool, algorithm, or system that consumes and processes event streams.

1 Introduction

an acceptable level, an important goal in airspace monitoring is to automate as
many management tasks as possible. Event processing is ideally suited for this
scenario, as it can analyze the massive event streams produced by airborne flights
and notify operators of critical situations on time. For instance [AS19] uses event
processing technology to monitor flight route conformance of aircraft and report
anomalies, such as an aircraft leaving a planned route.

Health Care. Modern intensive care units monitor a patient’s current state via
various sensors (e.g., heart rate, blood pressure). Event processing technology
allows to monitor sensor streams from multiple patients continuously and imme-
diately raise the alarm if a patient’s condition worsens. Due to expressive oper-
ators, such alarms are not restricted to simple threshold conditions like “blood
pressure above 1407, but also allow, for instance, to detect complex patterns in

electrocardiograms (ECGk) [HAB17].

Algorithmic Trading. Stock price patterns are widely used to analyze a spe-
cific stock and make a decision whether to buy or sell it [Kha02]. Event pro-
cessing systems can detect those patterns in high-volume stock-ticker streams
close to real-time, thus enabling quick reaction without the need for human in-
tervention. For instance, Poppe et al. use event processing to count the number
of downtrends per sector and sell stocks if this number exceeds a given thresh-
old [Pop+19.

1.1 Continuous Queries

The above examples generate higher-level knowledge from raw event streams and
translate those insights into actionable tasks. For this purpose, event stream pro-
cessing systems employ the concept of continuous queries [ABWO06]. In
contrast to queries in traditional database management systems (DBMSk) or data
warehouses, which process and return finite data sets, are designed to process
potentially unbounded event streams. They consume one or more input streams
and produce a single result stream. For instance, a filter query consumes a stream
event by event and evaluates the filter condition on each of them. If an event
fulfills the condition, the query forwards it to the output stream. Otherwise, it
discards the event.

Stateless operations (e.g., the described filter) are a natural fit for unbounded
streams because they consider a single event at a time and do not require auxil-
iary data to process this event. However, operations that require additional state
information (stateful operations) suffer from two major problems when computed

1 Introduction

over unbounded streams: They are either technically unfeasible or do not produce
meaningful results. An example for the first issue is a join of two unbounded
streams according to the semantics used in traditional [DBMS. Here, the whole
history of both streams needs to be kept, which would require infinite storage
capacity. For the second issue, let us consider an aggregation query. Even with
incremental aggregate computation that does not keep any history, there will never
be a final answer to the query due to continuously arriving events. Thus no result
is produced at all. To alleviate those problems, limit the scope of stateful
operations via so-called windows [KS09; Aff+17]. Windows capture finite frac-
tions of the unbounded stream (e.g., the past five minutes) over which stateful
computations are carried out. Besides continuous counterparts of well-known re-
lational operations, like filter, projection, aggregation, and join, one of the key
operations in event processing is sequential pattern matching [WDRO06; DIGOT7;
MMO09; Bre+07|. It enables users to detect complex situations of interest that
cannot be inferred by looking at a single event or an aggregation of events. An
example of such a query is the detection of a gradually increasing temperature.
Technically, this corresponds to a contiguous sequence of temperature readings
where every reported value exceeds the value of the previous measurement. Sys-
tems featuring sequential pattern matching are commonly called complex event
processing (CEP) systems [MC11]. This thesis uses the terms event processing and
complex event processing interchangeably and refers to concrete operations (filter,
join, sequential pattern matching) if required.

1.2 On- and Offline Processing

CQs| can be processed in two ways: on- and offline. Online processing refers to the
processing of incoming streams on the fly as new events arrive. The goal of online
processing is to react to interesting situations in a timely manner [LWK14]. For
instance, if two aircraft are approaching each other, the pilots should be informed
as soon as possible to change their course early and avoid potential collisions. Thus,
the primary performance metric of online processing is the processing latency of
CQs, which is the elapsed time between the arrival of an event and the output
of the corresponding [CQl In order to minimize the processing latency, online
stream processing engines (SPEk) carry out computations solely in main-memory

and process streams event by event (tuple-at-a-time) or in small batches (micro-
batches).

In contrast, offline processing refers to the evaluation of on persisted event
streams, i.e., streams stored on non-volatile storage. Of course, offline process-

1 Introduction

ing is not suitable for monitoring the current situation. However, in combination
with online processing, it offers exciting opportunities such as parameter tun-
ing for new online on historical data, post-mortem stream analysis, or the
re-evaluation of with late-arriving events that were not considered by the cor-
responding online query. As can be seen from these examples, offline processing
deals with finite fractions (e.g., the last year) of event streams interactively in an
exploratory fashion. Especially in such interactive scenarios, quick response times
are a major requirement. This requirement implies that the considered fraction of
the stream as a whole should be processed as quickly as possible for offline pro-
cessing. Thus, contrary to online processing, the primary performance metric for
offline processing is throughput, which is the number of processed events per time
unit.

1.3 Motivation & Contributions

Today, most on- and offline processing of continuous queries is carried out by scale-
out general-purposeBPEk like Apache Flink [Car+15] or Spark Streaming [Zah+16].
Those systems process large volume event streams on clusters of commodity ma-
chines (nodes). They represent as directed acyclic graphs (DAGE), also known
as dataflow graphs. Such a graph consists of three types of nodes (sources, op-
erators, sinks) and directed edges representing the flow of the events. Sources
continuously produce events and submit them to the engine (e.g., a temperature
sensor). Operators consume one or more input streams and generate a single re-
sult stream (e.g., joins, aggregation). Finally, sinks consume input streams without
producing a result stream (e.g., a dashboard application visualizing the query re-
sults). |[Figure 1.1 (a)|shows a simple dataflow graph consisting of two data sources,
four operators, and a sink. Events submitted by Src; are processed sequentially
by the unary operators Op; and Ops. Similarly, events of Srcy are processed by
Ops. Then, the binary operator Op,4 combines the result streams of Opy and Ops
and forwards its results to the sink (Snky).

Scale-out [SPEk use two parallelization techniques to distribute the computations
across the cluster. First, every operator in the dataflow graph represents an inde-
pendent computation step, which allows deploying adjacent operators to different
cluster nodes (pipeline parallelism). Moreover, incoming streams get partitioned
according to a predefined partitioning scheme (e.g., round-robin or based on a user-
defined attribute). This way, multiple instances of the same operator are deployed
to different cluster nodes, such that every instance processes only a fraction of the
entire stream (data parallelism). [Figure 1.1 (b)|shows an example deployment for

1 Introduction

Cluster

Node 1 Node 4

@@)
Sources Operators Sinks @< Node 2 Node 5
&) - @- 1909/ @
®oe =)

»‘/ &) o

(a) Dataflow Graph (b) Deployment

Figure 1.1: A dataflow graph consisting of two sources, four operators and one sink
(a), and a possible deployment of this graph in a cluster of 5 nodes (b).

the dataflow graph of |[Figure 1.1 (a)l Events arriving from Src¢; are partitioned
and distributed to Nodes 1 and 2. Each of those nodes runs instances of Op; and
Opsy and processes the received partition independently. In contrast, Srcy remains
unpartitioned, and a single instance of Ops on Node 3 processes all its events.
Op, runs on nodes 4 and 5. By reusing the partitioning of Srcy, it is sufficient to
forward the results of Node 1 only to Node 4 and those of Node 2 to Node 5. De-
pending on the requirements of Op,, Ops either partitions its results or completely
sends them to both nodes.

Assuming a partition-friendly workload, modern scale almost linearly with
the number of cluster nodes. However, as shown by a recent article [Zeu+19),
those engines fail to utilize the available hardware resources of single cluster nodes
fully. In other words, increasing the resource utilization of the cluster nodes would
dramatically reduce the costs for running an Moreover, if a query or an
operator prohibits partitioning the input stream, the system performance suffers
because a single underutilized node carries out all computations. An example for
such a query is detecting similar behaving stocks (i.e., stocks that face similar
trends). If we partition the input stream (e.g., by company) and process the
resulting partitions independently, two similar stocks might remain undetected
since they belong to different partitions (which are processed by different nodes).
Another drawback of those engines is offline processing. They load the entire
stream from non-volatile secondary storage and replay it to the SPH for processing.
While this naturally ensures unified query semantics for on- and offline processing,
replay-based computation often results in high execution costs due to reading lots
of data irrelevant to the query. For instance, consider a simple query that filters
temperature sensor readings for values above 60°C'. Assuming that 0.1% of a 1 T'B

1 Introduction

sensor stream fulfills this condition, only 1 GB of data is relevant to the query.
Hence, most of the processing time for this query is spent on expensive secondary
storage access reading irrelevant data.

This thesis tackles the problems sketched above from three different sides. First,
we use indexing techniques similar to DBMS| to minimize secondary storage access
when processing offline on persisted streams. Second, we use integrated GPUs
(iGPUE) to maximize resource utilization of a single node. Third, we tackle single-
node resource utilization by introducing TPStream, a new operator for pattern
matching over temporal intervals. In the following, we present an outline and sum-
marize the contributions for each of the three aspects.

1.3.1 Index-Supported Offline Processing

In the past few years, a considerable amount of research has been dedicated to the
optimization of operators in online SPEs. Those optimizations range from incre-
mental aggregate computation |[Tan+15; THS17; [SCL18| over lazy evaluation tech-
niques for sequential pattern matching queries [ZDI14; [KSS15] to multi-query op-
timization approaches [Run+15; RLR16; [KS19]. Since those optimizations target
an online scenario, they all assume that the relevant data resides in main memory;,
and thus aim at minimizing the cost for operator evaluation in terms of [CPU] cy-
cles and main-memory consumption. However, as we will show in [Chapter 3| when
considering replay-based offline processing, the costs for reading an entire stream
from secondary storage (i.e., or BSD) quickly dominate the overall processing
costs. While specialized systems for storing streams to and replaying them from
secondary storage exist [SS17], techniques for the efficient evaluation of over
persisted streams have not been sufficiently addressed.

This thesis presents two novel approaches for answering windowed aggregation and
sequential pattern matching queries on persisted event streams. In both cases,
the main idea is to utilize well-understood indexing techniques to reduce the total
amount of data to read from secondary storage. Moreover, since an over-utilization
of indexes quickly leads to an overall worse runtime than a simple replay, we

also develop cost models deciding if and which indexes to use for the query at
hand.

1.3.2 iGPU-Accelerated Online Processing

General-purpose graphics processing units (GPUk) offer massive computational
power for data-parallel tasks. In contrast to central processing units (CPUk)

1 Introduction

which process data sequentially (i.e., one data item after another), [GPUk apply
the same operation to hundreds or thousands of homogeneous data items in par-
allel. This kind of data-parallel processing is called single instruction multiple
thread (SIMT). At first glance, the model seems to be a natural fit for an-
swering long-running event queries on high-volume streams since an event stream
is an unbounded sequence of homogeneous data items. However, usually [GPUk
come as PCI express (PCId) cards with dedicated memory, and thus data needs to
be shipped to the [GPUk before processing and sent back afterward. This data ship-
ping incurs considerable latency, which conflicts with the low-latency requirements
of online stream processing. Traditionally, this challenge is tackled via software-
based scheduling such as pipelined execution [Kol416]. However, the assumptions
about transfer do not hold for EGPUk, which share the main memory with the
[CPUL. Hence, they offer the possibility for low-latency [GPUFpowered online event
processing.

In this thesis, we develop a prototypical [GPUFenabled event processing system
and provide implementations of all major event processing operators (filtering,
windowed aggregation, windowed join, and sequential pattern matching). Be-
sides operator implementations optimized for (multi-threaded) and tradi-
tional dedicated GPU (dGPU)-based execution, we also provide [GPUFoptimized
versions that utilize the shared main memory to realize fine-grained task schedul-
ing between the [CPU and the [GPUL A thorough evaluation of the prototype reveals
that the cooperative iGPUFbased processing approach outperforms both other vari-
ants up to a factor of 5 in terms of throughput while keeping the latency penalty
low.

1.3.3 Pattern Matching on Temporal Intervals

Over the past decade sequential pattern matching has received lots of attention in
academia [DIGO7; MMO09; Bre+07] and also found its way into several commercial
products like Apache Flink [Car+15] or Esper [esp20]. However, the sequential na-
ture of pattern matching has two major deficiencies. First, it is hardly possible to
express complex temporal relationships between situations lasting for periods (e.g.,
rainfall while temperature is below 0°C'). Because events are equipped with a single
timestamp only, the expressible temporal relations are limited to before/after/at
the same time. Second, a sequential pattern maps to a subsequence of the in-
put stream that may start at any event. Hence, the source stream cannot easily
be sliced into disjoint, independent temporal partitions since a match will likely
span multiple partitions. In turn, this makes efficient parallelization of sequential
pattern matching a hard problem.

1 Introduction

We present TPStream, a novel event processing operator for complex temporal
pattern matching on event streams. T'PStream first summarizes incoming events
to situations lasting for periods before it matches temporal patterns. With situ-
ations, temporal patterns can easily be defined based on Allen’s interval algebra
[AlI83]. In contrast to existing interval-based approaches, TPStream is able to
detect matches without exact knowledge about the end of all involved intervals.
As we will show, this feature greatly reduces the processing latency. Furthermore,
we develop parallelization strategies and show that TPStream efficiently utilizes
multiple threads on a single machine and scales to multiple machines in a cluster,
even with unpartitioned input streams.

1 Introduction

1.4 Publications

The following papers were published in the course of this thesis:

Michael Kérber, Nikolaus Glombiewski, Bernhard Seeger:
Index-Accelerated Pattern Matching in Event Stores.
SIGMOD ’21: 10253-1036.

Nikolaus Glombiewski, Philipp Gotze, Michael Korber, Andreas Morgen,
Bernhard Seeger:

Designing an Event Store for a Modern Three-layer Storage Hier-
archy.

Datenbank-Spektrum 20(3): 211-222. (2020)

Marc Seidemann, Nikolaus Glombiewski, Michael Kérber, Bernhard Seeger:
ChronicleDB: A High-Performance Event Store.
ACM TODS 44(4): 13:1-13:45 (2019).

Michael Koérber, Nikolaus Glombiewski, Andreas Morgen, Bernhard Seeger:
Tpstream: low-latency and high-throughput temporal pattern
matching on event streams.

Distributed and Parallel Databases: 1-52 (2019).

Michael Koérber, Jakob Eckstein, Nikolaus Glombiewski, Bernhard Seeger:
Event Stream Processing on Heterogeneous System Architecture.
DaMoN 2019: 3:1-3:10.

Christian Beilschmidt, Johannes Dronner, Nikolaus Glombiewski, Christian
Heigele, Jana Holznigenkemper, Anna Isenberg, Michael Korber, Michael
Mattig, Andreas Morgen, Bernhard Seeger:

Pretty Fly for a VAT GUI: Visualizing Event Patterns for Flight
Data.

DEBS 2019: 224-227.

Christian Beilschmidt, Johannes Dronner, Nikolaus Glombiewski,
Michael Kérber, Michael Mattig, Andreas Morgen, Bernhard Seeger:

VAT to the Future: Extrapolating Visual Complex Event Process-
ing.

OpenSky Workshop 2019: 25-36.

Pablo Graubner, Christoph Thelen, Michael Kérber, Artur Sterz, Guido Sal-
vaneschi, Mira Mezini, Bernhard Seeger, Bernd Freisleben:

Multimodal Complex Event Processing on Mobile Devices.
DEBS 2018: 112-123.

1 Introduction

e Michael Kérber, Nikolaus Glombiewski, Bernhard Seeger:
TPStream: Low-Latency Temporal Pattern Matching on Event
Streams.
EDBT 2018: 313-324.

10

1 Introduction

1.5 Thesis Structure

The remainder of this thesis is structured as follows.

introduces fundamental concepts used throughout this thesis. These
concepts include the definition of events, event streams, and windows and an intro-
duction into the semantics of all major event processing operators.

presents our index-supported approaches for offline processing of con-
tinuous queries. This chapter also features a description of ChronicleDB [SS17],
the event store system forming the basis for our approaches. Further, we discuss
relevant related work and showcase the performance improvement achieved by our
approaches in extensive experiments.

This chapter contains parts of [Sei+19] and [KGS21).

presents our [GPUkenabled event-processing framework. Moreover, this
chapter also includes an introduction to [GPU computing, discusses relevant related
research, and highlights the performance improvements achieved by [GPUFbased
online processing in various experiments.

This chapter is an enhanced version of (Kdor+19aj.

presents TPStream, our novel event processing operator for low-latency
pattern matching on temporal intervals. We formally define its semantics and
detail important implementation aspects. Furthermore, we present parallelization
strategies for modern multi-core [CPTk as well as distributed cluster setups. We dis-
cuss related research and show that T'PStream exhibits excellent online processing
performance in an extensive experimental evaluation.

This chapter contains parts of ([KGS18] and [Kor+19b).

concludes this this thesis. We summarize the main findings and highlight
directions for future work.

11

Preliminaries

This section introduces the core concepts and notations used in the course of
this thesis. We start with an introduction to data streams and event streams.
Then, we define the semantics of the core operations of event stream processing
(ESP) with an emphasis on sequential pattern matching. Finally, we introduce the
concept of situations that are the foundation for pattern matching on temporal
intervals.

Note that we introduce concepts relevant to a specific part of this thesis (e.g., event
stores, [GPUl computing) in the corresponding chapters.

2.1 Data Streams

This thesis works with two particular kinds of streaming data: event streams and
situation streams. Both kinds share commonalities, such as an ordering relation,
which are captured by the notion of a data stream.

Definition 2.1 (Data Stream). A data stream D is a potentially unbounded
sequence of data items (dy, ds, ...) totally ordered by a relation <p. d; € D refers
to the i-th data item in the stream according to that order, and all data items
are from the same domain D (i.e., d; € D,i = 1,...). () refers to an empty data
stream and is mainly used to specify the case of no output in upcoming definitions.
If a data stream is bounded, we use N to denote the number of contained items

(i.e., D = <d1,d2, ce ,dN>).

In order to refer to multiple data streams, we will utilize the notation D', D?, D3, ...
with D' = (di,d},...), i.e., a superscript labels separate streams, while a sub-
script refers to the order within a stream. For the sake of simplicity and read-
ability, we will generally assume that each item in a data stream is unique (i.e.,

12

2 Preliminaries

Vd;,d}; eD :j#4¢k = d; # di) and refer to previous work on the matter of
handling potentially equal elements (see |Bre+07]).

We often need to restrict unbounded streams to a finite fraction for stateful oper-
ations. Usually, such a finite fraction refers to a contiguous subsequence, which is
defined as follows.

Definition 2.2 (Contiguous Subsequence). Based on a data stream D, Dy ; =
(d;,...,d;) with i < j refers to a contiguous subsequence containing every data
item as it pertains to <p.

Finally, two data streams can be unified if they use the same order relation and
their data items share the same domain.

Definition 2.3 (Union). The union W of two data streams D' and D?, both from
the same domain D and totally ordered with <p, results in a data stream D’ with
the same order <p.

W(D', D?) =D = (d),dy,...)

such that D’ contains each element from D' and D?. Analogous to set theory, the
union of n data streams D*,..., D™ is abbreviated with the notation [;_, D".

Note that the data stream concept is not limited to structured data, such as an
ordered stream of relational tuples. For instance, a video stream is a sequence of
images ordered by frame numbers [PBH17|. Also large XML-documents |[JFB05]
or sequences of unstructured text such as tweets [HOS18| can be mapped to this
definition.

2.2 Event Streams

As sketched in the introduction, events are notifications about observations from
the real world. An event stream is a temporally ordered sequence of events and
thus a special form of a data stream. In the following, we define events, event
streams, and related concepts.

Definition 2.4 (Event). An event e = (ay,...,aq,t) is a is a (d + 1)-dimensional
tuple consisting of d attributes (aq,...aq) and a timestamp t. We denote the
domain (e.g., integer, string) of the i-th attribute with A‘; ¢ is from a discrete,

13

2 Preliminaries

totally ordered time domain 7. Without the loss of generality, we assume 7 = N.
We use the dot notation to access an event’s attributes (e.a;) and timestamp (e.t).
Moreover, we summarize the d attributes of an event as payload (e.p) over the
d-dimensional domain P = A! x --- x A%, if appropriate.

Definition 2.5 (Event Stream). An event stream FE is a potentially unbounded
sequence of events E = (e, eq,...). All events of an event stream are from the
same domain and ordered according to their timestamps (i.e., it holds e;.t < e;.t
for i < 7). Note that this definition allows duplicate timestamps (i.e., €;.t = €;41.t).
If a stream contains such duplicates, ties are broken via an additional attribute
(e.g., a sequence number) in order to comply to the definition of a data stream

(Definition 2.1)).

Similar to data streams, we refer to a contiguous subsequence of event streams via
Ej; ;1. However, in some cases, it is required to access a specific temporal region of
a stream (e.g., all events of December 2020).

Definition 2.6 (Timestamp Mapping). The function 75 : 7 — N maps a times-
tamp ¢t € T to the index of first event in £ with a timestamp greater than or equal
to t:

Gz‘.t, if Bi.t Z t

. (2.1)
00, otherwise

Te(t) := arg min
ieN
Based on the function 7, we can refer to all events of a stream whose timestamps
are in the half-open interval [t,15) as Erpt1),me(t2)—1)- When obvious from the
context, we omit the subscript for the function 7.

2.3 Event Stream Processing

Event processing, as considered in this thesis, has roots in two different research
areas: data stream processing and complex event processing (CEP]). Data stream
processing focuses on efficiently processing streaming relational data (i.e., tuples
of structured data). In 2003, STREAM [Ara+03| was one of the first systems
in this area, featuring window semantics and the CQL declarative query lan-
guage [ABWO06]. STREAM slices incoming streams into temporary relations and
performs relational operations upon them. Afterward, it transforms the result re-
lations back into data streams. Kréamer et al. [KS09] pursue a similar approach.

14

2 Preliminaries

They introduce the concept of snapshot reducibility to define the execution seman-
tics of streaming operators based on their relational algebra counterparts. Parallel
to STREAM, the Aurora/Borealis [Aba+03| system was developed. It is the first
approach that models streaming queries as a dataflow graph, which was adopted
by many modern like Apache Flink [Car+-15] or Spark Streaming [Zah+16].
Beyond the basic semantics as presented above, research also explored many as-
pects to make stream processing practical for complex real world use cases, such
as the handling of duplicate data items |[Bre+07], disordered streams [Aki415;
Ji+16], or approximate query processing [CGOS].

While data stream processing focuses on the efficient evaluation of relational oper-
ations over streams of structured data, targets the extraction of higher-level
knowledge from so-called primitive events. In other words, focuses on the de-
tection of patterns in streams of simple events, like temperature sensor readings.
With active databases |[MD89|, the database community took its first steps in
this direction in the late 1980’s. They enabled traditional to autonomously
trigger actions based on predefined events (e.g., the insertion of a record). Later,
the active database community presented several complex event detection models
(see [ZU99| for an excellent survey). Those models cover all features available
in modern online systems like sequence detection, negation, or alternatives. One
of the first systems featuring online was Rapide [Luc98| in 1998. Rapide is
a system to model distributed architectures with an embedded engine. In
the following years, the community focused on the efficient evaluation of online
queries. This includes automaton based approaches like SASE+ |[DIGO7] and
Cayuga [Bre+07|, tree-based approaches like ZStream [MMO09], and also graph-
based approaches like GraphCEP [May+16]. Aside from the bare processing per-
formance, a great body of work on deals with real-world data problems such as
matching patterns over streams with imprecise timestamps [ZDI10] or disordered
event streams |[CGM10].

Modern like Apache Flink |[Car+15] or Esper |esp20| feature aspects of both
data stream processing and [CEPL They provide powerful, highly optimized opera-
tor implementations for relational processing, as well as pattern matching opera-
tors for answering [CEPlstyle queries. Following this approach, we represent a
as a dataflow graph composed of event processing operators. The operators we
consider are filtering, windowed aggregation, windowed join, and sequential pat-
tern matching. In the remainder of this section, we first introduce the concept of
windows before defining each operator’s semantics.

15

2 Preliminaries

2.3.1 Windows

Windows are an integral part of every system that deals with potentially un-
bounded data streams. Besides time and count windows, many different types of
windows exist, including session windows [Aki+15] that capture all events until a
period of inactivity (e.g., a user click-stream), or data-driven approaches |[Gro+16]
that, for instance, capture all events with an attribute value above a given thresh-
old. However, time and count windows are the most common forms of win-
dows. For this reason, we only consider those two window types in this the-
sis.

Count windows always hold a fixed number of events (e.g., the 100 most recent
events). They are defined via the two parameters size, slide € N, with 0 < slide <
size. The size parameter determines the number of events kept in the window,
while the parameter slide determines how the window changes with new arriving
events. If slide = 1, the window is called a sliding count window, otherwise it is a
tumbling count window.

Definition 2.7 (Count Window). For an event stream F, a count windows Wme slide
applied to E is a sequence of tuples w; = (seq,t), i € N. For each such tuple, seq
is a contiguous subsequence of F of length size, and t is the maximum timestamp
of the events in seq.

Wszze slzde()

El size] eSiZE‘t))

{
(
(E 1+slide, sizetslide]y Csizetslide- t))
(

ws E [14-2-slide, size+(2-slide)]s Esize+(2-slide)- t))

)

shows two variants of a count window with size = 2. Both windows
hold exactly two events, independent of their timestamps. The sliding variant (Fig-|
ure 2.1 (a)) is updated with every incoming event. The eldest element leaves the
window while the new event enters. In contrast, [Figure 2.1 (b)| shows a tumbling

count window with slide = 2. Here, and update occurs after exactly two events
and those two events replace the entire window content.

In contrast to count windows, time windows capture events of a predefined period
(e.g., 5 minutes). They are defined via the two parameters size and slide. Size
specifies the storage duration of events, while slide defines the amount of time
the window slides forward in each step. Both parameters are specified using a
predefined time unit (e.g., seconds, milliseconds).

16

2 Preliminaries

eie: o A @@
r:t+1:t+2:t+3:r+4:r+5:t+6:t+7>

E[' Q) %ﬂ' @]
—E e D

(a) Sliding count window (slide = 1) (b) Tumbling count window (slide = 2)

Figure 2.1: Example for the content of a sliding (a) and tumbling (b) count window
of size = 2.

Definition 2.8 (Time Window). A time window W[, 4. applied to an event
stream F is a sequence of tuples w; = (seq,t), i € N. For each such tuple, seq is

a contiguous subsequence of F/, and t is the maximum timestamp covered by w;.

Wszze slzde()

E[l 7(e1.t+size)—1], €1- t+ size —]_)

(
(
(E['r (e1.t+slide), T(e1.t+size+slide)—1]» 61.t + size + slide —]_) ,
(

E[T (e1.t4+2-slide), T(e1.t+size+2-slide)—1]» eyt + size + 2 - slide — 1))

\/OJ

Note that the number of events in a time window varies depending on the dis-
tribution of the events’ timestamps. A time window may also be empty (i.e.,
w.seq = (). illustrates the behaviour of a time window with size = 2.
The sliding variant (Figure 2.2 (a))) progresses by a single time unit in every step.
In contrast, the tumbling variant (Figure 2.2 (b)) progresses by slide = 2 time
units. As shown by the third window in the tumbling case, time windows may
contain no events at all.

Independent of the window type, there is at most one window considered active
at any point in time ¢t € T .

Definition 2.9 (Active Window). Let E be an event stream, ¢ € T a timestamp,
and W be a count or a time window (i.e., W = WS or W = WE, jige):

size,slide
Then, the active window AWpg y at time ¢ is defined as follows.

17

2 Preliminaries

e:e: '6: : '0:0 ee: 6 :@ :0:0
t :t+1:t+2:t+3:f+4:f+5:f+6:f+7> [t :[*1:[*Z:[+3:[+4:[*5:t+6:t+7>

=
%%@

(a) Sliding time window (slide = 1) (b) Tumbling time window (slide = 2)

Figure 2.2: Example for the content of a sliding (a) and tumbling (b) time window
of size = 2.

AWpg w(t) = argmax (2.2)

wit L ifwt<t
weW (E)

—oo , otherwise

Active windows play an important role for operators with more than a single
input stream, as we will show when introducting the windowed join later in this
section.

In general, there exist two ways of managing windows. Either by coupling them
tightly with a stateful operator |[Li+05a; Kol+16] or by implementing them as
dedicated operators, which encode window information directly into the events
of the stream . The tight coupling of windows with operators has two
significant advantages. First, it reduces the memory footprint because it does
not add window information to every event. Second, it allows optimizing the
window implementation towards efficient operator execution (e.g., by assembling
windows from disjoint substreams to avoid redundant computations for overlapping
windows) Thus, we opted for attaching windows directly to stateful
operators.

2.3.2 Filtering

Filters remove all events from a stream not satisfying a given predicate. They are
typically used to remove uninteresting events and reduce the input to more complex
operators. For example, in a temperature monitoring use case we may consider

18

2 Preliminaries

(e el 2 3 4 5 6 T >
p=v>3
(¢ t+1 t+2 t+3 t+4 t+5 tH6 | t+7 >

Figure 2.3: Example of a filter with ¢ = v > 3 applied to an event stream.

room temperatures between 18°C' and 25°C' normal. Hence, measurements in this
range are of no interest and thus discarded.

Definition 2.10 (Filter). Let E be an event stream with domain P and ¢ : P —
{true, false} a predicate. Then, a filter o, applied to E generates a new event
stream consisting of all events of E that fulfill ¢.

O'¢(E) _ L_H {<€>) if ¢(€'p) (23>

% | otherwise

shows an example of a filter operation that removes all events from a
stream not satisfying the user-defined predicate v < 3. In this case, the filter drops
the events at timestamps ¢ and t + 6, but send the results at t + 1, t +3 and t + 7
downstream.

Since even a simple event-at-a-time filter implementation is very efficient, filters
have received little attention from the research community. Typically, events
are batched to apply the filter condition to multiple events in parallel via single
instruction multiple data (SIMD]) instructions on modern or on
[RBP15]. However, thousands of filters running in parallel quickly become
a bottleneck since all filter conditions must be evaluated for every element of a
stream. This bottleneck is alleviated by employing so-called filter indexes [SJ11;
SJ13; [ZCT14; HoB15|. Instead of indexing the data, like it is done with B*-
trees [BM70] or R-trees [Gut84], they index filter conditions (i.e., boolean ex-
pressions). When inspecting a new data item, the index retrieves only those
filters whose condition may evaluate to true and ignores the remaining ones.
Thus, the index reduces the number of filter queries to evaluate per data item

19

2 Preliminaries

and thus improves processing performance for workloads with many active filter
queries.

2.3.3 Windowed Aggregation

Most stream analysis at some point involves windowed aggregation. Windowed ag-
gregation computes a set of aggregations over finite fractions of the input stream
and generates a result stream consisting of the aggregated values. An exam-
ple of this is the calculation of the average room temperature on an hourly ba-
sis.

Definition 2.11 (Windowed Aggregation). Let W be a count or time window
and v a set of aggregation functions (e.g., sum, min, max). Then, the windowed
aggregation ayy, of an event stream F is defined as follows.

aw~(E) = L—Ij (7 (w.seq) ,w.t)) (2.4)
weW(E)

That is, every window w; € W(E) generates a single result event by applying the
aggregation functions « to the events of w;. The result events carry the timestamp
of the respective window.

shows a windowed aggregation using a sliding time window with size =
2. The aggregation computes the sum over attribute v of the input stream (shown
in blue in the upper part of the figure). Since we use a sliding time window,
the window’s content changes with every time tick (wq,...,w;). Thus, the result
stream (green events at the bottom) contains an aggregated event for every time
instant.

Windowed aggregation has been extensively researched and optimized. The gen-
eral idea of most approaches is to compute aggregations incrementally in two
phases. The first phase computes partial aggregates for a certain number of
events, and the second phase uses them to assemble the result for the entire win-
dow. For instance, Li et al. [Li+05b] compute partial aggregates for continuous
fixed size subsequences of the data stream, while Carbone et al. [Car+16] starts
a new partial aggregate at the beginning of new windows. Likewise, various ap-
proaches for the second phase exist using different data structures to manage and
merge partial aggregates (for example binary trees |[Tan+15] or queues [THS17;
SCL18|). Besides clever data structures, modern hardware is also exploited for
incremental aggregation. For instance, the SABER system [Kol416], schedules

20

2 Preliminaries

VVzT] s Vs—sum(v)

EIEIEIEIERERE
t iﬁf t+2§t+3 t+4§t+5§t+6it+7

(

Resultfori wi i wp | Ws : ws @ Ws § W i W

Figure 2.4: Example of a windowed sum-aggregation with a sliding time window
of size = 2.

the computation of partial aggregates on the [GPU, while LightSaber |[The-20]
uses a specialized tree structure to exploit the parallelism of modern multi-core
[CPUE.

2.3.4 Windowed Join

A windowed join combines two event streams based on a join predicate. Windows
on both streams limit the number of events to consider when searching for join
partners. As a first step towards a windowed join of two event streams, we define
the result of joining a single event with an event stream.

Definition 2.12 (Single Event Join). Let €' be an event and E? an event stream
with domains P! and P?, respectively. Moreover let W be a window and ¢ :
Pl x P? — {true, false} a join predicate. The result of joining e! with E? is then:

[>4¢,W (61, E2) =

Lo e?pelt if d(elp.e?2p) =t
H_J ((e'.p,ep,ett)) if ¢(e ?U,e D) rue (2.5)
)) , otherwise

€2€AWE2’W(€1.t

21

2 Preliminaries

Active Window of E

A
r A Y

=@ &8 B
(¢ 1o t+2 t+3) t+4 > , .
; [\/1=2,v2=5] ; [vl=5,v2=6]

o DX
e B T e
Vo3) t+4

(el 2 ¢p=E' . v<E>v

t+3 t+4

Figure 2.5: Example of a windowed join between stream E' and E? using two
sliding count windows of size = 2 and ¢ = E'.v < E?.v as the join
predicate.

That is, the event e! is combined with all events of £?’s active window at time
el.t. If such a combined event fulfills the join condition, we create a result event e
with e.t = el.t and the combined payload.

Based on the single event join, the windowed join of two event streams is defined
as follows.

Definition 2.13 (Windowed Join). Let E' and E? be two event streams with
domains P! and P?, respectively. Furthermore, let W' and W? be windows and
¢ : Pt x P? — {true, false} a join predicate. Then, the windowed join >y 2
of E' and E? is defined as:

Dy, w1, w2 (E17E2) = L-'__J{ H-J Dy, w2 (67E2>7 L-'__J N@,Wl <€7 El)} (26>
ecE1 e€E?

Note that the single event join between e € E? and E' uses ¢(ey,es) = ¢(ea, €1)
as join predicate to ensure the correct argument order.

shows an example of a windowed join between the streams E'! and E?
using two sliding count windows of size = 2 and ¢ = E'.v < E%.v as the join
predicate. We examine the event (v = 6,¢ + 4) from E?. At ¢ + 4, the active
window of E'1 is composed of the two events (v = 7,t+4 1) and (v = 5,¢+3). Since
only the latter event fulfills the join condition, a single output event is created at
t+4.

22

2 Preliminaries

Similar to join processing in traditional [DBMSk, windowed joins over unbounded
streams received lots of attention from the research community. In 2003 Kang et
al. [KNV03] analyzed several join implementations, like nested loops, index nested
loops, or hash joins, in the context of stream processing. Based on this analysis,
they present a first cost model for selecting an appropriate algorithm using statis-
tics like arrival rate and selectivity of the join predicate. Moreover, they summarize
the main problems that arise when evaluating windowed joins in an online manner.
These problems fall into two main categories: Plan generation (i.e., selection of the
optimal join algorithm) and resource management (i.e., how to deal with scarce
and main memory resources). Since then, both categories have received con-
siderable attention from the community. For instance, in resource-constrained sce-
narios, load shedding can help to reduce memory and utilization by sacrificing
accuracy of the join results [DGR03; SW04]. Other approaches swap data to non-
volatile storage [UF00] or use punctuations [Din+04; DR04] to reduce main mem-
ory consumption. Plan generation was considered in various scenarios ranging from
single-query n-way joins on single machines [GO03; VNBO03] to multiple indepen-
dent join queries in distributed setups [KRM19]. While single-query optimizers pri-
marily focus on cost models to select proper algorithms and join orderings [GCOS;
Cam15|, multi-query aware approaches usually try to select algorithms that max-
imize sharing opportunities among the considered queries [Wan+06; [WR09]. Fi-
nally, modern hardware like field programmable gate arrays (FPGAL) [TM11], het-
erogeneous processor architectures [GBY09|, and [GPUk [Kol+16] were shown to be
suitable accelerators for windowed join processing.

2.3.5 Sequential Pattern Matching

Sequential pattern matching detects subsequences of events that indicate a situa-
tion of interest. Therefore, it matches the stream to a regular expression comprised
of user-defined predicates. These predicates provide a dynamic definition of the
alphabet. An example of a pattern query is the detection of a faulty cooling system
in a data center. If the room temperature gradually increases by at least 5°C, it is
very likely that the cooling system is not working correctly. The pattern to detect
such a gradual increase is formulated as regular expression AB*C' using the three
symbols A, B, and C with the following conditions:

A : true
B : temp > prev(temp)
C : temp > Atemp+5

23

2 Preliminaries

The intuition behind this specification is as follows. A failure can occur at any
time (A). Then, from this unknown point in time on, we face a continuous temper-
ature increase (i.e., the currently measured temperature is above the temperature
reported by the previous event, B). Finally, this continuous increase results in a
temperature at least 5°C' above the temperature reported at the beginning of the
sequence (C'). Note that symbol C refers to a value previously bound by symbol
A.

Definition 2.14 (Pattern Query). A pattern query PQ™ = ((Sy,...,S,),w, map)
over an event stream F consists of a sequence of symbols (Si,...,5,), n > 0, a
sliding time window of size w > 0, a mapping function map, and a matching
strategy M.

There are two different types of symbols: basic symbols (BSk) and Kleene-star sym-
bols (KSk). A BS essentially is a predicate on the event’s payload. However, unlike
filter predicates, which are restricted to the currently processed event, may
also refer to any prior event in the currently matched subsequence. For instance,
in the temperature example, we compare the temperature of the current event
with the previous measurement to detect increasing values. While a targets
a single event, a S* is a predicate defined on a subsequence of E with arbi-
trary length (including length 0). The map function creates a single result event
from a matched subsequence. Finally, the matching strategy M restricts valid
subsequences (e.g., by only allowing contiguous sequences or skipping irrelevant
events).

In accordance with the literature |[DIGO7; KS18; |Pop+19|, we consider three
matching strategies in this thesis: skip-till-any, skip-till-next, and contiguous.
We first define the notion of a matching subsequence (match for short) for each
of these strategies, before defining the output of the pattern matching opera-
tor.

Definition 2.15 (Match — skip-till-any). Let PQM = ((Si,...,S,),w, map) be
a pattern query over an event stream F with M = skip-till-any. Then, a (not
necessarily contiguous) subsequence r = (ry,...,r,) of E of length p is a match
for PQ™ if the following conditions hold.

(1) rmt<..<rpt
(2) rpt —rt <w

(3) If S is aBY, then S;(r1) holds and (rg,...,7,) is a match of
((S2y...,S0),w— (ro.t —1y.1)).

24

2 Preliminaries

(4) If Sy is a[KS, then either Si(rq) holds and (79, ...,7,) is a match of
((S1,...,8,) ,w— (r2.t —11.t)), or Si(r1) does not hold and (rq,...,7,) is a
match of ((Sz,...,S,),w).

Condition (1) ensures the temporal order among the matched events. For the sake
of simplicity and readability, we assume the input to pattern matching queries
contains no duplicate timestampsﬂ. Condition (2) ensures that the match spans
at most w time units (i.e., obeys the window constraint). Condition (3) addresses
the case of a[BS at the beginning, whereas (4) treats the case of a [KSl

Skip-till-any is the most flexible matching strategy. A matching subsequence is
not required to be contiguous in E. Moreover, events that satisfy a symbol’s
condition can be ignored in a match, which leads to multiple matches starting
with the same event. The computational costs for detecting all subsequences
with M = skip-till-any semantics grow exponentially with the length of the pat-
tern [ZDI14].

The skip-till-next strategy decreases this complexity. It does not allow to skip
events that satisfy a symbol’s condition. As a result, for any event e, there is at
most one match starting with e.

Definition 2.16 (Match — skip-till-next). Let PQ™ = ((Sy,...,S,),w, map) be
a pattern query over an event stream E with M = skip-till-next. Then, a (not

necessarily contiguous) subsequence r = (rq,...,r,) of E of length p is a match
for PQM if the following conditions hold.

(1) r is a match according to skip-till-any semantics.

(2) Between two adjacent events r; = e;, 7,41 = ey in r, there exists no event in
Ejj41,,—1) that satisfies the predicate of the symbol corresponding to 7.

The valid matches of skip-till-next are a subset of the matches of skip-till-any.
Condition (2) prohibits skipping events that satisfy the predicate of the current
symbol. In other words, the pattern is evaluated greedily by always adding the
next possible event to the subsequence.

Finally, the contiguous strategy is even more restrictive since it requires a matching
subsequence to be contiguous in F.

!Typically, contemporary events are treated as alternatives [Hof15]. While this generally in-
creases the computational complexity, it does not affect the core ideas presented in this thesis.

25

2 Preliminaries

Symbol Trace / Matches

Strategy ar, b1, as, ci1, ba, c3)

(

contiguous (ag, 1)

skip-till-next {aq, c1), (a1, b1, c1)

skip-till-any (a2, 1), (a1, b1, c1), (a1, b1, c2), (a1, c1), (a1, c2),
<a17 bla b27 62>7 <CL1, b2a CQ>; <a17 62>7 <CL2, b27 02>

Figure 2.6: Matching subsequences for each of the three matching strategies ap-
plied to an symbol trace.

Definition 2.17 (Match — contiguous). Let PQM = ((Sy,...,Sn),w, map) be a
pattern query over an event stream F with M = contiguous. Then, a subsequence

r = (ry,...,m) of E of length p is a match for PQM if the following conditions
hold.

(1) ris a match according to skip-till-any semantics.

(2) r1,...,m, are contiguous in E (le., 11 =€; => my =€, 11 AT3 =¢€42 A+ A

p = Ciyp-1)-

We illustrate the behavior of the different matching strategies with an example.
Consider the pattern AB*C' and the symbol trace?] in [Figure 2.6, The contiguous
strategy detects only the match (aq, ¢1) because those are the only contiguous sym-
bols that match the pattern. Using skip-till-next results in an additional match
because non-matching symbols are skipped. In our example, (a1, by, ¢1) becomes a
valid match by skipping ay between by and c¢;. Finally, with skip-till-any, the num-
ber of matches increases to 9, since all subsequences matching the pattern are ac-
cepted (especially those that ignore relevant symbols).

After clarifying the semantics for each matching strategy, we can define the se-
quential pattern matching operator as follows.

Definition 2.18 (Sequential Pattern Matching). Let E be an event stream and
PQM a pattern query. The sequential pattern matching operator ppyv detects
all subsequencesﬂ of E that are a match for PQM. Every match produces a single
result event. The timestamp of a result is the maximum timestamp among the
match’s events; the payload is the result of applying the mapping function (map)
to the match’s events.

2The symbol trace is the result of applying the symbols’ condition to the events of a stream.
3We denote the set of all subsequences of an event stream E with P(E).

26

2 Preliminaries

ppou(E) = L‘_"J

reP(E)

2.7)

{((map(r), max e.t)y ,if ris a match according to M

, otherwise

In addition to and [KSk, state-of-the-art languages (e.g., SASE+ [DIGO7])
include additional operators like negation (i.e., non-occurrence of events), Kleene-
plus symbols (variable-length sequences of at least 1 event), or nested sub-patterns
(e.g., A(BC)™D). While integrating those features into the core language allows
for specific runtime optimizations (e.g., negation push-down [ZDI14]), we opt for
a slim core-feature set present in most systems to increase the applicability
of our approaches. However, we discuss the support of those advanced language
features in the corresponding sections.

Due to the high costs for evaluating sequential pattern queries, especially when
using the skip-till-any strategy, the optimization of online received consider-
able attention over the past decade. For instance, Zhang et al. [ZDI14] avoid
the materialization of intermediate results, which reduces the overall resource
consumption (i.e., [CPUl and main memory utilization). Other approaches target
the same goal via lazy evaluation techniques [KSS15] or by adopting join opti-
mization techniques to find the cheapest evaluation order of the pattern’s sym-
bols [MMO09; KS18]. Moreover, Ray et al. [RLR16], and Kolchinsky et al. [KS19]
explore the benefits of sub-pattern sharing in the presence of multiple concurrent
queries.

Orthogonal to those algorithmic optimizations, various parallelization strategies
like partition parallelism |Hirl2|, data parallelism [Bal+13] and pipeline paral-
lelism [SMPO09] are applied to improve the runtime performance on modern multi-
core [CPTk and in distributed setups. In addition to that, co-processors such as
[GPUs [CM12] or FPGAs [WTA10] have shown to be efficient accelerators for se-

quential pattern matching.

Finally, closely related to sequential pattern matching is the idea of event trend
aggregation. The goal of event trend aggregation is not to detect and output every
single match of a given pattern but instead compute aggregations over finite sets of
matches (e.g., all matches within a time window). Poppe et al. [Pop+17; [Pop+19|
recently proposed an approach that computes event trend aggregations under skip-
till-any semantics with quadratic time and linear space complexity (compared to
exponential space and time complexity for computing every match).

27

2 Preliminaries

2.4 Situations

Events are notifications about something that happened in the real world at
a specific point in time (e.g., the temperature in Marburg on December 24th,
12:00 was 0°C'). However, many real-world phenomena do not exist for a single
point in time but last for a while (e.g., the temperature was below 5°C' for the
whole of December 2020). We call such events spanning a period of time situa-
tions.

Definition 2.19 (Situation). A situation s = (ay,...,aq,ts,te) is a d + 2 dimen-
sional tuple consisting d attributes (ai,...aq) and two timestamps (ts,te). We
denote the domain (e.g., integer, string) of the i-th attribute with A%; ts and te are
from a discrete, totally ordered time domain 7 with ts < te. The half-open time
interval [ts,te) specifies the validity of aq, ..., aq. Without the loss of generality,
we assume 7 = N. Analoguous to events (Definition 2.4]), we use the dot nota-
tion to access a situation’s attributes (s.q;) and timestamps (s.ts, s.te). We also
summarize the d attributes of a situation as payload (s.p) over the d-dimensional

domain P = A! x --- x A%

Definition 2.20 (Situation Stream). A situation stream S is a data stream
of situations S = (si,S2,...). All situations of a stream are from
the same domain and ordered according to their end timestamps (i.e., it holds
si.te < sj.te for i < j).

Since situations are associated with a duration, they allow the detection of complex
temporal relationships between real-world phenomena. For instance, rainfall dur-
ing a period with a temperature below 0°C' indicates snowfall. Such relationships
are hardly expressible with timestamped events. Despite these exciting opportuni-
ties, the potential of situations (or interval-based events) in streaming applications
has been widely overlooked. Pipes [KS04] and Microsoft StreamlInsight [Ali+09]
associate time intervals to data, but only use them to express time windows. Sim-
ilarly, Cayuga |[Bre+07] and ZStream |[MMO9] use intervals only to represent the
length of partially matched patterns. In contrast, ISEQ [Li+11] is a system that
allows to detect complex temporal relations in streams of interval events. How-
ever, this approach is limited to interval events only and thus is incompatible with
event-based systems. In this thesis, we bridge this gap by introducing situations
in an event-based system.

28

Index-Supported Offline Processing

Traditional DBMSk utilize indexes, such as BT-trees [BM70] or R-trees |Gut84], to
quickly access the data relevant to a query (and avoid reading irrelevant data).
However, for the offline evaluation of [CQs, indexes have been widely overlooked so
far. Instead, the common strategy is to load the entire event stream from secondary
storage and replayed into an online[SPEL While this ensures unified query semantics
for on- and offline processing, the cost for loading large streams from secondary
storage severely hurt the overall query runtime.

This chapter, leverages indexes to accelerate the offline evaluation of two essential
operators: windowed aggregation and sequential pattern matching. Therefore, we
answer two crucial questions for efficient index utilization: (Q1) How can an index
improve the overall query runtime?, and (Q2) How many and which of the indexes
to use?

For basic filter operations, the results of an index query directly translate into
an answer of the original query, making (Q1) a trivial question. In contrast, a
match for a pattern query is a variable-length subsequence of a stream. FEvery
event of such a subsequence fulfills a user-defined condition and obeys sequential
and temporal distance constraints to its predecessor and successor elements (e.g.,
A followed by B within w time units). Moreover, while the bare symbols of a pat-
tern frequently tend occur within the stream, the occurrence of their combination
as given by the query is typically rare because most patterns aim to detect extraor-
dinary situations of interest. Thus, an answer to (Q1) must effectively combine the
positional and temporal properties of multiple symbols.

Unlike sequential pattern matching, aggregation queries do not benefit from tradi-
tional indexes on single attributes since aggregations do not require data filtering.
Recently, Seidemann et al. [SS17] proposed a technique called lightweight indexing
and showed that it dramatically improves the runtime of ad-hoc non-windowed ag-
gregation queries over event streams. However, windowed aggregation computes
a series of aggregations where adjacent windows may overlap to a great degree

29

3 Index-Supported Offline Processing

B Replay BAI BEOptimal
50

§-5111

Query Complexny (Number of Condmons)

Query Runtime (Seconds)

Figure 3.1: Query runtime for different pattern evaluation strategies as a function
of query complexity.

(depending on the window parameters). Thus, answering windowed aggregation
via a series of ad-hoc queries may lead to lots of redundant computations and
especially redundant reads from secondary storage. Consequently, a satisfactory
answer for (Q1) cleverly utilizes those lightweight indexes to avoid this redun-
dancy.

The experimental results reported in illustrate the challenge of (Q2) for
sequential pattern matching queries. They show the query runtime as a function of
the query complexity (i.e., the number of BSk) for three evaluation strategies. The
runtime of a full stream replay (Replay) is nearly constant since the query is I/O
bound, and the actual pattern evaluation only contributes very little to the overall
runtime. Using all available indexes (All) can speed up queries up to a certain
degree of complexity. However, at some point, the costs of accessing the indexes
are so high that the total execution costs exceed the costs of a full stream re-
play. Nevertheless, as shown by the third strategy (Optimal), an optimal selection
of indexes drastically reduces the query processing time for all degrees of query
complexity. A similar behavior can be observed for windowed aggregation queries
when varying the window’s size and slide parameters.

In this chapter, we develop new index-based evaluation techniques that minimize
secondary storage access and thus improve the overall query runtime compared
to replay-based approaches (Q1). Moreover, we develop cost models and index
selection strategies to determine the most efficient evaluation strategy for a given
query (Q2). To the best of our knowledge, those are the first index-based evaluation
techniques, cost models, and index selection strategies for on persistent event
streams.

The remainder of this chapter is structured as follows. In we review
related work. introduces ChronicleDB, a special-purpose database sys-
tem for event streams. We use ChronicleDB as the basis for our implementations

30

3 Index-Supported Offline Processing

because it offers excellent stream replay performance and support for indexes on
secondary stream attributes. Sections and detail our algorithms and cost-
models for windowed aggregation and sequential pattern matching, respectively.
We experimentally evaluate both approaches in and summarize our

findings in [Section 3.6

3.1 Related Work

This section, discusses research that serves as a basis for our index-based operator
implementations. We first discuss work related to windowed aggregation before
we elaborate on sequential pattern matching.

3.1.1 Windowed Aggregation

In we already discussed evaluation techniques for processing win-
dowed aggregation over event streams in an online fashion. Thus, here we focus
on computing them offline. Windowed aggregation over persistent event streams
has not been addressed in the literature so far. However, the basic idea is closely re-
lated to aggregation queries in temporal databases (so-called temporal aggregation
queries) [KS95]. A (temporal) relation in a temporal database reflects its current
state and captures its entire history (i.e., all insertions, deletions, and updates).
Therefore, the database associates a validity interval of the form [ts,te] to every
record. For instance, for a record inserted at time ¢, the validity interval initially is
[t,00]. An update at ¢’ > ¢ to this record then modifies the interval to [t, ¢ — 1] and
inserts the new version of the record with interval [, oc]. A temporal aggregation
query over such a relation processes the entire history and outputs a sequence of ag-
gregation values that reflect every state of the relation.

In 1995, Kline and Sondgrass [KS95] presented a first approach to answer those
queries efficiently. They propose an in-memory tree structure that is built online
during a single scan of the temporal relation. The aggregates can then be extracted
via a depth-first traversal of this tree. However, their approach has two major
drawbacks. First, it is unfeasible for large temporal relations since it keeps all
data in the main memory. Second, the worst-case runtime of aggregate retrieval
is O(n?), since the tree structure is unbalanced (i.e., it may degenerate to a linked
list). Nevertheless, based on this approach, several optimizations were proposed.
For instance Moon et al. [MLIO3| use a balanced tree to reduce the worst-case
runtime to O(nlog(n)). In addition, they propose a partition technique to handle
relations that do not entirely fit in the main memory.

31

3 Index-Supported Offline Processing

Bohlen et al. [BGJO6] expand upon this classical temporal aggregation by introduc-
ing the idea of cumulative temporal aggregation. Besides the actual aggregation
functions, cumulative temporal aggregation queries take an additional duration
parameter. Then, an aggregated value at time ¢ covers all records whose inter-
val intersects with [t — duration,t]. While this somewhat resembles sliding time
windows, the results are still aligned at the record timestamps and not on win-
dow boundaries. Moreover, they do not use indexes but scan the entire temporal
relation to compute query results.

The Timeline Index |[Kau+13] is a general-purpose (persistent) index structure
that is applicable to a wide range of temporal queries (temporal aggregation, time
travel, temporal join). However, it does neither support windowed aggregation
queries nor cumulative temporal aggregation. Moreover, temporal aggregation
queries require a full index scan, which holds at least one entry per record of the
temporal relation. Hence, the time complexity is similar to a full relation scan.
The work most closely related to our idea is the SB-tree [YWO03]. The SB-Tree
is a disk-resident index that associates time intervals with partial aggregates and
supports cumulative temporal aggregation. However, similar to the approach of
Béhlen et al. [BGJ06] windowed aggregates are not supported. Moreover, for
cumulative aggregation multiple indexes must be maintained and queried. In con-
trast, our approach only uses a single index to support windowed aggregation (even
for multiple aggregation functions and count windows).

3.1.2 Sequential Pattern Matching

Besides evaluation strategies for online pattern matching, our approaches are re-
lated to pattern matching in (temporal) database systems and join processing tech-
niques. We already discussed work related to online sequential pattern matching in
Section 2.3.5. Thus, we focus on the remaining related concepts of index-based se-
quential pattern matching. Nevertheless, our approach can be combined with and

benefit from all online optimizations mentioned in[Section 2.3.5|

String matching. Finding all occurrences of a substring within a larger string
is the most basic form of pattern matching over strings. In 1977, Knuth, Pratt,
and Morris [KJP77] presented a linear time online algorithm that accomplishes
this task with a single sequential scan of the input string. Indexes can consid-
erably speed up the search process when searching for many different substrings
in the same input. Suffix trees [Wei73; McC76] and suffix arrays [MM93] al-
low for substring searches in logarithmic time; wavelet trees reduce search com-
plexity even further to sublogarithmic time [Nav14]. Moreover, Baeza-Yates and
Gonnet [BG96] showed how to use suffix trees (or suffix arrays) to match regular

32

3 Index-Supported Offline Processing

expressions (instead of substrings) in sublinear time. In order to reduce the super-
linear space complexity of suffix trees and related approaches, Cho et al. [CR02]
propose to index multigrams (i.e., short substrings) for regular expression match-
ing. Their index maps multigrams to positions in the source string. This mapping
allows the pruning of irrelevant data, similar to our approach. Tsang et al. [TC11]
further improved this idea by providing a method to select the optimal set of
multigrams.

Another line of research considers the case of matching a (possibly evolving)
set of regular expressions to a stream of input strings. For example, the RE-
Tree [CGRO3| indexes finite automata representing the regular expressions in an
R-tree-like structure. The inner nodes store a coarse representation of the un-
derlying expressions, allowing early pruning of non-promising expressions. Simi-
larly, sigmatch [KTP10] utilizes a combination of tries and bloom filters to discard
inputs where none of the indexed patterns may occur. Thereby they focus on
cache-efficiency for modern CPUs. Each of the discussed indexes requires that the
alphabet of the regular expressions is finite and known a-priori. However, in event
pattern matching, the alphabet is dynamically built from user-defined boolean
expressions per symbol (e.g., range conditions), which renders the use of those
specialized indexes impossible. Therefore, we evaluate the boolean expressions via
widely used indexes, like B*-trees, and utilize the results to prune irrelevant data
from the stream.

Pattern Matching in Database Systems. In the 1990s the active database
community presented several complex event detection models (see [ZU99] for an ex-
cellent survey). Those models cover all features available in modern online systems
like sequence detection, negation, or alternatives. However, efficient evaluation
strategies or index support are not discussed. At the same time, relational database
systems were extended with sequence processing capabilities. SEQ |[SLR95| intro-
duces a sequence data type allowing to correlate sequence elements based on their
position in the sequence, thus enabling the evaluation of simple sequential pat-
terns (without recurring symbols). SRQL [Ram+98] includes those features into
the SQL language. SQL-TS [Sad+01; KMS0§| adds explicit support for sequen-
tial pattern matching, including recurring (nested) patterns and presented efficient
evaluation techniques. However, those techniques focus on avoiding multiple passes
over the sequence data and do not consider indexes to exclude fractions of the se-
quence from processing. Deja-Vu [Din+11] allows the user to perform pattern
matching on live and historical data. However, they focus on how to combine the
results from queries in on- and offline systems and do not consider indexes for
pattern evaluation on historical data. Valdés et al. [VG14] use indexes to speed
up pattern matching queries in trajectory databases. In contrast to event pattern

33

3 Index-Supported Offline Processing

matching, they match whole trajectories and not subsequences of a stream. Hence,
this approach does not support time window constraints. Furthermore, instead of
selecting a subset, this approach uses all indexes available, which can hurt pro-
cessing performance considerably. Garcia-Arellano et al. [Gar+-20] introduce a new
type of event store, but they neither support pattern matching queries nor sec-
ondary indexes to improve query processing. However, they announced secondary
indexes for future releases. Seidemann et al. [Sei+19] present a first approach for
pattern matching in event stores. However, this approach is limited in two ways.
First, it greedily selects indexes until the index access costs exceed the cost gain
from pruning events. This approach often uses less than the optimal number of
indexes because it quickly gets stuck in a local minimum. Second, it does not
consider sequential distance constraints, which leads to reduced pruning power of
the indexes.

Join Processing. Sequential pattern matching essentially is an n-way self join
with limited temporal and sequential scope. The temporal database community
extensively studied the efficient execution of manifold temporal join variants in the
presence of indexing [EWK90; ZTS02; Kau+13] as well as on non-indexed data
[Gao+05]. However, they all focus on the temporal dimension and do not consider
sequential distance constraints (e.g., A before B with no events in between) present
in a pattern query. Another important research direction regarding join processing
is cardinality estimation and access path selection. A major part of our work is
a cost model that decides whether or not to use an index for every element of a
pattern query, i.e., select an access path. The seminal work in this area [Sel4-79|
uses simple statistics based on the cardinalities of the input relations to choose
an access path. Over the years, the community developed more sophisticated
cardinality estimation methods. Mannino et al. summarizes many of them in
[MCS8g|. More recent models, as presented by Kester et al. [KAI17], include
aspects like concurrent queries, the in-memory data layout, data compression, and
the cache-hierarchy of modern CPUs. In addition, Dutt et al. [Dut+19] increase
the accuracy of selectivity estimates using machine learning techniques. However,
those methods focus on estimating the number of join results and do not provide
any information about the sequential distance of join partners, which is vital when
dealing with sequential patterns.

3.2 ChronicleDB

We implement our approaches in ChronicleDB [SS17; Sei+19|, a special-purpose
database system for managing high volume event streams. It stores events in a

34

3 Index-Supported Offline Processing

“TKeys: [min(r), max(1)]
count: # of events

A" min(A"), max(A!), sum(A")

A7 min(A9), max(A%), sum(A)

T |_I__ child pointer
. ﬁ_ﬁ_ﬂ 0

Time

Figure 3.2: TABT-tree index layout with lightweight indexing.

primary index that is a streaming version of an append-only BT-tree with 7 as its
key domain. This index is called Temporal Aggregated BT -tree (TABT-tree). For
fast insertions, ChronicleDB primarily adopts an append-only model, where the
data log is also the database. This model is reflected by the index design. As the
default behavior, insertions are a continuous bulk loading operation in a traditional
Bf-tree index. Under the assumption that the event stream FE is in temporal
order, a new event is appended to the leaf node containing the most recent data
(see [SS17] for the handling of out-of-order events). Consequently, both insertions
and range queries on the temporal domain exhibit a sequential I/O pattern, which
results in excellent insert and replay performance.

Besides the primary index, ChronicleDB allows adaptive and ad-hoc creation of
two kinds of secondary indexes referred to as heavyweight and lightweight in-
dexes. Heavyweight indexes are traditional secondary index structures such as
LSM [ONe+96] or COLA |Ben+07], built for one or more attributes of the stream.
The entries in leaf pages of heavyweight indexes refer to primary index pages
with a record offset. Lightweight indexes are subject to the upcoming subsec-
tion.

3.2.1 Lightweight Indexes

Lightweight indexes are an adaptation of small materialized aggregates (SMAk)
[Moe98]. BMAE store partial aggregates over a small subset of the data (e.g., a page)
in a separate file. Aggregation queries are then answered by scanning this file and
merging the partial aggregates. In contrast, ChronicleDB stores those aggregates
within the inner index nodes of the TAB" -tree. Every child reference is associated

with aggregated information of their respective nodes as shown in An

35

3 Index-Supported Offline Processing

(R (Yes: Feed events to CQ until buffer is not empty N
'
Pull| [" {}
- i |Push Q Push Pull
: Pull LR us %{:} U [Buffer u
Persistent No: Dequeue next result
N Streams) N Replay Operator)

Figure 3.3: Dataflow of the generic replay operator.

index entry consists of an overall event count aggregate and the minimum, maxi-
mum, and sum values for each attribute. Those materialized aggregates allow to
answer ad-hoc temporal aggregation queries (i.e., aggregations over a user-defined
time interval) in logarithmic time. Moreover, lightweight indexing can boost the
performance of filter queries tremendously. For instance, large portions of the
stream can be excluded from processing by intersecting a query range on a sec-
ondary attribute with its materialized min/max range.

We call this technique lightweight because the required aggregates are computed
incrementally during ingestion, offering indexing support at minimal (i.e., linear)
build-up costs.

3.2.2 Replay-Based Continuous Query Evaluation

We use replay-based query execution as a baseline during the evaluation of our
index-based approaches. However, ChronicleDB offers a pull-based iterator in-
terface, while [ESP] systems typically use a publish/subscribe interface to deliver
results in a push-based manner. This means events arriving at an [ESP| system
trigger the processing of operators, which in turn send their results to downstream
operators.

Thus, to seamlessly integrate event-driven query execution into the pull-based in-
terface of ChronicleDB, we implemented a generic replay operator. The operator
wraps a [CQ] and offers a pull-based interface for accessing the query results.
details the architecture of the replay operator. We treat the [CQ]as a black
box and forward query results to an in-memory buffer. In order to feed the[CQwith
input data from ChronicleDB, we issue a replay query for every stream specified
as input for the [CQ Then, we merge the results of those queries into a single vir-
tual stream ordered by the events’ timestamps. When an application asks for the
next result from the replay operator, we first probe the in-memory result buffer.

36

3 Index-Supported Offline Processing

If there is a result, it is removed from the buffer and returned. Otherwise, we pull
events from the source streams and push them into the [CQ] via the virtual input
stream. We repeat this step until one or more results are reported by the [CQ] or
the virtual input stream is empty.

3.3 Index-Based Windowed Aggregation

Our online implementation of windowed aggregation is an adoption of the tree-
based aggregation method presented by Tangwongsan et al. [Tan+15]. The imple-
mentation exploits the fact that windowed aggregation produces exactly one result
per window slide (cf. [Definition 2.11)). It manages a balanced tree (2-3-4 tree)
of partial aggregates. Every leaf entry of the tree holds aggregated event data for
exactly one window slide. The inner nodes also hold partial aggregates, each of
them composed from the partial aggregates of its children. Thus, by ensuring that
all leaf nodes constitute a window, the result for this window can be obtained from
the root node in constant time. When the window slides forward, the eldest leaf is
evicted, and a new leaf is inserted into the tree. Both operations incur logarithmic
costs. Moreover, every incoming event is processed to compute the partial aggre-
gates of a slide/leaf. Thus, online aggregation incurs constant cost per event plus
logarithmic cost per window slide.

3.3.1 Index-Based Processing

Independent of the slide parameter value, the online implementation processes
every event of the input stream exactly once, which is already very efficient for
small slides. For larger slides, we can take advantage of Chronicle DB’s lightweight
indexing by issuing appropriate temporal aggregation queries to omit visiting every
event of the current window/slide. Of course, this is only possible if the requested

aggregate is materialized (cf. [Section 3.2.1).

A straightforward implementation of this approach is to issue a temporal aggrega-
tion query for every window from scratch left). However, this approach
has two deficiencies. First, two consecutive windows may considerably overlap (de-
pending on the slide parameter), which leads to redundant computations. Second
(and more critical), this method may induce a random disk access pattern. In
general, a temporal aggregation query accesses the leaf level of the TABT-tree
twice: Once for the left bound and once for the right bound of the specified time
range — except for the unlikely case that the queried time range aligns with the

37

3 Index-Supported Offline Processing

C J W, [S w7 w7 e ——
\) W, \Sl Sy S3 \S; S5 Sg Sy Sg A
\ﬁf—j W3 N v J W,

Figure 3.4: Index-based processing of sliding window aggregates: naive approach
(left) and optimized approach (right).

time bounds on any level of the tree. Note that the tree path traversed for the left
bound at window ¢ is the same as the right path for window ¢ — Ssl’fdee Consequently,
this approach induces a forward scan only if the database buffer is large enough
to hold all pages required for answering <2< queries. Otherwise, there are two

slide
(random) accesses per window.

To overcome these deficiencies, we implemented a different approach. We use the
tree structure of the online aggregation as described above. However, instead of
aggregating every single event, we issue a temporal aggregation query to compute
the partial aggregate of a single slide in one go. As can be seen in
(right) the queries for slide sy,...,ss do not overlap. Hence, we do not execute
redundant computations. Furthermore, the left tree path of the query of s; is equal
to the right path of the query of s; ;. Thus, this method requires only a fraction
of the database buffer (twice the tree height) for a forward scan access pattern.
The results of those queries are then directly inserted into the 2-3-4 tree, from
which we extract results of the entire window (e.g., Wi, W5 in right).
As we will show in our experimental evaluation, this approach outperforms the
naive approach (i.e., one temporal aggregation query per window) for any slide
value.

3.3.2 Cost Estimation

In the following, we present how to estimate the costs for both the replay-based
and the optimized index-based version in order to decide which method to use

38

3 Index-Supported Offline Processing

Symbol Description

Event rate (events per time unit).

Height of the TABT -tree.

Leaf blocking factor (events per leaf node)
Fan-Out (child references per inner node).

1A .__ slide-r
leaves per slide; L := =45,

SRS

Table 3.1: Symbols used in the cost estimation for windowed aggregation.

in a given scenario. summarizes the symbols used throughout the next
paragraphs.

From an I/O perspective, the index-based approach should be faster than a replay
when the slide parameter covers a certain amount of leaf nodes. Hence, we should
see improvements if slide - r is greater than the average number of events per page
since this allows us to skip the loading of (at least some) leaf nodes. In fact, modern
solid state drives (8SDk) and hard disk drives (HDD) merge multiple small random
reads into a single sequential read, up to a certain degree. Moreover, those disks
feature sophisticated caching and read-ahead strategies, making it impossible to
predict the actual access pattern reliably.

Thus, we base our cost estimation on the number of required computations. Be-
cause we reuse the online aggregator’s tree structure, the only difference in com-
putational costs between both methods is the number of partial aggregate merges
performed per slide. The costs for obtaining a window’s final aggregate values
and the management of the 2-3-4 tree are identical because both approaches
insert and evict partial aggregates on a per-slide-basis. Thus, it is sufficient
to estimate the number of partial aggregate merges per slide to compare both
approaches. As already stated above, the online implementation performs ex-
actly one merge per event. Hence, the costs for this variant are estimated as:
Chreplay(slide) = slide - r. For the index-based approach, we count the merges
while traversing the tree. This number is composed of the following four cases (cf.
Figure 3.5)).

1. 1 merge per tree level, as long as the queried time interval is fully covered
by one child reference.

2. j—i merges on the level where the path splits (I5). Here, ¢ denotes the index
of the child reference intersecting the query range’s lower bound and j the
index of the reference intersecting the upper bound.

39

3 Index-Supported Offline Processing

@ D%L,__l] Single Path
@ \ Split Level
LLTT] LITT]

@ H T OO H Two Paths
L
@ DI[‘% DII:‘E:III Leaf Level

Figure 3.5: Illustration of performed partial aggregate merges during a temporal
aggregation query.

3. For every level below (except for the leaves), we estimate % for each of the
two paths, resulting in approx. D merges per level.

4. We do the same on the leaf level, resulting in a constant of B merges. There
is one exception to that rule: if slide - r < B, the query visits only a single
path down to that leaf. Thus, we add (slide - r) instead of B.

With the split-level computed as ls := [logp(L)] (0 is the leaf level), the costs are
summarized as

Cindex(s) = (h =1 —=15) + (min(l,ls) : {%D + (max (0,1 — 1) - D) + (min (1, L) - B)

(.

) S > % 3))
)

3.3.3 Arbitrary Slide Sizes and Count Windows

So far, we assumed the size to be a multiple of the slide parameter. To overcome
this limitation, we split slide into two parts: slide; = slide — (size mod slide)
and slidey = (size mod slide). Thus, the full size of a window can be composed
as _

size

slide

After populating the tree aggregator with alternating slide slices ((slides, slide,
slide,, ..., slidey, slides)), the computation for each slide removes the first two and
inserts two new slices into the tree before computing the result of the next window.
Note that we always remove and insert slide pairs of sizes slide; and slide, and
hence guarantee the correctness of the produced results. In the general case of

size = slides + { J - (slidey + slides)

40

3 Index-Supported Offline Processing

an arbitrary slide size, the costs per slide are the sum of the costs for both slide
slices.

Cindex(slz'de) = Cindex(slz'del) + C’index(slideg).

Count Windows

Count windows are processed similar to time windows: We merge aggregates at
the highest possible tree-level and proceed to lower levels only if the granularity
of the materialized aggregates is too coarse to fit the current slide. In order to
determine the slide boundaries, we utilize the materialized event count stored with
every index entry of the TAB-tree (cf. . Since the count is not an
absolute value (like the timestamps), we require an additional variable to track
the number of already processed events.

3.4 Index-Based Pattern Matching

The predicates associated with the symbols of a pattern query may be arbitrary
complex. For instance, the cooling system example in compared
current with previous temperature readings. Moreover, predicates may involve
multiple conditions connected via boolean operations (e.g., logical AND, logical

OR).

However, many pattern queries utilize fixed threshold ranges that limit a sym-
bol’s valid attribute values. Use cases featuring such threshold ranges include
the medical field (heart rate monitoring), traffic monitoring (car speed), techni-
cal infrastructure monitoring (temperature sensors), and financial analysis (stock
prices). As an example, consider the detection of illegal insider trading activities in
financial market surveillance. According to the U.S. Securities and Exchange Com-
mission, “illegal insider trading refers generally to buying or selling a security, in
breach of a fiduciary duty or other relationship of trust and confidence, on the basis
of material, nonpublic information about the security” [20]. Thus, a sharp increase
in stock prices due to large order placements indicates insider trading activities.
In [Figure 3.6 we describe this situation with the pattern ABC* D, using the four
conditions A, B, C, D and M = contiguous. The intuition behind this specification
is as follows. The price starts underwhelming (A). After the placement of a large
order (B), the price increases to new heights (D). To account for reaction time
between B and D, we allow an always true condition of variable length (C*) in
between. Note that in this example, every [BSl is associated with a fixed threshold
condition on either the price or the volume attribute.

41

3 Index-Supported Offline Processing

140 = Price Volume 12K
120 I e —

8 100 = A Match 8K §
a 80 6K g
5 c ;‘E
Time

A = Price < 100 Pattern = A

Figure 3.6: Definition of the insider trading detection pattern using the contiguous
matching strategy. The shaded areas highlight for every symbol the
fractions of the stream where the corresponding predicate holds.

The core idea of our approach is to delegate those threshold predicates to sec-
ondary indexes. A clever combination of the index results returns a set of tem-
poral intervals, termed replay intervals in the following. Those intervals repre-
sent the regions of the event stream where all possible matches exist. In order
to compute the results of a pattern matching query, it is then sufficient only to
replay the events falling into those replay intervals. At first glance, using all avail-
able indexes to construct the replay intervals with minimal coverage minimizes
the processing cost. However, as shown in using too many indexes
quickly drives the total query execution cost beyond the cost for a full stream
replay.

We illustrate this effect and our approach using the insider trading detection query.
Assume that an index is available on attributes price and volume. Hence, all
(A, B, D) can be found via index queries. [Figure 3.7| shows the replay intervals
(indicated by the grey boxes) when different indexes are selected. In
(a) the intervals containing potential matches are found by using a single index
on symbol A. For every occurrence a; of symbol A, i = 1,2,3, we compute the
replay interval as [a;.t,a;.t + w]. It is obvious that no match is outside of these
intervals. In (b), the combined information obtained from two index
queries for symbols A and B allows us to prune two of the replay intervals. We
dismiss the first interval because, even though b; occurs within the interval of a;
(and vice versa), they are not adjacent as the pattern requires. Additionally, we
discard the third interval because no B exists within the interval of a3. Finally,
(c) uses all three indexes to compute the replay intervals. However,
this does not reduce the intervals compared to (b) anymore and causes
additional cost due to the extra utilization of an index.

Thus, we have to address two non-trivial problems. The first is the calculation of
replay intervals with minimum coverage for a given set of indexes. This is discussed

42

3 Index-Supported Offline Processing

L] Replay Interval
Interval(a;,w)

f_%

a

@ [T | [e] | [as] L+ Siream
Not adjacent bz not in Interval(as,w)

o o] 5
[a] = [=] > Stream

No improvement

L]
(C) Ia_1| ap 'a_3|

»

> Stream

Figure 3.7: Index-based matching of the example pattern ABC* D highlighting the
replayed fraction of the stream when using (a) an index for symbol A,
(b) indexes for symbols A and B, and (c) indexes for symbols 4,B and
D.

in [Section 3.4.2] The second problem is the selection of indexes that minimize the
overall processing cost, which is the subject of[Section 3.4.3|

3.4.1 Preliminaries

As shown by the previous example, our approach uses secondary indexes to eval-
uate the predicates of the of a given pattern query PQM. In the following,
we use S;q, to refer to the set of of PQM that offer an index for predicate
evaluation and denote its with m. Furthermore, we use S/, = {57,...,5,} to

refer to a subset of S;4, of size k.

We restrict our approach to because they are mandatory for any match of
the pattern. In contrast, a successful match not necessarily contains events for
a [KS. Thus, we can not discard replay intervals based on the non-occurrence
of [KSs. However, in combination with adjacent [BSk, could be exploited to
impose tighter sequential distance constraints. We leave this opportunity to future
work.

Pattern Matching Queries

In order to support tight sequential distance constraints, like A followed by B
with no events in between, we primarily consider the contiguous matching strat-

43

3 Index-Supported Offline Processing

egyﬂ Sequential constraints add additional pruning opportunities that should be
exploited and reflected in the cost model.

We also assume that symbols are associated with range conditions on single stream
attributes because these directly translate into queries on widely used indexes (e.g.,
BT-trees). In addition, pattern queries frequently use such range conditions to de-
fine thresholds (e.g., on heart rates, temperatures, or stock prices).

In [Section 3.4.4] we show how to apply our approach to matching strategies other
than contiguous, how to handle more complex and compound predicates, and how

to apply our approach to richer languages (e.g., languages featuring negation or
Kleene-plus symbols).

Secondary Indexes

Our approach requires range-query support by the secondary indexes to efficiently
look up the pattern’s symbols. We opt for ChronicleDB’s built-in LSM-trees [ONe+-96],
as they offer excellent read and write performance. However, it is possible to trans-
fer our approach to other ordered indexes like B*-trees [BM70] or LHAM [Mut+98].

For our purpose, the entries of secondary indexes consist of a triple (key, seq, t)
and a pointer to the corresponding event in the primary index. The triple is
composed of the indexed attribute value (key), the absolute position of the event
within the stream (seq), and the event’s timestamp (t). These triples allow us to
check both temporal and sequential distance constraints of a pattern query without
accessing the primary index.

3.4.2 Replay Interval Computation

Our approach first computes a set of candidates from which we derive the replay
intervals. Let Idxq,...,Idx; be the secondary indexes that correspond to the
symbols in S;,,. Furthermore, let iy < --- < i; denote the positions/indices of the
associated symbols within PQ (i.e., S = S;,,...). A candidate ¢ = (¢1,...,¢) is
a sequence of k events such that

(C1) ¢; is a result of the range query on index Idx;, i.e., ¢; satisfies the range
condition of Symbol 57,

(C2) et — 1t <w,

ITf not stated otherwise PQ refers to PQM with M = contiguous for the remainder of this
section.

44

3 Index-Supported Offline Processing

(C3) ¢j.seq — cj_1.seq = i; — i1 if none of the symbols S,, ;-1 < ¢ < i; is a[KSl

Condition (C1) only permits candidates where the selected events satisfy the range
conditions of the associated symbols, while (C2) ensures that a candidate is en-
tirely within the window w. Finally, condition (C3) expresses sequential distance
constraints. For instance, two adjacent require a sequential distance equal to
1.

Due to the temporal window w, it follows that the replay interval for a candidate
c is at most as large as [¢;.t — w, ¢1.t +w]. However, in general, S| and S}, are not
the first and the last symbol in the original pattern query, respectively. Because
the temporal distance between two adjacent events is at least 1, we can shorten
the replay interval at the upper bound by the number of between S; and
S1. Similarly, for the lower bound, we shorten the interval by the number of
between S and S,,. This leads to the following definition for the replay interval
of a candidate c:

Interval(c,w) = [cr.t —w + Bps(ix + 1, 1), 1.t +w — Bps(1, 41 — 1)].

The function @s(7,7), ¢ < j, returns for ¢ < j the number of BSk from S5; to S
in the original query. Otherwise (i > j), it returns 0. This interval computation
represents the base case. We can shorten the interval even further for the three
special cases i3 = 1 and/or i, = n, i.e., an index is accessed for the first, last or
for each of these symbols of the pattern. Let us consider these special cases in the
following:

(S1) If iy = 1 Ai < n then Interval(c,w) = [c1.t, ¢1.t + w].
(S2) If iy = 1 A iy = n then Interval(c,w) = [c1.t, ck.t].
(S3) If iy > 1 Aiy = n then Interval(c,w) = [cx.t —w, ck.t].

Depending on the temporal distribution of candidates, the corresponding replay
intervals may overlap or even contain each other. Hence, the final step of our
approach is to merge overlapping intervals. Then, the result is a sequence of
disjoint replay intervals.

The candidates for a given pattern query, and thus the replay intervals, can be
computed efficiently by sorting the index results according to the events’ sequence
number followed by two merge steps. The first merge step discovers all occurrences
of the basic blocks (BBk) for the given pattern. A [BBlis a contiguous sequence of
without any [KS in between. For instance, the BBk of the pattern (A, B, C*, D)
are (A, B) and (D). Within a BBl all symbols must obey fixed sequential distance
constraints with each other. In our example, an occurrence of A must directly

45

3 Index-Supported Offline Processing

Algorithm 3.1: Create Replay Intervals
Input: (BB, = (5,...,5},),..., BB = (S _ 1,-..5;): Selected BBk
Input: (Idxy,...,Idxy): Associated secondary indexes
Input: w: Time window
Output: Set of disjoint replay intervals
1 res < (;
2 bbsy,...,bbs; < 0;
3 foreach i1 €1...ldo

4 results < (;

5 foreach S; € BB; do

6 results; < query(S;, Idxz;);

7 sort(results;, by = seq);

8 results <— results U {results;};

9 | bbs; < merge(results);
10 foreach cand € merge(bbsy,...,bbs;) do
11 if cand.t, ., — cand.t,,;, < w then

12 L res < res U {Interval(cand, w)};

13 return Mergelntervals(res);

be followed by an occurrence of B. We validate these conditions by comparing
the events’ sequence numbers (seq) stored for every entry in the secondary in-
dexes.

The second merge step then assembles all candidates from the results of the first
merge step. A candidate contains one occurrence for every BBl of the pattern
in the specified order and within the window constraint w. In our example, a
candidate must contain an occurrence of (A, B) followed by an occurrence of (D),
where D.ts — A.ts < w. Note that the result sets for every are still sorted
according to the sequence number. For instance for two occurrences (aq, by), (az, b2)
of the BBl (A, B) it holds aj.seq < as.seq and by.seq < by.seq. Moreover, since
event streams are ordered by the timestamp, it also holds that a;.t < as.t and
bi.t < by.t (i.e., the result sets are also temporally ordered). Thus, candidates can
be found by performing a multi-way merge between the results sets of all and
validating the window constraint using the timestamp information of the contained
events. While we used all symbols/[BBk in our example, this approach can also be
applied if only a subset of symbols/indexes (S}, € Si4) is used, by ignoring the
constraints/symbols not contained in 57, .

We summarize our sort-merge-merge approach in [Algorithm 3.1l The algorithm

46

3 Index-Supported Offline Processing

receives a subset of (grouped into [BBk as described above) and the correspond-
ing indexes as parameters. For every BBl we first query the indexes of the contained
BSk. Then, we sort and merge the query results to obtain occurrences for each of
the BBk (Lines 3-9). In the second phase, we find candidates by merging occur-
rences of BBk. If such a candidate obeys the window constraint, we apply the
Interval(c,w) function and add the corresponding replay interval to the result
set (Lines 10-12). Finally, we merge overlapping intervals and return them (Line

13).

We find all candidates within a single sweep over the sorted index results by im-
plementing both merge steps and the interval merge in a streaming fashion. More-
over, it is easy to see that we do not miss possible matches because we apply the
Interval(c, w) function to every candidate before merging.

3.4.3 Index Selection

Next, we present our cost-based index selection strategy for computing the op-
timal set of indexes S}, C S,4, to answer a given pattern query P(Q). We base
our cost estimation on the selectivity of and assume knowledge about those
selectivities. For a symbol S € S;4, we denote the corresponding selectivity with

Ps-

The remainder of the section is organized in the following way. We first iden-
tify different factors that determine the execution cost of a pattern query and
introduce a cost formula to be minimized. Then, we detail our index selection
strategy. Finally, we discuss the I/O cost for both primary and secondary index
access.

Cost Model

The costs for executing a pattern matching query using [Algorithm 3.1| consist of
four components:

— Cp1o the T/O cost for accessing the primary index (in pages),
— Cgsr0 the 1/0 cost for accessing the secondary indexes (in pages),
— Cyort the cost for sorting the secondary index results, and

— (s the cost for the pattern evaluation.

47

3 Index-Supported Offline Processing

Independent of the specific sorting technique (e.g., external or in-memory), Cyon
is monotonically increasing in the number of results returned from the secondary
index queries. Assuming equal-sized entries in secondary indexes, we can derive
the number of results, and hence the sorting cost, directly from Cs;o. Similarly,
Cepqr monotonically increases in the fraction of the stream covered by the replay
intervals (i.e., in Cpjo). Both, Cp;o and Cgjo, are determined by the set of
selected with index support S;,;,. The more symbols S/, contains, the more
data is read from secondary indexes, and thus the higher is C's;o. However, the
higher the number of symbols in §;,, is, the smaller the replay intervals get, and
thus the lower is Cpjo. Given this, we estimate the query execution cost Coyery
for a given set S/, as follows:

Couery(Siar) = f(Crro(Sia,)) + 9(Cs10(Siy,)) (3.1)

Here, f and g are monotonic functions that depend on the physical index lay-
out and pattern matching and sorting algorithms. To give an intuition about the
functions f and g, consider the following setting as an example. Secondary index
results are sorted with an in-memory algorithm (e.g., quicksort). Hence, the ex-
pected runtime for this step is O(nlogn) in the number of results. The pattern
matching algorithm is an automaton-based implementation using the contiguous
matching strategy (similar to SASE+ [DIGO07]). Based on this, we define f and ¢
as follows:

flz) = wpro-x

g<x> - wSIO T + wso'rt ° (IB * 10g2 (fL‘B)) 5

where x is the number of physical pages given by C'p;o and Cgjp, respectively. For
the contiguous matching strategy we experimentally determined that the pattern
evaluation cost per event is nearly constant, because there exist only very few
partial matches at any point in time. This means that C,,, is linear in Cpjo
and f simply scales its argument with an appropriate weight (wpro). Note that
for other matching strategies, f needs to be adjusted accordingly. The function
g consists of two summands. The first scales its argument (Cs;0) with a weight
constant wgyo to account for different physical layouts of primary and secondary
indexes. The second, weighted with w,+, models the cost for sorting the index
results. Note that we need to multiply with a blocking factor B to obtain the
number of elements from the given number of pages. Moreover, the weights must
be calibrated for the actual setting (hardware, physical index layout). We discuss

this calibration step in [Section 3.5.3|
Given |[Equation 3.1, the definition of the index selection problem for a pattern

48

3 Index-Supported Offline Processing

query is as follows. Select a set of index-supported e © Side such that

Couery(S}y,) 1s minimal.

E3 . !
e = argmin Cluery (Sigy)-
S, EP(Szdz)

idx

Here, P(S;4,) denotes the power set of S;4,. According to [Equation 3.1, Cpro and

Csro determine Ciyery. We first assume that those costs are known when discussing
our selection strategy before showing how to estimate them afterward.

Selection Strategy

A naive index selection approach is to try out all combinations of indexes and select
the one with the lowest estimated cost. For m possible indexes, 2™ combinations
need to be checked, making such an exhaustive search unfeasible even for small
values of m. Furthermore, neither a greedy approach that successively selects
from &4, in increasing selectivity order nor a dynamic programming approach
that combines optimal solutions of sub-problems can provide an optimal index
selection. We sketch the problem of the greedy strategy in the following example.
Consider the query PQ = ((A, B*,C, D), 100, map) with S;s, = (A,C, D) and
the corresponding selectivities 4 = 1%, vc = 2%, ¢p = 3%. Let us assume
that symbols are independent and uniformly distributed in the event stream, and
that a window holds 100 events. When selecting a single index, it is obvious that
symbol A with the lowest selectivity is the optimal choice. For two indexes, a
greedy strategy would select C' next. However, A and C' are separated by a [KS],
and hence C' has to occur within 100 events after an occurrence of A. This will
be fulfilled with high probability (1 — (98/100)'% ~ 87%), rendering the use of an
index for C inefficient in this case. A better choice is to use symbols C' and D that
have to be adjacent within stream E for a match. The combined selectivity of
such an adjacent pair is equal to pc-@p = 0.06%. Thus, this selection reduces the
number of replay intervals at the expense of a slightly increased secondary index
cost. In general, this is a better choice than using A and C'. However, the symbols
in the solutions for one and two indexes are disjoint. Thus, a greedy approach is
not suitable for finding the optimal configuration.

While greedy fails in general, it succeeds in the case where no exists. Thus,
we use this observation to produce the optimal index selection for every BBl (cf.

Section 3.4.2)). We first group S;4, into BBk: BBS(Si4,) = (BB, BBy, ...) with
a between each pair of adjacent BBk. Thus, the symbols within a BBl have
a fixed sequential distance to each other. Assuming independent and uniformly

49

3 Index-Supported Offline Processing

distributed symbols, the selectivity ppp for any BB € BBS(S;4:) is then the
product of selectivities of the contained [BSk:

¥YBB = H ¥s (3.2)

SeBB

As a consequence, for any BB; € BBS(Si4,) with |BB;| symbols and any num-
ber of indexes 0,...,|BB;|, we can determine the optimal set of indexes in a
greedy fashion, since both Cp;o and Cg;o are minimized by choosing the sym-
bols with the lowest selectivity. This greedy selection would also be a subroutine
for dynamic programming where we split up the sequence of BBk into two, solve
each of the two subproblems, and combine the optimal solutions to an overall
solution. In the following, we give a counterexample that this kind of dynamic
programming does not return the optimal solution. Let us consider the query
PQ = ((A,t,B,C,t*, D), 6, map), with the three[BBk (A), (B, (), (D) and a win-
dow size of 6. Due to the window size, at most two symbols are permitted between
adjacent BBk (i.e., between (A) and (B,) and between (B, C) and (D)). Let us
assume an independent and uniform distribution of the symbols with selectivities
wa = ¢p = 0.1, pp = 0.05 and pc = 0.25. Our goal is to compute the optimal
solution for three indexes. For the subpattern (A,t*, BC'), the best two indexes
would be the ones associated with B and C. The probability that A occurs within
three events before an occurrence of B is 0.140.9-0.1+0.92-0.1 = 0.262, and thus
not as high as the selectivity of C'. However, it is easy to see (using elementary
combinatorics) that the optimal selection of three indexes for the original pattern
consists of the ones associated with the symbols A, B, and D. The total selectiv-
ity for using indexes on A, B, D is 0.002615, whereas for A, B,C and B,C, D it is
0.0070125. Thus, the optimal solution for three indexes does not contain any of
the two possible optimal solutions for subproblems of size two, (A,t*, B,C) and
(B,C,t*, D). This demonstrates that dynamic programming is not suitable for
finding the optimal configuration.

However, due to the monotonicity of the functions f and g, it follows that for
a given number of indexes, the optimal configuration is in the two-dimensional
Pareto frontier (aka skyline [BKS01]) over Cpro and Csro. As shown by Rosen-
man and Gero [RG83|, the Pareto frontier of a given problem can be computed
from Pareto frontiers of disjoint subproblems. We use this result in our ap-
proach.

Let L and R be two subproblems (i.e., disjoint subsets of BBS(S;4,)). Further-
more, let L; and R; be the Pareto frontiers for L with ¢ indexes, and R with j
indexes, i,j € {0,...,m}. Then, for any k € {0,...,m}, we compute the Pareto
frontier (L+ R) from the cross-product of the Pareto frontiers for the correspond-

20

3 Index-Supported Offline Processing

Algorithm 3.2: SelectIndexes
Input: (BBy,...,BB,): BBk to consider
Input: m: Number of with index support

Output: Pareto frontiers [reso, ..., res,;,| with res; containing the
optimal configuration for £ indexes
1 res < [Do, ..., 0]

2 if w =1 then
3 | foreach k€ {0,...,m} do
4 L res|k] <— greedySelect(k, BBy);

5 else

6 L < SelectIndexes ((BBl, e ,BBU/Q) ,m);

7 R <+ SelectIndexes ((BBU/2+1, ...,BB, ,m);
g8 | foreach ke {0,...,m} do

9 foreach i€ {0,...,k} do

10 | res[k] < res[k] U (L[i] x R[k —i]);

11 res|k] <= Pareto (reslk]);

12 return result;

ing sub-problems:

k
(L + R), = Pareto <U L; x Rki>

1=0

Based on this, [Algorithm 3.2| recursively computes the m Pareto frontiers over
Cpro and Cgjo from which we extract the optimal index configuration. The input
parameters are the[BBk of the pattern query and the total number of with index
support (m). In Line 1, we create the variable res that stores the final results (i.e.,
the Pareto frontiers over Cpro and Cgjo for each k = 0,...,m). The recursion
ends if the input consists of a single BBl In this case, we greedily compute the
optimal solution for each k by selecting the k symbols with the lowest selectivity
value (Lines 2-4). Note that res[k] remains empty if the given BBl contains less
than k with index support, which reduces the number of computations in the
recursive steps. If the input consists of u > 1 BBk, we split them at u/2 and
recursively compute the Pareto frontiers for the resulting sets of BBk (L, R, Lines
6,7). From those results, we assemble the solutions for u BBk as described above
(Lines 8-11). The m Pareto frontiers are returned in Line 12. S}, is then the

configuration with the lowest overall execution cost (Cyyery, [Equation 3.1)) among
all results in the m Pareto frontiers.

o1

3 Index-Supported Offline Processing

The runtime complexity of [Algorithm 3.2{ depends on the number of BBk (u) and
the number of with index support (m). It is given by the following recurrence
relation.

u
T(u) = 2T (—) v+ m P m X (3.3)
\‘f—/2 outer inner loop =~
. loop cross product
recursion _,

Vv
Pareto computation

In |[Equation 3.3, PT(n) = O(nlogn) denotes the time for computing the two-
dimensional Pareto frontier for an input of size n [KLP75]. Moreover, X,, is an
upper bound for the size of the 2m Pareto frontiers obtained from the recursive
steps (Lines 6,7). Due to our greedy selection at the level of BBk, it holds that
T(1) = m and X; = 1. Thus it is easy to see that, if the size of the Pareto frontiers
is smaller than a constant ¢ (i.e., X, < ¢, Xy» < ¢,...), the time complexity of
our algorithm is O(u m*logm). However, in the worst case, the merge of two
Pareto frontiers equals the cross-product of its inputs (i.e., none of the merged
entries dominates another one). Moreover, every frontier participates in at most
m merges (cf. inner loop of [Algorithm 3.2 Lines 9,10). This leads to the following
worst-case expression for the size of X,:

Xy=m-X, (3.4)

Thus, the Pareto frontiers grow exponentially (X; = 1, Xy = m, Xy = m?, Xg =
m”,...) in the worst case, and so does the runtime of our algorithm. However, in
practice, the Pareto frontiers rarely contain more than one element because there
is a strong correlation between Cpro and Cs;o. As a result, in our experiments,

we experienced a runtime of O(u m?logm).

1/0 Cost Estimation

The 1/O costs for answering a pattern query are composed of the cost for the
primary index (Cpro) and the cost for the secondary indexes (Csro). Csio is a
weighted sum of a linear function of the result size and an index specific term
(e.g., O(logn) for Bt-trees, O(log®n) for LSM trees). Because the first term is
generally dominant, we assume that Cs;o is linear in the number of results re-
turned from the secondary indexes. It follows that Cs;o is then the size of the
index files times the selectivities of the range predicates associated with in

7,{da:‘
For a given set Sj,,, the fraction « of the source stream E covered by the generated
replay intervals determines Cp;o. We estimate o by approximating [Algorithm 3.1]

52

3 Index-Supported Offline Processing

as follows. First, we construct a probability distribution £ over the candidate
lengths. Then, we use this L-distribution to compute the average number of
candidates that obey the window constraint. Finally, we approximate the merge
of overlapping intervals with an urn model. This leads to the following equations
for a:

Ny
o extend(pc) .
a= 1-— (]_—m) ,Wlth (35)
fe = E(X | X <w) , X~ L

Equation 3.7 returns the average length g, of all candidates that obey the win-
dow constraint (expressed as conditional expectation). The number of candi-
dates Ny is derived from the product of total number of events
within the stream (IV), the selectivity of the first selected symbol (¢g), and the
probability that a candidate obeys the window constraint (P(X < w)).
directly follows from [Algorithm 3.1} Initially, every occurrence of S]
is considered a candidate (NN - ¢g). After adding more indexes, the candidate
length increases, and candidates that exceed the time window are filtered out

(P(X <w)).

The function extend(u.) returns the replay interval length from the given candidate
length p.. Its definition is directly derived from the function Inverval(c,w) in
Section 3.4.2, For example, in the base case, the replay interval length is 2(w —
(cp.t — c1.t)), and thus extend(p.) = 2(w —). For the special cases (S1) - (S3)
of Interval(c,w), closed formulas for extend(p.) are obtained in a similar way.
Based on N; and extend(u.), we compute « as follows. We partition the covered
time interval of E ([e1.t,eyn.t]) into disjoint buckets of length extend(u.); for the
sake of simplicity assume that extend(u.) is a divisor of ey.t — e;.t + 1. Then,
we uniformly distribute N; intervals over the buckets as it is known from an urn
model [Fel71]. This allows us to apply the well-known formula of Cardenas |Car75|

as shown in [Equation 3.5}

Probability Distribution £ Next, we show how to construct the probability
distribution £ over candidate lengths. Let us first make the following assump-
tions:

(A1) Every B3 S, is uniformly distributed in E with probability ¢;.

23

3 Index-Supported Offline Processing

(A2) The temporal distance between two adjacent events in E is constant: e;.t —
Gi_l.t = At = (GN.t — 61.t)/N, 1= 2, Ce ,N.

We first study a base case with two Kleene-star-separated A and B with
selectivities 4 and ¢p, respectively. Then, the timespan between an occurrence
of A and the next occurrence of B determines a candidate’s temporal extent. (A1)
and (A2) allow us to model the arrival of symbols as a Poisson process. Hence,
the inter-arrival time between two occurrences of B is exponentially distributed
with parameter A\g = ¢p - At™! [Bha08]. Moreover, due to the memorylessness
propertyﬂ of the exponential distribution, the probability that B occurs within w
time units after an occurrence of A equals P(X < w), X ~ Exp(Ag). Hence, in
this case L = FExp(Ap).

Next, we consider the case of multiple BSk. Let S, = (57, ..., S}.) be a sequence of

index-supported in the order they appear in a pattern, and ¢q, ..., @ the cor-
responding selectivities. Furthermore, assume that a in PQ is added between
a pair of adjacent BSk. Then, the length of a candidate is the timespan between
an occurrence of S] and the first occurrence of S} after all remaining symbols
(S5, ...,5,_1) occurred in proper order. Under assumptions (A1) and (A2), the
candidate length is given by a compound random variable Z7 = Xy +- - -+ X}, with
X; ~ Exzp(\; = ;- At™1), 2 < i < k. The distribution of Z is called hypoexponen-
tial [Bol+06] with parameters Ao, ..., Ap. Hence, it follows that £ = Hypoy,. . »,-
In order to compute g, and N; (Equation 3.7), we use the closed
forms for the probability density function and the cumulative distribution for
Hypo, see |Bha08] for details.

Finally, we consider the general case where blocks of more than one exist. In
other words, we consider a sequence of Kleene-star separated BBk. For every BB
the selectivity is the product of the corresponding symbol selectivities (see
. Thus, we compute arrival rates for every [BBland apply the hypoexponen-
tial distribution for our estimation on the granularity of [BBk.

Adaption to Non-Uniform Data So far, we assumed a uniform symbol distri-
bution (A1) and a constant At (A2) in our estimation of Cp;o. However, these
assumptions may not hold in real-world applications because streams generally
follow trends and periodic behaviors.

In order to address this problem, we utilize ChronicleDB’s lightweight indexing.
Recap that every index entry of the TABT -tree stores the event count, the covered

2For any exponentially distributed random variable X and two values t,x it holds: P(X <
r+t|X >t)=P(X <ux).

o4

3 Index-Supported Offline Processing

period, and the minimum and maximum values per attribute for a contiguous
subsequence of the stream (cf. . Thus, a certain level of the TAB™ -tree,
can be viewed as a temporal histogram of the stream, with the index entries being
the histogram buckets. Such a histogram is essentially a coarse representation of
the stream that we use to detect the substreams required to answer a given query
and to improve our cost model’s accuracy. Let e.a; € [low, high] be the range
condition of a BY S € Sigy, and [A’, Al] the min/max range of attribute
A7 for a given histogram bucket. If the intersection of those ranges is empty, S
does not occur within the substream covered by the bucket. We compute this
information for every S € S;4, and every histogram bucket. Then, we perform
pattern matching over histogram buckets. In analogy to pattern matching on
our original stream, we move a window of size w over the histogram buckets in
temporal order to filter out substreams (and histogram buckets) without a match.
Thus, it is sufficient to check the remaining substreams associated with histogram
buckets not excluded in the filter step. We term these remaining buckets coarse
pattern map (CPM]).

In addition to pruning irrelevant substreams, [CPM] serves to improve the quality
of our cost model as follows. Instead of assuming a uniform temporal symbol
distribution (A1) and a fixed At (A2) for the entire stream, we only require that
these assumptions hold within a substream (bucket). For such a substream, we
compute the symbol selectivity and At, and use them in our cost model. For
instance, assume a stream with N = 10°, and a symbol S with pg = 0.1%. In this
setting, S will occur 1000 times within the stream. If we find that only 2 out of
M = 1000 substreams may contain S, we can estimate that S occurs every second
event in those substreams. Hence, we adjust its arrival rate to 2At. Similarly, /At
is adjusted by dividing the covered period by the number of contained events for
every remaining substream. Clearly, the quality of the results improves with the
resolution of the histogram (i.e., M). However, with increasing M, the costs also
increase. We will discuss this trade-off in [Section 3.5.3]

3.4.4 Extensions

In the following, we discuss how to overcome the limitations introduced at the
beginning of this section. First, we show how to apply our approach to matching
strategies other than contiguous. Then, we discuss the handling of advanced fea-
tures of state-of-the-art [CEP] languages and complex symbol predicates. Finally, we
show how to further shorten the replay intervals by exploiting knowledge about the
minimum and maximum temporal distance between adjacent events.

29

3 Index-Supported Offline Processing

Original Semantics Rewrite
-P Negation true
P| Py Alternative: P; or Py true
pt 1 or more occurrences of P (P, true*)
P? 0 or 1 occurrence of P true*

P{n,m} Between n and m occurrences of P (P,..., P, true*)
~—_———

n times

Table 3.2: Pattern rewrite rules.

Matching Strategies

The difference between contiguous and the other strategies is that only contiguous
defines tight sequential distance constraints between adjacent [BSk. In contrast,
skip-till-next and skip-till-any allow to skip irrelevant events between BSs. Our
approach already deals with variable distances between BBk. Hence, to support
those matching strategies, it is sufficient to insert a true* symbol between every
pair of adjacent BSk, because this way, we map every to a dedicated basic
block.

Complex Patterns

The basic idea is to rewrite more complex patterns to match our definition and
cover all matches of the original query.

As a first step, we modify the symbol predicates to only consist of single-attribute
range conditions. Therefore, we inspect every atomic predicate of every symbol.
If the predicate is a supported range condition, it remains unchanged. In all other
cases, we replace it with the constant value true. After simplifying the resulting
boolean expressions, each symbol is either associated with the constant value true
or a sequence of range conditions connected via boolean operators (AND, OR),
which our approach can handle. Obviously, the results fulfilling the modified pred-
icates are a superset of those fulfilling the original condition. Hence, these modi-
fications do not affect the correctness of our approach.

The second step applies a set of rewrite rules to the original pattern in order to
eliminate unsupported quantifiers and nested sub-patterns. Therefore, we recur-
sively apply the rewrite rules sketched in in a top-down manner. The
recursion ends if the pattern only consists of and true* symbols. Note that

26

3 Index-Supported Offline Processing

the simplifications to true* for does not affect our approach, since we do not

consider their predicates anyway (cf. [Section 3.4.1)).

Negations and alternatives have no direct support in our approach. Depending
on whether P is a single symbol or a complex pattern, we map those quantifiers
to true or true* respectively. For the remaining quantifiers, our mapping pre-
serves the lower but dismisses the upper bound for the number of occurrences.
It is easy to see that the results of the rewritten pattern contain all matches
of the original one. Hence, the rewrites do not affect the correctness of the re-
sults.

Example. Consider the pattern query PQ = ((A,(B,C*)",D),w,map). The
first step is to resolve the Kleene-plus on the nested sub-pattern (B,CT)". This
results in the following pattern: (A, B,C*, true*, D). Then, we resolve Ct and
receive (A, B, C, true*, true*, D). Finally, the adjacent true* symbols are consoli-
dated and we obtain a query that matches our definition.

Replay Interval Shortening

Suppose the system provides the minimum and maximum temporal distance be-
tween two adjacent events (denoted as At~ and At™, respectively). In that case,
we can further shorten the length of the replay intervals as generated in
tion 5.4.2)

First, in the base case of Interval(c,w), we shift both interval bounds depending
on how many must occur before/after the candidate c¢. Therefore, we assumed
a minimum temporal distance of 1. For instance, if S} = S;, we could shrink the
right interval bound by 7 time units. With knowledge of the minimum temporal
distance, we can extend this to ¢ - At~ units since we know that the symbols
S1,...,95;_1 span at least this amount of time.

Second, knowledge of At™ allows us to apply the three special cases (S1) - (S3) to
a broader range of configurations. Recap that these cases required the first and/or
last symbol to be present in the index results. In contrast, with knowledge of At™,
it is sufficient to have a member of the first and/or last BBlin the index results. For
instance, consider the case 1; = 1,4, = n—2. For a given candidate, the generated
interval would be [¢;.t, ¢1.t + w]. However, if we know that i, belongs to the last
BBl we can create a shorter interval: [c;.t, ¢t + 2AtT], since we know that a valid
match ends within two events from cy.

57

3 Index-Supported Offline Processing

3.5 Experimental Evaluation

This section reports the most important findings from the extensive experimental
evaluation of our approaches. We first describe the system setup used throughout
all experiments. Then, we present the results for each of the operators.

3.5.1 System Setup

We use a workstation equipped with an AMD Ryzen5 2400G [CPUCPU@3.4GHz
(4 cores, 8 threads), 32GB of memory, and a Samsung SSD 970 EVO for the
primary index and secondary indexes. The system runs on a Debian Linux (sid,
kernel version 5.7). We implement our approaches in Java as an extension of
ChronicleDB, and use Oracle’s Java Virtual Machine (IVM) 14.0.2 for execu-
tion.

For every data set the TAB"-tree was bulk-loaded with a fill-factor of 90%. The
secondary indexes are LSM-trees using a single data file per level. Both indexes
utilize 8 KiB pages.

3.5.2 Windowed Aggregation

We compare the processing time of both index-based approaches (Optimized,
Naive) and a pure Replay-based solution. Therefore, we create two synthetic
event streams with random data.

Data Sets & Queries

The streams cover one week of data with a frequency of 100 events/second, result-
ing in 60, 480, 000 events. The first stream consists of 16 byte-sized events (a single
double-precision floating-point attribute and the timestamp), which leads to a fan-
out of 152 for the inner TAB*-tree nodes and 458 events per leaf node. The events
of the second stream are 80 bytes in size (9 double-precision floating-point at-
tributes and the timestamp), resulting in a fan-out of 23 and 90 events per leaf. The
disk sizes of both streams are 555 MB and 2.9 GB, respectively.

We compute sum, average, and count aggregates for a single attribute and a win-
dow duration of one day. We vary the slide parameter from 10ms (1 event per slide)

o8

3 Index-Supported Offline Processing

—+— Optimized —— Naive —+— Replay —t— Optimized —»— Naive —+— Replay
1000 1000
w w
B &*& g
S 100 S 100
(8] (8]
[} Q
&L QL
s 10 o 10
£ £
F F
g 1 g 1
[} (9]
(%] (%]
(]]
g 01 s 01
o O WO (D (O (O SISO o S o (D O O NI
o 09» NN q}“,\,g@,bg@q, B a 09'» N PP q}{‘,&@,bg@m B
Slide Size (seonds) Slide Size (seonds)
(a) 80 byte events (b) 16 byte events

Figure 3.8: Processing time of sliding time window aggregation for varying values
of slide using different event sizes.

to 1 day (whole window) and measure the execution time for all approaches. More-
over, we limit ChronicleDB’s page cache (LRU) to 50 pages to highlight the impact
of the disk access pattern induced by each method.

Note that the performance of the replay-based variant solely depends on the num-
ber and size of events to read. Similarly, the performance of the index-based
variants depends on the height and the fan-out of the TAB"-tree, which in turn
depends on the number of materialized aggregates (i.e., the number of attributes).
Thus, we omit experiments with varying aggregate functions and data distribu-
tions.

Results

Figure 3.8 shows the results for executing the operator over both streams. As
expected, the execution time of Replay is nearly constant since it always reads
the entire event stream. Both index-based approaches are significantly slower for
very small slide values because the TAB" -tree is traversed for every output event.
However, Optimized outperforms Replay for slide values greater than 5 seconds
(80-byte events) and 2 seconds (18-byte events) because the temporal aggregation
query performs fewer merges per slide. Naive needs much larger slide values to
outperform Replay: 120 seconds (80 byte events) and 30 seconds (16 byte events).
For slide values of 300 seconds (5 min, 80-byte events) and 900 seconds (15 min,
16-byte events), the processing time for both index-based solutions drops faster
than for smaller slide values. The reason is that at this point, the disk actually
begins to skip pages instead of merging scattered random reads into one large

29

3 Index-Supported Offline Processing

sequential read. The vertical black line shows the break-even point estimated by
our cost model and clearly confirms its validity.

3.5.3 Sequential Pattern Matching

We evaluate our approach in a broad set of use-cases on both synthetic and real-
world data. Before discussing the results of our experiments, we first describe the
methods and systems under evaluation, the data sets, and explain the structure
of the queries.

In addition to the method Replay that replays the entire stream, we examine our
method for computing replay intervals (Algorithm 3.1)) and the following four index
selection strategies. All uses all available secondary indexes. Greedy selects the
k least selective symbols for £k = 1,...,m and chooses from these m options the
one with the lowest expected cost according to our cost model. Optimal performs
index selection as described in [Section 3.4.3] We also implement Budget, which
is the index selection strategy proposed in [Sei+19].

Our testbed uses the in-memory sort algorithm from the Java standard library
(a quick-sort variant) and a pattern implementation based on a finite state au-
tomaton [DIGO7]. For the monotonic functions f and g as presented in
tion 3.4.3] we set the three weights as follows after a series of calibration experi-
ments: wpro = 1.13, wgro = 2.53 and wye,y = 12.73.

For every data set, we conduct two types of experiments. First, we compare query
runtimes of our approach with Apache Flink [Car+15] (Flink) and a commercial
relational database system with support for sequential pattern matching (DBMS).
Both systems support pattern matching via the MATCH_RECOGNIZE (MR])-clause
and process those queries via a full stream replayﬂ To highlight the versatility
of our approach, we also integrate our prefiltering technique into those systems.
Second, we discuss selected aspects of our approach using our Java-based imple-
mentation.

We run Flink in a single node configuration because our queries do not use key-
based partitioning. In those cases, Flink shifts all load to a single node any-
way [21]. Thus, a single node setup is preferable over a cluster setup since no
data is transferred over the network. We connect our primary index implemen-
tation to Flink and use it as the data source since this combination was superior
to any other data source. For index-based execution, we prefilter the stream at

3The MATCH_RECOGNIZE clause for pattern matching was recently added to the SQL stan-
dard [16].

60

3 Index-Supported Offline Processing

the data source and only replay the events falling into the generated replay inter-
vals.

For the DBMS, we store the event streams in an index-organized table on the times-
tamp attribute and create secondary indexes for each attribute used in the respec-
tive queries. The queries use the MR}clause. For index-based execution, we com-
pute the replay intervals using our Java framework/index implementation and ex-
ecute a MRl query for each of the generated intervals. In all comparisons with Flink
and DBMS, we use Optimal as index selection strategy.

Synthetic Data The synthetic event stream contains 50 million (50M) events,
each 128 bytes in size. The timestamps of the events are e;.t =4, i =1,...,50M.
Moreover, the events contain five double-precision floating-point attributes Ay, ... As
with values from the unit interval [0,1). Furthermore, we build an index for
each of the attributes. The attributes values follow normal distributions given

by
i, .
A~ — 1,... .
ei-A; N(5OM,aAj>,f0rj€{, .5}

Note that the i-th event has a mean i/50M for all attributes, i.e., it is a linear
function in 7. The variance 034], of the normal distributions only depend on A4;, 1 <
j < 5. A setting of the variance allows us to control the temporal correlation of
the underlying distributions. We use the following settings in our experiments:
o4 =0, 04, = 0.001, 04, = 0.01, 04, = 0.1, and 04, = 1. For example, the
distribution of A; returns values varying linear with i, while for A5 we obtain
a uniform distribution because values outside of the unit interval [0,1) are not
considered.

Pattern Queries Pattern queries consist of m S1,..., Sy, and a varying num-
ber of [KSk. In order to generate [BSk, we assign one of the attributes (A, ..., As)

to a basic symbol S;, ¢ € {1,...,m}, which determines the distribution of the [BSk.
Then, we create the corresponding range condition. The query range randomly
covers between 0% and 10% of the domain, and its position is also randomly gen-
erated. In order to insert IKEEEL we randomly pick a number z € {1,...m — 1}
and insert a between the S, and S, 1. Then we proceed recursively on the
index set {x 4+ 1,...,m — 1} until the index set is empty. This results in log,(m)
on average and [BBk of varying length. The window for all queries is set to 300
time units.

4Recap, that we treat as variable length sequences. Hence, an always-true predicate is
sufficient for our purpose.

61

3 Index-Supported Offline Processing

Real-World Data We examine two real-world event streams in our evaluation.
The first stream contains crimes occurring in the city of Chicago from January
2001 to June 202@. It consists of about 7M events. Every event represents a
reported crime with 22 attributes (130 bytes in size). In our experiments, we
create a secondary index on four attributes: The primary category of the crime
(e.g., assault, battery), latitude and longitude reflecting the location of the crime,
and beat. A beat is the smallest unit in terms of geographic region used by the
police.

The second data set contains real-world trajectory events from the OpenSky Net-
work [Sch+14], an open infrastructure for collecting flight data. The examined
event stream consists of 50M events representing the movement of a single aircraft
over three years. Every event consists of 17 attributes and occupies a total of 155
bytes. We use three attributes (velocity, altitude, vertical speed) to define the pat-
tern symbols, each equipped with a secondary index.

Results for Synthetic Data

The first results of our experiments address various aspects (query runtime, cost
estimation, selection algorithm) of our approach under ideal conditions for the cost
model, i.e., a uniform data distribution. Therefore, the range conditions of all
refer to attribute As. We vary the amount of BSk (m), and executed 100 generated
queries for m = 2,4, 8,16, 32.

The runtime comparison in|Figure 3.9 (a)|reveals that for the replay-based variants
(Replay, Flink, DBMS), the query complexity has almost no impact, which

supports our claim that the queries are I/O bound. Even though they use the
same storage backend, the runtime of Replay is superior to Flink. The reason
is that running a full-fledged system induces a considerable overhead compared
to our lightweight implementation. However, both methods benefit significantly
from indexes (Index, Flink Index), which reduce the runtime up to an order of
magnitude. We observe the same behavior for DBMS and DBMS Index, even
though executing a [MR] query for each of the replay intervals introduces additional
overhead.

Next, we compare different index selection strategies using our Java-based im-
plementation. Therefore, we execute the queries using the four index selection
strategies All, Greedy, Optimal, Budget. [Figure 3.9 (b)| shows the average
speedup compared to Replay for every strategy as a function of m. Clearly, All

5 Available at https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-Present/ijzp—-qg8t2

62

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

3 Index-Supported Offline Processing

B Replay E Index B Flink BAIl B Greedy E Optimal O Budget
& Flink Index @DBMS MR @ DBMS Index 100
1000

100

10

Speedup

1

Query Runtime (seconds)

10
0,1
2 4 8 16 32

2 4 8 16 32
Query Complexity (Conditions with Index Support) ~ Query Complexity (Conditions with Index Support)

(a) (b)

Figure 3.9: Query runtimes (a) and speedup of different index selection strategies
compared to replay (b) as a function of the query complexity.

quickly leads to severe performance degradation (5x slower than Replay). Bud-
get performs only slightly better than Replay on average (up to 5x in the best
case). The reason it that if none of the symbols is highly selective (< 1/w), the
algorithm stops after the first index. The low low-selectivity query fails to filter
out any primary index data (i.e., the replay intervals cover the entire stream),
and thus the algorithm gets stuck in a local optimum. In contrast, Greedy and
Optimal are able to boost query performance in all cases, and achieve up to 20x
speedup compared to Replay. On average, Optimal provides a 20% performance
improvement over Greedy. In some test cases, the improvements reached a factor
of 2.

Next, for each of the queries we consider the relative cost estimation error Errpro
that is determined by the actual and estimated primary index [/O (Céuel Cestimated)

as follows.
E _ ’ Cactual o Cestimated |/ Cactual
rreio = | “pro PIO PIO -

shows the results of this experiment as a boxplot. The boxes span the
25th to 7Hth percentiles; the orange line indicates the median, and the whiskers
are the 5th and 95th percentile of Errpjo. A great majority of the errors are
beneath 5%, which clearly confirms the accuracy of our cost model. However, for
m = 32, the error slightly increases. In this case, the secondary indexes prune
most of the primary data, and thus there is a small absolute error but a high
relative one.

In addition to the query runtime and estimation error, we also study the perfor-
mance overhead of our selection strategy Optimal in terms of runtime and number

63

3 Index-Supported Offline Processing

0.30 B Combinations B Time
1E+4 100
0.25 A
0.20 1 1E+3 10
Q @ @
£ 0.151 S 1E+2 1 £
w e)
0.101 5 E
E 1E+1 01
o
0.05 A | b J
0.00 L= . 1E+0 0.01
' ;) i ' § 2 4 8 16 32
2 4 8 16 32

Query Complexity (Conditions with Index Support) Query Complexity (Conditions with Index Support)

Figure 3.10: Errpro as a function of Figure 3.11: Average index selection
the query complexity. time and number of exam-
ined index combinations
for Optimal as a function
of the query complexity.

of examined index combinations. shows that the number of examined
combinations is much smaller than for the naive variant. For instance, our strategy
checks only 1689 out of 232 combinations on average for m = 32. Also, the average
runtime of 70 ms (m = 32) is negligible compared to the runtime of a full replay
(~ 20 seconds). Note that the runtime of selection strategies Greedy and All are
only a few nanoseconds independent of m, because the number of examined com-
binations is very low (one for All and m for Greedy).

In order to give more insight into the accuracy of our cost model, we present addi-
tional results for the estimation of C'p;p on a single query with m = 8. For the 256
possible execution plans of the query, [Figure 3.12 (a)|shows the relative estimation
error for each plan (ranked with respect to the estimated cost). With an average
Errpro value of less than 5% and only 5 values above 30%), it confirms the accuracy
of our Cpjp estimation. Those outliers correspond to small absolute errors (< 3
MiB) that translate into high relative errors. [Figure 3.12 (b)|shows the measured
processing time as well as the estimated overall query cost Cyyery (see
for each of the 256 execution plans. The results are ranked on the x-axis accord-
ing to Cyuery- In summary, the small differences between processing time and
estimated cost confirm the accuracy of our cost model.

Results for Non-Uniform Data In the following, we present the results for query
runtime and cost estimation accuracy for the case of non-uniform data distribu-
tions. For m = 8, we assign one of the to a selected attribute from Ay, ..., As,
while the remaining m — 1 symbols still refer to A;. Again, we run 100 randomly

64

3 Index-Supported Offline Processing

m Frrpo —— Average Errppo

I Processing Time —— Estimated Costs
0.4 30
3
03 § ‘
g/ 20 Ivvy||||||
o [0}
£0.2 =
. 2 il
% 0 i Il
0.1 a
e
o S AU TRRPRRBTI A B LT] = |
Execution Plan Rank (1-256) Execution Plan Rank (1-256)
(a) (b)

Figure 3.12: Errpro (a), and query processing time (b) for all execution plans of
a single query with m = 8.

generated queries for every setting. The results of the runtime comparison are
shown in [Figure 3.13 (a)l The replay-based variants are insensitive to the data
distribution because the queries are 1/O bound. Similar to the uniform case, in-
dexes improve the runtime in all tested cases. However, for highly skewed data,
the performance gain is more prominent because the allows excluding even
more data from the replay.

We discuss the impact of using six index selection strategies. Four of them
(All, Greedy, Optimal, Budget) assume a uniform data distribution, while two
additional strategies (Greedy*, Optimal®*) utilize [CPM to estimate primary in-
dex cost. [CPMlis computed from a histogram with 531 buckets.

IFigure 3.13 (b)|shows the average speedup of the selection strategies compared to
Replay for every selected attribute Aj, ..., A5. Budget faces the same problems
as for uniform data and performs only slightly better than Replay on average.
Greedy and Optimal, which do not utilize [CPM], perform similar independent
of the data distribution. Their performance is slightly better for attributes with
small o-values (and hence higher temporal correlation), because results are clus-
tered within a small temporal region of the stream. Hence, the actual primary
I/O cost is smaller for those distributions. In contrast to their counterparts with-
out [CPMl support, Greedy™ and Optimal* provide a more accurate cost model,
and thus a better selection of secondary indexes. This results in considerable
runtime improvements compared to Greedy and Optimal, respectively. The
positive effect of [CPM vanishes as data approaches a uniform distribution. Sim-
ilar to the experiments on uniform data, Optimal and Optimal* achieve an
average improvement of about 20% compared to Greedy and Greedy™*, respec-

65

3 Index-Supported Offline Processing

H Replay M Index B Flink BAIl B Greedy @Optimal OBudget
B Flink Index @ DBMS MR B DBMS Index B Greedy* B Optimal*
w100 12
©
5 10
(8]
Q
& o 8
) =}
©
£ 10 o 6
% o
& » o4
>
g 2
1S4 1 i = = L H [1= 120 0 I I I I I
A1 A2 A3 Ay As A1 A2 A3 A4 As
Selected Attribute Selected Attribute
(a) (b)

Figure 3.13: Query runtimes (a) and speedup of different index selection strategies
compared to replay (b) for varying data distributions.

Without CPM With CPM

1ol-ﬂ =

&
o 10°3 D
g -‘V Q M
o nrmHY g
?ﬁ |
W]
A1 Ax A3z Ag As Ay Ax Az Ay As
Selected Attribute

Figure 3.14: Errpro for varying data distributions without (left) and with (right)
utilizing

tively.

Figure 3.14| shows Errpro for each selected attribute (using a log-scale). On the
left-hand side, we plot the results without [CPM], while on the right-hand side we use
for cost estimation. For attributes A; - A3 the estimation without leads
to an extremely high overestimation. As expected, Errpro decreases for data
that are more uniform. In contrast, the utilization of a keeps the average
estimation error low in all cases.

66

3 Index-Supported Offline Processing

B Replay B Index B Flink
H Flink Index BDBMS MR B DBMS Index
1000
100
10

1

Query Runtime (seconds)

Crime Q1 Crime Q2 Flights

Figure 3.15: Query runtimes for real-world data sets.

SELECT % FROM CRIMES MATCH_RECOGNIZE (

-

2 MEASURES A.ID, B.ID, C.ID

3 PATTERN A T+ B T C WITHIN 30 MINUTES

4 DEFINE

5 A AS A.PRIMARY = ’'ROBBERY’ AND A.BEAT = 2232,

6 —— Variant 2: X1 <= A.LAT <= X2 AND Y1 <= A.LON <= Y2,

7 B AS B.PRIMARY = ’"BATTERY” AND B.BEAT = A.BEAT,

8 —— Variant 2: X1 <= B.LAT <= X2 AND Y1 <= B.LON <= Y2,

9 C AS C.PRIMARY = 'VEHICLE THEEFT’” AND C.BEAT = A.BEAT

-— Variant 2: X1 <= C.LAT <= X2 AND Y1 <= C.LON <= Y2,
)

=
= o

Listing 3.1: Possibly related crimes query; variant 2 replaces beat condition with
a bounding box on lat/lon coordinates.

Results for Real-World Data

In this section, we analyze the accuracy of our cost model and the resulting query
runtimes for both real-world data sets. shows that independent of
the system, dataset, and query, the use of indexes significantly boosts query run-
time. For Crime Q1, the improvement reaches two orders of magnitude, while
for the more complex 2, we achieve one order of magnitude. As expected, the
performance of the replay-based variants does not vary with the queries. For the
flight data, the improvements are similar to Crime Q2. Those results confirm that
our approach gracefully handles complex data distributions, as found in real-world
data sets.

In the following, we describe the queries for each data set and discuss the accuracy
of our cost model in detail.

67

3 Index-Supported Offline Processing

—— Actual —— Estimated — Actual — Estimated
~ 8 ~ 8
a o
Q 6 © 6
Q o
> 4 > 4
IS 5
£ 2 E 2
o A A &
Execution Plan Rank (1-64) Execution Plan Rank (1-512)
(a) Variant 1 (Beat) (b) Variant 2 (Bounding Box)
% B Processing Time —— Estimated Costs m I Processing Time —— Estimated Costs
© e)
— Repla — Repla;
§ 12 play § 12 play
& 10 / & 10
() 3]
p 8 £ 8
F 6 F 6
2 4 | 2 4
§ 2 } """""""""""I"H."Hﬂ. | ﬁ 2 e
S S oAt
a Execution Plan Rank (1-64) o Execution Plan Rank (1-512)

(c) Variant 1 (Beat) (d) Variant 2 (Bounding Box)

Figure 3.16: Estimated and actual primary 1/O (a,b) and processing time with
estimated total cost (c,d) for all execution plans of both crime query
variants.

Chicago Crime Data. Based on the crime data, we first design a pattern match-
ing query to detect crimes that are probably related. In particular, we search for
a sequence of robbery, battery, and motor vehicle theft within a 30 minute time
window and close spatial proximity. Every crime in this sequence possibly refers to
the same suspect, who robs one person, hurts another person, and finally steals a
car to escape. The full query is shown in using the MATCH_RECOGNIZE
syntax. We express each situation in this sequence via a [BS on the primary cate-
gory attribute, pairwise separated with an always true (T«) to allow for other
reported crimes in between. The pattern query comes in two variants. The first re-
quires each of the crimes to occur within a specific beat. The second constrains the
region via a bounding box on the lat/lon coordinates. Thus, we receive a maximum
of 6 and 9 possible secondary indexes for the first and the second variant, respec-
tively. For both queries, we perform every possible execution plan and measure
the runtime as well as the actual primary index 1/0.

Figures |3.16 (a){and [3.16 (b)| show the estimated and actual primary 1/O cost for
both query variants. Even though our approach tends to underestimate the cost
in both cases, it clearly captures the trend. The underestimation is a result of
temporal clustering within the source data. The crime cases are not temporally

68

3 Index-Supported Offline Processing

— Replay ——No CPM

——Coarse CPM —— Fine CPM 15
~1000
3
S
2
F S
E § T
£ 5 .
[
o 1
S
) Execution Plan Rank (1-64 01 : - _:_
xecution Plan Rank (1-64) None Coarse Fine
(a) Processing Time for all 64 plans, CPM Type
ranked according to the estimated (b) Errpro

costs (left to right)

Figure 3.17: Processing Time (a) and Errp;o (b) with varying granularity
for the landing pattern.

uniformly distributed but occur more frequently within specific times of the day
(i.e., at night). The generated replay intervals are within such a bursty period,
and thus we read more pages for a 30-minute window than expected. Note that
does not improve the accuracy of the cost estimation in this case because
every substream contains at least one crime for the selected primary categories
and regions. Hence, no substreams are excluded, and the parameters of the cost
model are not adjusted. However, |[Figure 3.16 (c)| and |Figure 3.16 (d)| show that
our cost model is still able to determine a good ranking of the execution plans,
and thus selects an efficient plan for processing the pattern query (best for Variant
1, 4th best for variant 2).

Open Sky Data Data. Given the trajectory of an airplane, we use pattern match-
ing queries to detect landing maneuvers. The pattern identifies a gradual descent
of an aircraft expressed as a continuous decrease in altitude and velocity. In total,
the query contains six thresholds on attributes with secondary indexes resulting in
2% = 64 possible query execution plans. The challenge of this event stream is that
all the queried attributes are highly correlated and non-uniformly distributed. We
perform all 64 execution plans three times, using (i) no[CPM] a coarse-grained
(658 histogram buckets), and a very fine-grained (1.1M histogram buckets)
to adjust the parameters of the cost-model.

[Figure 3.17 (a)|shows the processing time for every execution plan ranked by the
cost-model (left to right). Many of the plans incur a processing time far worse

69

3 Index-Supported Offline Processing

than a simple replay. The reason is as follows. We require a starting symbol
stating that the velocity and altitude values are above a certain threshold. Oth-
erwise, every event indicating a decrease in altitude would create a new partial
match (PM]), which in turn leads to multiple matches for every landing phase.
However, around 90% of all events satisfy the starting symbol’s condition since
they belong to the aircraft’s cruise phase. Thus, any plan containing one of those
conditions almost reads the entire secondary index, which exceeds the cost of a full
replay due to the very high sorting cost. Nevertheless, each method selects a plan
that is at least 3x faster than a pure replay. Only the method with a fine-grained
[CPMl was able to select the optimal execution plan. Due to the high resolution,
the selected plan did not make use of secondary indexes at all but directly re-
played the valid regions of the [CPMl This way, a sub-second response time was
achieved. However, due to the massively increased cost for computing the [CPM (5
ms coarse vs. 6.4 s fine), this advantage entirely disappears if we build for
every query.

Finally, |[Figure 3.17 (b)| shows the relative error for the three variants. It re-
veals that in cases of highly correlated events, even a fine-grained [CPM] leads to
cost estimation errors up to a factor of 5. Thus, estimation methods that are
more accurate for these kinds of events are an interesting opportunity for future
work.

3.6 Summary

In this chapter, we presented index-based methods to accelerate the processing
of windowed aggregation and sequential pattern matching over persistent event
streams. As a baseline for comparisons, we first presented a generic replay operator
that reads the whole event stream from non-volatile storage and replays it into
appropriate online algorithms.

Then, we detailed how to efficiently utilize ChronicleDB’s lightweight indexes to
answer windowed aggregation queries. The presented method can handle time and
count windows with arbitrary slide parameters. Since a replay is more efficient for
small slides, we also developed a cost model that reliably chooses the best method
for a given query.

Finally, we presented a comprehensive method to accelerate pattern matching
queries via off-the-shelf secondary indexes, like LSM-trees or B*-trees. Based on
this method, we developed a cost model that predicts the query execution costs for

70

3 Index-Supported Offline Processing

an arbitrary index configuration and a selection algorithm that efficiently computes
the optimal set of indexes for a given query.

We experimentally validated all presented approaches using a great variety of data
sets and queries.

71

iIGPU-Accelerated Online Processing

In order to offer both, high throughput and low latency, modern online like
Apache Flink [Car+15] process event streams in parallel by scaling out the com-
putation in a cluster environment (cf. [Section 1.3). Unrelated streams can be
handled independently by multiple computing units in parallel. Similarly, certain
operations, such as filtering out irrelevant data items based on thresholds, offer
opportunities for data-parallel processing. However, recent research [Zeu+19| has
shown that orthogonal to improvements through scaling out processing over the
network, there is still a huge untapped potential in scaling up a single comput-
ing resource. Especially by using recent advancements in modern hardware for
streaming applications.

Among the most promising developments for scaling up a single node is the wide
variety of[GPUk. However, when dealing with latency-sensitive stream applications,
the transfer time from main memory to the [GPU is an ever-prominent limiting
factor. In general, there are two ways to circumvent these limitations: (1) masking
latency through software via scheduling algorithms [Kol4-16] and (2) reducing the
latency through hardware.

Modern hardware using recent advancements in the Heterogeneous System Archi-
tecture (ASAl), a platform specification for heterogeneous computing, have made
(2) more feasible [Hwulb|. In particular, the shared-memory approach of
seems like a natural fit for accelerating low latency stream processing applications
since it avoids costly data transfers to and from the very size-limited mem-
ory. In addition, the advent of so-called signals, a lightweight inter-kernel commu-
nication mechanism, further increases the potential for low latency processing in
[HSAL

In this chapter, we demonstrate that [SAlenabled [GPUk significantly improve the
processing performance of online SPEk. Therefore, we design a prototypical
enabled online featuring all four major event stream operations (filter, win-
dowed aggregation, windowed join, sequential pattern matching). Even though

72

4 iGPU-Accelerated Online Processing

current [GPUl products target commodity hardware, those machines show promis-
ing results already. Furthermore, the presented techniques lay the groundwork for
similar developments in the high-end server market.

4.1 Related Work

Using [@SA] for stream processing has not been widely researched. Due to the
utilization of hardware characteristics, this work also shares similarities with

previous research on [GPUk, [dGPUk and [FPGAE.

IGPUl and HSAL Most similar to our work is the HELLS-Join |[Kar+13|, a join
operator for windowed data streams. The authors use an early [GPUl architecture
called AMD Fusion Trinity and develop a join algorithm consisting of three phases:
(P1) tuple comparison, (P2) producing join results, and (P3) updating windows.
The algorithm is designed around outdated dedicated separate main memory ar-
eas for and [CPU, which makes inter-memory access more costly. As a result,
only (P1) was handled by the [GPUL Instead, we use recent [HSAl advancements
to reduce overhead and process all three join stages on the [GPU. Furthermore,
we provide [HSAlenabled implementations for filtering, windowed aggregation, and
sequential pattern matching and integrate them into a processing framework. This
integration allows us to schedule complex queries across all available processing
units. The CellJoin [GBY09] also focuses on windowed stream join algorithms
for the cell processor, which is similar to [GPUk as it uses several specialized
processing units with a more conventional processor on one die. However, separate
memory areas between both processing units result in similar limitations for the
HELLS-Join. Beyond [GPU join processing, there are efforts to explore the [HSA]
architectures’ capabilities to a wider spectrum of problems [Hwul5]. Hetero-Mark
[Sun+16| introduces several design patterns for general programming to
create a diverse benchmark. Meanwhile, Mukherjee et al. [Muk-+16] developed
several micro-benchmarks to show the effectiveness of so-called persistent kernels,
which significantly reduce the launch overhead of [GPU] kernels. We expand upon
both of those enticing results by developing tailor-madeHSAlsolutions for streaming
problems and couple them with the potential of using [GPU hardware. Zhang et al.
studied workload partitioning for heterogeneous architectures [Zha+17; Zha+21;
Zha+20]. With FineStream [Zha+20|, they propose an [GPUl stream processing en-
gine that partitions the query workload evenly across the available processing units
(i.e., and [GPUI). While FineStream maximizes resource utilization across mul-
tiple processing units via adaptive scheduling, our approaches focus on the efficient

73

4 iGPU-Accelerated Online Processing

utilization of the EGPUl hardware. Moreover, a combination of our algorithms with
FineStream is a promising direction for future work.

dGPUL Stream Processing on suffers from the overhead of transferring
data to the AGPU via the [PCId bus. A common solution for this problem is to
batch incoming data and schedule different tasks to either the dGPUl or the [CPUL
Joselli et al. |[Jos+08| automate task distribution through sampling each processing
unit’s capabilities, while Verner et al. [VSS11] schedule tasks according to deadline
constraints. Meanwhile, Pinnecke et al. [PBS15] and SABER [Kol+16] both in-
vestigate the sliding window semantics of streams and suggest fragmenting larger
variable size windows into fixed-size batches in order to allow high throughput
regardless of individual query peculiarities. Additionally, SABER introduces an
adaptive scheduling strategy based on past processing statistics that maximizes
both the and workload. Even though all work above aims to hide
latency, none explore the benefits of a shared memory architecture using [HSAL
Furthermore, none of those approaches support sequential pattern matching. Cu-
gola and Margara |[CM12| present a first solution for sequential pattern matching
on [AGPUk. However, their approach aims at minimizing costly data transfer via
the [PCId bus and does not take advantage of shared main memory as present in
[GPU architectures. Finally, GStream [ZM11] designs an extendable framework for
streaming applications on [GPU clusters. However, through the usage of network
distribution in addition to the [PCId bottleneck, it also lacks the benefits of a tightly
coupled [CPUHGPU] architecture.

[FPGAL Due to their low-level programming interface, FPGAk offer predictable la-
tency and high performance fixed-point and bit-wise operations [Che+08]. For
stream processing, there are solutions for windows, filter, aggregation [MTAQ9),
windowed joins [TM11] and sequential pattern matching [WTA11; Mou+15]. In
contrast to specialized, highly tuned hardware solutions, [HSAl serves as a back-end
for the widely used OpenCL programming language. Thus, our approach can ben-
efit from and be integrated into a variety of existing projects. This interoperability
and the focus on consumer-level hardware make our work more generally applicable
while laying the groundwork for possible [GPU solutions in the high-performance
computing area.

4.2 Preliminaries

and target fundamentally different workloads. While aim for
the efficient execution of sequential programs with a small number of high-clocked
cores, target massive data-parallel workloads. They consist of thousands

74

4 iGPU-Accelerated Online Processing

Report Completion Waits On

Signal N
Write . iGPU Read Write
Data Producer Main Memory Data Producer
i
A |

. iGPU Read
Main Memory
Y |

i
dGPU Read ! dGPU Read !
,,,,,,,,,,,,,

Report Completion Schedule Kernel

(a) Dispatch-based (b) Persistent kernels (after kernel launch)

Figure 4.1: [CPU kernel execution methods

of simple, lower clocked cores, each executing the same code on different data
implementing the model. At first sight, seem to be a natural fit for
high volume event stream processing. An event stream consists of homogeneous
data items, and the processing pipeline is the same for all events of a stream.
However, online [SPEk are tailored towards low latency results, favoring a tuple-at-
a-time or micro-batch processing scheme. For those small numbers of data items,
[GPUbased processing is typically doing more harm than good for the following
reasons. First, the cores of a operate at a lower clock speed than the
and do not implement features like out-of-order execution or speculative execution.
Hence, they require a certain number of data items to be processed simultaneously
to be effective. Second, classic programming languages like OpenCL 1.2 treat
the as an accelerator that needs to be orchestrated by the [CPUL In particular,
the [CPUI manages data transfer to and from the [GPU, schedules the execution of
programs (kernels), waits for their completion, and processes the results (e.g.,
passing them downstream the processing pipeline). We call this processing scheme
dispatch-based execution and depict the general workflow in [Figure 4.1 (a)l Some
data producer writes new data into main memory. Afterward, the producer invokes
the to perform kernel scheduling. Furthermore, for AGPUk, the [CPU is also
involved in data reads. This heavyweight synchronization results in noticeable
processing delays, further increasing the minimum required batch size for
based event processing to be beneficial.

While the design of the hardware induces the first limitation, the second is a
software problem. In the following, we discuss [HSAl features allowing us to reduce
the [CPUJ/[GPUl synchronization overhead, and thus reduce the minimum batch size
for effective [GPUlMbased event processing.

)

4 iGPU-Accelerated Online Processing

4.2.1 Memory Management

In traditional [GPU] programming, memory management is the responsibility of the
programmer. That is, memory regions holding relevant data are copied to/from
the [GPU's memory via corresponding function calls. In contrast, [SA] supports
fine-grained shared virtual memory (SVM]). All computing devices share a unified
address space, allowing the to seamlessly access memory allocated by the
and vice versa. This feature is especially useful in combination with [GPUk as
shown in [Figure 4.1 (b)l Due to a physically unified memory hierarchy, [GPUks do
not require a memory copy operation to ship data to the [GPUL EVM] enhances this
feature by also eliminating the need for mapping/unmapping memory regions. In
comparison with a traditional dGPUl work pattern, [GPUE in combination with
reduce both latency introduced by copying data back and forth and interaction
with the when new data is available.

Note that OpenCL 2.xE| also features fine-grained SVM. However, we focus on [ASA]
in this thesis and make use of more advanced features not available in OpenCL
2.0.

4.2.2 Signals

[HSAl provides a signaling mechanism, enabling lightweight communication between
and [GPTk. Depending on the platform, a signal is a 64- or 32-bit signed in-
teger value. Runtime functions available on all processing units allow either unit
to atomically manipulate the signal value (e.g., compare-and-swap, exchange).
However, the most interesting feature of signals is that processing units can wait
for updates of the signal value offering a lightweight synchronization mechanism
across processing units. In particular, signals allow the implementation of persis-
tent kernels |Muk+16]. Unlike dispatch-based execution (cf. [Figure 4.1 (a))), a
persistent kernel is launched once and stays active for the entire application life-
time. [Figure 4.1 (b)| depicts the associated workflow after launching a persistent
kernel. The data producer changes the signal value if new data becomes available.
Due to the signal value change, the kernel wakes up and immediately processes
the new data. After processing the new data, the kernel signals completion and
waits for more input data. This unique [HSAl feature reduces the overhead of a
kernel launch and, for EGPUE, fully eliminates the need for [CPU] interaction upon
the arrival of new data. The drawback of this approach is that the number of
threads executing the kernel is fixed for the entire application lifetime since it is
defined once during kernel launch. If the rate of the input data varies, this setting

"https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_C.html

76

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_C.html

4 iGPU-Accelerated Online Processing

Grid
Exchange via _.*/ Exchange via . “|' Exchange via
Global Memory b ’ Group Memory - Register
Work-group 1 (! Wavefront 1 q Thread 1
~— —
Work NN Wavef [Wgs Thread 64
ork-group Togs avefront o . rea

Figure 4.2: [SAl thread group hierarchy

may not deliver the maximum possible performance. For example, if there are
fewer data items than threads, some of them effectively execute a noop opera-
tion.

4.2.3 Data Exchange

Similar to traditional programming languages, [HSA] organizes threads in a
hierarchy of thread groups, which can communicate with each other via data ex-
changes on different memory layers. |[Figure 4.2/ shows the overall hierarchy from
left (largest group) to the right (smallest group). While every group is associated
with a fixed memory layer, the grid and work-group size are set when scheduling a
kernel. [ASAl schedules kernels with two parameters, the grid size N and the work-
group size wgs. The grid size defines the global problem size given by the total
number of data items to be processed. A grid is processed by multiple work-groups,

each composed of wgs threads. Hence, the number of scheduled work-groups is

{wlgs—‘ . Threads within a work-group can be synchronized using so-called barriers
and share a small but fast local memory. Those threads are further grouped into

so-called wavefronts (WEk), which are the smallest unit of execution on a [GPUI

wgs

core. They are composed of 64 threads, resulting in { o0 W WTEk per work-group.

All threads within a wavefront execute on a single instruction pointer. As a conse-
quence, if threads within a lWEF need to follow different code branches (e.g., due to
an if-else-statement), their execution has to be serialized. While threads fulfilling
the branch condition continue processing, the other threads are stalled and vice
versa.

Typically, threads exchange data via the group memory, if they belong to the same
work-group, or via global memory otherwise. [HSAl provides an efficient mechanism
for exchanging data between the threads of a W without using auxiliary memory

7

4 iGPU-Accelerated Online Processing

by simply swapping register values. Furthermore, [HSAl provides information about
the currently executing threads of a [WH (i.e., threads not stalled due to branched
execution).

Low-cost data exchange and the information about active threads enable us to
store variable-length results densely inside an output buffer efficiently. In our
case, variable-length results occur during filtering, join processing, and sequential
pattern matching, since we cannot determine upfront which event satisfies the
corresponding predicate. Without these operations, every thread that needs to
write a result would execute an atomic operation on the slow global memory to
reserve space in the output buffer. Instead, we can determine the number of results
per WE by querying the number of active threads after predicate evaluation and
reserve space in the output buffer for all results with one atomic operation on the
global memory. This allows efficient result propagation on the [GPU and eliminates
the need for interaction also for this task.

In summary, SVM], signals, and [WF data exchange operations form the basis of our
approaches, which we describe in the upcoming section.

4.3 Implementation

This section presents our processing framework featuring filtering, windowed ag-
gregation, windowed joins, and sequential pattern matching. For each operator,
we offer four different implementations. Single- and multi-threaded versions,
a dispatch-based [GPUl implementation, and a [HSAlenabled implementation opti-
mized for [GPUk. This gives a platform that allows (i) a fair comparison between all
four processing techniques and (ii) an easy combination of [GPU and [CPU] operator
implementations in a single pipeline.

In the following, we first briefly describe event queues that establish the con-
nection between event sources, operators, and sinks. Then, we discuss the im-
plementation details of all four operators with an emphasis on the [HSAl vari-
ants.

4.3.1 Event Queues

An event queue decouples each pair of consecutive operators such that the up-
stream operator places its result events into the queue and the downstream oper-
ator consumes them from the queue. We implement the queues as array-backed

78

4 iGPU-Accelerated Online Processing

Logical Addresses
|...|22|23|24|25|26|27|28|29|

w_idx
r_idx

? Physical Array

Figure 4.3: An example of logical queue addresses

ring buffers with a fixed maximum capacity in the number of elements (size).
The backing array is contiguous in memory and, because of VM), can be easily
accessed by all computing devices. Every queue manages two indexes. One index
points to the next write slot (idz,) and the other one to the next read slot of
the queue (idz,). Instead of relying on the physical addresses in an array that
may shrink/grow /loop around, we introduce logical addresses such that enqueuing
events increment idx,, and dequeue operations increment idx,. Consequently, the
following invariants hold:

1. idx, <idz,
2. i1dx,, — tdx, < size

It is easy to see that all valid data lies between ¢dz, and idz,, and that a simple
modulo computation obtains the physical array indexes. illustrates this
with an example: The physical array has nine addresses, while the logical addresses
continue to grow. Twenty-two points to the next data item to read, while 29 indi-
cates the next write slot. Hence, slots 22 to 28 store valid data items. The indexes
are implemented via[dSAlsignals ensuring the proper propagation of updates across
devices. This way, readers can wait for data by waiting for updates on the idz,,,
and writers can wait for free space on the idzx,.

4.3.2 Filtering

The filter operator consumes a single input stream, applies a user-defined predicate
to every incoming event, and forwards all events satisfying this predicate to the
output stream (cf. . Unlike windowed operators, the filter processes
every event exactly once. Hence, parallel processing requires the batching of input
events at the cost of adding latency. However, even though batching enables pred-
icate evaluation in parallel, the writing of results requires synchronization among
threads to preserve the temporal order of output events. When done naively (e.g.,

79

4 iGPU-Accelerated Online Processing

Index 0o 1 2 3 4 5 6 7
Bitmap

Values|0|1|0|1| |1|1|o|o|

(1) Read

Yy Yy VY Y
Threads 1 3

\

! Y

A | P |-
a |~

2 4 3|a
OutputRegister || 1 | O | 3 (%R %)

/ / 2 Redistribute\\k

Threads 1 3| 4 112|3|4

w| ~

Output Register | 1 olo 11345

No write

Figure 4.4: An example how results are written by the [SAlbased filter implemen-
tation

by serializing threads), this synchronization entirely voids the savings achieved by
parallelizing the predicate evaluation.

Our @SAlFbased implementation aims at minimizing this overhead. The basic idea
is to use two separate kernels working in parallel. We call those kernels driver
kernel and eval kernel. The driver kernel writes results to the output queue, and
the eval kernel checks the filter condition. Both kernels communicate via signals
and shared bitmaps. The eval kernel uses the signals to notify the driver kernel
about completing the predicate evaluation for a batch of events. In contrast, the
driver kernel uses them to signal that all results of a batch have been written
to the output queue. We use double-buffering to keep both kernels busy. The
driver kernel reads one bitmap to produce results, while the eval kernel fills the
other bitmap. Therefore, the eval kernel sets the corresponding bit within the
vector for every input event that fulfills the predicate. Every thread of the eval
kernel processes 8 consecutive events so that its results fit into a single byte of the
bitmap. Thus, the byte-offset within the bitmap is unique for every thread and it
is unnecessary to synchronize the eval kernel threads.

When receiving the completion signal, the driver kernel writes the events that
satisfied the predicate to the output queue. A naive solution for this would be
the following. Every thread of the kernel inspects a single bit of the bit vector,
and if the probe was successful, it writes the corresponding event to the output
queue. However, for sparely filled bit vectors, many threads are stalled during
this write operation. Instead, we use an efficient [WE data exchange to assign an
output event to every thread before writing the results. shows four
threads processing a vector of 8 bits in two cycles. In the first cycle, the bit vector
contains 2 results at positions 1 and 3, detected by threads 2 and 4, respectively.

80

4 iGPU-Accelerated Online Processing

However, instead of writing them directly and causing a stall of the remaining
threads, we redistribute the indexes to threads 1 and 2 and inspect the next four
values. This time, the probes of threads 1 and 2 succeed, and we redistribute
the corresponding indexes to threads 3 and 4. Finally, each of the four threads
writes a result to the output queue in parallel and thus contributes to the writing
process.

In our implementation, the driver kernel executes with 64 threads (i.e., a single
[WE), which allows us to inspect eight result bytes at once and batch up to 64 results
in a single write operation. Furthermore, we also parallelize the reads from the bit
vector, such that every thread reads eight bytes from a different location of the
buffer. Again, we distribute those values among all threads via [WF data exchange
methods. Consequently, the batch size for this operator should be a multiple of
4,096 events (64 threads, each reading 64 bits) to fully utilize all threads in every
step of the driver kernel.

Alternative Implementations

In the single-threaded variant, a single [CPU thread executes all tasks se-
quentially. It reads events from the input queue, applies the filter predicate, and
writes results to the output queue. Input batches are evaluated in a tight loop
with compiled predicate functions, allowing the compiler to optimize the resulting
code.

In the multi-threaded case, a single thread replaces the driver kernel, while
a configurable number of additional threads replace the eval kernel. The task
distribution among those threads is analogous to the [HSA]l implementation. The
data management thread waits for input data and materializes the result stream,
while the worker-threads evaluate the filter predicate in parallel and write their
results into a bitmap.

Our @SAl implementations naturally generates result batches per WE and this way
saves expensive atomic operations on the queue indices. Thus, for a fair compar-
ison, we also implement output batching for the single- and multi-threaded [CPUI
implementations. We collect up to 64 events in a dedicated buffer and flush them
to the output queue in one go.

The dispatch-based [GPU] variant is similar to the multi-threaded variant. A single
thread is responsible for data management and kernel scheduling, while the
[GPU handles the data processing. In addition, we make use of SVM] to avoid explicit
memory management in the [CPUT] thread.

81

4 iGPU-Accelerated Online Processing

4.3.3 Windowed Aggregation

Typically, windowed aggregates are computed incrementally by computing partial
aggregates over slide events and composing the final result for the whole window
from those partial aggregates (cf. . For ease of presentation, our
implementation re-evaluates the entire window for every produced result. However,
the proposed technique can easily be extended to support incremental aggregate
computation. In addition, we limit the discussion to commutative and associative
aggregation functions. The reason is that those functions take advantage of data-
parallel computation and represent a wide range of common aggregates (e.g., sum,
average, minimum, maximum).

Similar to filtering, windowed aggregation is composed of a driver kernel and an
eval kernel synchronized via [ISAl signals. The driver kernel moves events from the
input queue to the window and triggers aggregate evaluation immediately after
inserting slide events. Note that this approach does not introduce any batch-
related latency. The eval kernel performs aggregation by computing a parallel
reduce operation on the window. For a standard [GPU], a reduction runs on three
levels: threads, work-groups, and grid. Each of them uses the fastest memory
available. For instance, after summarizing n items, a thread stores its result in the
local memory of its work-group. With [HSA] we improve this reduction in two ways.
First, instead of storing one value per thread in the local memory, we use WH data
exchange operations to efficiently reduce the results of a whole[WF] (i.e., 64 threads)
into a single value before storing it in the local work-group memory. This cuts down
the data to process at the next level by a factor of 64. Second, the results of all
work-groups are combined to obtain the final value of the reduction. Thus, this
combination is a synchronization barrier for all work-groups. Because there exist
no synchronization mechanisms across work-groups in languages like OpenCL, this
step typically involves the [CPUL With [HSA] signals, this is done exclusively on the
in the following way. Every work-group atomically increases a signal value
by one upon completion. Thus, a signal value equal to the number of work-groups
signals the completion of all computations. The driver kernel waits for all work-
groups to complete, performs the final aggregation, and propagates the result event
to the output queue. Since the result is a single event per window, this is done by
a single thread of the eval-kernel.

Alternative Implementations

The alternative implementations are similar to the filter operator. In the single-
threaded case, all work is done by a single [CPUl thread, while in the multi-threaded

82

4 iGPU-Accelerated Online Processing

case, both kernels are replaced by corresponding threads. However, compared
to the filter, windowed aggregation does not require result batching since it pro-
duces exactly one result per window. The dispatch-based adaption also follows
the description of the filter implementation.

4.3.4 Windowed Joins

The join operator consumes two input streams (denoted as left and right in the
following) and manages a window for each of them (cf. [Section 2.3.4). Like
aggregation, the join processes incoming events at a tuple-at-a-time basis and
introduces no batch-related latency.

Different to the HELLS-Join [Kar+13|, which manages window updates and re-
sult construction on the [CPU], our [HSAl implementation runs solely on the [GPUL
Therefore, we again decompose the implementation into a driver kernel and an
eval kernel. Like for aggregation, the driver kernel moves incoming events from
the input queues to the windows and triggers the eval kernel via [SAl signals. The
main difference here is that the join consumes two input streams. Therefore, the
join operator keeps track of the heads of both input queues to process incoming
events in the correct temporal order.

The eval kernel processes a newly arrived event e,.,, by evaluating the join pred-
icate on e,., and all events active in the other stream’s window. To do this in
parallel, we split the window’s content into slices of 64 events such that each of
them is processed by one of the WIFs. Within a WE, every thread evaluates the
join predicate on one of the slice’s events. Then the threads that evaluate the
predicate to false are stalled, while the remaining active threads write their results
to the output queue. Note that all results carry the timestamp of e,.,. Hence,
the output order among those results does not matter, which simplifies synchro-
nization among the WFk when writing results. In order to write in parallel, every
[WE directly reserves its contiguous slots in the output queue as described in
(i.e., using the number of results determined by counting the number
of active threads). The WIs threads first write their results to the queue and
then make them visible by increasing the queue’s idx, signal. This is the only
synchronization point during the join process: A [WE writing r results to slots
[s1,] must ensure that all WFk writing to slots smaller than s; completed their
write operation, before increasing the idx, to s, + 1. Even though this method
effectively serializes the announcement of new results (not the writing), it achieves
good performance independent of the number of events to write as we will show
in [Section 4.4

83

4 iGPU-Accelerated Online Processing

(a) (b) (c) (d)

WF1 WF2 WF1 WF2 WF1 WF2 WF1 WF2

Write, No Commit Write, Commit ommit

LTI BT 1] A

w_idx w_idx

Figure 4.5: An example of concurrent writes in the join operator

shows this workflow for two simultaneously writing [WFk. In the first
step (see (a)), both [WFk reserve two contiguous slots in the output
queue. WF2 finishes writing before WF1 (see (b)) but is not allowed
to increase the queue’s idx,,, because otherwise consumers may read incomplete
data. Instead, WF2 waits for idx,, to reach its first write slot (via [HSAl signals).
This ensures that all previous data is written. Then, WF1 completes its write
operations and immediately increases idz,, (see (c)). Finally, WF2 is
notified about the new value of idz,, and in turn commits its results (see

(d))-

Alternative Implementations

As for the aggregation, the [CPUFbased implementations are similar to the filter.
In the single-threaded case, all work is done by a single [CPU] thread, while in
the multi-threaded case, both kernels are replaced by corresponding threads.
However, for the dispatch-based variant, we implement the HELLS-Join following
the description in [Kar+13].

4.3.5 Sequential Pattern Matching

Our sequential pattern matching implementation adapts an nondeterministic finite
automaton (NFA)-based evaluation approach, similar to SASE+ [DIGO07]. For ev-
ery symbol, there is a state in the NFAL and events that fulfill a symbol’s condition
trigger the corresponding transitions. [Figure 4.6 shows an [NFA] for the example
pattern A B* C' with matching strategy M = contiguous. It consists of one state
per symbol (S4, Sp, Sc¢), and a starting state Sop. When Sy is active, the arrival
of an event satisfying the condition of symbol A triggers a transition to S4. From
there, we reach the accepting state S¢ with an arriving C' or the Kleene-star state
Sp upon an arriving B.

84

4 iGPU-Accelerated Online Processing

Figure 4.6: NFA] representation of the example pattern A B* C.

Every state is associated with a list of partial matches (PMs). A [PMl captures all
events that contributed to reaching the current state. For instance, in state Sy,
every [PM consists of a single event that fulfills the condition of symbol A. In
contrast, for S¢, a[PMl contains one event for A, one for C', and a variable amount
of events for B (due to the Kleene-star quantifier).

Our [GPUtbased sequential pattern matcher uses the [GPUl and the [CPU coopera-
tively by distributing tasks to the best-suited processing unit. The EGPU checks
the window constraint and symbol conditions for incoming events, while the
performs compaction on the main memory to keep memory access efficient. In the
following, we describe the tasks of both units in detail.

[iGPU Tasks

Every state of the NFAlis associated with a kernel. Upon the arrival of a new
event e,.,, we run all those kernels with e,.,, as a parameter. Every kernel thread
pProcesses €,., together with one of the PMs of its state. This processing consists
of two phases: check and propagate. The check phase first evaluates the window
constraint on the examined partial match. Then, it evaluates the symbol condition
associated with each of the state’s outgoing transitions. The propagate phase
takes the appropriate action depending on the outcome of the check phase and the
applied matching strategy (cf. . Those actions are summarized in
[Table 4.1] Independent of the matching strategy, we drop a [PM if it exceeds the
window constraint. In contrast, if e,., fulfills none of the transition predicates,
the action depends on the matching strategy. While, skip-till-next and skip-till-
any simply ignore €,.,, contiguous drops the [PM] since no contiguous match is
possible anymore. Finally, in case e, triggers a transition, we add it to the [PMl
Additionally, if the transition was a forward transition, we move the [PM] to the
next [NFA] state. Note that the skip-till-any strategy clones the [PM] before adding
enew i order to capture all possible matches.

Our implementation manages the PMs of a state in a dense array to ensure the
iGPU has efficient access to contiguous memory regions. Furthermore, we perform

85

4 iGPU-Accelerated Online Processing

Check result contiguous skip-till-next skip-till-any
Window exceeded Drop Drop Drop

None Drop None None

Self transition Add ey ey to [PM Add eyey to [PM Clone [PM}

Add ey, to [PM

Forward transition Move [PM] to next Move [PMl to next Clone [PML
state; state; Move [PMl to next
Add e to [PM] Add e to [PM state;
Add epeq to [PM

Table 4.1: Result of the check phase and the corresponding action for each of the
three matching strategies.

as much of the memory management as possible on the [GPUl to take advantage of
the massive parallelism.

We add e, to a[PM by copying the event data to the [PMI's event array. Since
every thread processes exactly one [PM] no synchronization among threads is
required and all copying runs in parallel. To clone a [PM], the corresponding [GPUI
thread copies the [PM| data to the first free slot at the end of the state’s dense
array. Therefore, the thread reserves a slot via an atomic operation to avoid data
races. Likewise, for moving a[PM] the thread first copies the data to a free slot in
the dense array of the target NFAl state before it drops the from the array of
the current slot. Note that similar to adding an event to a [PM] all copying runs
in parallel; only reserving a slot in the destination state requires synchronization
among threads.

Dropping PMs due to the window constraint or a move to the next [NFA] state leaves
gaps in the dense array. Hence, we require a compaction step to keep memory ac-
cess efficient for the [GPUL However, compaction runs more efficiently on the [CPU]
and thus we only mark the corresponding array slot as dropped. This works similar
to result propagation in our join implementation (cf. |Section 4.3.4]). Every kernel
thread whose [PMl should be removed calls an atomic operation to reserve a slot in a
dedicated global memory area. Then it writes the corresponding array index into
this slot. After e, is fully processed by the kernel, the performs the com-
paction, which we detail in the upcoming subsection.

86

4 iGPU-Accelerated Online Processing

(a) (b)

PMs |PM4PM4PM4PM4PM4 | | PMs |PM4PM4PM4PM4 | | |
Swap & Shrink
(© (@
PMs |PM4PM4PM4PM4 | | | PMs |PM4PM4PM4 | | | |
Swap & Shrink

Figure 4.7: Example for the removal of two PMs (PM;, PM,) in the dense array.

[CPU| Tasks

In total, the executes three tasks. First, it serves as a dispatcher to schedule
kernels for every state of the NFAL Unlike filtering, aggregation, and joins, we do
not use persistent kernels here for the following reason. Persistent kernels fix the
number of threads per kernel for the entire application lifetime. However, due to
timeouts or transitions, the number of PMs per state (i.e., the number of required
threads) varies with every arriving event. As a consequence, a fixed number of
threads per kernel leads to over-/underutilization of the hardware. Thus, we use a
dispatch-based scheduling approach to appropriately configure the number of ker-
nel threads (i.e., the grid-size) for every arriving event.

Second, the takes over the removal of dropped PMs. In order to keep ac-
cess to PMs efficient, their removal should not create gaps in the dense array.
Gaps are avoided by moving elements from the end of the array to the posi-
tions of the removed PMs. Since the removal of PMs happens in descending order
of their position, our method guarantees to move only valid PMs (i.e., PMs not
scheduled for removal). |Figure 4.7 shows an example for a state with five PMs
(PMj, ..., PMs), whereof PM; and PM, are scheduled for removal by the [GPUL
First, PM, is deleted by moving the last valid element PMj5 to its position and re-
leasing the last array slot (see a,b). Since PMj is again the last element
within the array, it is moved one more time when removing PM; (see
c,d).

The third task of the [CPUl is the creation of result events for PMs that reached a
final state of the NFAL Therefore, it iterates all PMs of the corresponding state,

87

4 iGPU-Accelerated Online Processing

applies the map function specified with the pattern (cf. [Section 2.3.5)), and stores
the results in the output queue.

Alternative Implementations

The adaptions of our sequential pattern matcher are similar to those of
the windowed join. In the single-threaded case, the thread performs all
the work (i.e., it iterates over all PMs in every [NFAl state to perform the cor-
responding checks). In contrast, the multi-threaded version works similar to
our approach, but instead of scheduling a kernel per state, we use a
thread.

In addition, we implement the [dGPUk-optimized CDP algorithm proposed by Cu-
gola and Margara [CM12]. Different from the original algorithm, we make use of
[HSATs feature instead of managing memory programmatically. The CDP algo-
rithm takes a backward evaluation approach to avoid materializing partial matches
(i.e., avoid memory transfers via the [PCId bus). It first buffers events for each of
the NFA] states. Then, if an event matching the final state arrives, it traverses
the state buffers in reverse order to produce matches. CDP offers two so-called
event selection policies that are somewhat comparable to our matching strategies.
The multiple selection policy corresponds to the skip-till-any matching strategy
and produces all possible matches. In contrast, the single selection policy selects
only a single event per [PM] which results in a similar computational complexity
as for the skip-till-next strategy. However, due to the backward evaluation, the
produced results differ. Thus, we only implement the multiple selection policy
to ensure a fair comparison between our method and CDP. Moreover, CDP does
not support Kleene quantifiers, which limits its practical applicability consider-
ably.

4.4 Experimental Evaluation

This section presents a selection of important results from an extensive evaluation
of our prototypic system. After a description of the experimental setup, we first
discuss the effect of persistent kernels before we discuss the performance results of
our [HSAlenabled operator implementations.

3AMDGFX kernel repository https://bit.ly/2vP3jAu
dnttps://github.com/RadeonOpenCompute/ROCm/tree/roc-4.0.x

88

https://bit.ly/2vP3jAu
https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.0.x

4 iGPU-Accelerated Online Processing

Component Description

[CPU AMD Ryzen 2400GQ4x3.6GHz
Memory 32 GB DDR4@2133MHz

(O8] Debian GNU /Linux buster/sid
Kernel version 5.0.0-rc7-kfd

[dSAl Implementation ROCm 4.0.
C/C++ Compiler clang 12.0.0

iGPU dGPU
Chip AMD Vegall AMD Vegas6
Compute Units 11 56
Board Memory - 8 GB HBM2
Clock-Speed 1250 MHz 1590 MHz

Table 4.2: Details of the evaluation platform

4.4.1 Setup

We execute all experiments on an [GPUl as well as a[dGPUL The system specification
is shown in Table The host code is written in C++ and compiled with clang
12 using optimization level —03. The code is written in OpenCL 2.0 with [ASA]
specific extensions and compiled with the clang compiler provided by the ROCm
platform?.

In order to examine a wide range of workloads, we use a synthetic event stream
with the following characteristics. Every event consists of a timestamp (64-bit
unsigned integer value) and a payload of 6-dimensional 32 bit floating point values
(uniformly distributed in the unit interval).

We use our single-threaded operator implementations as a baseline for all experi-
ments. We choose our own implementation over production-ready frameworks like
like Apache Flink [Car+15] or Spark Streaming [Zah+16| for the following
reason. Those engines are designed to scale out across many nodes to achieve
high throughput and do not exploit the hardware resources of a single machine
efficiently [Zeu+19|, which leads to a very low single-node throughput. For ex-
ample, we run experiments with a filter operation selecting 1/1000 events from
the event stream on Apache Flink (single node, default local configuration) and
compare it with all of our filter implementations. The results given in
confirm that scale-out cannot compete with highly optimized single-node
implementations. Our filter implementations outperform Apache Flink by up to
two orders of magnitude. Thus, we do not include those engines in the upcoming
evaluation.

89

4 iGPU-Accelerated Online Processing

W Apache Flink B Single-threaded @ Multi-threaded —»— dGPU OpenCL dispatch —— dGPU HSA dispatch
B dGPU dispatch B dGPU HSA W iGPU dispatch —<— dGPU HSA signal —+— iGPU OpenCL dispatch
OiGPU HSA —»— iGPU HSA dispatch iGPU HSA signal
T 1E+9 8 s0
a ©
g £ 40 e+
8>_J, 1E+8 é 30
5 L B]
2 1E+7 3 20
4+
E; g 10 S e %
O 1E+6 2 0
= Q 1234567 8 910111213141516
N Number of Work-Groups

Figure 4.8: Throughput-comparison of Figure 4.9: Comparison of kernel
the filter operation be- turnaround time
tween Apache Flink and the
variants of our processing
framework.

4.4.2 Persistent Kernels

We start with analyzing the savings in kernel launch time when using persistent
kernels. For that, we implement a noop-kernel, dispatch it with (i) the OpenCL
runtime, (ii) the [HSAl runtime, and (iii) HSAl signals and measure the time from
dispatching until the kernel completes execution. We schedule 1024 threads per
work-group and vary the number of groups. shows that signals outper-
form the dispatch-based approaches independent of the [GPUtype. Futhermore,
dispatching via [ISAl is cheaper for the [GPUl than for the Interestingly, the
OpenCL dispatch performs better for AGPUk. Since this behaviour can not be ob-
served with [HSA] we believe the OpenCL code base for is more mature (i.e.,
optimized) than for [GPUk.

4.4.3 Operator Evaluation.

We evaluate every operator in a single operator pipeline, varying its parameters
(e.g., window size, selectivity). In all experiments, the operators consume events
from preloaded input queues and write their results to an output queue with
sufficient space to avoid wait times during measurements. The multi-threaded
[CPU implementations use four worker-threads. This setting matches the number
of physical [CPU cores and results in the best throughput for all operators. For the
[GPUl variants, the optimal work-group size and number of scheduled work-groups
depend on multiple factors (implementation variant, operator type, window size,

90

4 iGPU-Accelerated Online Processing

@ Multi-threaded B dGPU dispatch B dGPU HSA A Multi-threaded BdGPU dispatch B dGPU HSA
EiGPU dispatch OiGPU HSA BiGPU dispatch OiGPU HSA
35 3

3 2,5
o 25 a 2
3 2 3 15
g 15 g)
Q. 1 joR
" os ﬂ-l]% " os E—nﬁd]

0 0 H—-ﬂ

1 0,1 0,01 0,001 0,0001 1E-05 64 128 256 512 1K 2K 4K 8K 16K
Selectivity Batch Size

(a) Fixed batch size (4,096), varying selec- (b) Fixed selectivity (0.001), varying batch
tivity size

Figure 4.10: Speedup of filter implementations compared to the single-threaded
implementation

device type). We experimentally determine the optimal setting upfront for every
combination and use this setting during the evaluation. As an example, the [GPUI
[[SAl join uses 11 work-groups (i.e., the number of computing units) with 64 threads

per group.

Filter

We evaluate the filter implementations with batch sizes ranging from 64 to 16K
elements. The predicate computes the Euclidean distance from the origin to the
point given by the 6-dimensional event payload and filters all events with a dis-
tance above a user-defined threshold. We vary the condition’s selectivity from
1 (all events pass) to 107° and measure the throughput achieved by each of the
implementations.

shows two representative results from this experiment. In|Figure 4.10 (a)|
we fix the batch size to 4K elements and vary the selectivity of the filter condition
(x-axis). Only multi-threaded and EGPUI[HSA] are able to outperform the single-
threaded implementation. In both cases, the speedup increases as the selectivity
decreases. The reason is that the lower the selectivity is, the fewer events are writ-
ten to the output queues, and hence the less synchronization is required between
the processing threads. However, maintaining the temporal ordering of results is
more efficient on the [CPU than on the [GPU since a single thread is responsible
for this instead of a whole (WE. Thus, [GPU[HSAl is not able to outperform the
multi-threaded implementation. Interestingly, iGPUl dispatch performs better than

91

4 iGPU-Accelerated Online Processing

[@Multi-threaded B dGPU dispatch BdGPU HSA
BiGPU dispatch OiGPU HSA
35
3
2,5
2

15
1
0,5
0

2712 2M3 274 2715 2716 2717 2718 2719 2720

Speedup

Window Size

Figure 4.11: Speedup of aggregation implementations compared to the single-
threaded implementation with varying window sizes

EGPUIMSAI for high selectivities (1.0, 0.1). The reason for this behavior is that [GPUI
dispatch uses the same result writing mechanism as the multi-threaded variant.
For high selectivities, the advantages of single-threaded writing outweigh the per-
formance penalties of the dispatch overhead. Finally, the [AGPU variants are not
able to compete with the other implementations because the overhead for moving
data back and forth voids the benefits of parallel processing. However, the results
clearly show that [HSA] substantially improves performance for dGPUk compared to
traditional dispatch-based processing.

In|Figure 4.10 (b)], we fix the selectivity to 1072 and vary the batch size from 64 to
16K elements (x-axis). The results show that the multi-threaded implementation
requires only 64 elements per thread (256 element batch, four threads) to outper-
form the single-threaded variant. Furthermore, its speedup stabilizes with batch
sizes above 4K elements. All the [GPUbased implementations benefit from larger
batch sizes, but only [GPUIHSAI is able to outperform the single-threaded variant.
Additionally, its performance improves beyond batch sizes of 4K elements and ap-
proaches the speed of the multi-threaded implementation.

Aggregation

We evaluate aggregation by computing the sum of a single attribute while varying
the window size from 4K (2'%) to 1M (2?°) events and keeping the slide constantly
at 1 element. Hence, we re-evaluate the window for every incoming event. Again,
we measure the system’s throughput and compare our implementations to the
single-threaded baseline.

92

4 iGPU-Accelerated Online Processing

[AMulti-threaded BdGPU HELLS B dGPU HSA A Multi-threaded BdGPU HELLS B dGPU HSA
BiGPU HELLS @OiGPU HSA BiGPU HELLS OiGPU HSA

6 6

5 5
o 4 o 4
3 3 3 3
(0] [0}
g2 % a g2
0 N

X ﬂ il E.lﬂ

0 0

1 0,1 0,01 0,001 0,0001 1E-05 272 2713 2714 2715 2716 2717 2718 2719 2720
Selectivity Window Size

(a) Fixed window size (512K), varying se- (b) Fixed selectivity (0.001), varying win-
lectivity dow size

Figure 4.12: Speedup of join implementations compared to the single-threaded im-
plementation

shows the results of this experiment. Except for very small windows
(4K and 8K elements), [GPU [HSAl constantly outperforms the other implemen-
tations. Moreover, multi-threaded and both [GPUl variants scale with increasing
window size, while the [AGPU variants barely reach half the throughput of the
single-threaded implementation. Again, the data-shipping overhead is responsible
for the bad AGPUl performance. However, unlike the filter experiments, the perfor-
mance of the dispatch-based versions is close to the [HSAl implementations (on the
respective hardware). The reason is that the time for collecting the result on the
[CPU is short because aggregation produces a single result event read from a fixed
memory location. Hence, the time between two consecutive kernel invocations is
almost negligible.

Join

Similar to the filter, the performance of the join operator depends on two pa-
rameters, the window size and the selectivity of the join predicate. Again, we
compare the throughput of our implementations with the single-threaded base-
line while varying the window size from 4K (2'%) to 1M (2%°) elements and the
condition’s selectivity from 1 (all events pass) to 107°. Two events fulfill the
join condition if the FEuclidean distance of their payloads is below a user-defined
threshold.

Figure 4.12|shows two representative results from this experiment. In[Figure 4.12 (a)|
we fix the window size to 512K elements and vary the selectivity of the filter

93

4 iGPU-Accelerated Online Processing

condition (x-axis). While [GPUI[HSAl constantly outperforms the single-threaded
implementation, it requires a selectivity of about 0.01 to be superior to the multi-
threaded version. Again, this is because of the efficient result propagation on the
[CPUL This effect is not very noticeable for a selectivity value of 1.0 because all
[GPUl threads are involved in writing results. For a selectivity of 0.1, however, the
majority of threads are stalled during result writing. Lower selectivities relax this
problem for the following reason. If no thread of a [WFl needs to write a result,
the next window slice is processed immediately, and iIGPUIHSAI clearly outperforms
all other implementations. The [GPU] HELLS-Join performs similar to the multi-
threaded variant for low selectivities and falls behind for larger ones. [dGPUI[HSAI
was not able to answer the queries with high selectivities because it transfers many
results to main memory, which the implementation could not handle. As the
development of the ROCm platform is in an early stage, we expect this issue to
be resolved in the future.

In [Figure 4.12 (b)| we fix the selectivity to 0.001 and varied the window size from
4K to 1M elements (x-axis). The results show that EGPU[HSAl performs similar
to the multi-threaded implementation for small windows and clearly outperforms
all other approaches for larger windows. The reason is that we only synchronize
[WFk that actually write results to the output queue and thus do not suffer from
global synchronization needed during filtering. The HELLS-Join was designed
for huge windows, which is reflected in this experiment. It requires at least 128K
elements to compete with the multi-threaded implementation. Even though it uses
a double buffering technique to keep and busy, the performance suffers
from synchronizing both processing units. Similar to the other experiments, the
[AGPU severely suffers from data-shipping overheads but also benefits from our
[HSAlenabled processing techniques.

Sequential Pattern Matching

As shown in [Section 3.5.3| the computational complexity (i.e., the number of ac-
tive PMs per time unit) of sequential pattern matching is low for the contiguous

matching strategy. Thus, the additional synchronization overhead fully eliminates
the benefits of parallelization in this case. For this reason, we focus on the skip-
till-next and skip-till-any strategies in the evaluation of our parallelization ap-
proaches.

In order to control the size of the NFAlstates (i.e., the number of PMs), we use the
predicate ¢ as a condition for every symbol. ¢ is parameterized by ¢ and defined
as follows

b5 = (|€new-a1 — epm,.a1| < 5) .

94

4 iGPU-Accelerated Online Processing

4 Multi-threaded BdGPU (CDP) BdGPU ACPU-MT BdGPU (CDP) BdGPU
EiGPU (CDP) EiGPU EiGPU (CDP) BiGPU
6 6
5 5
o 4 o 4
=}]
7 3 T 3
;’.) 2 :’;) 2
+ i] Pl 0
0 0
2710 2711 2712 2713 2714 2715 2716 2717 2 3 4 5 6 7 8
Window Size Number of Symbols
(a) Varying window size, 2 symbols (b) Fixed window size (2'6), varying num-

ber of symbols

Figure 4.13: Speedup of pattern matching approaches compared to the single-
threaded implementation using the skip-till-any matching strategy.

Here, ey, refers to the newly arrived event, while ey, refers to the last event
within the currently processed PMlL The predicate evaluates to true if the difference
of both events’ a; attribute values is below the threshold d.

In the first experiment we examine, how the presented approaches scale with the
bare number of PMs. Therefore, we define a simple pattern (A, B) with matching
strategy M =skip-till-any and vary the window size from 2'° = 1024 to 27 =
131072 events. The total number of PMs is kept equal to the window size by
setting the predicate of A to true (i.e., every new event starts a [PM) and the
predicate of B to ¢19-7 (i.e., a very unlikely case).

IFigure 4.13 (a)| shows the results of this experiment as a function of the window
size. Independent of the window size, CDP as well as our approach perform poorly
on [AGPUTk because the data transfer cost is too high and eliminates the benefits
of parallelizing the predicate evaluation. Also the multi-threaded implementation
is inferior to the single-threaded. The reason is that the multi-threaded approach
uses one thread per state. However, in this experiment with two symbols
(i.e., one [NFAl state), there is only one extra processing thread. In this case,
the additional synchronization costs eliminate the improvements from using one
additional thread. In contrast, both [GPUl variants scale nicely with the window
size. However, CDP reaches its maximum speedup (3x) at a window size of 21,
while our optimized approach scales to even larger windows and achieves a more
than 5-fold speedup. The performance of CDP is limited because it does not
materialize PMs and requires additional memory accesses for predicate evaluation.
In contrast, our approach stores PMs densely in memory, which results in less wait

95

4 iGPU-Accelerated Online Processing

time.

In the second experiment, we study the efficiency of the presented approaches if
the PMs are distributed across multiple states. Therefore, we fix the window size
to 26 and vary the number of symbols in the pattern. Like previously, we use
the matching strategy M =skip-till-any and set the predicate of the first symbol
to true. For the remaining symbols, we use ¢9-5. By using a fixed ¢ for all
conditions, the number of PMs gradually decreases from one NFAl state to the next.
In our setting, the first state always holds 2'¢ PMs, the seventh state only contains
approx. 40 PMs.

IFigure 4.13 (b)|shows the results of this experiment. Similar to the previous exper-
iment, both AGPUl variants suffer from slow memory transfers and perform poorly.
For more than two symbols, the extra threads allow the multi-threaded implemen-
tation to outperform the single-threaded. However, since the PMs are not evenly
distributed among the [NFAI states, the multi-threaded implementation does not
scale with additional symbols. The performance of CDP on the [GPU also suffers
from additional symbols because PMs are not materialized and re-created with
every arriving event. In contrast, our approach provides a 5-fold speedup, inde-
pendent of the number of states, because it requires no re-computations and allows
the flexible distribution of kernel-threads to [NEFAl states.

In order to achieve an even distribution of the PMs over the [NFAl states, we repeat
the previous experiment using the M =skip-till-next matching strategy and an
experimentally tuned § for each of the symbol predicates. |[Figure 4.14 (a)| shows
the results for this experiment. Due to the missing support for M =skip-till-
next, we could not use the CDP algorithm in this experiment. Both variants
behave almost the same as in the previous experiment. However, the [GPU per-
forms slightly worse, since M =skip-till-next incurs more memory-management
tasks on the due to moving (i.e., copy/remove) of PMs to the subsequent
[NEA] states, instead of just copying them on the [GPU. However, this time the
multi-threaded implementation scales nicely with the number of symbols. As the
machine has four physical cores, the speedup experiences a dip at five symbols.
Nevertheless, due to hyper-threading, the performance improves up to eight sym-

bols.

The last experiment analyzes the performance of the presented approaches when
using a Kleene symbol. The setup is similar to the first experiment. The only
two differences are that we insert a Kleene-plus symbol in between (i.e., the pat-
tern is (A, BT, C)) and use the matching strategy M =skip-till-next to pre-
vent exponential growth of the Kleene state. For the Kleene-plus symbol, we set
§=1075.

96

4 iGPU-Accelerated Online Processing

@ Multi-threaded BdGPU OiGPU A Multi-threaded BdGPU OiGPU
6 7
5 6
5
o 4 o
> S 4
< 3 S
[0} (] 3
2 2 2
n n 2
1 1
0 o Vuim Pl 7=l E[| @ﬂ
2 3 4 5 6 7 8 270 2711 2712 273 2714 2715 2716 2017
Number of Symbols Window Size

(a) Fixed window size (2!), varying num- (b) Varying window size, 3 symbols with
ber of symbols Kleene

Figure 4.14: Speedup of pattern matching approaches compared to the single-
threaded implementation using the skip-till-next matching strategy.

IFigure 4.14 (b)| shows the results of this experiment. Again, we do not report
results for the CDP algorithm due to the lack of support for Kleene quantifiers
and the skip-till-next matching strategy. The results are similar to those of the
first experiment. Our EGPUl approach nicely scales with the number of PMs, even
though we only use three states. In contrast, the multi-threaded implementation
suffers from the few states and provides only a very little speedup, independent
of the window size. Finally, the again suffers from costly memory transfers
and performs poorly for all tested window sizes.

4.5 Summary

Event processing systems evaluate queries that continuously perform the same
operations over incoming events. The model is a natural fit to accelerate
this type of processing, but introduce latency that is often unacceptable
for event scenarios. In order to bridge the gap between both worlds, we have
presented a prototypical event processing system including filter, windowed aggre-
gation, windowed join, and sequential pattern matching operations based on recent
advancements in the HSA] platform. We have shown that an [GPU, which shares
its memory with the [CPUL in combination with persistent kernels, can enable pro-
cessing of small batches at low latency for the operations examined in our study.
Moreover, we described a framework in which the EGPUl and can co-exist for
more complex operations.

97

Pattern Matching on Temporal
Intervals

The sequential nature of regular expression-based patterns has two significant defi-
ciencies. First, the expressible temporal relationships are limited to before/after/at
the same time. Conditions lasting for periods and their temporal relationships
(e.g., A during B) are not, or only hardly, expressible in this approach. Second,
due to the sequential nature of this process, efficient parallel execution strategies
are scarce. Nevertheless, efficient parallel and distributed execution is a crucial
aspect when dealing with ever-increasing data rates.

To overcome these deficiencies, we use the concept of situations (cf.
that capture real-world phenomena lasting for periods. Situations can be derived
from event streams on the fly, and a temporal pattern (TP) can be matched using
the situations’ time intervals. Furthermore, situations reduce the input data by
(i) summarizing relevant sub-sequences of the stream and (ii) filtering out events
not relevant for matching the pattern, which, as we will show, allows for efficient
parallel and distributed query processing.

We illustrate our idea with the following example. A traffic monitoring system
continuously receives sensor data from connected cars (i.e., position, speed, ac-
celeration). One of the system goals is to notify drivers about potential threats
around their locations, such as an aggressively driving car. Among others, the
American Automobile Association has identified the following two actions being
indicators for aggressive driving} “Operating the vehicle in an erratic, reckless,
careless, or negligent manner or suddenly changing speeds” and “Driving too fast
for conditions or in excess of posted speed limit”. From these definitions, a pattern
to detect aggressive drivers is: “A sharp acceleration followed by hard braking,
both accompanied by a period of speeding.”

"http://www.iii.org/fact-statistic/aggressive—driving

98

http://www.iii.org/fact-statistic/aggressive-driving

5 Pattern Matching on Temporal Intervals

Speeding | . Speeding

| Accel | | Decel |Accel| | Decel |

Situations

lll-lvpll-ll;>
: H t
\J \J

Early Regular Early Regular

Figure 5.1: Detecting aggressive driving with situations.

Figure 5.1 illustrates this example. The stream of raw sensor readings is trans-
formed into three situation streams, one per pattern component. Every situation
consists of a time interval representing its temporal validity and a meaningful
summarization of the event sequence it was derived from (e.g., the average speed
during the speeding phase). The [TPl can then be matched by joining streams of
situations with appropriate conditions on their interval relationships. |[Figure 5.1
also showcases two more desirable features for temporal pattern matching. At
first, the way the situations are temporally related differs slightly among the two
sketched matches. In the first match, they overlap, while in the second match,
deceleration happens during the speeding situation. The query language should
be flexible enough to cover these cases within a single query. Second, the pat-
tern should be detected with the lowest possible latency. As depicted above, we
can conclude both matches at the beginning of the deceleration situation since
speeding holds at this point, and the pattern allows any combination of their end-
points. Technically, this means the system should conclude a successful match
without exact knowledge about the validity of all situations. Additionally, when
applied at a large scale with millions of cars, efficient parallel and distributed
processing is inevitable to guarantee query responses in a reasonable amount of
time.

This chapter presents T'PStream, a holistic operator for complex temporal pat-
tern matching on point event streams. TPStream detects matches at the earliest
possible point in time by closely coupling derivation of situations with pattern
matching. Unlike previous research, the operator and our low latency optimiza-
tions can easily be implemented in commonly available point-based systems. The
reason is that we use time intervals only internally and produce point event streams
as results. Moreover, TPStream is easily parallelizable and continuously adapts
its processing strategy to deal with fluctuating data rates and changes in the data

99

5 Pattern Matching on Temporal Intervals

distribution of incoming streams.

The remainder of this chapter is organized as follows. The next section discusses
alternative solutions to temporal pattern matching in detail. reviews
related work, before we introduce TPStream’s query language in In
we model all aspects of TPStream in an algebra. Efficient evalu-
ation strategies, the algorithm for low-latency matching and our optimization
techniques are presented in [Section 5.5 Solutions for parallel and distributed
execution of TPStream are introduced in We evaluate the perfor-
mance of TPStream in and briefly summarize this chapter in
ftion 5.8

5.1 State-of-the-Art

To the best of our knowledge, the only work on complex temporal relations (ITRk) in
event stream pattern matching is the ISEQ operator |Li+11]. However, ISEQ has
several shortcomings concerning the desired features: First, the operator requires
interval-events (i.e., situations) as input, leaving all aspects of deriving situations to
an unknown external entity. Being unaware of the origin of interval events severely
limits the operator in processing power (in terms of plan optimization). Moreover,
it renders detection with the lowest possible latency impossible since there is no
way to access an incomplete situation or indirectly manipulate the building of a
situation through constraints. Second, a [TP] is specified using a conjunction of
endpoint relationships (i.e., an ordering on start (ts) and end (te) of intervals).
This way, alternatives are expressed by omitting one or more endpoints. For
example, the pattern A.ts < B.ts < A.te < B.teV A.ts < B.ts < B.te < A.te on
two situations A and B is expressed as A.ts < B.ts < A.te. Hence, disjunctions
like A.ts < B.ts < A.te < B.teV B.ts < A.ts < B.te < A.te are not expressible
in a single query. Instead, they require multiple queries in an approach without
any specified optimization component to detect shared processing opportunities.
Third, ISE(Q does not provide any solution to parallelizing the process of matching
complex [TRk. Finally, ISEQ relies on auxiliary index structures and punctuation
mechanisms for efficient query execution, complicating the integration into existing
systems.

5.1.1 Straw Man’s Approach:

Besides ISE(Q), we identified two approaches to perform temporal pattern match-
ing with point event streams. Thus, we can provide a point of comparison to

100

5 Pattern Matching on Temporal Intervals

[ESP] systems featuring sequential pattern matching. The first approach works in
two phases: In the first phase, a pattern matcher is deployed for every defined
situation, computing its duration (start/end timestamp) and the desired summa-
rizations. Technically, this means matching patterns of the form —S S* =S with S
being the situation’s condition (e.g., speed > 70 mph). This pattern identifies the
longest contiguous subsequence of events fulfilling .S by surrounding the sequence
ST with events not fulfilling the condition (—.5). The result of this approach is a
dedicated stream per defined situation, each of which is ordered by the end times-
tamp. Thus we can map the [TP] to a sequence of situations (reflecting the order
of end timestamps, possibly containing alternatives). Finally, in the second phase,
a dedicated pattern matching operator is used to find all matching sequences,
whereby additional predicates ensure the proper ordering of start timestamps.
While this approach derives situations including the desired summarizations, it
fails to produce early results because, just like in ISE(Q), situations are entirely
derived before they are available for pattern matching.

The second approach uses a single pattern matching operator and expresses the
TP as a single sequence of point events. In order to express temporal overlaps, we
connect the conditions of all involved situations via a logical AN D. For example,
Acceleration overlaps Speeding is expressed as AB+C with the following conditions:
A = accel > 8 m/s?, C = speed > 70 mph and B = A A C. Since this approach
expresses patterns at the granularity of events, early results are achieved by simply
omitting the last portion of the pattern. At the same time, this approach leaves
summarizations of single situations to a post-processing step since it disassembles
situations to express temporal overlaps.

5.2 Related Work

Besides sequential pattern matching and interval-based [ESPIsystems, our approaches
relate to Context /State in[CEP], Stream Reasoning, and query processing in Spatio-
Temporal Database Systems. We already discussed work related to sequential pat-
tern matching and in interval-based [ESP] systems in [Chapter 2| Thus, we focus on
the remaining related concepts in this section.

Context/State in There has been recent work on introducing contexts
into a [CEP| environment. CAESAR [Pop+16] associates queries to long-lasting
context windows, detects them from incoming events as soon as they start, and
suspends queries of inactive contexts. Similarly, Etzion et al. [Etz+16] use con-
texts to group up event types and process them together. While contexts and

101

5 Pattern Matching on Temporal Intervals

situations are related concepts, the key difference is that contexts are purpose-
fully decoupled from events. Therefore, it is not possible to query the relation of
different contexts to each other. In contrast, T'PStream focuses on efficient, adap-
tive, and low-latency implementations of those MRk. Likewise, work dealing with
time periods such as states [HV15] or windowed aggregation |GAE0G6; |Gro+16],
cover the deriving aspect of situations, but lack interval relations |AlI83| or pattern
matching.

Stream Reasoning. The semantic web community has worked on extending
RDF triples with a time dimension, introducing the concept of temporally limited
information, and thus allowing for a variety of graph-based temporal queries such
as temporal joins [GGZ16]. C-SPARQL [Bar+09] deals with streams in partic-
ular. It introduces window semantics and corresponding aggregation capabilities
but does not feature temporal relationships necessary for formulating sequential
pattern queries. EP-SPARQL [Ani+11] and its implementation ETALIS assume
that every data item is associated with a fixed time interval and support the
usage of Allen’s temporal operators when formulating queries. Similarly, TEF-
SPARQL [Kie+13| supports all temporal relationships in a language and algebra
build around always valid triples and so-called facts. Analogous to situations, facts
feature a start time and a potentially undetermined expiration time which may be
set in the future. Like TPStream, EP-SPARQL and TEF-SPARQL aim to solve
the combination of fleeting events with longer-lasting situations. However, they are
ultimately complementary to the work presented here due to a variety of reasons.
First, the approaches aim to empower SPARQL with event semantics. In contrast,
we look at the problem from the perspective of event processing in order to facili-
tate easy integration into existing [ESPllanguages and systems. Second, both works
focus on establishing the language in particular while T'PStream also deals with
the implementation side to improve latency and parallelization aspects. Finally, a
more recent study [Gao+15] showed performance benefits of TEF-SPARQL’s alge-
braic notion of ongoing facts by compiling them into Esper queries. We go a step
further by not only supporting ongoing situations but also developing optimization
mechanisms unique to the pattern matching process.

Spatio-Temporal Database Systems. The spatial database community stud-
ied the problem of spatio-temporal pattern queries (STPQ) in trajectory databases,
e.g., in [Erw04]. In general, these approaches cannot be directly applied to an event
processing environment because they are built on top of a persistent trajectory
database model, where movement histories are already stored and indexed in the
database. However, the design of [SG11] in particular served as a foundation for
our proposed T'PStream operator as TPStream adapts similar concepts of temporal
predicates and constraints. Similar to the spatial community, Helmer et al. [HP16]

102

5 Pattern Matching on Temporal Intervals

introduce an event query language for high-level event detection for temporal
databases. The approach is based on introducing Allen’s interval algebra into Post-
greSQL and is also applicable for video stream surveillance [PBH17]. While those
efforts focus on languages and databases, TPStream targets event streams and
efficient low latency and parallel processing methods.

Due to relating multiple types of situations to each other based on their point of
occurrence, our evaluation method also relates to temporal joins (see [Gao+05| for
an excellent survey). Even though most research is not based in stream processing,
[PHD16] present a sweep-line algorithm for joins based on temporal overlap pred-
icates. In order to evaluate interval relations, they use a specialized hash-index
on intervals’ start and end. [DBG14] also target joins with overlap predicates,
but focus on long-lasting intervals. The authors adaptively divide intervals into
temporal partitions of different granularities while reducing the join to temporally
overlapping partitions. Both works are orthogonal to TPStream since they opti-
mize for overlap predicates on stored interval data. In contrast, TPStream derives
intervals on the fly, allows for multiple arbitrary temporal relations, and combines
both aspects for low latency pattern detection. In comparison to join algorithms
on streams |[Bab+04; GC)O?)] as well as adaptive approaches |[AHO00|, TPStream
combines both, the derivation of situations and the detection of patterns. Thus,
the operator can offer new techniques for early result detection unique to pattern
matching in event streams.

5.3 Query Language

This section presents TPStream’s query language for specifying temporal pattern
queries over point event streams. Therefore, we first present the basic structure
of a TPStream-query. Then, we discuss every component in detail before we for-
mulate the aggressive drivers query from the introduction as an example. Finally,
this section is closed with a discussion on the expressiveness of the proposed lan-
guage.

5.3.1 Syntax

The basic structure of the language is based on MATCH_RECOGNIZE [16] (items
in square brackets are optional).

FROM <input stream>
[PARTITION BY <attributes>]

103

5 Pattern Matching on Temporal Intervals

DEFINE <situation definitions>
PATTERN <pattern definition>
WITHIN <duration>

RETURN <output definition>

The FROM clause selects the input stream for the query. If the physical input
stream carries multiple logical partitions, where each of them should be evaluated
separately, this is specified in the optional PARTITION BY clause. The parti-
tioning scheme is specified via one or more <attributes> of the input stream,
whereby every unique combination of attribute values defines a logical partition.
To limit the search space for matches of the [TP] a time window in which the pat-
tern must occur completely is defined via the WITHIN clause. The duration is
specified as <number> <time unit>, with time unit being one of second(s),
minute(s), hour(s).

The DEFINE clause specifies which situation streams should be derived from the
raw events and how to derive them.

<situation definitions> :=

<situation definition> |

<situation definition>, <situation definitions>
<situation definition> :=

<name> AS <condition> [<duration constraint>]

A situation stream definition consists of a unique name and a condition. Con-
ditions are constructed using boolean expressions (true, false, and, or, not),
predicates (<, >, <, >, =, #) and arithmetic expressions composed of constant val-
ues and references to attributes of the input stream. The situations (time-intervals)
of a situation stream are derived by applying those conditions to every incoming
event. Optionally, a duration constraint can be set, allowing to restrict the
length of derived situations.

<duration constraint> := AT LEAST <duration> |
AT MOST <duration> |
BETWEEN <duration> AND <duration>

If a temporal constraint is defined, only situations fulfilling this constraint are
considered for matching the TPl

The PATTERN clause specifies the TPl as a set of temporal constraints (TCk) be-
tween two situation types.

104

5 Pattern Matching on Temporal Intervals

Relation (R) Equivalent (R) Visualization Definition (dr)
before B B after = o < < B.ts < B.te
starts B B started by e — = B.is< < B.te
meets B B met by T s < = B.ts < B.te

overlaps B B overlapped by e < Bis< < B.te
during B B contains B Blis< < < B.te
finishes B B finished by R < Bis < = B.le

equals B — =DBits< = B.te

Table 5.1: Allen’s Interval Algebra

<pattern definition> := <constraint> |

<constraint> AND <pattern definition>
<constraint> := <name> <relations> <name>
<relations> := <relation> |

<relation>;<relations>

The meaning here is as follows. A set of situations matches the [TP] if all defined
constraints are satisfied. A constraint between situations from two streams
is satisfied if their [TR] is among the specified relations. In other words, a
constraint is a disjunction of MRk (delimited by ; in the query language). In order

to express [TRk between situations, we adopt Allen’s Interval Algebra (see |AlI83])
depicted in for two intervals A and B.

Every interval has a starting point (¢s) and an ending point (te), resulting in
four points. te is the first point in time when the interval is not valid, i.e., the
interval is half-open. The relation between these four points (0r) defines the
relation (R) between two situations A and B. As an example depicted in
[ble 5.1, A before B means the interval A ends before the interval B begins.
Similarly, A during B means that A.ts and A.te are both within the interval
B.

The last part of a T'PStream query is the RETURN clause defining the shape of
result events.

<output definition> := <output variable> |

<output variable>, <output definition>
<output variable> <aggregate> as <name>

<aggregate> := FIRST (<ref>) | LAST (<ref>) |

COUNT (<ref>) | SUM(<ref>) |

105

5 Pattern Matching on Temporal Intervals

Every attribute of the output event stream is an aggregation over an attribute
of the input-stream. It summarizes all events that occurred during the time inter-
val of a situation. The attribute reference (<ref>) is composed of the name of a
situation stream and the name of an input attribute. Besides the standard aggrega-
tion functions like COUNT or SUM, T'PStream allows to refer to values of the FIRST
and LAST event participating the specified situation.

1 FROM CarSensors PARTITION BY car_id

2 DEFINE A AS accel > 8m/s? AT LEAST 5s,

3 B AS speed > 70 mph BETWEEN 4s AND 30s,
4 C AS accel < -9m/s? AT LEAST 3s

5 PATTERN A meets;overlaps;starts;during B

6 AND B contains; finishes;overlaps;meets C

7 AND A before C

8§ WITHIN 5 minutes

9 RETURN first (B.car_id) AS id,

10 avg (B.speed) AS avg_speed;

Listing 5.1: Agressive drivers query

shows the query definition for detecting aggressively driving cars from
the introductory example. The query processes point events from the C'arSensors
stream which is partitioned by the car_id to evaluate every driver individually. We
define the three situations for sharp acceleration (A), speeding (B) and hard break-
ing (C'), by referring to the acceleration and speed attributes of the input stream.
All three definitions make use of duration constraints. The pattern allows for dif-
ferent combinations among the derived situation types. For instance, acceleration
may meet, overlap, start, or occur during a phase of speeding. A match must
occur completely within 5 minutes, and result events contain the unique car_id
and the average speed during the speeding situation.

5.3.2 Expressiveness

As discussed in [Section 2.3.5 sequential patterns are defined via regular expres-
sions over symbols. Specific extensions, like aggregation, put the expressiveness
of those languages between regular and context-free grammars [ZDI114]. However,
only ISE(Q provides a native way to process patterns based on [TRk. This deficit is
also reflected in the respective languages.

By design, TPStream can express all TRk (and unlike ISEQ alternatives among
them) in a single query. In contrast, a single sequential pattern matching query
detects a sequence, i.e., a before relation. Nevertheless, as shown by both straw

106

5 Pattern Matching on Temporal Intervals

man’s approaches in [Section 5.1} it is possible to express other [TRk in systems
supporting Kleene-closure. Thus, our language does not express more than the
language of other systems.

Instead, we focus on enabling the user to express complex [TPk in a single, read-
able and maintainable query via the widely-known interval algebra of Allen (Ta-
ble 5.1)). For this purpose, we made two notable design choices that differ from
sequence-based approaches. First, in sequential pattern matching, events of the
input stream may be ignored depending on the selected matching strategy. In
contrast, TPStream derives the longest possible contiguous sequence of events
because this aligns well with the idea of long-lasting situations and avoids ambi-
guity whether a situation is still ongoing during other events. Second, in some
languages |[DIGO7] symbols can access aggregates of other symbols. Due to am-
biguity in the expected results when dealing with situations, we do not allow
this. For example, consider modifying the definition of symbol B in to
“B AS speed > max(A.speed)”. Then, for A overlaps B, it is unclear whether to
access max(A.speed) when A finishes, when B starts, or continuously monitor it
for every B. We would also like to sketch that, apart from those concessions, it is
possible to express a purely sequence-based pattern with TPStream: A sequence is
expressed with a be fore relation, and the implicit ongoing nature of situations is
eliminated with a duration constraint. However, for those cases highly optimized
sequential pattern matching implementations [ZDI14] are preferable. In conclu-
sion, this means that we do not change the expressiveness of other approaches.
However, by extending a query language with Allen’s Interval Algebra, our bene-
fits can be almost universally adopted.

5.4 Algebra

The goal in designing TPStream is to develop an operator capable of continu-
ously deriving situations from a stream of events and relate those situations to
each other. For this purpose, we first formally model those aspects in an alge-
bra.

5.4.1 Derivation

Situations (cf. [Definition 2.19)) are derived from event streams through aggregation
and predicate evaluation. We first define aggregation on continuous event subse-
quences before deliberating on predicates and how to derive situation streams.

107

5 Pattern Matching on Temporal Intervals

Definition 5.1 (Aggregated Event Subsequence). An aggregate 7,4, is applied to
an event stream subsequence Ej; j by applying agg to the events of this subse-
quence.

Yago(Epig)) == (agg(ei, ..., e;j), et ej1.t)

When obvious from context, we abbreviate 7,4, with .

The result in [Definition 5.1| technically already is a situation. However, for the
derivation process as a whole, we want to discover situations for which a set of
circumstances holds. In order to provide an unambiguous process to identify these
situations, we are looking for the longest possible sequences for which these cir-
cumstances apply.

Definition 5.2 (Derived Situation). Situations are derived from event streams
with the function derivey, . It aggregates information of a contiguous subse-
quence of events E; ;) by applying « iff the events in Ej; ; are the longest possible
sequence of events to fulfill a given predicate ¢ and the covered timespan is within
the given duration constraint 7 := [dmin, dmaz]:

VZ € [Z,j] . ¢(€l) AN
Ei‘ f - i— .
derive(b,%n(E[m]) = gl [’ﬂ) 1 ((eim1) V d(ejr1)) A
eji1.ts —e;ts) €n

() otherwise

Example. Assume the query in derives a speeding situation for a car
with the time interval [2,10). This means speed < 70 mph at t = 1 and t = 10
and in between those timestamps speed > 70 mph. From an algebraic standpoint,
assuming knowledge about the whole event stream, this aligns well with a natural
interpretation: There are not multiple situations (e.g. [2,3),[2,4),...) but rather
one continuous speeding phase which fulfills the duration constraint (d,;, = 4s
and d,,., = 30s). For that reason and because it results in unique situations, we

choose to derive the longest possible subsequence in [Definition 5.2]

Definition 5.3 (Derived Situation Stream). The deriveStreams ., function de-
rives a stream of situations from a given event stream FE by applying the function

108

5 Pattern Matching on Temporal Intervals

deriveg -, to all possible subsequences and unifying the results:

J
deriveStreamy . ,(E) = H—J H—J deriveg (L j)

j oi=1

Note that, because derivey ., derives the longest situations possible, it is easy to
show that deriveStream, ., produces a stream of situations with disjoint time
intervals. This important property means that the order of situations using start
timestamps is the same as the order using end timestamps, resulting in a beneficial
pattern for query processing as stated in [GO05).

5.4.2 Pattern Matching

TPStream matches multiple situation streams to a[TPl and produces a result event
stream according to the given definitions. A [TPlis composed of TCk between situ-
ation streams, which in turn comprise multiple TRk between exactly two streams.
This section presents formal definitions of these terms, the output of a successful
match, and ultimately the T'PStream operator.

Example. Consider the example query of|Listing 5.1/ and let s* be an acceleration
situation as defined by A and s” s be a speeding (B) and deceleration (C)
situation, respectively. The pattern describes how pairs of situations can relate to
each other via[TCk. For s and s? the[TRl can be either A meets B, A overlaps B,
A starts B, or A during B. It does not matter if acceleration overlaps speeding
or if speeding contains acceleration. Both cases may lead to the result of detecting
aggressive drivers. The TPl on the other hand, is a conjunction of [TCk. In order to
match the pattern, every [TC must be fulfilled.

Definition 5.4 (Temporal Relation). Given two situation streams S#,SZ, a TR
RAB defines a valid relationship between two situations s* € S4 and s € SP
according to Allen’s Interval Algebra (cf. [Table 5.1). s4 and s? fulfill RA5, iff
they satisfy the corresponding algebraic definition (dg).

Definition 5.5 (Temporal Constraint). A[TCC4? between two situation streams
54, SB is a set of MRk { R, ..., RAB}. Two situations s* € 54 and % € S& fulfill
CAB_iff they at least fulfill one of the [TRk .

109

5 Pattern Matching on Temporal Intervals

In other words, TGk allow specifying multiple valid relations between two situation
streams, providing the desired flexibility in expressing alternatives.

Definition 5.6 (Temporal Pattern). For a set of situation streams (S*,...,S™),
allPl P = {C%|1 <i < j <m}is aset of [Cs. A [TPlis matched by a temporal
configuration 5 = (s' € St ..., s™ € S™), iff 5 satisfies every [TCt

matchp(3) & VO™ € P: ARY € C™ : §pis(s', s7)

Definition 5.7 (Pattern Matching Output). A temporal pattern matching op-
erator PM,, 5 p matches a temporal configuration s = (s',s%,...,s™) to a [P P.
It aggregates the information of s with some suitable aggregate 4 and checks the
window condition (cf. WITHIN clause).

window(3, w) = w > max(s.te) — min(s.ts)
SES s€ES

The operator produces an output if the temporal configuration matches the pattern
during the specified window, i.e.:

¥(5), max s.te it matchp(3) A window(s, w
Pt () o | (G500 che (5.0)
() otherwise

Similarly to how we extended derived situations to derived situation streams (Defi-

to[5.3), we can extend [Definition 5.7|to situation streams.

Definition 5.8 (TPStream). TPStream, s p matches multiple situation streams
St,...,8™ to a[TPl P by applying the corresponding pattern matching operator
PM, 4 to the cross product of the situation streams and unifying the results:

TPStream,, 5 p(S*,...,S™) = L‘H P My 5,p(5)

seX;L, S

Note that TPStream,, s p results in an event stream and is thus easily integrable
into existing point-based [ESP] systems.

110

5 Pattern Matching on Temporal Intervals

4 TPStream N

Result Strea&

Deriver Matcher

4

\Situation Def. 1 Situation Def. n

Situation Stream 1

nt Stream

[Eve

Situation Stream n

Figure 5.2: TPStream Architecture

5.5 Algorithms & Implementation

In this section, we present our algorithms and implementation details for detecting
TPk among streams of point events. Following the definitions from the previous
section, the general architecture consists of two main components, as depicted in
First, the deriver component consumes events from the input stream
and derives the defined situation streams. Then, it passes those streams to the
matcher component, which performs the actual pattern matching. In the following
two subsections, we will explain both components in detail. For the sake of sim-
plicity, we defer the discussion on low latency detection to and wait
for the end timestamp of derived situations before invoking the matcher. The last
part of this section describes how TPStream computes efficient execution plans
and dynamically adapts to changing workloads.

5.5.1 Deriving Situations

[Definition 5.3| introduces derived situation streams, using knowledge about the
whole input-stream. To compute situation streams incrementally as new events
arrive, the deriver component manages a buffer for ongoing situations (Buf) and
the situation stream definitions (Def). |[Algorithm 5.1| shows how they are used
to derive situations on-the-fly. For every defined situation, the deriver handles
3 cases. First, if there is no started situation in the buffer, but the predicate
holds, it starts a new situation. Therefore, it computes initial values for all de-
fined aggregates (e.g., p.speed for an max(speed) aggregate) and stores them in
the buffer together with the event’s timestamp (Lines 4,5). Second, if the buffer
contains a started situation and the current event fulfills the predicate, the de-
river prolongs the temporal validity of the situation. In addition, it updates the

111

5 Pattern Matching on Temporal Intervals

Algorithm 5.1: DeriveSituations

Input: (p,t): event
Data: Buf :=[(p/,ts);]: active situation buffer
Data: Def := [(¢,7,n);]: situation definitions
1 Res < ();
2 foreach i€ |Def| do
4 | if Buf[i]=0A ¢(p) then
5 | | Bufli] + (initAgg(p,7),t);
else if ¢(p) then
7 | | updateAgg(p, Buf]i],7);
8 | elseif Bufli] # 0 then

(=]

9 if (t — Bufli].ts) € n then
10 L Res < Res U {(Bufli].p/, Bufl[i].ts,t)};
11 Buf[i] « 0;

12 if Res # () then
13 L updateMatcher(Res, t);

buffered aggregates using the event’s payload (p) (Lines 6,7). Finally, the deriver
finishes a buffered situation on the first event not satisfying the defined predicate.
In this case, it fixes the situation’s end timestamp to the current time, adds it
to the result set Res (provided it satisfies the duration constraint 7), and clears
the corresponding buffer slot (Lines 8-11). After updating the state of every sit-
uation stream, the deriver passes the result set to the matcher component (Lines
12,13).

5.5.2 Matching the Pattern

The matcher implements an incremental version of T'PStream,, s (Definition 5.8)).
In other words, it detects matches on the fly as the deriver passes in new situ-

ations. The general idea is to manage a buffer for every situation stream and
perform the pattern detection via a multi-way join between those buffers, using
the [TCk as join-conditions. Recap that all situations within a stream are disjoint
and thus imply the same order on both the start and end timestamps
[tion 5.3). We will use this fact to ensure the efficient execution of the matcher

component.

112

5 Pattern Matching on Temporal Intervals

Algorithm 5.2: UpdateMatcher
Input: Sp: set of finished situations
Input: t: the current time

1 purgeBuffers(t);

2 foreach s € Sr do

3 addToBuffer(s);
4 (C, Buf,nextStep) < getEvaluationOrder(s);
5 performMatch({s}, (C, Buf,nextStep));

Algorithm 5.3: PerformMatch
Input: ws : partial result
Input: step : (C : Temporal Constraints, Buf :
Situation Buffer, nextStep)
if step =0 then
L publishResult(ws);

3 else if containsSituationForStep(ws,step) N checkConstraints(ws,C)
then
L performMatch(ws, nextStep);

N =

I

(S

else if —containsSituationForStep(ws,step) then
L foreach (p,ts, t.) € findMatches(C, Buf,ws) do

| performMatch(ws U {(p, ts,tc)} , nextStep);

ICE-Y

Every time the deriver returns a non-empty set of finished situations, we invoke
|Algorithm 5.2 At first, the algorithm purges all expired situations from the buffers
(Line 1) by removing all situations s with s.ts < t — window. Because of the
mentioned ordering, this effectively means finding the first situation s’ with s’.ts >
t — window and discarding all previous situations. We implement the buffers via
array-backed ring buffers to efficiently support these operations. After purging
outdated situations, the matcher executes the following steps for every received
situation. First, it adds the situation to the corresponding buffer (Line 3). Then,
it looks up the evaluation order for the given situation (Line 4). That is the order
in which the matcher joins the situation buffers. Then, for every join-step, the
matcher stores the corresponding [TCk (C), the situation buffer to join (Buf), and
a reference to the next step. Finally, it calls the recursive matching algorithm
(Algorithm 5.3). Note that the currently processed situation s is fixed in the
parameter to the recursive algorithm. This ensures unique results because it forces
s to be part of every generated result and s changes with every invocation of the

113

5 Pattern Matching on Temporal Intervals

algorithm.

[Algorithm 5.3 matches the pattern as follows. Every recursive step joins one
situation buffer with the current partial result (ws). Here, two cases must be
distinguished. The first case handles situations given as a parameter from
In this case, the algorithm omits to join the entire buffer, checks the
[TCk of the current step (C), and proceeds recursively if the constraints are fulfilled
(Lines 3,4). The second case joins ws with the situation buffer (Buf) associated
with the current step. Then, the algorithm recursively proceeds to the next step for
every join result (i.e., every matching situation) (Lines 5-7). After processing all
steps, ws contains one situation from every buffer, and all [TCk are satisfied for this
set of situations. Hence, the algorithm calls publishResult to materialize a result
event and push it into the output stream (Lines 1,2).

Obviously, the evaluation performance of [Algorithm 5.3 mainly depends on the
efficiency of the function findMatches. A naive approach would be, to scan the
entire situation buffer and check the [TCk for every situation separately (i.e., per-
form a nested-loop join). Let n denote the number of recursive steps, Res;
the i-th intermediate result, and Buf; the situation buffer traversed in step i.
With |Res;| = |Bufi|, the costs of the naive approach (Cpuive) can be estimated
with:

n—1

Cnaive = ’R€5n| + Z |R65i‘ : |Bi+1| (51)

i=1

To speed up the computation, we again utilize the order of situation streams.
Because the buffers reflect the temporal order, we can find all matching situations
using binary searches. We first discuss this for a single [TRI before extending it to
(multiple) [TCk. Recall that a MR explicitly defines a relationship between all four
endpoints of two situations. For instance, this is A.ts < B.ts < A.te < B.te for
A overlaps B. Now, given an instance of situation A, we obtain matching instances
of B by (i) issuing two range-queries on the buffer of B, using the timestamps of
A as boundaries and (ii) intersecting the results of those queries. For the example
relation, these queries are:

1. Atts < ts < A.te for the start-timestamp and
2. A.te < te < oo for the end timestamp.

It is easy to see that every situation falling into both ranges fulfills the given [TRI
Figure 5.3|illustrates this using three situations. Situation A; in combination with
the [TRIis used to build the two search ranges. After intersecting the results ({B;}

114

5 Pattern Matching on Temporal Intervals

———

| = 1=

| |

[start range)‘

‘ | V X \/

| (endrange]
Aj.ts Ai.te

Figure 5.3: Temporal Matching via Range Queries

for the start range and {Bj, Bo} for the end range), we receive our final result
B;. Note that for MRk allowing more than one result (e.g., A before B), this
strategy additionally eliminates the need for checking every combination individ-
ually.

In general, a [TQ contains more than one [TR] stating each of them as a valid
relationship between two situations. Multiple TRk can easily be integrated by
executing the search separately for each of them and subsequently building the
union of the obtained results. Similarly, the conjunction of multiple [TCk is im-
plemented as an intersection of the results from the respective individual queries.
Because a contiguous array backs the buffers, we can represent the search re-
sults as index ranges and thus efficiently compute the required unifications and
intersections. This approach reduces the estimated costs of [Algorithm 5.3| to:

n

Obinary = Z (’Resi—1| : |R€Si’ + CfindMatches(Bufi)) ; with (52)
=2
CfindMatches(Bufi) = Z Z 4- 10g2(|BU,fl|) (53)
CceC; ReC

CrindMatehes(Buf;) is composed as follows. For a single TR, we need to execute 4
binary searches on Buf;. Thus, the cost for one MRl is 4 - log,(|Buf;]). In every
recursive step, we consider |C;| TCk, each composed of |C| IRk , which leads to the

sum expression in [Equation 5.

115

5 Pattern Matching on Temporal Intervals

Relation (R) Definition (dr) trmin(R) Prefix-Group (G) tgmin(G)
before B < < B.ts < B.te B.ts
<). g). g
meets B < = B.ts < B.te B.ts < < Bis Bt
starts B =Bis< < B.te
equals B = Bis< = B.te = B.te = B.ts B.ts
started by B = B.ts < B.te < B.te
overlaps B < Bis < < B.te
finishes B < B.its < = B.te = B.te < B.ts B.ts
contains B < Bis < Bite < B .te

Table 5.2: Temporal relations R and their prefix groups G with their earliest de-
tection times 7, (R) and tgmin(G)

5.5.3 Low-Latency Matching

In this section, we determine the earliest points in time ¢, (R), tCrnin(C), tPmin(P)
to detect a[MRI R, a[TC C, and a[TPl P, respectively. Then, we illustrate cases in
which the algorithms of in combination with low-latency matching
fail to deliver correct results. In the last part of this section, we present adjusted
algorithms for low-latency matching.

Analysis

Two situations A and B can only be related once we know they exist, making
max(A.ts, B.ts) < trp,(R) a trivial lower bound for all relations R. For an
exact computation of tr,,;,(R) we consider the definition dg of relations given in
[Table 5.2 Let ¢; <ty <3 < t4 be the timestamps in the order they appear in dg.
It is easy to see that the ordering of ¢, is already available at t3, because t3 < t4 and
there are no timestamps after 4. Furthermore, multiple relations are sharing the
same definitions up to ts, i.e., it is not possible to distinguish those relations from
each other. We group these relations with a common prefix of two timestamps into
so-called prefix groups as shown in for relations starting at situation A
(an analogous definition exists for relations starting with situation B). Thus, we
conclude that the following holds for any TRl R

trmin (R) = t3 .

AMAC = (Ry,...,R,) for two situations A, B matches if one of the contained
relations is fulfilled. Thus, C' has multiple earliest detection times given by a

116

5 Pattern Matching on Temporal Intervals

set

tomin(C) = {trmin(R1), -+ trmin(Ro)} -

Furthermore, if C' contains all relations of a prefix group G (cf. [Table 5.2), the
detection time of these relations is shifted to the trivial lower bound of that group
(denoted tgmin(G)).

Finally, for a pattern P = (C4, ..., Cy,), every constraint C; = (R, ..., R},) must be
matched. However, a single temporal configuration matching P fulfills exactly one
[TRI (R;Z € C;,i=1,...,m) from every constraint, making

tpmin(P) = {max(trmm(le-l), ot (R)) |1 < i <n, 1 < < m} .

Thus, tpmin(P) is among all the constraint detection points, i.e., tpmin(P) C
Uizt temin(C3).

Problem Statement

For the ease of presentation, we first postpone discussing optional duration con-
straints on situations and prefix groups to the end of this section. In general, our
low-latency analysis provides two insights for the matching algorithm. First, new
matches only occur if a new situation starts or a situation ends. Second, only a
subset of the situations in a pattern P can produce a match at a point in tp,,, (P).
Thus, we delay the matching process until a situation with at least one endpoint
in tpyin(P) occurs without affecting the latency. We call those situations trigger
situations since only they trigger a call to|Algorithm 5.3] These insights affect our
algorithms in the following ways. First, situations must be available for matching
from the start. Therefore, we adjust the deriver component. Additionally, we
need to determine for each situation stream if the derived situations are trigger
situations. For trigger situations, we need to compute the point in time to execute
|Algorithm 5.3| (at its start, end, or both).

In contrast to our algorithms so far, the following two cases must be considered
during the matching process to ensure the correctness of the produced results
while delivering them as early as possible. First, we ensured unique results by
examining a new situation on every invocation of [Algorithm 5.3l However, be-
cause for low latency matching both endpoints of a situation must be considered,
the algorithm might be called twice with the same pre-set situation. Hence, ad-
ditional steps are required to guarantee unique results. Second, situations whose
endpoint is unknown always carry the current time as a temporary end times-
tamp. This affects the matching of MRk requiring both situations to end at the

117

5 Pattern Matching on Temporal Intervals

|| [|
_ D _I r _L__IDJ_lJ
P
| | |
I T - Pt
@ ty Duplicate (b) False
Result Positive
[o]
r T
R

Figure 5.4: Earliest detection time (tp,:,(P)) of different temporal configurations
for the sample pattern P

same point in time (i.e., finishes, equals). If the matcher inspects two on-
going situations, they might fulfill the respective TRl even though their actual
end timestamps differ. Hence, in such cases, the matcher produces false positive
matches. Note that this phenomenon does not affect other relations since they re-
quire their end timestamps to differ, which never holds for two ongoing situations.

We illustrate both cases using the following example pattern P on four situations
(A, B,C, D).

Avbefore B AND Abefore C AND A before D AND

C contains; finishes; meets D

It defines A as the starting point of every match. B is not explicitly related to
either C' or D and is required to happen after A. Consequently, B is a trigger
situation and B.ts € tp,m(P). For D, both timestamps, D.ts (via meets) and
D.te (via contains, finishes), are in tp,,(P).

Figure 5.4 (a), show a temporal configuration with D.ts as the earliest point of de-
tection for P. However, since D.te € tp,i,(P), the same match would be detected
again at D.te. Moreover, (b) showcases the false positive detection if
validating C' finishes D would succeed at B.te. Finally, [Figure 5.4 (c) illustrates
that two ongoing situations like B and C' may be part of a match, even if they are
not explicitly related via a [TCl

118

5 Pattern Matching on Temporal Intervals

Low-Latency Matching Algorithm

Instead of handling the above cases explicitly, our low latency algorithm avoids
them by ensuring a unique combination of situations in the partial result before
passing it to the matching algorithm. In particular, this means the algorithm
manages started situations in a separate buffer that is inaccessible to the match-
ing algorithm. It uses this extra buffer to build all valid situation combinations
upfront (i.e., all combinations of started situations, not explicitly related to the
current one). Furthermore, to avoid duplicate results, we exploit the following
fact. MRk that enforce matching on a situation’s start require the second situ-
ation to be finished in the past. On the other hand, MRk triggering matching
on a situation’s end require the second situation to be either started (and not
yet finished) or finished at the same time (cf. . Consequently, man-
ually adding the started counterpart to the partial result before executing the
matching algorithm on a situation’s end ensures the uniqueness of the produced
results.

The details are presented in [Algorithm 5.4, After purging outdated situations
from the buffers (Line 1), the algorithm adds each started situation (s) to the
extra buffer. Then, if s.ts € P, (P), the algorithm pre-sets s in the partial result
and performs a regular match (Lines 2-6). Furthermore, if there are started and
unrelated situations, it additionally performs matches with s and every combina-
tion of them (Lines 7-9). This accounts for configurations as seen in
(a). In the next step, |[Algorithm 5.4| migrates all finished situations from the sepa-
rate buffer to the regular situation buffer (Lines 10-12) and triggers the matching
process if s.te € tpyin(P) (Lines 13,14). This time with combinations of s and all
started and related situations (Lines 15-17), further combined with all started and
unrelated situations (Lines 18-20), which fuses the avoidance of duplicate results
and false positives. (c) shows an example for this case. Note that the ac-
tual constraint-checking among the created combinations is performed by the call
to performMatch (Algorithm 5.3)) since it is aware of pre-set situations in the par-
tial result. As we will show in [Section 5.7] the extensive building of combinations
has only minimal impact on the runtime performance because it shifts load from
joining to the update algorithm and does not introduce additional computation
steps.

Duration Constraints. Only a few modifications are required to incorporate du-
ration constraints on situations into low latency-matching. First, if a maximum
duration constraint is defined (regardless of a possibly specified minimum dura-
tion), the corresponding situation must not be included in the matching process

119

5 Pattern Matching on Temporal Intervals

Algorithm 5.4: Low-Latency MatcherUpdate
Input: S, Ss: sets of finished /started situations
Input: ¢: current time

1 purgeBuffers(t);

2 foreach s € S, do

3 startedBuffer.add(s);

4 if matchOnStart(s) then

5 order < getEvaluationOrder(s);

6

7

8

9

performMatch({s}, order);
U < getUnrelatedStarted(s);
foreach u € powerset(U) \ 0 do

L performMatch(u U {s}, order);

10 foreach s & Sy do

11 startedBuffer.remove(s);
12 addToBuffer(s);

13 if matchOnEnd(s) then

14 order < getEvaluationOrder(s);

15 R < getRelatedStarted(s);

16 foreach r € powerset(R) \ 0 do

17 performMatch(r U {s}, order);

18 U < getUnrelatedStarted(s);

19 foreach u € powerset(U) \ () do

20 L performMatch(r Uu U {s}, order);

until its end is known. Hence, we exclude these situations from the set of started
situations (S;). Furthermore, if their start timestamp is in tp,(P), we defer
the matching to their end timestamp. Second, if a minimum but no maximum
duration is defined, we defer the inclusion into the set of started situations until
the constraint is satisfied. This possibly implies the inclusion of its deferred start
timestamp (£s) into tp,i,(P). As an example, consider A during B and the fol-
lowing order of timestamps: B.ts < A.ts < A.te < B.ts < B.te. This match can
not be detected at A.te, because B’s duration does not exceed the lower bound at
this point. Hence B.ts requires a matcher invocation.

Prefix Groups. In order to handle prefix groups, we relax the restriction that two
started and explicitly related situations must not be matched. In particular, we

120

5 Pattern Matching on Temporal Intervals

perform the matching if the corresponding [TCl contains one or more prefix groups.
However, to still omit false positives, the matcher must distinguish between prefix
group and regular detection. In our algorithm, this means splitting the [TCl into
two disjoint sets, one containing all TRk forming a prefix group and another one
for the remaining relations. We use the first set to match a situation’s start while
we use the second on its end.

5.5.4 Computing the Evaluation Order

The matcher component maps the problem of temporal pattern matching to a
multi-way join between situation buffers. Like join processing in traditional DBMS],
the performance of joining depends heavily on the order in which we execute the
join operations. This section discusses how the matcher’s evaluation order is com-
puted and presents the cost model used during this process.

Analogous to classical join processing, our optimizer enumerates possible execution
plans, computes their expected computational costs, and determines the plan with
minimum cost. We do not provide multiple implementations of the join operator so
that enumerating possible plans reduces to the enumeration of possible evaluation
orders. To further reduce the number of plans to consider, we exclude orderings
joining a situation buffer without an applicable TCl In other words, we omit plans
involving the calculation of a cross-product.

According to [Equation 5.2] estimating the costs for a given plan boils down to
estimating the size of intermediate results.

B ifi =1
|Res;| := [Bufi n ‘ (5.4)
|Res;—1| - |Buf;| - ¢; otherwise

¢; denotes the selectivity of the applicable [TCk in step ¢ (C;), which can be com-
posed from the selectivities of the contained TRk as follows.

vi=]] (Z goR) (5.5)

ceC; \ReC

When initially deploying a query into the system, the situation buffers are empty;,
and we have no estimation on the selectivity of the [TCk. Hence, we assume the
selectivities depicted in [Table 5.3 which are based on the following back-of-the-
envelope calculation. The combined selectivity of all possible relations should be

121

5 Pattern Matching on Temporal Intervals

Relation Selectivity
before 0.445
during 0.03
overlaps 0.01
starts, finishes, meets 0.0049
equals 0.0006

Table 5.3: Initial estimates for the selectivity of MRk (¢r)

100%. When assuming equal-sized buffers and temporally uniformly distributed
situations, the selectivity of a before relation will be around 50%. For during,
the number of results is limited by the maximum of both buffer sizes because a
situation A can happen during at most one other situation B, but B may contain
multiple A situations. All other[TRk define a 1:1 relationship, which limits the worst
case to the minimum of both buffer sizes. As seen in [lable 5.3] we additionally
separate the last case by the number of stated equalities in dz. Note that even
though this is an initial estimate, the resulting plans prove to work well in most

cases (cf. [Section 5.7.4)).

Adaptivity

A query in an[ESPIsystem is typically active for a long time. Hence, more important
than the quality of an initial execution plan is to tune this plan and adapt it to
changing workloads. To do so, we keep track of the buffer sizes and selectivities
imposed by [TCk during execution. The buffer sizes are available at any time and at
no cost since the underlying data structure tracks them. However, to smooth out
potential spikes, we monitor the buffer size using an exponential moving average
(EMA]), which is adjusted after each call to the matcher’s update method as follows.

EM A; holds after the i-th update. |Buf;| denotes the size of the considered buffer
at update ¢ and the smoothing factor o € (0,1) determines how much weight is
given to previous values. For example, a value close to 1 assigns almost no weight
to older values, while a value close to 0 decreases the influence of new values.
We also manage the selectivities of the [TCk with using one [EMAlvalue per
constraint.

The active plan stores a snapshot of the statistics it is based on. Then, after
every update, we compare those stored statistics to the current values. If any of

122

5 Pattern Matching on Temporal Intervals

them differs by more than a defined threshold, we trigger a re-computation of the
evaluation order.

Finally, if a plan migration is required, we can migrate to the new plan between
any two invocations of the matcher component. Because the matcher does not
store any intermediate results but solely relies on the situation buffers, this switch
comes without any additional migration costs. As we will show in [Section 5.7.4]
the total costs for adaptivity are negligible.

5.6 Parallel TPStream

This section presents a parallel version of TPStream to improve throughput by
leveraging the parallel processing power of today’s multicore systems without in-
troducing any form of latency degradation. The nature of TPStream makes its
parallelization a non-trivial task for the following two reasons: First, T'PStream
works with continuous sequences of situations derived from continuously arriving
events. Thus, to identify a pattern P, either a single thread must process all
events leading to the detection of a match for P, or the active threads need to
share the state information. Second, a key component of TPStream to achieve low
latency is its situation buffer. However, in a parallel version, the effort involved in
synchronizing the accesses of different threads to the buffer can become a severe
performance bottleneck.

In the following, we present the essential concepts for introducing parallelism to
TPStream. First, we start with the static integration of T'PStream into the applica-
tion context from which we receive incoming event streams and to which we send
the results of continuous pattern queries. We then develop two multi-threaded
versions of the TPStream query processing algorithm. The first version targets
partitioned input streams, while the second version applies to non-partitioned
ones. In fact, parallelizing the latter case is more complex and requires a finely
tuned processing pipeline, which we describe in detail in separate subsections.
Next, we address the problem of the fluctuating behavior of event streams (e.g.,
changes in data rates) and present an auto-tuning component that overcomes the
limitations of our static approaches presented so far. Finally, at the end of this
section, we present an extension of parallel TPStream for a distributed streaming
environment and show how to integrate TPStream into a distributed streaming
platform.

123

5 Pattern Matching on Temporal Intervals

5.6.1 Integration with Application Context

Before we go into the details of parallel processing, we discuss the import of event
streams and the export of result streams. In a parallel environment, the processing
threads must be decoupled from both the (external) event producers and the result
consumers.

For the decoupling from event producers, we deploy queues on the thread bound-
aries in which the producer is writing events while processors are reading from
the queues. Because the synchronization of producers and processors introduces a
reasonable overhead, we decided to access the queues in event-batches of fixed size
rather than single events. The batch size is initially constant, but the auto-tuning
component (see details in can adjust it if changes occur in the ap-
plication context and system load. Furthermore, the size of a queue is constant
per active thread, resulting in a stable and predictable memory footprint. In our
experiments, we learned that the capacity of a queue should be 2!6 events per
active thread. Overload is propagated upstream via back pressure allowing for
countermeasures on the producer side (e.g., writing events into logs). In general,
the goal is to set the batch size in was that minimizes the waiting time on the
producer and consumer sides. We experimentally examined various settings and
found that a batch should be a power of two, at least 32 and at most 2'° (i.e.,
half of the number of events in a queue). In the extreme case of two batches,
the producer writes in its batch, while a processor reads from the other batch.
Depending on the parallelization approach, we either use a shared queue for all
threads or a dedicated queue per thread.

Additionally, the processing threads need to be decoupled from the result con-
sumers. In particular, we have to treat out-of-order results which are likely to
occur during parallel processing. Consider for example the following (simplified)
scenario of two processing threads (pt;;pte) that process two consecutive event-
batches (by — pti;be — pty) in parallel. Because all events in b; have smaller
timestamps than events in by, the results of pty will have timestamps greater than
those of pt;. However, if pt, finishes first and sends its results downstream before
pt1, the merged result stream does not have a monotonically increasing time order
anymore. A naive solution to this problem is to wait for a result from every pro-
cessing thread and only forward the result with the smallest timestamp at a time.
However, this may lead to unpredictable delays and block all processing threads
if one of them is not producing any results. Therefore, we use a K-slack [BSW04]
working as follows. A min-heap of fixed size (K events) collects the results. The
first K events are simply stored in the heap. From event K + 1, the new result
is put into the heap, while the top of the heap (i.e., the event with the smallest

124

5 Pattern Matching on Temporal Intervals

Thread Boundary

Queue 1

Partitionﬂl,l |:| D D

Event Batch

iThread 1 O Partition 1,1

Batch &
Assign s 5
: Partition n,1 O] O
|:| D | Partition n,m

Figure 5.5: Overview partition parallel T'PStream

Events

Event Batch

timestamp) is removed and sent downstream. This method avoids the blocking of
threads during result propagation at the expense of possible out-of-order results.
If a result with a timestamp smaller than the top of the heap arrives, we are unable
to decide whether it is out-of-order or not. However, depending on the downstream
operators, we can either publish it because the downstream operator can handle it
or discard it and report a warning. The probability of this case occurring depends
on the parameter K, which needs to be chosen according to the (latency) demands
of the concrete application scenario.

5.6.2 Partitioned Data

TPStream’s query language features a PARTITION BY clause (cf. ,
which allows to divide the input stream into several logical partitions. Those par-
titions are evaluated independently by applying the T'PStream operator to each of
the partitions. For example, in the aggressive drivers query, every car is analyzed
separately. Thus, the input stream gets partitioned by the car_id attribute. There-
fore, even in the single-threaded implementation, T'PStream maintains a process-
ing pipeline including a dedicated matcher and deriver for every partition. Given
this, parallel processing of a partitioned stream is straightforward, as shown in
We assign partitions to processing threads in a round-robin fashion. Every
thread has its input queue fed with batches containing only the relevant events
for the assigned partitions. Therefore, the producer thread maintains a working-
batch per processing thread and assigns incoming events accordingly. Once the
working-batch reaches the configured batch size, the producer puts it into the cor-
responding queue and starts a new working-batch. The working threads consume
the batches from their queues and process them event-by-event analogous to the

5 Pattern Matching on Temporal Intervals

Thread Boundary Phase 1 Phase 2 Phase 3
Situation Batch Situation Batch
: Thread 1
Event Batch : Merge
L Derive | Situations
mEE .| Serialize
Batch a=enalze oL) ey
Events || Update
""""""""""""" Buffers
 Thread n
: Clean Up
Derive __Buffers / Match

Figure 5.6: Overview: parallel processing of unpartitioned data

single-threaded case. The only difference here is the output handling. Instead of
sending results downstream directly, they go through the K-slack deployed at the
end of the pipeline.

To illustrate partition parallel processing, consider the following event trace.

(e[t =1,part = 1], e[t = 2, part = 2], ezt = 3, part = 3], e4[t = 4, part = 2],
eslt = b, part = 4], eg[t = 6, part = 1], e7[t = 7, part = 3], es[t = 8, part = 4])

It shows eight events, each with a timestamp ¢ and a partition attribute part.
Two processing threads handle the four logical partitions with a batch size of four
events. This results in two batches created by the producer: b; = (e, e, €6, €7)
and by = (eq, €4, €5, €5). The producer assigns b; to the first and by to the second
processing thread. In turn, each of them maintains two TPStream instances, one
per assigned partition. The processing threads then route the events of their
batches to the corresponding partition and process them analogous to the single-
threaded case.

5.6.3 Unpartitioned Data

In the following, we consider that all processing threads need to work cooperatively
on all input data. This case occurs if there isno PARTITION BY clause.
gives a brief overview of how multiple threads process unpartitioned data. Similar
to partition-based processing, we collect the incoming events into batches of fixed
size. The difference here is that there is only one shared queue serving all processing
threads. Thus, the producer simply slices the incoming event stream into fixed-
size batches by maintaining a single working batch instead of multiple ones. Every

126

5 Pattern Matching on Temporal Intervals

processing thread handles one event batch at a time, each passing three phases:
deriving, synchronization, and matching. Here, the second phase is the only syn-
chronization point between the processing threads.

In the first phase, the deriver generates situations from the current event batch.
Phase two first analyzes the derived situations of the previous batch and merges sit-
uations spanning the batch boundary. Then, the situation buffers are updated by
inserting new situations and purging outdated ones. Finally, phase three performs
the actual pattern matching. Like in the partitioned case, we employ a K-slack at
the end of the pipeline to produce an ordered result stream.

Before detailing each of these phases, we illustrate this method with another ex-
ample. Consider TPStream with two situation definitions (A,B), a batch size of
4 events, two processing threads (pt;, pts) and the following event trace of eight
events:

<€1[t:1],...,€8[t:8]>

The producer generates two event batches by = (eq,...,e4) and by = (es, ..., es).
Let thread pt; processes b; and pty processes by in parallel. Furthermore, assume
that both of them finish the deriving phase at the same time returning the following
situation batches:

Sbl = { Al = [2,4),B1 = [475)
Sbg = { A2 = [7, 8)732 = [5,6)

For ease of presentation, we represent derived situations by their validity inter-
vals only. Phase two synchronizes the execution because T'PStream relies on the
temporal ordering of the situation buffers. Hence, pt; is permitted first because
all situations in sb; happen before the situations in sby. While A; can be added
to the buffer directly, By is a cross-batch candidate: the last valid timestamp of
By is equal the timestamp of e, — the last event in b;. Thus, it is possible that
the situation continues with the next batch and is put aside for further checking.
Then, pt; removes outdated situations from the buffers and moves on to the third
phase. Next, pty enters phase two and adds A, to the buffer. It then checks the
set-aside B; and merges it with By because By starts with the first event of by, and
hence the situation would span e4 and e5 in sequential processing. After buffering
the merged situation B; s = [4,6) and purging outdated situations, pty continues
with phase three.

The following describes the three phases in detail and shows how to keep the syn-

127

5 Pattern Matching on Temporal Intervals

chronization overhead between processing threads at a minimum.

Deriving

In the deriving phase, a processing thread fetches an event batch from the shared
queue and applies all situation definitions to the events of that batch (cf.
rithm 5.1). Then, it stores the resulting situations in a situation batch. Besides
the derived situations, a situation batch carries a sequence number, head, and
tail information. The sequence number is required to update the situation buffers
(i.e., maintain the temporal ordering of situation streams). The head and tail
information is required to merge situations spanning more than one batch. They
contain all ongoing/partial situations after evaluating the current batch’s first and
last events, respectively.

Synchronization

After a processing thread creates a situation batch, it enters the synchronization
phase. As mentioned above, this phase serializes the execution to guarantee the
temporal ordering among situation buffers. In order to enforce the correct execu-
tion order among all threads, we use the sequence number of situation batches.
For example, a processing thread holding a batch s may only enter this phase if the
thread responsible for batch (s—1) moved to phase three.

Once entered, the following steps are executed in this phase. At first, we merge
batch-crossing situations from the previous batch. [Algorithm 5.5 shows the de-
tails of this step. We loop over all situation streams and consider three different
cases.

i) If the tail of the previous batch does not contain a partial situation, nothing
needs to be done (lines 3-4).

ii) If there was a situation ongoing in the previous batch, but we have no in-
formation in the head of the current batch, this situation ends with the first
event of the current batch. Thus, we set the end timestamp accordingly and
add the merged situation to a new update (lines 5-7). At the end of merging,
we add this new update to the batch (lines 16,17).

iii) If we have information in the previous tail and the current head, this situation
ends either within the current batch or in a future batch. To handle this case,
we loop the situation updates of this batch. If we find a matching situation,
we merge it by merging the aggregates of both situations and calculating

128

5 Pattern Matching on Temporal Intervals

Algorithm 5.5: MergeSituations
Input: previous: SituationBatch
Input: current: SituationBatch
Input: n: Number of situation streams

1 newUpdate + (;

2 foreach i€1...ndo

3 | if previous.tailli] = () then
4 L continue;
else if current.head[i] = () then
previous.tailli].end = current.head.timestamp;
| newUpdate < newUpdate U {previous.tailli] };
8 else
9 merged < false;
10 foreach wupdate € current.updates do
11 if wupdateli] # () then
12 merge(updateli], previous.tail|i]);
13 merged <— true;
14 if —merged then
15 L merge(current.tailli], previous.taili]);
16 if newUpdate # () then

17 L current.addUpdate(newUpdate);

the time interval of the merged situation (Lines 9-13). In case we find no
appropriate update, the situation covers the whole batch and ends within a
future batch. Hence, we merge the information from the previous tail into
the current tail (Lines 14,15).

After completing the merge, we add the situations to the corresponding buffers in
proper order.

Finally, we purge outdated events from the buffers. Therefore, we compute the
minimum timestamp of relevant situations (i.e., situations that may be part of
a successful match of any active thread) by subtracting the defined window size
from the smallest timestamp of the current situation batch. Every processing
thread maintains an instance of this timestamp, and we use the global min-
imum among all threads as a safe lower bound for removing outdated situa-
tions.

129

5 Pattern Matching on Temporal Intervals

Matching

The matching process works similar to the single-threaded version, but instead of
processing a single situation update at a time, we process all batch updates in one
go. However, there are two challenges here: First, threads must be able to execute
the matching phase while another thread is in the synchronization phase, resulting
in concurrent buffer reads and writes. Second, in contrast to the single-threaded
version, the clean-up process for the buffer has to consider the state of all working
threads.

We solve the first challenge with a specialized buffer implementation. As stated
in [Section 5.5.2] the situation buffers are array-backed ring buffers. These buffers
store data in arrays of fixed size and manage two indexes. One index points to
the next write slot (idz,) while the other one points to the first element of the
buffer (idx,). Instead of relying on the physical addresses in an array that may
shrink /grow /loop around, we introduce logical addresses such that add operations
increase idx, and clean-up operations also increase i¢dx,. Consequently, the fol-
lowing invariants hold at any time:

1. idzx, <idx,
2. idx,, — idx, < size

It is easy to see that (i) all valid data lies between idx, and idzx,, (ii) references
remain valid even if the buffer is modified (as long as they still fall into this range),
and (iii) a simple modulo computation obtains the physical array indexes. Process-
ing threads working on a situation batch can now receive a logical address range,
thus resolving problems with concurrent buffer reads and writes. In [Figure 5.7
we illustrate this with an example. The physical array has 10 addresses, while
the logical addresses continue to grow to 28. Every thread has a range of logical
addresses it currently processes.

We solve the second challenge with a slightly modified variant of the range-query on
the buffers (cf. . During the synchronization phase, the processing
thread retrieves two index values for every buffer. The first one is the upper
bound of relevant situations. This bound initially equals the value of idz,, before
adding any situation of the currently processed batch. Then, when processing
the situations of the current batch, the upper bound is increased accordingly.
The second is the lower bound of relevant situations, which corresponds to the
timestamp computed for purging outdated situations.

We use those indexes to restrict the range-queries appropriately and prevent other
threads from cleaning required data from the buffers. The current processing

130

5 Pattern Matching on Temporal Intervals

Physical Array

Thread| Logical Address Range
pta [23, 26]
pta [24, 27]
Logical Addresses ot 25, 28]
3)
| . |22]23|2a]25[26]27]28] .] 5
Y
In Use: Logical Address > 22
&
Delete Bound: Logical Address <=
22

Figure 5.7: Example of the buffer implementation with logical addressing.

thread can purge all situations older than the globally lowest bound. For example,
in the lowest address in use by threads pt;, pte, and pt3 is 23. Thus, it
is safe to purge everything below or equal to 22.

5.6.4 Auto-Tuning

In a streaming scenario with fluctuating data rates, fixed batch sizes and a fixed
number of processing threads is not an option. Large values allow for high through-
put and the graceful handling of peak loads. However, the latency suffers because
event batches take a long time to fill. Furthermore, we waste resources because
the processing threads are possibly starving. On the other hand, small batch sizes
and few processing threads generate low latency results for moderate event rates
but lead to congestion when the load increases. In the following, we develop an
auto-tune component, which continuously monitors the workload and tunes the
batch size and the number of threads to handle the current load with the lowest
latency and lowest resource consumption possible. We first describe the approach
for partitioned data before we discuss the necessary adjustments to the approach
for the unpartitioned case.

Independent of the parallelization approach, the auto-tune component uses a small
set of parameters and sensors, which we briefly describe upfront (Table 5.4| gives a
complete overview). Note that all sensors exclude times for thread synchronization,
as they are unpredictable, and our model relies on predicting processing times. In-
stead, the model handles synchronization times implicitly.

131

5 Pattern Matching on Temporal Intervals

Name Description

Parameters
Tsched The scheduling rate of the auto-tune compoenent
Tbatch The target batch rate in batches/second.
Plmaz The maximum number of processing threads to use.

B8 Factor for over-provisioning the number of threads.
Sensors
Tin The input event rate.
bs The current batch size.
toroc The processing time of a single event batch (of size bs) without the
time required to deque event batches.
twait The time spent on waiting to enter the synchronization phase. (unpar-
titioned approach only).
tsync The time spent in the synchronization-phase, without the wait time to
enter it (unpartitioned approach only).
thuf The time spent updating the situation buffers during the synchroniza-
tion phase (unpartitioned approach only). We have: tp, 7 < tsync
Results
bs* The target batch-size, i.e. the new batch-size after auto-tuning.
tproc The predicted processing time based on bs*.
oyne The predicted synchronization time based on bs*.
pt* The target number of processing threads, i.e. the number of threads

after auto-tuning.

Table 5.4: Overview of parameters and sensors for the auto-tune component.

Auto tuning is scheduled at a fixed rate (rsepeq). The sensors maintain average
values of their respective measures and are reset after every auto-tune execution.
rin 1S the input event rate, measured in events per second, bs the currently used
batch size, and ?,,,. is the time required to process a batch of bs events. pt,u
is the maximum number of processing threads, and e, describes the target
batch rate. With ryq:.n, we control the number of batches that should be created
per second, effectively limiting the synchronization overhead introduced by en-
and dequeuing event batches into/out of the queues. With the input rate and
the target batch rate, the system is able to compute the target batch size bs* as

follows.
) (5.7)

That is, we choose bs* from a set of batch sizes (B), such that the resulting batch
rate is as close as possible to 7y We define this set as B = {32,64,...,32768}.

Tin
T'batch — 7

bs* = arg min (
beB3

132

5 Pattern Matching on Temporal Intervals

Powers of two have the following advantages: i) The number of possible values is
small, ii) tiny to huge batches are possible, and iii) it allows fine-grained adjust-
ments for smaller batch sizes.

Then, we predict the processing time per batch when using bs* as the batch size
and, based on this computation, the optimal number of threads to use. The pre-
dicted processing time (t,,.) increases linearly with the batch size for the following
reason. First, deriving situations causes constant costs per event. Second, assum-
ing that the number of derived situations increases linearly with the number of
events, the number of matcher invocations also increases linearly. Hence, t* . can

» Yproc
be predicted as follows.
bs*

t;roc = tpTOC ’ E (58>
We then use ¢, to compute the number of threads required.
= mi (V"” t* BW /) (5.9)
=min (|— - : maz .
p bS* proc ’ p

Essentially this is the estimated number of batches per second times the estimated
processing time per batch, rounded up. We additionally use the parameter [
to over-provision the number of threads and leave some space for queue opera-
tions.

Handling of Skewed Input

Typically, the number of events to process varies among partitions. Assuming that
the number of partitions is much larger than the number of processing threads, the
proposed round-robin strategy achieves a good load-balancing between threads in
most cases. However, in case of heavily skewed data, this might not be sufficient
to balance the load between threads. Consider for example two processing threads
(pt1, pta) and four partitions with varying event rates (party,...,parts). part,
and parts receive 10° events/s while part, and part, receive only 1000 events/s.
According to the round-robin strategy, part; and parts are assigned to pt;, while
party and parts are assigned to pty. Obviously, pty will be idle most of the time,
while pt; is overloaded.

In order to solve this problem, the auto-tune component continuously monitors
the current load per thread and migrates partitions from overloaded threads to
idle threads. In the following, we describe how we monitor the load and when
we trigger a migration. As stated in the producer thread creates
batches of events and assigns them to processing threads according to the current
partitioning scheme. During this process, we collect additional statistics. Namely,

133

5 Pattern Matching on Temporal Intervals

the total number of batches created (n) and for every active thread (pt;) the
batches assigned to it (n,,). Let m be the number of active threads. Then, an
optimally balanced system would yield ny,, = *,i = 1,...,m. However, in real
world scenarios, such an optimal distribution can barely be achieved. Nevertheless,
a distribution within a 10% range around the optimum is achievable leading to the
following condition for partition migration:

n
<
10-m —

n

Tpt, — E’ (5.10)

di e [1,m]:

Note that we consider migration only if the auto-tune component did not decide
to change the number of threads since this already changes the partition assign-
ment.

Adjustments of Unpartitioned Data

For unpartitioned data, ¢, contains the time spent waiting to enter the synchro-
nization phase (fuqi¢), which we need to ignore to obtain a reliable prediction of
trroe- Furthermore, the computation time of the synchronization phase does not
scale linearly with the number of processed events for the following reason. While
updating the situation buffers (#y,s) is linear in the number of events, the time
for merging partial situations and cleaning the buffers is constant. The reason is
that the complexity of merging depends only on the number of defined situation
streams and the window size. Thus it is independent of the batch size. That said,

we can compute ¢y, for unpartitioned data as follows:

. bs*
tproc = (tbuf + 2fproc — (twait + 2fsync)) : E + (tsync - tbuf) (511)
\ -~ 7 —— —
Time phases 1 & 2 Sync. phase constant part

Furthermore, we need to assure that the processing threads are not blocking each
other when entering the synchronization phase. To achieve this, we compute the
expected processing time for the synchronization phase t%, :

sync*
Tin
bs*

t:ync = (tsync - tbuf) + tbuf : (512)
Since every thread needs to execute the synchronization phase once per event
batch, t;.,. should be longer than (pt* — 1) -t ., so that all remaining threads
could theoretically execute the synchronization phase while the current thread is
processing phases 1 and 3. We experimentally determined that if this ratio is

134

5 Pattern Matching on Temporal Intervals

greater than 2, we encounter almost no wait times. Consequently, we scale up the
batch size until the following inequation holds:

*

t
tp— >2-(pt* —1) (5.13)

sync
Since upscaling the batch size does not change the required number of threads
to manage the faced load, the auto-tune component can apply the computed
values without touching the previously computed required number of threads

(pt*).

5.6.5 Distributed TPStream

The techniques for partitioned and unpartitioned data are also applicable in a
distributed computing environment. We base our discussion of these adjustments
on the architecture of Apache Kafkaﬂ because most streaming applications usually
receive their data through some message queue and perform computation in a
shared-nothing cluster. By integrating our work into a full-fledged framework like
Kafka, we can use its fault tolerance and load distribution features and adjust
them towards optimizing TPStream.

Apache Kafka’s core is a distributed log allowing producers to write into and con-
sumers to read from the log. Messages are sent to a so-called topic, and topics are
further divided into partitions. Kafka stores every topic partition in a separate
commit log on a Kafka broker, which is essentially one process in a cluster desig-
nated for managing the input and output of a partition. In general, Kafka stores
an offset per consumer, i.e., consumers work and commit their offset to the log
independently. To allow multiple consumers to work on a single task in parallel,
they must belong to the same consumer group. The unit for parallel computations
in Kafka is the number of partitions of a topic. Therefore, every partition in a topic
is processed by exactly one consumer until a failure or load balancing reschedule
the partition to another consumer of the same group.

Redistribution of data between consumers, such as exchanging situations between
deriving and matching, is performed through additional topics, incurring overhead
through writing to the topic logs and sending data over the network. Therefore,
and due to not being able to rely on the highly optimized ring buffer implementa-
tion of T'PStream in all processing stages, some adjustments are necessary when ap-
plying the techniques described above in a Kafka cluster.

2https://kafka.apache.org/

https://kafka.apache.org/

5 Pattern Matching on Temporal Intervals

The partitioned data approach naturally translates into a Kafka architecture be-
cause incoming events can be partitioned based on the partition-by clause into m
partitions. In a cluster with n consumer nodes, the input stream of TPStream
is configured as a topic with [= min(m,n) partitions. If there are more logical
partitions than physical processing nodes, we choose the lower number since every
partition is a separate log file, thus incurring additional file system overhead. A
group of | Kafka Streams’| consumer applications executes the TPStream operator
utilizing exactly-once processing semantics. Results of each partition are written
into a single, separate result topic monitored by a single consumer implementing
the K-slack operation.

For unpartitioned data, we adjust the batching and merging phase. First, we di-
vide the input topic into n topic partitions and distribute event batches to those
partitions, effectively writing in a broker’s log. This replaces the manual batching
and queue logic of our single-machine approach. Situation batches are derived in
parallel by a Kafka Streams consumer group that writes the resulting batches into
a single result topic of unsorted runs. Unlike the single machine approach, match-
ing is done by one Kafka consumer rather than the same deriving thread because
synchronization of sequence numbers and merging those batches introduces signif-
icant overhead in a network environment. Due to this, we can perform a K-slack
operation on the sequence numbers before the matching process to further improve
processing speed.

So far, our single machine solutions have been primarily data-parallel. However,
due to the modifications for a cluster environment, the strategies can be plugged
into a wide variety of existing research. The second approach, in particular, uses
typical pipeline parallel patterns since the matcher is an independent process wait-
ing for the input of the deriver. This pattern opens the gate to adjust the work
for architectures similar to traditional pattern matching [CM12]. In addition,
persisting intermediate results into Kafka topics allows for task-parallel solutions
of sharing sub-patterns |[RLR16] since multiple matchers with shared situation
definitions can work with the same Kafka topic.

5.7 Experimental Evaluation

In this section, we present the results from our experimental evaluation of TP-
Stream.

Shttps://kafka.apache.org/documentation/streams/

136

https://kafka.apache.org/documentation/streams/

5 Pattern Matching on Temporal Intervals

5.7.1 Setup

We run all single machine experiments on a workstation equipped with an AMD
Ryzen7 2700X [CPU (8 cores, 16 threads) and 16GB of memory, running an Ubuntu
Linux (18.04, kernel version 4.16). The results for each experiment are averaged
values from 10 runs, whereby every run is preceded by a warm-up phase of evalu-
ating at least 100,000 events.

The main goal of this section is to compare TPStream’s processing performance
and our low latency approach to the state-of-the-art solution for temporal pattern
matching (ISEQ). Unfortunately, there is no publicly available implementation of
ISEQ), so we implement it based on the description in [Li411]. As required by the
design of ISE(), the input consists of interval streams ordered by the endpoint. We
generate those streams with our deriver component.

In order to provide a comparison with point-based systems, we also include CEP-
solutions from the open-source community (Esper 6.0.1 [esp20]) and academia
(SASE+ E[) where applicable. While Esper is a production-ready online [ESP] sys-
tem, highly optimized for efficient query execution, SASE+ is one of the most
popular languages in the research community and serves as the foundation
for the ISE(Q) operator. The rich query language of Esper allows us to express both
straw man’s approaches as sketched in the introduction. We refer to the first ap-
proach (2 phase pattern matching) with Esper-1 and the low latency approach as
Esper-2. Because the SASE+ implementation does not feature chaining of queries,
we only implement the low-latency approach. We implement TPStream and all its
competitors in Java, whereby we integrate TPStream and ISE() into Java Event
Processing Connectivity (JEPC]) — an event processing middleware developed at
the University of Marburg [Ho+13]. We use Oracle’s IVM] 1.8.0-181 with with
16GB of heap space to run all experiments.

During the evaluation, we use two data sources. The first source comprises trip
data generated with the Linear Road Benchmark |Ara4-04]. Besides other at-
tributes, every event consists of a unique car id, its location, current speed, and
acceleration. We generate data simulating 5 hours of traffic on a single express-
way with 1,000 active cars per hour. Every active car reports its state once per
second, leading to 887 million events (36 GB of data). The second source is a
random event generator tuned to pose a high load on the system. It generates
event streams with a configurable number of boolean attributes, each representing
a single situation stream. The generated situations are valid for 10 to 100 seconds,
while the gaps between two consecutive situations span 10 to 50 seconds (both

‘https://github.com/haopeng/sase

137

https://github.com/haopeng/sase

5 Pattern Matching on Temporal Intervals

uniformly distributed). The generator produces events with a frequency of 1Hz so
that for a situation lasting n seconds, the corresponding attribute value is true
for exactly n consecutive events.

Independent of the data source and except for the parallel section, we use a single
thread for both reading/generating the data and evaluating the query. In every
experiment, we measure the reading/generation time upfront and remove it from
the presented results. The most important parameters throughout all experiments
are as follows.

Event Rate: The rate (events/s) with which events enter the system.

Window Size: The size of the time window (seconds) during which a pattern must
occur completely.

Event Count: The total number of events to process.

5.7.2 Processing Time

This set of experiments compares the processing performance of TPStream with
its competitors using various queries and parameter settings. We ingest the events
at the maximum possible rate and use the processing time as the primary mea-
sure.

Aggressive Drivers

We ingest different fractions (1M to 100M events) of the Linear Road dataset into
the system and execute the example query of (without duration con-
straints). The thresholds for speeding, acceleration and deceleration are the 99th,
90th and 90th percentiles for the speed and positive/negative acceleration values
of a 50M event sample, respectively. Besides chaining of queries, the SASE+ im-
plementation also lacks support for disjunctions. Nevertheless, to include SASE+
in this experiment, we also evaluate a simplified query version which restricts the
used [TRk to meets and overlaps.

shows the results of this experiment. The x-axis shows the number
of processed events, while the y-axis depicts the processing time. TPStream and
ISEQ are head to head, and their processing times increase linearly with the num-
ber of processed events. Furthermore, they are insensitive to alternatives, resulting
in almost identical processing times for both query variants. T'PStream can not
outperform ISE(Q in this experiment because all situations overlap in the given

138

5 Pattern Matching on Temporal Intervals

—+— TPStream —%—ISEQ —+— Esper-1 —+—TPStream —%—ISEQ —+— Esper-1
—k— Esper-2 SASE+ . —k— Esper-2
% 150 g 150
T c
S 125 8 125
(]
2 100 € 100
g g
E 75 £ 75
(@]
£ 50 £ 50
%]
8 25 8 25
S <)
& o0 a0
0 20 40 60 80 100 0 25 50 75 100
Processed Events (x10"6) Processed Events (x10"6)
(a) Simplified Pattern (b) Full Pattern

Figure 5.8: Processing time for aggressive driver detection as a function of the
input size.

pattern, which allows breaking the buffer scan early. However, T'PStream reduces
the detection latency (time between the start of the first situation and the detection
time) up to 70% (13% on average) compared to ISEQ.

Esper benefits from the simplified pattern, but its evaluation performance is infe-
rior to TPStream and ISEQ. Esper-1 performs worse than Esper-2 in both cases.
TPStream and ISEQ are about 8 (simplified pattern) and 20 (full pattern) times
faster. However, Esper-2 performs well on the simplified pattern and requires only
twice the processing time of T'PStream and ISE(Q). When looking at the full pattern,
its performance drops (factor 4.3) since the automaton maintains a lot more states.
Finally, the performance of SASE+ is equal to Esper-2.

Disconnected Pattern

The second experiment compares processing time and memory consumption of
the systems using a more complex pattern: A starts B before C overlaps D.
The difference to the first experiment is that every A starts B sub-match may be
related to many B overlaps C' sub-matches instead of contributing to at most one
match. Hence, we expect the processing time/memory consumption to depend on
the size of the configured time window. We inject 100M synthetic events into the
systems and execute the query with window sizes varying from 500s (8:20 minutes)
to 100,000s (slightly more than one day).

shows the processing time of all systems as a function of the window
size. In this experiment, TPStream outperforms ISE() by more than a factor

139

5 Pattern Matching on Temporal Intervals

—+—TPStream —%—ISEQ —+— Esper-1 Equal Meets Chain Star Combined
—i— Esper-2 SASE+ 18
500 l
n G 16 l rI]
=]
S 400 g < z = I g
: 2 1 i
2 300 < i i
) o 12 & I = 1l =]
£ 200 E l].l
'_
=y E’ 10 z = l 5] l
‘@ 100 2 s l
9]
R A
0 25000 50000 75000 100000

46810468104 6810468104 6 810

Window Size (Seconds) Number of Situations

Figure 5.9: Processing time for discon- Figure 5.10: Processing time for various
nected pattern detection as a query patterns
function of the window size

of 3 using a window of 100,000s. The reason is that ISE(Q does not exploit the
order on the situations’ start timestamp and requires additional computational
steps during result construction and buffer pruning. SASE+ is not able to manage
the many intermediate automaton states efficiently and required approx. 5:20h to
finish this experiment with the largest window size. Esper behaves similarly to the
previous experiment, except that Esper-2 outperforms ISEQ for 100,000-second
windows.

To measure the average memory consumption, we monitor the used heap space
with a frequency of 20Hz during each run and average these values. Here, ISEQ)
requires the least memory by far (452 - 465 MB), independent of the window size.
TPStream’s memory consumption behaves similarly for window sizes up to 10,000
(466-507 MB) but increases for larger windows (up to 3,6GB). The reason is that
we create many small objects during the buffer search, which are not immediately
garbage collected. Esper uses around 4GB, independent of the window size, and
SASE+ consumes 3 - 11 GB of memory.

Query Patterns
To give a comprehensive overview of TPStream’s processing performance, we evalu-

ate five different query patterns and vary the number of situation streams from 4 to
10. Query-Patterns 1-3 (Equal, Meets, Chain) are of the form:

Qn =51 P19 NSa@a SN+ ANSp_1 Br—1 Sy

140

5 Pattern Matching on Temporal Intervals

Here, n denotes the number of situation streams and @; the [TRl connecting 5; and
Sit1. B; is set to equals, meets and a randomly drawn [TR] for query patterns 1,2
and 3 respectively. For Query pattern 4 (Star), S is connected with every other
situation:

Qn="51®1 %NS B2 5N+ ANS1 Bp1 Sy

Again, n denots the number of situation streams and @; the [TRl connecting S, and
S;. Like for the Chain pattern @; is a randomly drawn[TRl. Query 5 (Combined)
combines the Chain and Star patterns by connecting the first n/2 situations via
the Chain pattern and the remaining situations according to the Star pattern.
Every query-type is executed 100 times, using 50M synthetic events and a window
size of 2,000s.

The box plots in provide the median as well as the 25th and 75th
percentiles of the processing time. For all query types, the median processing time
increases linearly with the number of situations. The generic Chain pattern incurs
higher maximum values than Equal and Meets, because the possible [TRk include
before, which selects many situations. This forces the matcher to build many
partial results — especially if three or more consecutive situations are in a be fore
relationship. Star queries are more sensitive to the concrete pattern instance
because in the worst case, every situation triggers the matching process. We also
observe this effect for the Combined pattern — albeit to a smaller degree because it
connects only half of the situations via a Star pattern.

5.7.3 Low Latency

This set of experiments compares the latency of our approach with the state-of-
the-art solution for temporal pattern matching, ISEQ.

Application Time

At first, we measure the latency improvement of TPStream compared to ISE(Q) in
terms of application time. Therefore, we evaluate each TRl independently using
two synthetic situation streams (A, B). We vary the average duration ratio from
2:1 to 1:2 while fixing A’s average duration to 55 seconds. In this experiment, we
set the window size to 1,000s.

reports the relative detection time of TPStream compared to ISEQ)
for the tested MRk and duration ratios. We define the detection time as t,(P) —
min(A.ts, B.ts). That is, the total time from the beginning of the first situation

141

5 Pattern Matching on Temporal Intervals

EBefore BDuring BOverlaps B Starts O Meets
100%

75%

50%

25%

0%
2:1 4:3 11 2:3 1:2

Situation Duration Ratio (A:B)

Relative Detection Time

Figure 5.11: Relative detection latency per [TRl compared to ISEQ.

participating in the match until the detection time. The results show that the
latency gain increases with increasing length of B-situations, independent of the
MRl The reason is that the longer B becomes, the longer ISEQ has to wait for its
end timestamp. Among all TRk , be fore shows the smallest and meets the largest
latency improvements. However, in absolute numbers, we reduce the detection
time by the length of the B situation for both [TRk since the detection time is B.ts
in either case. The difference is that meets allows no gap between the situations,
which restricts the detection time to the sum of both durations. In contrast,
be fore-matches can span the entire window (1,000s in this case). For the remaining
relations, the detection time is A.te, and the average improvement depends on the
concrete TRl In the worst case (during) this is @. Note that we exclude
equals and finishes because no latency improvements can be achieved for those

[TRE.

Wall Clock Latency

We conduct two experiments showing that T'PStream’s processing techniques sig-
nificantly reduce the result latency in terms of wall clock time, a critical aspect
in a streaming scenario. Therefore, we repeat the experiment from
twice. In the first experiment, we measure the time passed between the arrival
of the first event that could produce a result and the receipt of that result. We
vary the window size and push events with the maximum possible rate. For the
second experiment, we fix the window size at 100,000s and vary the event rate
from 1 Mhz to 1 Hz. This time, we split the measured latency into (i) processing
latency and (ii) event latency. Processing latency is the time passed between the
arrival of the event that triggered the result and the actual receipt of that result.
In contrast, event latency is the time passed between the arrival of the first event

142

5 Pattern Matching on Temporal Intervals

B TPStream BISEQ B TPStream (EL) B TPStream (PL)
250 BISEQ (EL) ®ISEQ (PL)
—_ 1E+12
[s2]
S 200
—
*
2 150 7 1E+08
) >
£ 100 2
IS L 1E+04
- ©
= 50 _|
(%]
¥ o l—m e = = | ‘ 1E+00
500 1K 2K 5K 10K 20K 50K 100K IM 100K 10K 1K 100 10 1
Window Size (Seconds) Events/s
(a) Maximum event rate, varying window (b) Varying event rate, fixed window

Figure 5.12: Comparison of result latency (a) under maximum possible throughput
as a function of the window size, (b) under varying event rates with
a fixed size window (EL = event latency, PL. = processing latency).

that could trigger the result and the arrival of the event that actually triggered
that result.

The results are shown in [Figure 5.12] Both figures show the average latency per
result (y-axis, note the log-scale for b). While [Figure 5.12 (a)| shows, that T'P-
Stream’s evaluation techniques provide latency savings through reduced processing
time, [Figure 5.12 (b)| highlights the savings achieved with our low-latency matcher.
Especially when the rate is in sync with application time (1 event/s), the event
latency (EL) of ISE(Q) dominates the processing latency (PL) and almost reaches

the application time savings (approx. 35s, cf. [Figure 5.11] 1:1, overlaps), while
TPStream introduces no event latency at all.

5.7.4 Plan Quality & Adaption

In this set of experiments, we evaluate the optimization techniques presented in

Section 5.5.4. Analogous to we ingest events with the maximum

possible rate.

Initial Plan Quality

To evaluate the quality of the generated initial plans, we used the following queries
on three situation streams:

Q1: A overlaps B AND A overlaps C AND B starts C

143

5 Pattern Matching on Temporal Intervals

E Best B Worst Bl Suggest —+—Optimal ~ —%— Adaptive
20 © —+— Initial 1 —k— Initial 2
g S 70
=) o
x
w 15 w
5 E 50
c c
g 1o g 40
) < 30
b= =}
ﬁ LE
0 1:1:1 1:50:50 50:1:50
Q1 Q2 Q3 Occurence Ratio

Figure 5.13: Quality of the initial plans Figure 5.14: Throughput comparison:
for Q1 — Q3 dynamic plan adaption vs.
best initial plans

Q2: A overlaps B AND A before C AND B overlaps C
Q3: Abefore B AND Abefore C AND B before C

We generate all six valid plans for each query and measure the throughput (pro-
cessed events/s) by evaluating synthetic events with a window size of 5,000s.

shows the results for the best, worst, and suggested plans and clearly
confirms our approach. For queries Q1 and Q2, the best plan is suggested. The
initial plan for Q3 is C — B — A even though the estimated costs for C — A — B
are identical. The experiments show that C' —+ A — B is a slightly better choice,
but the difference is negligible.

Dynamic Plan Adaption

To analyze the plan adaption capabilities of TPStream, we execute Q3 again and
process 300M events. The occurrence ratio of situations A, B and C' change from
1:1:1 to 1:50:50 after 100M events and finally to 50:1:50 after 200M events. We
set the window size, the [EMAI smoothing factor («), and the threshold for plan
migration to 10,000s, 0.01, and 0.2, respectively. Besides the adaptive implemen-
tation (Adaptive), we run the experiment with both best initial plans C — B — A
(Initial-1), ¢ — A — B (Initial-2), and an implementation, doing a hardcoded
switch to the best plan exactly when the characteristics of the stream changes
(Optimal).

Figure 5.14]shows the throughput for all four configurations and the three different
stream characteristics. Initial-1 and Initial-2 have drawbacks in either one of the

144

5 Pattern Matching on Temporal Intervals

skewed phases, while our adaptive approach is very close to the optimal solution
(suffering slightly from dynamic adaption). However, the total runtime of Optimal
(33,959ms) compared to Adaptive (34,106ms) reveals only a negligible overhead of
147ms (less than 1%) for plan adaption.

5.7.5 Parallel Approaches

Finally, we evaluate the parallel approaches presented in [Section 5.6, We first an-
alyze the speedup achieved for partitioned and unpartitioned data before showing
our adaptive variants’ efficiency. For every experiment, we use a dedicated pro-
ducer thread. This thread reads/generates the input events and pushes them into
TPStream. When processing the data, we vary the number of processing threads
and measure the resulting speedup compared to single-threaded execution. We

close this section with an evaluation of our distributed strategies using Apache
Kafka.

Partition Parallelism

To evaluate our approach for partitioned data, we reuse the query for detecting
aggressive drivers (PARTITION BY car_id). Weread 50M events from the event
file and push them into TPStream as fast as possible. We vary the number of
processing threads from 1 to 16 and the batch size between 128, 1024, 8192 events.
The size of the input queues is set according to [Section 5.6.1, summing up to 2.5
MiB per thread (40 bytes per event). With a K-slack size of 20 events, we do
not face out-of-order results in any of the tested configurations. Furthermore, we
execute the experiment twice. Once with events regularly read from the data file,
and once with preloading the events into memory since we expected the disk I/O to
become a bottleneck. In both cases, a dedicated producer thread is responsible for

ingesting events into TPStream. For the first case, this thread is also responsible
for the disk 1/0O.

1gure 5.15| shows the results for this experiment. The x-axis shows the number
of processing threads, while the y-axis depicts the speedup compared to single-
threaded execution. With events read from the data file, TPStream scales nicely
up to four threads, independent of the batch size (Figure 5.15 (a)). For more
processing threads, the producer thread becomes the bottleneck of the pipeline
since it has to handle both the disk I/O and the assignment of event batches to
processing threads. Consequently, larger batch sizes perform slightly better be-
cause fewer batches need to be assigned (i.e., fewer queue operations are needed).

5 Pattern Matching on Temporal Intervals

—+— 128 —%— 1024 —+— 8192 —+— 128 —*— 1024 —+— 8192
8 8
7 7
6 6
pm} =}
g 4 3 4
g 3 2 3
%) n
2 W 2
1 1
0 0
123456 7 8 910111213141516 123456 7 8 910111213141516
Number of Threads Number of Threads
(a) Data from file (b) Preloaded data

Figure 5.15: SpeedUp compared to single-threaded mode for partition parallel ex-
ecution of the aggressive drivers query with with different batch sizes
and (a) data loaded from file, (b) preloaded data

With preloaded data (Figure 5.15 (b)), our approach scales nicely up to 7 pro-
cessing threads because the producer is not blocked due to I/O operations and
can provide sufficient data to the input queues of the workers. With 8 processing
threads, we expect a slight dip because the has 8 physical cores, and we use
a dedicated producer thread. Afterward, hyper-threading comes into play. With
more than 8 processing threads, the speedup achieved per thread reduces signif-
icantly. Note that the batch size has no impact on the processing performance
since the producer can provide data sufficiently fast, and processing threads are
independent. Due to this independence, the window size also does not affect the
achieved speedup.

Unpartitioned Data

For this experiment, we reuse the query from [Section 5.7.2| because its compu-
tational complexity increases with the configured window size. We ingest 100M

synthetic events from our event generator using a separate producer thread. We
vary the number of processing threads and the batch size from 1 to 16 and between
128, 1024, 8192, respectively. We execute the query using small (500), medium
(5,000, 20,000), and large (100,000) windows and measure the speedup compared
to single-threaded execution. The size of the input queue is again set according to
Section 5.6.1{ (2.5 MiB, 40 bytes per event). In this experiment, the number of re-
sults is much higher than for the aggressive drivers query. The reason is that once
we find a combination that satisfies A starts B, almost all subsequent batches carry
at least one match of C' overlaps D. Hence, they produce results until A starts B

146

5 Pattern Matching on Temporal Intervals

—+— 128 —%— 1024 —+— 8192 —+— 128 —*%— 1024 —+— 8192

6 6

5 5

4 4
Qo (o
) =}
3 3 3 3
2 2
n 2 n 2

1 1

0 0

123456 7 8 910111213141516 123456 7 8 910111213141516
Number of Threads Number of Threads
(a) Window: 500s (b) Window: 5,000s
—+— 128 —%— 1024 —+— 8192 —+— 128 —*%— 1024 —+— 8192

6 6

5 5

4 4
Q. (o
) =}
g3 83
a g
n 2 n 2

1 1

0 0

123456 7 8 910111213141516 123456 7 8 910111213141516
Number of Threads Number of Threads
(c) Window: 20,000s (d) Window: 100,000s

Figure 5.16: Processing time for parallel disconnected pattern detection for varying
batch and window sizes.

leaves the window. Consequently, the size of the K-slack depends on the batch-
and window-sizes as well as on the number of threads. For this experiment, we
choose K = 2-#threads-avg(respaen). That is, twice the number of active threads
times the average number of results per batch (avg(respuen)), resulting in an out-
of-order rate of less than 0.5%. For example, we set K = 600 for a window size of
100,000, a batch size of 1024, and 8 threads.

shows the results for this experiment. In case of the small batch size
(128), [Figure 5.16| (a) - (c) show a sudden drop at the respective tail of each
experiment. This drop is a result of too small batches incurring congestion at the
synchronization phase. For the less complex queries with window sizes 500 and
5,000, the producer can hardly saturate 4 and 6 threads, respectively. However,
different from the partition-based parallel approach, the results show that the
performance depends on the configured batch size. The lower the computational

147

5 Pattern Matching on Temporal Intervals

I Derive [HEE Sync [Match I Derive HEE Sync [Match
128 1024 8192 128 1024 8192
100% 1 T T 100% - b b
Q]
£ 80% £ 80% A
[=2] [=)]
£ £
? 60% A @ 60%
Q Q
(5] (5]
2 e
2 40% - 2 40% A
[} 3]
2 2
S 20% A S 20% -
x o
0% - - - 0% - i i
N < 0 © N < 0 © N < 0 © N < 0 © N < 0 © N < 0 ©
— — — — — —
Number of threads Number of threads
(a) Window: 5,000s (b) Window: 20,000s

Figure 5.17: Relative processing times spent in the different phases of unparti-
tioned parallel processing for varying batch and window sizes.

complexity (i.e., the smaller the window size), the larger is the required batch size
for scaling. The reason is that with less complexity, the time spent in the matching
phase (i.e., the time of independent processing) reduces, and thus the probability
of contention in the sync-phase increases. For the more complex queries, our
approach can take advantage of all available resources and utilize all available
threads.

Furthermore, shows the relative time spent in the different phases
(y-axis) for varying batch-sizes (128, 1024, 8192), processing threads (x-axis), and
windows of size 5,000 (a) and 20,000 (b). Following [Figure 5.16], the results confirm
that a sufficiently large batch size is essential for scaling. With the batch size
being too small (128), the synchronization phase quickly becomes a bottleneck,
especially for small windows. Additionally, this experiment showcases that the
time spent in the matching phase grows proportional to the configured window
size.

Auto-Tuning

To prove the validity of our auto-tuning approach, we use the 4 scenarios found
in and generate a changing workload with the following progression:
100M events at the maximum possible rate, 100M events at 10M events/s, 100M
events at 5M events/s, 30M events at 1M events/s, 100M events at 5M events/s,
100M events at 10M events/s and 100M events at the maximum possible rate,
summing up to 630M events to process. We additionally executed the queries

148

5 Pattern Matching on Temporal Intervals

id Query Parallel Data Window Initial Initial
Approach Threads Batch
Size
a Aggr. Drivers Partitioned Disk load 5 m 8 256
b Aggr. Drivers Partitioned Preloaded 5 m 8 256
¢ Disconnected Unpartitioned Generated 20,000 s 8 256
d Disconnected Unpartitioned Generated 500 s 8 512

Table 5.5: Specification of the queries executed for the auto-tuning experiment

with batch size and number of processing threads fixed to the initial values given

in [Table 5.5

We configured the auto-tune component with the following configuration: ry.peq =
1, Tpaten: 100,000, 6 = 1.2, ptyee = 8. Every time the auto-tune component
changes a parameter, we track this change and create the timelines shown in
The x-axis shows the elapsed processing time, highlighting the workload
changes. The batch size is aligned on the left and the number of threads on the
right y-axis.

As a first result, the processing times of the auto-tuned runs and the runs with fixed
parameters were almost identical (varying by less than 1 second), showing that our
approach introduces very low overhead. However, in all four cases, the timelines
show that the initially configured parameters are way too high most of the time,
thus wasting resources and introducing unnecessary latency. Furthermore, the
adjustments always immediately follow the changes in the workload. We observe
only a few back-and-forths in the parameter configuration, confirming the validity
and robustness of our model.

For scenario (a), we see that the configured parameters stay stable until we throttle
the event rate to 1M events/s. The reason is that when loading data from disk, the
maximum reachable event rate is around 3M events/s. However, the parameters
tend to exceed the previous values during the last period and quickly change
between 32-64 and 2-4 for the batch size and number of threads, respectively.
We attribute this to the operating system’s page cache, which seems to keep a
fraction of the data file in memory. For preloaded data (scenario b), the workload
changes are clearly reflected by the batch size and the used number of threads.
However, compared to the other measurements, the changes in the number of
threads are noisier. The reason is that the pattern is highly selective, and matcher
invocations rarely occur, which in turn causes the average processing time per
batch to vary.

149

5 Pattern Matching on Temporal Intervals

—+— Threads —%— Batch Size 1 Workload Change —+— Threads —%— Batch Size | Workload Change
256 % 8 256 % 8
224 224
192 6 3 192 - 6 B

© ©

o 160 o o 160 E L

N < N <

® 128 4t @28 HH X—xX-4

5 o -S o

S 9 g g 9 * ™)ﬂ 3

644 2E P 64X 2 E

> =}
32 t z 32 z
0 1 1 i 1 i i 0 0 | I I | 0
0 50 100 150 200 0 20 40 60 80 100 120
Elapesed Time (Seconds) Elapesed Time (Seconds)

(a) Aggressive drivers, data from file (b) Aggressive drivers, preloaded data
—+— Threads —— Batch Size | Workload Change —+— Threads —%— Batch Size | Workload Change
256 ¥—— +—+—+8 256 8

224 224
192 - . 1 6 3 192 6 35
© ©

o 160 H o o 160 L

N = N =

N 128 - p—3—+ x4t 0128 4=

5 5 5 S

g 96 5 5 96 3

@ pa¥ 2 € 64 2 E

=}
0 | 1 1 1 0 (O I i | 0
0 20 40 60 80 100 0 20 40 60 80 100
Elapesed Time (Seconds) Elapesed Time (Seconds)
(c) Disconnected pattern, window: (d) Disconnected pattern, window: 500s
20,0008

Figure 5.18: Evaluation of the configured batch size and number of threads over
time for different queries.

In the unpartitioned cases (c,d), we do not encounter such noisy phases because
the threads cooperatively process the entire input stream. Hence, if a compu-
tation takes longer, this is compensated by another thread. As expected, the
utilized resources adapt to the changes in the workload. For example, the event
rate halves slightly after 20 seconds, and so does the used number of threads.
However, note that even though the complexity of the 500s window query is less
than the one of the 20,000s window, the batch sizes tend to be greater. We at-
tribute this to the congestion control feature since the processing time for the
500s window query is very low. Hence, with small batches, the processing threads
would spend a reasonable amount of time waiting to enter the synchronization
phase.

150

5 Pattern Matching on Temporal Intervals

Component Coordinator Worker (10x)

[CPU Intel Xeon E52640v3 @2,6 GHz AMD A10-7870K @ 3.9 GHz
RAM 16GB DDR4 FSB2133 32GB DDR4 FSB2133
Storage 2x480GB SSD; 8x8TB HDD 500GB SSD

Network 10 Gbit Ethernet 1 Gbit Ethernet

Table 5.6: Hardware specification of the cluster

Distributed Environment

For our experiments in a distributed environment, we used a cluster with one co-
ordinator and ten worker nodes, running an Ubuntu Linux (18.04, kernel version
4.15). The hardware specifications can be found in [Table 5.6, On the cluster we
deployed Apache Kafka 2.0.0 using Zookeeperﬂ 3.4.5 for coordination. Each worker
node hosts one Kafka broker. For our experiments, we deploy single-core consumer
applications on a variable number of worker nodes. Before each experiment, we
insert 10 million input events through a Kafka topic as a warm-up during which
Kafka balances partition distributions among the registered brokers. Afterward, we
measure the speedup relative to a single worker node setup.

For partitioned data, we evaluate the aggressive drivers experiment with 50M
events and the standard Kafka batch size of 10,000 events. We deploy the K-Slack
consumer on a single worker node and leave the worker node that acts as a con-
troller for all brokers with no workload. On the 7 remaining worker nodes, we
create a varying degree of topic partitions and corresponding consumers. Since
the controller handles consumer and partition assignments, a consumer not neces-
sarily resides on the same node as the partition it is consuming. [Figure 5.19 (a)|
shows the results of the experiment. Clearly, the approach scales with the used
worker nodes since each worker has to read and process only a fraction of the total
data.

For unpartitioned data, we again use the query from [Section 5.7.2| and ingest 60M
events from the generator. On display (Figure 5.19 (b)|) are results for a batch

size of 10,000 events and a moderate window size of 10,000. In the measure-
ments, the processing time includes creating event batches from the raw data and
the time until the last result is generated. Again, we leave the controller broker
with no workload and use the 7 remaining worker nodes for a varying number
of partitions. Similar to the partitioned data experiment, the approach scales
since it distributes the reading and the deriving workload. The effects are less

Shttps://zookeeper.apache.org/

151

https://zookeeper.apache.org/

5 Pattern Matching on Temporal Intervals

4 4
3 3
Qo Q.
=}]
T 2 T 2
Q 3]
joR [oR
@ a
l l I l I I
0 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of Worker Nodes Number of Worker Nodes
(a) Aggressive Drivers; 50M Events (b) Disconnected pattern; 50M Events

Figure 5.19: Speed up in a cluster for various queries.

prominent than in the partitioned case since only the deriving happens in paral-
lel.

Notably, both experiments take a longer processing time than their respective
counterparts on a single machine. This is due to hardware limitations of each clus-
ter node and additional overhead for transferring data over the network. However,
since most streaming environments work with frameworks like Kafka to initially
ingest data, achieve fault tolerance and provenance, the overall overhead is likely
to occur in practice anyway. Thus, our adaptations show that TPStream integrates
well with and benefits from an environment featuring Kafka.

5.8 Summary

We presented T'PStream, a novel event processing operator for detecting complex
[TPk among event streams with low latency and high throughput. By coupling the
deriving phase with the matching phase, TPStream detects complex[TPk at the ear-
liest possible point in time. To handle huge data volumes originating from a variety
of sources, we developed parallel and distributed implementations for T'PStream
that can be applied to both partitioned and unpartitioned data streams. Further-
more, to maximize resource utilization in a distributed computing environment
while reacting to changing data rates of streams, the parallel implementations
are tied to a tuning component that automatically adjusts batch sizes and the
number of computing threads. In experiments, we showcased TPStream’s perfor-
mance benefits, scalability, and adaptive capabilities while comparing it to current
state-of-the-art solutions.

152

Summary, Conclusion and Outlook

The efficient on- and offline processing of high-volume event streams is important
in many application domains, such as technical infrastructure monitoring or finan-
cial market surveillance. Cluster-based scale-out general-purpose stream process-
ing engines, like Apache Flink [Car+15], are the basis for many event processing
application. These engines offer powerful high-level abstractions that allow users
to implement custom processing logic easily. Moreover, they seamlessly integrate
on- and offline processing by executing offline queries in a replay-based fashion.
However, those engines offer two significant deficiencies. First, when executing
offline queries in a replay-based fashion, 1/O quickly becomes the bottleneck of
query execution and dominates the overall query execution cost. Second, as a re-
sult of their high-level abstractions, those engines fail to fully utilize the available
hardware resources of modern machines [Zeu+19]. In this thesis, we tackle these
deficiencies in the following way.

First, we present approaches to speed up the offline processing of windowed ag-
gregation and sequential pattern matching (cf. [Chapter 3)). We utilize well-
understood indexing techniques to avoid a full stream replay and minimize 1/0
costs. Our approaches result in speedups of up to two orders of magnitude for both
query types. In addition, we develop cost models for both approaches to decide
(i) whether and (ii) how many indexes to use for a given query. We show that our
cost models accurately predict the overall query execution cost independent of the
query parameters and data distribution and thus ensure efficient query execution
for a wide variety of workloads.

Second, we show how to increase hardware resource utilization of single machines
by utilizing modern in combination with low-level programming interfaces
provided by HSAlL For filter, windowed aggregation, windowed join, and sequen-
tial pattern matching, we provide iGPUFenabled implementations that outperform
even multi-threaded [CPUMbased implementations by up to a factor of five. More-
over, we confirm the findings of Zeuch et al. |[Zeu+19| that modern JVMFbased

153

6 Summary, Conclusion and Outlook

fail to utilize hardware resources of current machines fully. Even our single-
threaded C++-based operator implementations increase processing throughput
by two orders of magnitude compared to the state-of-the-art scale-out SPE Apache
Flink.

Third, we present T'PStream, a novel operator for matching patterns on temporal
intervals based on Allen’s interval algebra |AlI83]. T'PStream is the first interval-
based pattern matching operator that tightly couples the derivation of situations
and their associated time intervals from events with the matching of temporal
patterns. This coupling results in very low processing latency. Moreover, we show
that TPStream is easily parallelizable and takes advantage of the many cores of
modern (i.e., efficiently utilizes the available hardware). Finally, we show
that TPStream scales nicely in distributed environments by integrating it into
Kafka Streams.

6.1 QOutlook

After a summary of the most important results, this final section gives a brief
outlook on future research opportunities for the approaches developed in this the-
sis.

Our index-based approaches for offline processing of significantly increase the
processing performance for a wide variety of query parameters. However, for se-
quential pattern matching, we introduce various restrictions that should be ad-
dressed in the future. First, we do not support logical grouping (i.e., a group by
clause) so far. This clause allows to detect patterns in a single entity’s behavior
(e.g., a sensor) within a stream of events from multiple entities (e.g., all events of a
sensor network). However, with grouping, storing a global sequence number within
secondary indexes is not sufficient for checking sequential distance constraints. The
reason is that adjacent events within a logical group are likely not adjacent within
the source stream. Moreover, the attribute values of different groups may follow
different distributions, which need to be reflected in the cost model. In order to
tackle this issue, one idea is to use an additional secondary index on the grouping
attribute. This index would allow checking sequential distance constraints between
the events of a group.

Another extension regarding offline sequential pattern matching is the support for
predicates that refer to previous events like in the increasing temperature example

in|Section 2.3.5. Traditional indexes like BT-trees do not support those predicates.
A first idea towards supporting those predicates is to design a specialized index

154

6 Summary, Conclusion and Outlook

structure that stores deltas to previous values instead of absolute values. A hier-
archy of such deltas would allow finding variable-length sequences of increasing or
decreasing values.

In addition, the pruning power of Kleene-star symbols should be explored. Cur-
rently, we ignore since they are not required for a successful match of the
pattern. However, if a does not occur, the subsequent must occur instead.
This fact could be used to reduce the number of replay intervals even for queries
with only a few [BSk.

Our [GPU and @SAlbased operator implementations increase the processing through-
put up to a factor of five compared to equivalent multi-threaded [CPUl imple-
mentations. However, when running multiple queries in parallel, each consist-
ing of different operators, all processing units should be considered for opera-
tor execution to maximize the overall resource utilization. Thus, it seems to
be advantageous to develop [GPUFaware scheduling strategies [Zha+21; [Zha+20].
These strategies need to consider the overall query workload and the characteris-
tics of both processing units to schedule operators on the best-suited processing
unit.

Based on the efficient parallelization strategies of TPStream for multi-core ma-
chines, we also plan to explore the benefits of [GPUFbased parallelism. A first idea
is to replace the binary-search-based pattern matching step (cf. with
a brute-force approach on the [lGPUL A brute-force search would also eliminate the
requirement of keeping situations sorted in a buffer and thus allow low-cost inte-
grated handling of out-of-order events.

Finally, we will examine index-based offline support for TPStream, analogous to
our approach for sequential pattern matching. In a similar manner as for the
symbol conditions, secondary indexes could support the conditions of situations.
From the attached timestamps and sequence numbers, we can easily derive the
corresponding time intervals. Thus, the remaining question is how to adjust the
merge phase to recognize the 13 possible interval relations. Moreover, the cost
model needs to be adjusted to estimate the probabilities of a particular interval
relation.

Appendices

156

[Aba+03]

[Aff417]

[Aki+15]

[Ali409]

[Al183]

[Ani+11]

[ABWOG6]

[Ara+03]

[Ara+04]

References

D. J. Abadi et al., “Aurora: A new model and architecture for data
stream management”, VLDB J., vol. 12, no. 2, pp. 120-139, 2003.
DOI: 10.1007/s00778-003-0095-z7|

L. Affetti, R. Tommasini, A. Margara, G. Cugola, and E. D. Valle,
“Defining the execution semantics of stream processing engines”, J.
Big Data, vol. 4, p. 12, 2017. Do1:[10.1186/s40537-017-0072-9|

T. Akidau et al., “The dataflow model: A practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing”, Proc. VLDB FEndow., vol. 8, no. 12,
pp. 1792-1803, 2015. DOL: [10.14778/2824032.2824076.

M. H. Ali et al., “Microsoft CEP server and online behavioral target-
ing”, Proc. VLDB Endow., vol. 2, no. 2, pp. 1558-1561, 2009. DOI:
10.14778/1687553.1687590.

J. F. Allen, “Maintaining knowledge about temporal intervals”, Com-
mun. ACM, vol. 26, no. 11, pp. 832-843, 1983. DO1:[10.1145/182.
358434.

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “EP-SPARQL: a
unified language for event processing and stream reasoning”, in Pro-
ceedings of the 20th International Conference on World Wide Web,
WWW 2011, Hyderabad, India, March 28 - April 1, 2011, S. Srini-
vasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino,
and R. Kumar, Eds., ACM, 2011, pp. 635-644. por: 10 . 1145/
1963405.1963495.

A. Arasu, S. Babu, and J. Widom, “The CQL continuous query lan-
guage: Semantic foundations and query execution”, VLDB J., vol. 15,
no. 2, pp. 121-142, 2006. por: 10.1007/s00778-004-0147-z.

A. Arasu et al., “STREAM: the stanford stream data manager”, IEEE
Data Eng. Bull., vol. 26, no. 1, pp. 19-26, 2003.

A. Arasu et al., “Linear road: A stream data management bench-
mark”, in (e)Proceedings of the Thirtieth International Conference
on Very Large Data Bases, VLDB 2004, Toronto, Canada, August
31 - September 3 2004, M. A. Nascimento, M. T. Ozsu, D. Koss-
mann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, Eds., Morgan

157

https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1186/s40537-017-0072-9
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/1687553.1687590
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/1963405.1963495
https://doi.org/10.1145/1963405.1963495
https://doi.org/10.1007/s00778-004-0147-z

References

[AHOO]

[AS19]

[Bab+04]

[BSW04]

[BGI6]

[Bal4+13]

[Bar+09]

Kaufmann, 2004, pp. 480-491. DO1: 10.1016/B978-012088469—
8.50044-9,

R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query
processing”, in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000, Dallas, Texas,
USA, W. Chen, J. F. Naughton, and P. A. Bernstein, Eds., ACM,
2000, pp. 261-272. DOIL: [10.1145/342009.335420.

S. Ayhan and H. Samet, “Data management and analytics system
for online flight conformance monitoring and anomaly detection”, in
Proceedings of the 27th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL 2019,
Chicago, IL, USA, November 5-8, 2019, 2019, pp. 219-228. DOI1: |10.
1145/3347146.3359378l

S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom,
“Adaptive ordering of pipelined stream filters”, in Proceedings of the
ACM SIGMOD International Conference on Management of Data,
Paris, France, June 13-18, 2004, G. Weikum, A. C. Konig, and S.
Deflloch, Eds., ACM, 2004, pp. 407-418. DO1: 10.1145/1007568.
1007615

S. Babu, U. Srivastava, and J. Widom, “Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams”,
ACM Trans. Database Syst., vol. 29, no. 3, pp. 545-580, 2004. DOI:
10.1145/1016028.1016032

R. A. Baeza-Yates and G. H. Gonnet, “Fast text searching for regular
expressions or automaton searching on tries”, J. ACM, vol. 43, no. 6,
pp. 915-936, 1996. DOL: [10.1145/235809.235810.

C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul, “RIP: run-based
intra-query parallelism for scalable complex event processing”, in The
7th ACM International Conference on Distributed Fvent-Based Sys-
tems, DEBS ’13, Arlington, TX, USA - June 29 - July 03, 2013, S.
Chakravarthy, S. D. Urban, P. R. Pietzuch, and E. A. Rundensteiner,
Eds., ACM, 2013, pp. 3-14. DOL: [10.1145/2488222.2488257.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“C-SPARQL: SPARQL for continuous querying”, in Proceedings of
the 18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20-24, 2009, J. Quemada, G. Ledn, Y. S. Maarek,
and W. Nejdl, Eds., ACM, 2009, pp. 1061-1062. por: 10 .1145/
1526709.1526856.

158

https://doi.org/10.1016/B978-012088469-8.50044-9
https://doi.org/10.1016/B978-012088469-8.50044-9
https://doi.org/10.1145/342009.335420
https://doi.org/10.1145/3347146.3359378
https://doi.org/10.1145/3347146.3359378
https://doi.org/10.1145/1007568.1007615
https://doi.org/10.1145/1007568.1007615
https://doi.org/10.1145/1016028.1016032
https://doi.org/10.1145/235809.235810
https://doi.org/10.1145/2488222.2488257
https://doi.org/10.1145/1526709.1526856
https://doi.org/10.1145/1526709.1526856

References

[BM70]

[Bei+19a]

[Bei+19b]

[Ben-+07]

[Bha0g]

[BGJO6]

[Bol+06]

[BKS01]

[Briil5]

R. Bayer and E. M. McCreight, “Organization and maintenance of
large ordered indexes”, in Record of the 1970 ACM SIGFIDET Work-
shop on Data Description and Access, November 15-16, 1970, Rice
University, Houston, Texas, USA (Second Edition with an Appendiz),
1970, pp. 107-141.

C. Beilschmidt et al., “Pretty fly for a VAT GUI: visualizing event
patterns for flight data”, in Proceedings of the 15th ACM Interna-
tional Conference on Distributed and Event-based Systems, DEBS
2019, Darmstadt, Germany, June 24-28, 2019, 2019, pp. 224-227.
DOI: |10.1145/3328905.3332507.

C. Beilschmidt et al., “VAT to the future: Extrapolating visual com-
plex event processing”, in Proceedings of the 7th OpenSky Workshop
2019, Zurich, Switzerland, November 21-22, 2019, 2019, pp. 25-36.

M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J. Nelson, “Cache-oblivious streaming b-trees”, in
SPAA 2007: Proceedings of the 19th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, San Diego, California,
USA, June 9-11, 2007, 2007, pp. 81-92. bO1: 10.1145/1248377.
1248393l

U. N. Bhat, An Introduction to Queueing Theory. Boston: Birkhauser
Boston, 2008, pp. 13-17. DOI1:[10.1007/978-0-8176-4725-4.

M. H. Bohlen, J. Gamper, and C. S. Jensen, “Multi-dimensional ag-
gregation for temporal data”, in Advances in Database Technology
- EDBT 2006, 10th International Conference on Ezxtending Database
Technology, Munich, Germany, March 26-31, 2006, Proceedings, 2006,
pp. 257-275. DOL: [10.1007/11687238_18.

G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing Net-
works and Markov Chains: Modeling and Performance FEvaluation
with Computer Science Applications. Wiley, 2006, pp. 24-25.

S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator”,
in Proceedings of the 17th International Conference on Data Engi-
neering, April 2-6, 2001, Heidelberg, Germany, 2001, pp. 421-430.
DOI: 10.1109/ICDE.2001.914855.

M. Brager, “Large infrastructure monitoring at cern”, in Presentation
at Big Data Spain conference 2015, Madrid, Spain, 2015, 2015.

159

https://doi.org/10.1145/3328905.3332507
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1007/978-0-8176-4725-4
https://doi.org/10.1007/11687238_18
https://doi.org/10.1109/ICDE.2001.914855

References

[Bre+07]

[Cam15]

[Car+15]

[Car+16]

[Car75h|

[CGRO3]

[CGM10]

[Che+08]

[CRO2]

L. Brenna et al., “Cayuga: A high-performance event processing en-
gine”, in Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007, 2007,
pp. 1100-1102. po1: 10.1145/1247480.1247620|

M. Cammert, “Verbundoperationen iiber datenstromen und deren op-
timierung unter verwendung dynamischer metadaten”, Ph.D. disser-
tation, University of Marburg, 2015.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink™: Stream and batch processing in a single
engine”, IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28-38, 2015.

P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl,
“Cutty: Aggregate sharing for user-defined windows”, in Proceed-
ings of the 25th ACM International Conference on Information and
Knowledge Management, CIKM 2016, Indianapolis, IN, USA, Octo-
ber 24-28, 2016, 2016, pp. 1201-1210. por: 10 . 1145/2983323 .
2983807

A. F. Cardenas, “Analysis and performance of inverted data base
structures”, Commun. ACM, vol. 18, no. 5, pp. 253-263, 1975. DOIL:
10.1145/360762.360766.

C.Y. Chan, M. N. Garofalakis, and R. Rastogi, “Re-tree: An efficient
index structure for regular expressions”, VLDB J., vol. 12, no. 2,
pp. 102-119, 2003. po1:[10.1007/s00778-003-0094-0|

B. Chandramouli, J. Goldstein, and D. Maier, “High-performance dy-
namic pattern matching over disordered streams”, Proc. VLDB En-
dow., vol. 3, no. 1, pp. 220-231, 2010. por: 10.14778/1920841 .
1920873l

S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas”, in Proceedings
of the IEEE Symposium on Application Specific Processors, SASP
2008, held in conjunction with the DAC 2008, June 8-9, 2008, Ana-
heim, California, USA, 2008, pp. 101-107. po1: [10.1109/SASP .
2008.4570793.

J. Cho and S. Rajagopalan, “A fast regular expression indexing en-
gine”, in Proceedings of the 18th International Conference on Data
Engineering, San Jose, CA, USA, February 26 - March 1, 2002, 2002,
pp. 419-430. po1:[10.1109/ICDE.2002.994755.

160

https://doi.org/10.1145/1247480.1247620
https://doi.org/10.1145/2983323.2983807
https://doi.org/10.1145/2983323.2983807
https://doi.org/10.1145/360762.360766
https://doi.org/10.1007/s00778-003-0094-0
https://doi.org/10.14778/1920841.1920873
https://doi.org/10.14778/1920841.1920873
https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.1109/ICDE.2002.994755

References

[CGOS] G. Cormode and M. N. Garofalakis, “Approximate continuous query-
ing over distributed streams”, ACM Trans. Database Syst., vol. 33,
no. 2, 9:1-9:39, 2008. po1:|10.1145/1366102.1366106.

[CM12] G. Cugola and A. Margara, “Low latency complex event processing
on parallel hardware”, J. Parallel Distributed Comput., vol. 72, no. 2,
pp. 205-218, 2012. DOL: [10.1016/75. pdc.2011.11.002!

[DGRO3] A. Das, J. Gehrke, and M. Riedewald, “Approximate join processing
over data streams”, in Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, California,
USA, June 9-12, 2003, 2003, pp. 40-51. por: 10.1145/872757 .
8727765.

[DIGO7] Y. Diao, N. Immerman, and D. Gyllstrom, “Sase+: An agile language
for kleene closure over event streams”, Tech. Rep., 2007.

[DBG14] A. Dignds, M. H. Béhlen, and J. Gamper, “Overlap interval partition
join” in International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 201/, C. E. Dyreson, F. Li,
and M. T. Ozsu, Eds., ACM, 2014, pp. 1459-1470. pOI: [10.1145/
2588555.2612175.

[Din+11] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul, “Efficiently cor-
relating complex events over live and archived data streams”, in Pro-
ceedings of the Fifth ACM International Conference on Distributed
Fvent-Based Systems, DEBS 2011, New York, NY, USA, July 11-15,
2011, 2011, pp. 243-254. DOL: [10.1145/2002259.2002293.

[Din+04] L. Ding, N. K. Mehta, E. A. Rundensteiner, and G. T. Heineman,
“Joining punctuated streams”, in Advances in Database Technology
- EDBT 2004, 9th International Conference on Extending Database
Technology, Heraklion, Crete, Greece, March 14-18, 200/, Proceed-
ings, 2004, pp. 587-604. DOI: [10 . 1007 /978—-3-540- 24741 -
8_34.

[DRO4] L. Ding and E. A. Rundensteiner, “Evaluating window joins over
punctuated streams”, in Proceedings of the 2004 ACM CIKM In-
ternational Conference on Information and Knowledge Management,
Washington, DC, USA, November 8-13, 2004, 2004, pp. 98-107. DOI:
10.1145/1031171.1031189.

[Dut+19] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S.
Chaudhuri, “Selectivity estimation for range predicates using lightweight
models”, Proc. VLDB Endow., vol. 12, no. 9, pp. 1044-1057, 2019.
DOI: 110.14778/3329772.3329780.

161

https://doi.org/10.1145/1366102.1366106
https://doi.org/10.1016/j.jpdc.2011.11.002
https://doi.org/10.1145/872757.872765
https://doi.org/10.1145/872757.872765
https://doi.org/10.1145/2588555.2612175
https://doi.org/10.1145/2588555.2612175
https://doi.org/10.1145/2002259.2002293
https://doi.org/10.1007/978-3-540-24741-8_34
https://doi.org/10.1007/978-3-540-24741-8_34
https://doi.org/10.1145/1031171.1031189
https://doi.org/10.14778/3329772.3329780

References

[EWKO90] R. Elmasri, G. T. J. Wuu, and Y. Kim, “The time index: An access
structure for temporal data”, in 16th International Conference on
Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland,
Awustralia, Proceedings, 1990, pp. 1-12.

[Ept+99] U. Epting et al., “Cern lhc technical infrastructure monitoring (tim)”,
in Proceedings of the Tth International conference on accelerator and
large experimental physics control systems, icalepcs 1999, Sincrotrone
Trieste, Italy, October 4 - 8, 1999, 1999.

[Erw04] M. Erwig, “Toward spatio-temporal patterns”, in Spatio- Temporal
Databases: Flexible Querying and Reasoning, Springer Berlin Heidel-
berg, 2004, pp. 29-53.

[esp20)] espertech. “Esper complex event processing, streaming analytics, stream-
ing sql”. (2020), [Online]. Available: https://www.espertech.
com/| (visited on 11/17/2020).

[Etz4+16] O. Etzion, F. Fournier, I. Skarbovsky, and B. von Halle, “A model
driven approach for event processing applications”, in Proceedings of
the 10th ACM International Conference on Distributed and Event-
based Systems, DEBS 16, Irvine, CA, USA, June 20 - 24, 2016, A.
Gal, M. Weidlich, V. Kalogeraki, and N. Venkasubramanian, Eds.,
ACM, 2016, pp. 81-92. DOI: [10.1145/2933267.2933268!

[Fel71] W. Feller, An introduction to probability theory and its applications.
Wiley, 1971.
[21] Flinkcep - complex event processing for flink, 2021.

[Gao+05] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “Join opera-
tions in temporal databases”, VLDB J., vol. 14, no. 1, pp. 2-29, 2005.
DOI: |10.1007/s00778-003-0111-3.

[Gao+15] S. Gao, T. Scharrenbach, J. Kietz, and A. Bernstein, “Running out
of bindings? integrating facts and events in linked data stream pro-
cessing”, in Joint Proceedings of the 1st Joint International Workshop
on Semantic Sensor Networks and Terra Cognita (SSN-TC 2015) and
the 4th International Workshop on Ordering and Reasoning (OrdRing
2015) co-located with the 14th International Semantic Web Confer-
ence (ISWC 2015), Bethlehem, Pennsylvania, United States, October
11th - and - 12th, 2015, K. Kyzirakos et al., Eds., ser. CEUR Work-
shop Proceedings, vol. 1488, CEUR-WS.org, 2015, pp. 63-74.

162

https://www.espertech.com/
https://www.espertech.com/
https://doi.org/10.1145/2933267.2933268
https://doi.org/10.1007/s00778-003-0111-3

References

[GGZ16]

[Gar+-20]

[GBY09)

[GAEO6]

[Glo+-20]

[GO03]

[GO05]

[GCO8]

[Gra+18]

S. Gao, J. Gu, and C. Zaniolo, “RDF-TX: A fast, user-friendly sys-
tem for querying the history of RDF knowledge bases”, in Proceedings
of the 19th International Conference on Fxtending Database Technol-
oqy, EDBT 2016, Bordeauz, France, March 15-16, 2016, Bordeaur,
France, March 15-16, 2016, E. Pitoura et al., Eds., OpenProceed-
ings.org, 2016, pp. 269-280. DOL: [10.5441/002/edbt.2016.26.

C. Garcia-Arellano et al., “Db2 event store: A purpose-built iot database
engine”, Proc. VLDB Endow., vol. 13, no. 12, pp. 3299-3312, 2020.

B. Gedik, R. Bordawekar, and P. S. Yu, “Celljoin: A parallel stream
join operator for the cell processor”, VLDB J., vol. 18, no. 2, pp. 501—
519, 2009. po1:[10.1007/s00778-008-0116-2z/

T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid, “Exploiting
predicate-window semantics over data streams”, SIGMOD Rec., vol. 35,
no. 1, pp. 3-8, 2006. DOI: [10.1145/1121995.1121996.

N. Glombiewski, P. Gotze, M. Korber, A. Morgen, and B. Seeger,
“Designing an event store for a modern three-layer storage hierar-
chy”, Datenbank-Spektrum, vol. 20, no. 3, pp. 211-222, 2020. DOI:
10.1007/s13222-020-00356-6.

L. Golab and M. T. Ozsu, “Processing sliding window multi-joins in
continuous queries over data streams”, in Proceedings of 29th Inter-
national Conference on Very Large Data Bases, VLDB 2003, Berlin,
Germany, September 9-12, 2003, J. C. Freytag, P. C. Lockemann, S.
Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, Eds., Morgan
Kaufmann, 2003, pp. 500-511. DO1: 10.1016/B978-012722442~
8/50051-3.

L. Golab and M. T. Ozsu, “Update-pattern-aware modeling and pro-
cessing of continuous queries”, in Proceedings of the ACM SIGMOD
International Conference on Management of Data, Baltimore, Mary-
land, USA, June 14-16, 2005, F. Ozcan, Ed., ACM, 2005, pp. 658—
669. DOI1: |10.1145/1066157.1066232.

J. S. Gomes and H. Choi, “Adaptive optimization of join trees for
multi-join queries over sensor streams”, Inf. Fusion, vol. 9, no. 3,
pp. 412-424, 2008. DO1: 10.1016/j.inffus.2007.06.001.

P. Graubner et al., “Multimodal complex event processing on mo-
bile devices”, in Proceedings of the 12th ACM International Confer-
ence on Distributed and Fvent-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018, 2018, pp. 112-123. pOo1: 10.1145/
3210284.3210289.

163

https://doi.org/10.5441/002/edbt.2016.26
https://doi.org/10.1007/s00778-008-0116-z
https://doi.org/10.1145/1121995.1121996
https://doi.org/10.1007/s13222-020-00356-6
https://doi.org/10.1016/B978-012722442-8/50051-3
https://doi.org/10.1016/B978-012722442-8/50051-3
https://doi.org/10.1145/1066157.1066232
https://doi.org/10.1016/j.inffus.2007.06.001
https://doi.org/10.1145/3210284.3210289
https://doi.org/10.1145/3210284.3210289

References

[Gro+16]

[Gut84]

[HAB17]

[HOS18]

[HP16]

[HV15]

[Hir12]

[HoB15]

[HoB+13]

[Hwul5]

M. Grossniklaus, D. Maier, J. Miller, S. Moorthy, and K. Tufte,
“Frames: Data-driven windows”, in Proceedings of the 10th ACM
International Conference on Distributed and FEvent-based Systems,
DEBS 16, Irvine, CA, USA, June 20 - 24, 2016, A. Gal, M. Wei-
dlich, V. Kalogeraki, and N. Venkasubramanian, Eds., ACM, 2016,
pp. 13-24. DO1: 10.1145/2933267.2933304l

A. Guttman, “R-trees: A dynamic index structure for spatial search-
ing”, in SIGMOD’8/, Proceedings of Annual Meeting, Boston, Mas-
sachusetts, USA, June 18-21, 1984, 1984, pp. 47-57. DOI1: 10.1145/
602259.602266.

S. Hamdi, A. B. Abdallah, and M. H. Bedoui, “Real time qrs complex
detection using dfa and regular grammar”, BioMedical Engineering
OnlLine, vol. 16, no. 1, p. 31, Feb. 2017. DO1: 10.1186/512938—
017-0322-2.

M. Hasan, M. A. Orgun, and R. Schwitter, “A survey on real-time
event detection from the twitter data stream”, J. Inf. Sci., vol. 44,
no. 4, pp. 443-463, 2018. poOr: [10.1177/0165551517698564!

S. Helmer and F. Persia, “Iseql, an interval-based surveillance event
query language”, Int. J. Multim. Data Eng. Manag., vol. 7, no. 4,
pp. 1-21, 2016. poI: [10.4018/IJMDEM. 2016100101.

A. Hinze and A. Voisard, “EVA: an event algebra supporting complex
event specification”, Inf. Syst., vol. 48, pp. 1-25, 2015. DOI1: |10 .
1016/7.1s.2014.07.003.

M. Hirzel, “Partition and compose: Parallel complex event process-
ing”, in Proceedings of the Sizth ACM International Conference on
Distributed Fvent-Based Systems, DEBS 2012, Berlin, Germany, July
16-20, 2012, F. Bry, A. Paschke, P. T. Eugster, C. Fetzer, and A.
Behrend, Eds., ACM, 2012, pp. 191-200. DO1: 10.1145/2335484.
2335506.

B. HoBbach, “Design and implementation of a middleware for uni-
form, federated and dynamic event processing”, Ph.D. dissertation,
University of Marburg, 2015.

B. HoBbach, N. Glombiewski, A. Morgen, F. Ritter, and B. Seeger,
“JEPC: the java event processing connectivity”, Datenbank-Spektrum,
vol. 13, no. 3, pp. 167-178, 2013. po1: 10.1007/s13222-013—
0133-v.

W.-m. W. Hwu, Heterogeneous System Architecture: A new compute
platform infrastructure. Morgan Kaufmann, 2015.

164

https://doi.org/10.1145/2933267.2933304
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1186/s12938-017-0322-2
https://doi.org/10.1186/s12938-017-0322-2
https://doi.org/10.1177/0165551517698564
https://doi.org/10.4018/IJMDEM.2016100101
https://doi.org/10.1016/j.is.2014.07.003
https://doi.org/10.1016/j.is.2014.07.003
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1007/s13222-013-0133-y
https://doi.org/10.1007/s13222-013-0133-y

References

[20] Insider Trading, https://www.investor.gov/introduction-
investing/investing-basics/glossary/insider—trading,
accessed August 27, 2020, 2020.

[16] ISO/IEC TR 19075-5:2016, Information technology - Database lan-
gquages - SQL Technical Reports - Part 5: Row Pattern Recognition in
SQL,http://standards.iso.org/ittf/PubliclyAvailableStandards,
accessed March 13, 2019, 2016.

[Ji+16] Y. Ji, A. Nica, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Quality-
driven disorder handling for concurrent windowed stream queries with
shared operators”, in Proceedings of the 10th ACM International Con-
ference on Distributed and Fvent-based Systems, DEBS ’16, Irvine,
CA, USA, June 20 - 24, 2016, 2016, pp. 25-36. DOI: 10 . 1145/
2933267.29333077.

[Jos+08] M. Joselli et al., “Automatic dynamic task distribution between CPU
and GPU for real-time systems”, in Proceedings of the 11th IEEFE
International Conference on Computational Science and Engineering,
CSE 2008, Sao Paulo, SP, Brazil, July 16-18, 2008, 2008, pp. 48-55.
DOI: |10.1109/CSE.2008.38.

[JEBO5] V. Josifovski, M. Fontoura, and A. Barta, “Querying XML streams”,
VLDB J., vol. 14, no. 2, pp. 197-210, 2005. DO1: 10.1007/s00778~-
004-0123-"7.

[KMS08] L. Kaghazian, D. McLeod, and R. Sadri, “Scalable complex pattern
search in sequential data”, in Proceedings of the 17th ACM Confer-
ence on Information and Knowledge Management, CIKM 2008, Napa
Valley, California, USA, October 26-30, 2008, 2008, pp. 1467-1468.
DOI:110.1145/1458082.1458336/

[KTP10] R. Kandhan, N. Teletia, and J. M. Patel, “Sigmatch: Fast and scalable
multi-pattern matching”, Proc. VLDB Endow., vol. 3, no. 1, pp. 1173—
1184, 2010. po1: 1 10.14778/1920841.1920987.

[KNV03] J. Kang, J. F. Naughton, and S. Viglas, “Evaluating window joins
over unbounded streams”, in Proceedings of the 19th International
Conference on Data Engineering, March 5-8, 2003, Bangalore, India,
2003, pp. 341-352. DOI: [10.1109/ICDE.2003.1260804.

[KRM19] J. Karimov, T. Rabl, and V. Markl, “Ajoin: Ad-hoc stream joins at
scale”, Proc. VLDB Endow., vol. 13, no. 4, pp. 435-448, 2019.

https://www.investor.gov/introduction-investing/investing-basics/glossary/insider-trading
https://www.investor.gov/introduction-investing/investing-basics/glossary/insider-trading
http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://doi.org/10.1145/2933267.2933307
https://doi.org/10.1145/2933267.2933307
https://doi.org/10.1109/CSE.2008.38
https://doi.org/10.1007/s00778-004-0123-7
https://doi.org/10.1007/s00778-004-0123-7
https://doi.org/10.1145/1458082.1458336
https://doi.org/10.14778/1920841.1920987
https://doi.org/10.1109/ICDE.2003.1260804

References

[Kar+13] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner, “The hells-join:
A heterogeneous stream join for extremely large windows” , in Proceed-
ings of the Ninth International Workshop on Data Management on
New Hardware, DaMoN 1013, New York, NY, USA, June 24, 2013,
2013, p. 2. DO1: 10.1145/2485278.2485280.

[Kau+13] M. Kaufmann et al., “Timeline index: A unified data structure for
processing queries on temporal data in SAP HANA” in Proceedings
of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, K. A.
Ross, D. Srivastava, and D. Papadias, Eds., ACM, 2013, pp. 1173~
1184. por: [10.1145/2463676.2465293.

[KAI17] M. S. Kester, M. Athanassoulis, and S. Idreos, “Access path selection
in main-memory optimized data systems: Should I scan or should I
probe?” in Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, 2017, pp. 715-730. por: |[10.1145/3035918.
30640409.

[Kha02] A. Khan, 501 Stock Market Tips and Guidelines. Writers Club Pres,
2002.

[Kie+13] J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, and K. Nguyen,
“Tef-sparql: The ddis query-language for time annotated event and
fact triple-streams”, Technical report, University of Zurich, Depart-
ment of Informatics, Tech. Rep., 2013.

[KS95] N. Kline and R. T. Snodgrass, “Computing temporal aggregates”, in
Proceedings of the FEleventh International Conference on Data Engi-
neering, March 6-10, 1995, Taipei, Taiwan, 1995, pp. 222-231. DOTI:
10.1109/ICDE.1995.380389.

[KJPT77] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching
in strings”, SIAM J. Comput., vol. 6, no. 2, pp. 323-350, 1977. DOI:
10.1137/0206024\

[KS18] I. Kolchinsky and A. Schuster, “Join query optimization techniques
for complex event processing applications”, Proc. VLDB Endow., vol. 11,
no. 11, pp. 1332-1345, 2018. po1: 10.14778/3236187.3236189.

[KS19] I. Kolchinsky and A. Schuster, “Real-time multi-pattern detection
over event streams” | in Proceedings of the 2019 International Confer-
ence on Management of Data, SIGMOD Conference 2019, Amster-
dam, The Netherlands, June 30 - July 5, 2019, 2019, pp. 589-606.
DOI: 110.1145/3299869.3319869|

166

https://doi.org/10.1145/2485278.2485280
https://doi.org/10.1145/2463676.2465293
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1109/ICDE.1995.380389
https://doi.org/10.1137/0206024
https://doi.org/10.14778/3236187.3236189
https://doi.org/10.1145/3299869.3319869

References

[KSS15] I. Kolchinsky, I. Sharfman, and A. Schuster, “Lazy evaluation meth-
ods for detecting complex events”, in Proceedings of the 9th ACM In-
ternational Conference on Distributed Event-Based Systems, DEBS
‘15, Oslo, Norway, June 29 - July 3, 2015, 2015, pp. 34-45. DOTI:
10.1145/2675743.2771832

[Kol+16] A. Koliousis, M. Weidlich, R. C. Fernandez, A. L. Wolf, P. Costa, and
P. R. Pietzuch, “SABER: window-based hybrid stream processing for
heterogeneous architectures”, in Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, 2016, pp. 555-569. DOTI:
10.1145/2882903.2882906.

[Kér+19a] M. Korber, J. Eckstein, N. Glombiewski, and B. Seeger, “Event stream
processing on heterogeneous system architecture”, in Proceedings of
the 15th International Workshop on Data Management on New Hard-
ware, DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019, 2019,
3:1-3:10. pO1: 10.1145/3329785.3329933|

[Kor+19b] M. Kérber, N. Glombiewski, A. Morgen, and B. Seeger, “Tpstream:
Low-latency and high-throughput temporal pattern matching on event
streams”, Distributed and Parallel Databases, pp. 1-52, 2019. DOI:
10.1007/s10619-019-07272-2z.

[KGS18] M. Korber, N. Glombiewski, and B. Seeger, “Tpstream: Low-latency
temporal pattern matching on event streams”, in Proceedings of the
21st International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018, 2018, pp. 313-324. DOI:
10.5441/002/edbt.2018.28.

[KGS21] M. Kérber, N. Glombiewski, and B. Seeger, “Index-accelerated pat-
tern matching in event stores”, in SIGMOD ’21: International Con-
ference on Management of Data, Virtual Fvent, China, June 20-25,
2021, 2021, pp. 1023-1036. pO1: [10.1145/3448016.3457245|

[KS04] J. Kramer and B. Seeger, “PIPES - A public infrastructure for pro-
cessing and exploring streams”, in Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France,
June 13-18, 2004, 2004, pp. 925-926. por: 10.1145/1007568 .
1007699

[KS09] J. Krédmer and B. Seeger, “Semantics and implementation of continu-
ous sliding window queries over data streams”, ACM Trans. Database
Syst., vol. 34, no. 1, 4:1-4:49, 2009. por: 10 .1145/1508857 .
1508861

167

https://doi.org/10.1145/2675743.2771832
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.1145/3329785.3329933
https://doi.org/10.1007/s10619-019-07272-z
https://doi.org/10.5441/002/edbt.2018.28
https://doi.org/10.1145/3448016.3457245
https://doi.org/10.1145/1007568.1007699
https://doi.org/10.1145/1007568.1007699
https://doi.org/10.1145/1508857.1508861
https://doi.org/10.1145/1508857.1508861

References

[KLP75]

[Li+05a)

[Li+05b]

[Li+11]

[LWK14]

[Luc9g]

[MMO93]

[MCSS8]

IMC11]

H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima
of a set of vectors”, J. ACM, vol. 22, no. 4, pp. 469-476, 1975. DOI:
10.1145/321906.321910.

J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No
pane, no gain: Efficient evaluation of sliding-window aggregates over
data streams”, SIGMOD Rec., vol. 34, no. 1, pp. 39-44, 2005. DOI:
10.1145/1058150.1058158.

J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams”,
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,
2005, pp. 311-322. DOI: [10.1145/1066157.1066193.

M. Li, M. Mani, E. A. Rundensteiner, and T. Lin, “Complex event
pattern detection over streams with interval-based temporal seman-
tics”, in Proceedings of the Fifth ACM International Conference on
Distributed Event-Based Systems, DEBS 2011, New York, NY, USA,
July 11-15, 2011, 2011, pp. 291-302. por: 10.1145/2002259 .
2002297.

B. Lohrmann, D. Warneke, and O. Kao, “Nephele streaming: Stream
processing under qos constraints at scale”, Clust. Comput., vol. 17,
no. 1, pp. 61-78, 2014. po1: [10.1007/s10586-013-0281-8.

D. C. Luckham, “Rapide: A language and toolset for causal event

modeling of distributed system architectures”, in Worldwide Com-

puting and Its Applications, International Conference, WWCA “98,

Second International Conference, Tsukuba, Japan, March 4-5, 1998,

Proceedings, 1998, pp. 88-96. DOI: 10.1007/3-540-64216-1\
42.

U. Manber and E. W. Myers, “Suffix arrays: A new method for on-line
string searches”, SIAM J. Comput., vol. 22, no. 5, pp. 935-948, 1993.
DOI: 110.1137/0222058.

M. V. Mannino, P. Chu, and T. Sager, “Statistical profile estimation
in database systems”, ACM Comput. Surv., vol. 20, no. 3, pp. 191—
221, 1988. DOI1: [10.1145/62061.62063.

A. Margara and G. Cugola, “Processing flows of information: From
data stream to complex event processing”, in Proceedings of the Fifth
ACM International Conference on Distributed Event-Based Systems,
DEBS 2011, New York, NY, USA, July 11-15, 2011, 2011, pp. 359—
360. DOI: |10.1145/2002259.2002307.

168

https://doi.org/10.1145/321906.321910
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.1145/2002259.2002297
https://doi.org/10.1145/2002259.2002297
https://doi.org/10.1007/s10586-013-0281-8
https://doi.org/10.1007/3-540-64216-1_42
https://doi.org/10.1007/3-540-64216-1_42
https://doi.org/10.1137/0222058
https://doi.org/10.1145/62061.62063
https://doi.org/10.1145/2002259.2002307

References

[May+16]

[MD89)]

[McC76]

[MMO09]

[Moe98§]

[MLIO3]

[Mou+15]

[Muk-+16]

R. Mayer, C. Mayer, M. A. Tariq, and K. Rothermel, “Graphcep:
Real-time data analytics using parallel complex event and graph pro-
cessing”, in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, DEBS ’16, Irvine, CA, USA,
June 20 - 24, 2016, 2016, pp. 309-316. po1: 10.1145/2933267 .
29335009.

D. R. McCarthy and U. Dayal, “The architecture of an active data
base management system”, in Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, Portland, Oregon,
USA, May 31 - June 2, 1989, 1989, pp. 215-224. DOI: 10.1145/
67544.66946.

E. M. McCreight, “A space-economical suffix tree construction algo-
rithm”, J. ACM, vol. 23, no. 2, pp. 262-272, 1976. pOo1: 10.1145/
321941.321946.

Y. Mei and S. Madden, “Zstream: A cost-based query processor for
adaptively detecting composite events”, in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIG-
MOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
2009, pp. 193-206. bO1: [10.1145/1559845.1559867.

G. Moerkotte, “Small materialized aggregates: A light weight index
structure for data warehousing”, in VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, 1998, pp. 476-487.

B. Moon, I. F. V. Lopez, and V. Immanuel, “Efficient algorithms for
large-scale temporal aggregation”, IEEE Trans. Knowl. Data Eng.,
vol. 15, no. 3, pp. 744-759, 2003. por: 10.1109/TKDE . 2003 .
1198403l

R. Moussalli, I. Absalyamov, M. R. Vieira, W. A. Najjar, and V. J.
Tsotras, “High performance FPGA and GPU complex pattern match-
ing over spatio-temporal streams”, Geolnformatica, vol. 19, no. 2,
pp. 405-434, 2015. DOI: [10.1007/s10707-014-0217-3.

S. Mukherjee, Y. Sun, P. Blinzer, A. K. Ziabari, and D. R. Kaeli, “A
comprehensive performance analysis of HSA and opencl 2.0”, in 2016
IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS 2016, Uppsala, Sweden, April 17-19, 2016,
2016, pp. 183-193. DOI: [10.1109/ISPASS.2016.7482093!

169

https://doi.org/10.1145/2933267.2933509
https://doi.org/10.1145/2933267.2933509
https://doi.org/10.1145/67544.66946
https://doi.org/10.1145/67544.66946
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/1559845.1559867
https://doi.org/10.1109/TKDE.2003.1198403
https://doi.org/10.1109/TKDE.2003.1198403
https://doi.org/10.1007/s10707-014-0217-3
https://doi.org/10.1109/ISPASS.2016.7482093

References

[MTAQ9] R. Miiller, J. Teubner, and G. Alonso, “Streams on wires - A query
compiler for fpgas”, Proc. VLDB Endow., vol. 2, no. 1, pp. 229-240,
2009. DOI1:110.14778/1687627.1687654

[Mut+98] P. Muth, P. E. O'Neil, A. Pick, and G. Weikum, “Design, implemen-
tation, and performance of the LHAM log-structured history data
access method”, in VLDB’98, Proceedings of 24rd International Con-
ference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, 1998, pp. 452-463.

[Nav14] G. Navarro, “Wavelet trees for all”, J. Discrete Algorithms, vol. 25,
pp. 2-20, 2014. DOT:[10.1016/7.3da.2013.07. 004l

[Now—+18] M. Nowakiewicz, E. Boutin, E. N. Hanson, R. Walzer, and A. Kati-
pally, “Bipie: Fast selection and aggregation on encoded data us-
ing operator specialization”, in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Hous-
ton, TX, USA, June 10-15, 2018, 2018, pp. 1447-1459. por: |10 .
1145/3183713.3190658.

[ONe+96] P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (Ism-tree)”, Acta Informatica, vol. 33, no. 4,
pp. 351-385, 1996. DOI: [10.1007/5002360050048.

[Orgl8] I. C. A. Organization. “Icaolong-termtrafficforecasts - passenger and
cargo”. (2018), [Online|. Available: https://www. icao . int /
sustainability/Documents/LTF_Charts—Results_2018edition.
pdf (visited on 11/18/2020).

[PBH17] F. Persia, F. Bettini, and S. Helmer, “An interactive framework for
video surveillance event detection and modeling”, in Proceedings of
the 2017 ACM on Conference on Information and Knowledge Man-
agement, CIKM 2017, Singapore, November 06 - 10, 2017, E. Lim
et al., Bds., ACM, 2017, pp. 2515-2518. DOI: [10.1145/3132847.
3133164.

[PHD16] D. Piatov, S. Helmer, and A. Dignos, “An interval join optimized
for modern hardware”, in 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016,
[EEE Computer Society, 2016, pp. 1098-1109. DO1:/10.1109/ICDE.
2016.7498316.

[PBS15] M. Pinnecke, D. Broneske, and G. Saake, “Toward GPU accelerated
data stream processing”, in Proceedings of the 27th GI-Workshop

Grundlagen von Datenbanken, Gommern, Germany, May 26-29, 2015,
2015, pp. 78-83.

170

https://doi.org/10.14778/1687627.1687654
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1145/3183713.3190658
https://doi.org/10.1145/3183713.3190658
https://doi.org/10.1007/s002360050048
https://www.icao.int/sustainability/Documents/LTF_Charts-Results_2018edition.pdf
https://www.icao.int/sustainability/Documents/LTF_Charts-Results_2018edition.pdf
https://www.icao.int/sustainability/Documents/LTF_Charts-Results_2018edition.pdf
https://doi.org/10.1145/3132847.3133164
https://doi.org/10.1145/3132847.3133164
https://doi.org/10.1109/ICDE.2016.7498316
https://doi.org/10.1109/ICDE.2016.7498316

References

[Pop+16]

[Pop+17]

[Pop+19]

[Ram-+98]

[RLR16]

[RBP15]

[RGS3]

[Run+15]

O. Poppe, C. Lei, E. A. Rundensteiner, and D. J. Dougherty, “Context-
aware event stream analytics”, in Proceedings of the 19th Interna-
tional Conference on Extending Database Technology, EDBT 2016,
Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-
16, 2016, E. Pitoura et al., Eds., OpenProceedings.org, 2016, pp. 413—
424. DOI: 10.5441/002/edbt .2016.38.

O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier, “GRETA:
graph-based real-time event trend aggregation”, Proc. VLDB Endow.,
vol. 11, no. 1, pp. 80-92, 2017. DO1:[10.14778/3151113.3151120.

O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier, “Event trend
aggregation under rich event matching semantics”, in Proceedings of
the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, 2019, pp. 555-572. DOL: [10.1145/3299869.3319862!

R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and
M. Krishnaprasad, “SRQL: sorted relational query language”, in 10th
International Conference on Scientific and Statistical Database Man-
agement, Proceedings, Capri, Italy, July 1-3, 1998, 1998, pp. 84-95.
DOI: 10.1109/SSDM.1998.6881114.

M. Ray, C. Lei, and E. A. Rundensteiner, “Scalable pattern sharing on
event streams”, in Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, 2016, pp. 495-510. po1: 10 .
1145/2882903.2882947.

P. S. Rodrigo, H. M. N. D. Bandara, and S. Perera, “Accelerating
complex event processing through gpus”, in 22nd IEEE International
Conference on High Performance Computing, HiPC 2015, Bengaluru,
India, December 16-19, 2015, 2015, pp. 325-334. DOI: 10.1109/
HiPC.2015.36.

M. A. Rosenman and J. S. Gero, “Pareto optimal serial dynamic
programming”, Engineering Optimization, vol. 6, no. 4, pp. 177-183,
1983. por1: [10.1080/03052158308902467.

E. A. Rundensteiner et al., “Exploiting sharing opportunities for real-

time complex event analytics”, IEEE Data Eng. Bull., vol. 38, no. 4,
pp. 82-93, 2015.

171

https://doi.org/10.5441/002/edbt.2016.38
https://doi.org/10.14778/3151113.3151120
https://doi.org/10.1145/3299869.3319862
https://doi.org/10.1109/SSDM.1998.688114
https://doi.org/10.1145/2882903.2882947
https://doi.org/10.1145/2882903.2882947
https://doi.org/10.1109/HiPC.2015.36
https://doi.org/10.1109/HiPC.2015.36
https://doi.org/10.1080/03052158308902467

References

[SJ11]

SJ13]

[Sad+-01]

[SG11]

[Sch+14]

[SMP09]

[Sei+19]

3S17]

[Sel+79]

M. Sadoghi and H. Jacobsen, “Be-tree: An index structure to ef-
ficiently match boolean expressions over high-dimensional discrete
space”, in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, 2011, pp. 637-648. DOI: [10.1145/1989323.1989390.

M. Sadoghi and H. Jacobsen, “Analysis and optimization for boolean
expression indexing”, ACM Trans. Database Syst., vol. 38, no. 2, 8:1—
8:47,2013. DO1: 10.1145/2487259.2487260.

R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi, “Optimization of
sequence queries in database systems”, in Proceedings of the Twen-
tieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 21-23, 2001, Santa Barbara, California, USA,
2001. po1:110.1145/375551.375563.

M. A. Sakr and R. H. Giiting, “Spatiotemporal pattern queries”,
Geolnformatica, vol. 15, no. 3, pp. 497-540, 2011. por: 10.1007/
s10707-010-0114-3.

M. Schafer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wil-
helm, “Bringing up opensky: A large-scale ADS-B sensor network for
research” | in IPSN’14, 2014, pp. 83-94.

N. P. Schultz-Mgller, M. Migliavacca, and P. R. Pietzuch, “Distributed
complex event processing with query rewriting”, in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, DEBS 2009, Nashville, Tennessee, USA, July 6-9, 2009,
A. S. Gokhale and D. C. Schmidt, Eds., ACM, 2009. po1:|10.1145/
1619258.1619264.

M. Seidemann, N. Glombiewski, M. Korber, and B. Seeger, “Chroni-
cledb: A high-performance event store”, ACM Trans. Database Syst.,
vol. 44, no. 4, 13:1-13:45, 2019. po1: |10.1145/3342357.

M. Seidemann and B. Seeger, “Chronicledb: A high-performance event
store” | in Proceedings of the 20th International Conference on Extend-
ing Database Technology, EDBT 2017, Venice, Italy, March 21-24,
2017, 2017, pp. 144-155. DOI1: [10.5441/002/edbt .2017 .14l

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database manage-
ment system”, in Proceedings of the 1979 ACM SIGMOD Interna-
tional Conference on Management of Data, Boston, Massachusetts,
USA, May 30 - June 1, 1979, pp. 23-34. DOI: 10.1145/582095.
5820909.

172

https://doi.org/10.1145/1989323.1989390
https://doi.org/10.1145/2487259.2487260
https://doi.org/10.1145/375551.375563
https://doi.org/10.1007/s10707-010-0114-3
https://doi.org/10.1007/s10707-010-0114-3
https://doi.org/10.1145/1619258.1619264
https://doi.org/10.1145/1619258.1619264
https://doi.org/10.1145/3342357
https://doi.org/10.5441/002/edbt.2017.14
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099

References

[SLR95]

[SCL18]

[SW04]

[Sun+16]

[THS17)

[Tan+15]

[TM11]

[The+20]

P. Seshadri, M. Livny, and R. Ramakrishnan, “SEQ: A model for se-
quence databases”, in Proceedings of the Eleventh International Con-
ference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, 1995,
pp. 232-239. DO1: [10.1109/ICDE.1995.380388.

A. U. Shein, P. K. Chrysanthis, and A. Labrinidis, “Slickdeque: High
throughput and low latency incremental sliding-window aggregation”,

in Proceedings of the 21st International Conference on Extending Database
Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018, 2018,

pp. 397-408. DOI: [10.5441/002/edbt .2018. 35!

U. Srivastava and J. Widom, “Memory-limited execution of windowed
stream joins”, in (e)Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, VLDB 2004, Toronto, Canada,
August 31 - September 3 2004, 2004, pp. 324-335. DOI: |10.1016/
B978-012088469-8.50031-0.

Y. Sun et al., “Hetero-mark, a benchmark suite for CPU-GPU col-
laborative computing”, in 2016 IEEE International Symposium on
Workload Characterization, IISWC 2016, Providence, RI, USA, Septem-
ber 25-27, 2016, 2016, pp. 13-22. po1: [10.1109/IISWC.2016.
71581262l

K. Tangwongsan, M. Hirzel, and S. Schneider, “Low-latency sliding-
window aggregation in worst-case constant time”, in Proceedings of
the 11th ACM International Conference on Distributed and Event-
based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, 2017,
pp. 66-77. DOL: [10.1145/3093742.3093925!

K. Tangwongsan, M. Hirzel, S. Schneider, and K. Wu, “General in-
cremental sliding-window aggregation”, Proc. VLDB FEndow., vol. 8,
no. 7, pp. 702-713, 2015. DOL: [10.14778/2752939.2752940.

J. Teubner and R. Miiller, “How soccer players would do stream
joins”, in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, 2011, pp. 625-636. DO1: |10.1145/1989323.1989389.

G. Theodorakis, A. Koliousis, P. R. Pietzuch, and H. Pirk, “Lightsaber:
Efficient window aggregation on multi-core processors”, in Proceed-
ings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, 2020, pp. 2505-2521. DO1: 10.1145/3318464.
3389753l

173

https://doi.org/10.1109/ICDE.1995.380388
https://doi.org/10.5441/002/edbt.2018.35
https://doi.org/10.1016/B978-012088469-8.50031-0
https://doi.org/10.1016/B978-012088469-8.50031-0
https://doi.org/10.1109/IISWC.2016.7581262
https://doi.org/10.1109/IISWC.2016.7581262
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.1145/3318464.3389753
https://doi.org/10.1145/3318464.3389753

References

TC11]

[UF00]

VG14]

[VSS11]

[VNBO03]

[WRO09]

[Wan-+06]

[Wei73]

D. Tsang and S. Chawla, “A robust index for regular expression
queries”, in Proceedings of the 20th ACM Conference on Information
and Knowledge Management, CIKM 2011, Glasgow, United King-
dom, October 24-28, 2011, 2011, pp. 2365-2368. DOI: 10 .1145/
2063576.2063968.

T. Urhan and M. J. Franklin, “Xjoin: A reactively-scheduled pipelined
join operator”, IEFE Data Eng. Bull., vol. 23, no. 2, pp. 27-33, 2000.

F. Valdés and R. H. Giiting, “Index-supported pattern matching on
symbolic trajectories”, in Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Informa-
tion Systems, Dallas/Fort Worth, TX, USA, November 4-7, 2014,
2014, pp. 53-62. DOL: [10.1145/2666310.2666402.

U. Verner, A. Schuster, and M. Silberstein, “Processing data streams
with hard real-time constraints on heterogeneous systems”, in Pro-
ceedings of the 25th International Conference on Supercomputing,
2011, Tucson, AZ, USA, May 31 - June 04, 2011, 2011, pp. 120—
129. D0O1: 10.1145/1995896.1995915|

S. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output
rate of multi-way join queries over streaming information sources”,
in Proceedings of 29th International Conference on Very Large Data
Bases, VLDB 2003, Berlin, Germany, September 9-12, 2003, 2003,
pp. 285-296. DOL: [10.1016/B978-012722442-8/50033— 1.

S. Wang and E. A. Rundensteiner, “Scalable stream join processing
with expensive predicates: Workload distribution and adaptation by
time-slicing”, in EDBT 2009, 12th International Conference on Fx-
tending Database Technology, Saint Petersburg, Russia, March 24-26,
2009, Proceedings, 2009, pp. 299-310. por: 10.1145/1516360 .
1516396l

S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar, “State-
slice: New paradigm of multi-query optimization of window-based
stream queries”, in Proceedings of the 32nd International Confer-
ence on Very Large Data Bases, Seoul, Korea, September 12-15, 2006,
2006, pp. 619-630.

P. Weiner, “Linear pattern matching algorithms”, in 1/th Annual
Symposium on Switching and Automata Theory, lowa City, lowa,
USA, October 15-17, 1973, 1973, pp. 1-11. DOI1: 10.1109/SWAT .
1973.13l

174

https://doi.org/10.1145/2063576.2063968
https://doi.org/10.1145/2063576.2063968
https://doi.org/10.1145/2666310.2666402
https://doi.org/10.1145/1995896.1995915
https://doi.org/10.1016/B978-012722442-8/50033-1
https://doi.org/10.1145/1516360.1516396
https://doi.org/10.1145/1516360.1516396
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

References

[WTA10]

[WTA11]

[WDROG6]

[YWO03]

[Zah+16]

[Zeu+19)]

[ZTS02]

[ZCT14]

[Zha+20]

[Zha+17]

L. Woods, J. Teubner, and G. Alonso, “Complex event detection at
wire speed with fpgas”, Proc. VLDB FEndow., vol. 3, no. 1, pp. 660—
669, 2010. DO1: [10.14778/1920841.1920926.

L. Woods, J. Teubner, and G. Alonso, “Real-time pattern matching
with fpgas”, in Proceedings of the 27th International Conference on
Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Ger-
many, 2011, pp. 1292-1295. po1: 10.1109/ICDE.2011.5767937.

E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event pro-
cessing over streams”, in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006, 2006, pp. 407-418. poI: 10.1145/1142473.
1142520.

J. Yang and J. Widom, “Incremental computation and maintenance
of temporal aggregates”, VLDB J., vol. 12, no. 3, pp. 262-283, 2003.
DOI: |10.1007/s00778-003-0107-2z.

M. Zaharia et al., “Apache spark: A unified engine for big data pro-
cessing”, Commun. ACM, vol. 59, no. 11, pp. 56-65, 2016. DOI: |10.
1145/2934664.

S. Zeuch et al., “Analyzing efficient stream processing on modern
hardware”, Proc. VLDB Endow., vol. 12, no. 5, pp. 516-530, 2019.
DOI:|10.14778/3303753.3303758.

D. Zhang, V. J. Tsotras, and B. Seeger, “Efficient temporal join pro-
cessing using indices”, in Proceedings of the 18th International Confer-
ence on Data Engineering, San Jose, CA, USA, February 26 - March
1, 2002, 2002, pp. 103-113. po1: ' 10.1109/ICDE.2002.994701.

D. Zhang, C. Chan, and K. Tan, “An efficient publish/subscribe index
for ecommerce databases”, Proc. VLDB Endow., vol. 7, no. 8, pp. 613—
624, 2014. DO1: [10.14778/2732296.2732298.

F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du, “Finestream:

Fine-grained window-based stream processing on CPU-GPU integrated
architectures” | in 2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020, 2020, pp. 633—647.

F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen, “Understanding
co-running behaviors on integrated CPU/GPU architectures”, IEEE
Trans. Parallel Distributed Syst., vol. 28, no. 3, pp. 905-918, 2017.
DOI: 10.1109/TPDS.2016.2586074.

https://doi.org/10.14778/1920841.1920926
https://doi.org/10.1109/ICDE.2011.5767937
https://doi.org/10.1145/1142473.1142520
https://doi.org/10.1145/1142473.1142520
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.1109/ICDE.2002.994701
https://doi.org/10.14778/2732296.2732298
https://doi.org/10.1109/TPDS.2016.2586074

References

[Zha+21]

[ZDI10]

[ZDI14]

[ZM11]

[ZU99)]

F. Zhang, J. Zhai, B. Wu, B. He, W. Chen, and X. Du, “Automatic
irregularity-aware fine-grained workload partitioning on integrated ar-
chitectures”, IEEE Trans. Knowl. Data Eng., vol. 33, no. 3, pp. 867—
881, 2021. po1: [10.1109/TKDE.2019.2940184.

H. Zhang, Y. Diao, and N. Immerman, “Recognizing patterns in
streams with imprecise timestamps”, Proc. VLDB Endow., vol. 3,
no. 1, pp. 244-255, 2010. DOT: [10.14778/1920841.1920875.

H. Zhang, Y. Diao, and N. Immerman, “On complexity and opti-
mization of expensive queries in complex event processing”, in Inter-
national Conference on Management of Data, SIGMOD 201/, Snow-
bird, UT, USA, June 22-27, 2014, 2014, pp. 217-228. DO1: 10.1145/
2588555.2593671.

Y. Zhang and F. Mueller, “Gstream: A general-purpose data stream-
ing framework on GPU clusters”, in International Conference on Par-
allel Processing, ICPP 2011, Taipei, Taiwan, September 13-16, 2011,
2011, pp. 245-254. DO1: [10.1109/ICPP.2011.22.

D. Zimmer and R. Unland, “On the semantics of complex events
in active database management systems”, in Proceedings of the 15th
International Conference on Data Engineering, Sydney, Australia,
March 23-26, 1999, 1999, pp. 392-399. DO1: 10.1109/ICDE.1999.
754955

176

https://doi.org/10.1109/TKDE.2019.2940184
https://doi.org/10.14778/1920841.1920875
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1109/ICPP.2011.22
https://doi.org/10.1109/ICDE.1999.754955
https://doi.org/10.1109/ICDE.1999.754955

List of Figures

(1.1 A dataflow graph consisting of two sources, four operators and one [
sink (a), and a possible deployment of this graph in a cluster of 5 |
nodes (b)

[2.1 Example for the content of a sliding (a) and tumbling (b) count |
window of stze =21. I

[2.2 Example for the content of a sliding (a) and tumbling (b) time |
window of size =2.. 18

[2.3 Example of a filter with ¢ = v > 3 applied to an event stream. . . . [19

[2.4 Example of a windowed sum-aggregation with a sliding time window [
of size =21 21l

[2.5 Example of a windowed join between stream E' and E* using two
sliding count windows of size = 2 and ¢ = E'.v < E*.v as the join
predicate. | L

[2.6 Matching subsequences for each of the three matching strategies [
applied to an symbol trace.| 20]

[3.1 Query runtime for difterent pattern evaluation strategies as a tunc- [
tion of query complexity.| 30

[3.2 TABT-tree index layout with lightweight indexing.|. 35

[3.3 Datatiow of the generic replay operator.|. 30!

[3.4 Index-based processing of sliding window aggregates: naive ap- |
proach (left) and optimized approach (right)..

[3.5 Ilustration of performed partial ageregate merges during a temporal [
aggregation query.| e e e 40)

[3.6 Definition of the insider trading detection pattern using the contigu- |
ous matching strategy. The shaded areas highlight for every symbol |
the fractions of the stream where the corresponding predicate holds.|

[3.7 Index-based matching of the example pattern ABC™ D highlighting [
the replayed fraction of the stream when using (a) an index for
symbol A, (b) indexes for symbols A and B, and (c) indexes for
symbols A, and D.| L oo 43

[3.8 Processing time of sliding time window aggregation for varying val- |
ues of slide using different event sizes|.

(3.9 Query runtimes (a) and speedup of different index selection strate- |
gies compared to replay (b) as a function of the query complexity.| . [63

[3.10 Errpro as a function of the query complexity.| 641

177

List of Figures

[3.11 Average index selection time and number of examined index com- |
binations for Optimal as a function of the query complexity.|. . . . [64
[3.12 Errpro (a), and query processing time (b) for all execution plans |
of a single query with m =8| 65
[3.13 Query runtimes (a) and speedup of different index selection strate- |
gies compared to replay (b) for varying data distributions.| 60
[3.14 Errpjo for varying data distributions without (left) and with (right) |
utilizing [CPML| 60!
[3.15 Query runtimes for real-world data sets.| 67
[3.16 Estimated and actual primary 1/O (a,b) and processing time with
estimated total cost (c,d) for all execution plans of both crime query
varlants) L 63
[3.17 Processing Time (a) and Errp;o (b) with varying granularity |
for the landing pattern.|. 69
4.1 _[CPU kernel execution methodd,
[4.2 ESAl thread group hierarchy| [
[4.3 An example of logical queue addresses| 79
[4.4 An example how results are written by the HSAFbased filter imple- |
mentationl L 50
[4.5 An example of concurrent writes in the join operator| R4
[4.6 [NFAl representation of the example pattern A 6 C'.| 851
4.7 Example for the removal of two PMs (PM;, PM,) in the dense array.|

I8 Throughput-comparison of the filter operation between Apache Flink |

and the variants of our processing framework. 90
[4.9 Comparison of kernel turnaround time| 90
[4.10 Speedup of filter implementations compared to the single-threaded |
implementation| il
[4.11 Speedup of aggregation implementations compared to the single- [
threaded implementation with varying window sizes| 2]
[4.12 Speedup of join implementations compared to the single-threaded |
implementation| 93]
[4.13 Speedup of pattern matching approaches compared to the single- |
threaded implementation using the skip-till-any matching strategy.|
[4.14 Speedup of pattern matching approaches compared to the single- [
threaded implementation using the skip-till-next matching strategy| [Q7
[>.1 Detecting aggressive driving with situations.| 99
H.2 TPStream Architecturelo 111
[>.3 Temporal Matching via Range Queries|

178

List of Figures

[5.4 Earliest detection time (tp,,:,(P)) of different temporal configura- |
tions tor the sample pattern P|. 118
(5.5 Overview partition parallel TPStream | 125
[>.6 Overview: parallel processing of unpartitioned data] 120
[5.7 Example of the buffer implementation with logical addressing.| . . . 31
[5.8 Processing time for aggressive driver detection as a function of the |
INpub SIZe.| 139
[5.9 Processing time tor disconnected pattern detection as a function of |
the window sizel 140
[5.10 Processing time for various query patterns| 140
[>.11 Relative detection latency per [TRI compared to [ISEQ.|
[5.12 Comparison of result latency (a) under maximum possible through-
put as a function of the window size, (b) under varying event rates
with a fixed size window (EL = event latency, PL. = processing
latency).| 143
[5.13 Quality of the initial plans for Q1 - Q3| 144
[5.14 Throughput comparison: dynamic plan adaption vs. best itial plans{144l
[5.15 SpeedUp compared to single-threaded mode for partition parallel |
execution of the aggressive drivers query with with different batch |
sizes and (a) data loaded from file, (b) preloaded datal. 140
[5.16 Processing time for parallel disconnected pattern detection for vary- [
ing batch and window sizes| 147
[5.17 Relative processing times spent in the difterent phases ot unparti- |
tioned parallel processing for varying batch and window sizes.| 148
[>.18 Evaluation of the configured batch size and number of threads over [
time for different queries.|. 150
[5.19 Speed up in a cluster for various queries.|

179

List of Tables

[3.1 Symbols used in the cost estimation for windowed aggregation.|. . . [39
B2 Pattern rewrite rules] 56
[4.1 Result of the check phase and the corresponding action for each of [

the three matching strategies.| 80!
(4.2 Details of the evaluation platform| 89
[5.1 Allen’s Interval Algebra]
[>.2 Temporal relations R and their prefix groups G with their earliest |

detection times tryi, (1) and tgmin (G) -o 110!
[5.3 Initial estimates for the selectivity of MRk (¢g) . - - - .« « 122
[5.4 Overview of parameters and sensors for the auto-tune component.| .
[5.5 Specification of the queries executed for the auto-tuning experiment|
[>.6 Hardware specification of the cluster{ 151

180

List of Algorithms

[3.1 Create Replay Intervals| 40l
3.2 Selectlndexeso 531
.1 DeriveSituations o oo 112
[>.2 UpdateMatcher|. 0L 113
b3 PerformMatchl oo 113
[>.4 Low-Latency MatcherUpdate| 120
[b.5 Mergesituations| 129

181

List of Abbreviations

BB | [basic block]

BS |

[CEP | complex event processing]

[CERN | [Ekuropean Organization tfor Nuclear Research]
[CPM | lcoarse pattern map|

[CPU] [central processing unit|

[CQ | [continuous query|

DAG | [directed acyclic graphl

[DBMS | [database management system|
dGPU | [dedicated GPUI

[ECG | lelectrocardiogram|

[EMA | lexponential moving average|

[ESP] fevent stream processing]

[FPGA | (field programmable gate array|
[GPUT | leraphics processing unit|

[HDD | hard disk drivel

[HSA | [Heterogeneous System Architecture|
[GPU | integrated GPU]|

JEPC | [Java Event Processing Connectivity]
IVM | Java Virtual Machinel

[KS | (Kleene-star symboll

MR | MATCH_RECOGNIZE

NFA | hondeterministic finite automatonl
[PCIe | IPCl express|

PM |

[SIMD | lsingle 1mstruction multiple datal
SIMT | single instruction multiple thread)|
SMA | small materialized aggregatel

[SPE | [stream processing engine]

182

List of Abbreviations

SSD

| Eold T

SVM

| shared virtual memory|

rc

] temporal constraint|

re

| temporal pattern|

'R

| temporal relation|

| wavefront]

183

	Abstract
	Zusammenfassung
	Erklärung
	Acknowledgments
	Introduction
	Continuous Queries
	On- and Offline Processing
	Motivation & Contributions
	Index-Supported Offline Processing
	iGPU-Accelerated Online Processing
	Pattern Matching on Temporal Intervals

	Publications
	Thesis Structure

	Preliminaries
	Data Streams
	Event Streams
	Event Stream Processing
	Windows
	Filtering
	Windowed Aggregation
	Windowed Join
	Sequential Pattern Matching

	Situations

	Index-Supported Offline Processing
	Related Work
	Windowed Aggregation
	Sequential Pattern Matching

	ChronicleDB
	Lightweight Indexes
	Replay-Based Continuous Query Evaluation

	Index-Based Windowed Aggregation
	Index-Based Processing
	Cost Estimation
	Arbitrary Slide Sizes and Count Windows

	Index-Based Pattern Matching
	Preliminaries
	Replay Interval Computation
	Index Selection
	Extensions

	Experimental Evaluation
	System Setup
	Windowed Aggregation
	Sequential Pattern Matching

	Summary

	iGPU-Accelerated Online Processing
	Related Work
	Preliminaries
	Memory Management
	Signals
	Data Exchange

	Implementation
	Event Queues
	Filtering
	Windowed Aggregation
	Windowed Joins
	Sequential Pattern Matching

	Experimental Evaluation
	Setup
	Persistent Kernels
	Operator Evaluation.

	Summary

	Pattern Matching on Temporal Intervals
	State-of-the-Art
	Straw Man's Approach:

	Related Work
	Query Language
	Syntax
	Expressiveness

	Algebra
	Derivation
	Pattern Matching

	Algorithms & Implementation
	Deriving Situations
	Matching the Pattern
	Low-Latency Matching
	Computing the Evaluation Order

	Parallel TPStream
	Integration with Application Context
	Partitioned Data
	Unpartitioned Data
	Auto-Tuning
	Distributed TPStream

	Experimental Evaluation
	Setup
	Processing Time
	Low Latency
	Plan Quality & Adaption
	Parallel Approaches

	Summary

	Summary, Conclusion and Outlook
	Outlook

	Appendices
	References
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations

