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Abstract

In data mining problems the representation or description of data plays a fundamental

role, since it defines the set of essential properties for the extraction and characterisation

of patterns. However, for the case of temporal data, such as time series and data streams,

one outstanding issue when developing mining algorithms is finding an appropriate data

description or representation.

In this thesis two novel domain-independent representation frameworks for temporal data

suitable for off-line and online mining tasks are formulated.

First, a domain-independent temporal data representation framework based on a novel

data description strategy which combines structural and statistical pattern recognition

approaches is developed. The key idea here is to move the structural pattern recognition

problem to the probability domain. This framework is composed of three general tasks: a)

decomposing input temporal patterns into subpatterns in time or any other transformed

domain (for instance, wavelet domain); b) mapping these subpatterns into the proba-

bility domain to find attributes of elemental probability subpatterns called primitives;

and c) mining input temporal patterns according to the attributes of their corresponding

probability domain subpatterns. This framework is referred to as Structural Generative

Descriptions (SGDs).

Two off-line and two online algorithmic instantiations of the proposed SGDs framework

are then formulated: i) For the off-line case, the first instantiation is based on the use

of Discrete Wavelet Transform (DWT) and Wavelet Density Estimators (WDE), while

the second algorithm includes DWT and Finite Gaussian Mixtures. ii) For the online

case, the first instantiation relies on an online implementation of DWT and a recursive

version of WDE (RWDE), whereas the second algorithm is based on a multi-resolution

exponentially weighted moving average filter and RWDE. The empirical evaluation of

proposed SGDs-based algorithms is performed in the context of time series classification,

for off-line algorithms, and in the context of change detection and clustering, for online

algorithms. For this purpose, synthetic and publicly available real-world data are used.

Additionally, a novel framework for multidimensional data stream evolution diagnosis in-

corporating RWDE into the context of Velocity Density Estimation (VDE) is formulated.

Changes in streaming data and changes in their correlation structure are characterised by

means of local and global evolution coefficients as well as by means of recursive correlation

coefficients. The proposed VDE framework is evaluated using temperature data from the

UK and air pollution data from Hong Kong.
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Mathematics is the science of patterns. The mathematician seeks

patterns in number, in space, in science, in computers, and in

imagination. Mathematical theories explain the relations among

patterns[...]. Applications of mathematics use these patterns to

explain and predict natural phenomena that fit the patterns.

Patterns suggest other patterns, often yielding patterns of patterns.

Lynn A. Steen,

The science of patterns, Science 240(1988), 616.

Chapter 1

Introduction

The progress of hardware technology, which has included innovations in digital data acqui-

sition, storage and communication, has laid the foundations for the enormous proliferation

of databases in almost every area of human endeavour. The discipline concerned with

the extraction of implicit and useful information from databases is known as data mining.

Data mining is an interdisciplinary scientific discipline lying at the intersection of diverse

research areas such as machine learning, statistics, pattern recognition and artificial intel-

ligence.

Time series and data streams are two particular classes of temporal data objects which

are pervasively important in a wide variety of fields ranging from science and engineering

to business, finance and health care. However, traditional data mining techniques, such as

Neural Networks (NNs) and Support Vector Machines (SVMs), were originally formulated

in the context of so called static data, which involves static records with generally no

predefined notion of time [2].

For the case of time series, data mining algorithms available generally follow one of the

following two strategies [2]: 1) The first strategy is to modify data mining algorithms de-

signed for static data in order to allow them to handle data whose features change over

time. Here, the essential idea is to replace the distance or similarity measure used for static

1
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data with one suitable for time series; 2) The second strategy is to convert time series data

into a static form and then directly apply mining techniques developed for static data. Un-

fortunately, data mining methods developed in the context of static data generally ignore

the high amount of data dependency present in time series [3]. Furthermore, previously

proposed time series mining solutions are based on the storage and analysis of fixed static

data archives that allow complex mining operations based on multiple passes of the data.

Regarding data stream mining, existing approaches generally follow the same ideas as time

series mining algorithms. However, the underlying characteristics of this particular class

of data such as its unbounded size and fast arrival rate, prevent the direct application of

traditional data mining methods to this domain. Hence, when analysing data streams, the

research effort has been directed towards designing algorithms with reduced computational

complexity as well as reduced memory requirements.

In this thesis the problem of time series and data stream mining is addressed by em-

phasizing the importance of data representation. To this end, concepts from the pattern

recognition research community are used. According to the pattern recognition frame-

work the data mining process can be divided into two equally important successive stages:

data representation and data mining task algorithm (for example, classification, cluster-

ing, segmentation and change detection algorithms). Specifically, the data description

stage focuses on the extraction of the set of properties or features essential for the char-

acterisation of input data. This stage is crucial for the whole data mining process since it

facilitates pattern extraction and it provides a reduction in dimensionality. Furthermore,

from the pattern recognition perspective, two general types of data descriptions can be

distinguished: 1) the statistical one, based on treating input patterns as single entities and

then describing them using fixed-length feature vectors; and 2) the structural one, based on

assuming input patterns as compound entities and representing them using variable-length

structural attributes and relations. While the main advantage of statistical descriptions is

the fixed-length representation of patterns, the main advantage of structural-based meth-

ods is the ability of modelling structural dependencies. By taking into account the above

ideas, the framework proposed in this thesis is focused on designing a generic representation

for temporal data that can capture structural dependencies into the form of a fixed-length

feature vector. This representation can be easily combined with existing statistical or

decision-theoretic techniques to construct novel data mining algorithms for temporal data.
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Although the proposed framework is initially formulated considering an offline setting, its

algorithmic instantiations are extended to work with both time series and data streams.

The second framework proposed in this thesis is particularly designed for analysing the

evolution of multidimensional streaming data, where the term evolution refers to the pro-

cess in which important changes occur over time in the underlying characteristics of the

data stream. The proposed framework uses the probability density of the data to measure

the rate of change of data concentration at a given spatial location, over a user-defined

time horizon. In respect to previous approaches, this framework requires a significant lower

amount of memory, is computationally less complex, and allows localised diagnosis at each

dimension with only one pass of the data.

1.1 Motivation

In data mining problems the representation of input data plays a fundamental role, since

it defines the set of essential properties for the extraction and characterisation of patterns

[4]. However, for the case of temporal data, like for example time series and data streams,

one of the major concerns regarding the developing of mining algorithms is finding an

appropriate data representation [5, 6]. The novel frameworks and algorithms developed in

this thesis are a step towards filling this gap in the data mining research activity.

Although data mining is a well consolidated and evolving research area in both academia as

well as in industry, the offline and online frameworks and algorithms presented in this thesis

are based on novel ideas that have not been previously investigated. Previous research has

mainly focused on the data mining task [2] as well as on the learning algorithm [7], and

the data description aspect has not been thoroughly addressed in the literature.

1.2 Aims & Objectives

The aim of the work presented in this thesis is to develop novel data representations for

time series and data streams useful to perform offline and online data mining tasks. The

thesis describes the effort to accomplish this goal by systematically addressing the following

objectives:
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• To formalise a domain-independent description framework for temporal data referred

to as Structural Generative Descriptions (SGDs) based on a pattern description

strategy that combines structural and statistical pattern recognition approaches in

a novel fashion.

• To formulate offline algorithmic instantiations of the proposed SGDs framework use-

ful in the context of time series mining.

• To formulate online algorithmic instantiations of the proposed SGDs framework suit-

able for the mining of data streams.

• To formulate a multidimensional data stream evolution diagnosis framework which

incorporates a Recursive Wavelet Density Estimators (RWDEs) and adapts the con-

cept of Velocity Density Estimation (VDE).

1.3 Highlights of Main Contributions

The main contributions of this thesis are the following:

• Moving the structural pattern recognition problem to the probability domain, and

formulating a novel statistical-structural representation for temporal data.

• Formulation of a novel time series representation framework useful for data mining

applications.

• Formulation of two offline and two online algorithmic instantiations of the proposed

SGDs framework, useful for time series and data streams mining, respectively.

• Formulation of a novel evolution diagnosis framework based on RWDE algorithms.

1.4 Organisation of the Thesis

This thesis is organised in three major parts. The first part, which includes Chapter 1 and

Chapter 2, presents a general overview of the outstanding representation issues in data

mining tasks involving temporal data (Chapter 1); as well as a brief review of background

theories relevant to the algorithms and solutions proposed in this thesis (Chapter 2),
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which include theoretical aspects of pattern recognition, machine learning, sparse signal

processing, nonparametric statistics as well as KDD and data mining.

The second part of this thesis, comprised of Chapter 3 and Chapter 4, presents the proposed

SGDs time series representation framework as well as two offline and two online algorithmic

instantiations. While Chapter 3 introduces the framework and algorithms, Chapter 4

focuses on its corresponding empirical evaluation.

The third part of this thesis, entirely contained in Chapter 5, presents both the formu-

lation of a novel RWDE-based data stream evolution framework and its corresponding

experimental evaluation.

The thesis ends in Chapter 6, with the conclusions and the recommended research work

for future researchers.

In Figure 1.1 a block diagram relating the above described arrangement of the thesis is

presented. This diagram includes the interconnections between different chapters.
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Figure 1.1: Arrangement of the chapters of the thesis.

1.5 Thesis Synopsis

In this thesis different frameworks and algorithms are proposed to provide novel represen-

tations for both time series and data streams. The core of the thesis is the SGDs framework

whose essential idea is moving the structural pattern recognition problem to the proba-

bility domain and in this way, combine the two main pattern recognition paradigms. The
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proposed SGDs framework is motivated by the observation that in pattern recognition

problems involving complex patterns or problems in which the structural dependency is

important, an effective strategy would be to describe each pattern in terms of simpler

subpatterns and the relations among them [8]. The SGDs framework involves two main

stages: 1) decomposing time series into simpler subpatterns in time or any other trans-

formed domain, and 2) mapping of these subpatterns to the probability domain to obtain

probability domain subpatterns. Here, each probability domain subpattern is a struc-

ture, that in turn, can be divided into simpler elements or primitives. In this way, the

proposed SGDs-based representation strategy is based on describing or representing input

time series by the set of attributes and relations of the primitives associated with their cor-

responding probability domain subpatterns. Two algorithmic instantiations of the SGDs

framework, suitable for time series classification, are developed considering multiresolution

approximation concepts as well as nonparametric density estimation.

The SGDs time series representation framework is then extended to the online context to

make it suitable for data stream applications. Two distinct online algorithms based on

SGDs concepts are developed. The algorithms are based on fast online formulations of both

multiresolution decomposition and density estimation blocks. In addition to combining

statistical and structural pattern recognition paradigms, the algorithms also fulfil some of

the basic requirements for data stream mining algorithms: 1) fast and incremental data

processing; 2) constant computational complexity and fixed amount of memory required,

3) compact representations of data streams at each time stamp, 4) both, concept shift and

concept drift detection are possible.

In the streaming context, data evolution refers to the process in which important changes

occur over time in the trends of a given data stream due to changes in the underlying

phenomena [9]. Although a plethora of algorithms have been designed for change detection

in streaming data [10–13], regarding the online characterisation of its evolution, the most

relevant work related to the algorithm developed in this thesis is the concept of Velocity

Density [9] which involves measuring the rate of change of data concentration at a given

spatial location over a user-defined time horizon. In this thesis, the diagnosis of the

evolution of multidimensional streaming data is performed using a framework that adopts

the concept of velocity density and incorporates RWDE algorithms. In the proposed

framework changes in streaming data are characterised by the use of local and global
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evolution coefficients. In addition to this, for the analysis of changes in the correlation

structure of the data the recursive estimation of correlation coefficients is proposed.



From now on, the key is knowledge. The world is not becoming

labor intensive, not material intensive, not energy intensive, but

knowledge intensive.

Peter F. Drucker

Managing for the future: The 1990s and beyond. Dutton Adult,

1992

Chapter 2

Theoretical Background

This chapter provides a general overview of the theoretical background for the thesis. Rel-

evant theoretical concepts from the fields of pattern recognition, machine learning, sparse

signal processing, nonparametric statistics as well as Knowledge Discovery in Databases

(KDD) and data mining, are reviewed.

The chapter is organised in five sections. In Section 2.1 a brief introduction of the relevance

and theoretical connections of the frameworks reviewed in this chapter with the work

presented in this thesis is provided. In Section 2.2 the pattern recognition paradigms are

reviewed. In Section 2.3, the three main approaches for machine learning are presented.

Section 2.4, focuses on reviewing the so called KDD and data mining frameworks. Finally,

Section 2.5 and Section 2.6, are dedicated to provide theoretical details about the sparse

signal processing and nonparametric statistics research fields.

2.1 Introduction

As Duin et al. emphasised in their review paper about pattern recognition achievements

and perspectives [14], in science new knowledge is generally formulated in terms of existing

8



Chapter 2. Theoretical Background 9

knowledge. In that sense, researchers can only achieve what is derived from the correspond-

ing assumptions and constraints of the particular framework in which they stand. This

remark underpins the investigations that led to the time series and data streams repre-

sentation frameworks and algorithms proposed in this thesis. The most relevant scientific

disciplines that influenced and inspired this work are: pattern recognition, machine learn-

ing, KDD and data mining, sparse signal processing as well as nonparametric statistics

(see Figure 2.1 for a block diagram). All these frameworks are reviewed in this chapter.

Pattern 
Recognition

Machine 
Learning

Sparse Signal 
Processing

Nonparametric 
Statistics

Data Mining 
and KDD

Figure 2.1: Frameworks related to the work presented in this thesis.

2.2 The Pattern Recognition Framework

The first and foremost influence for the proposed SGDs framework and its corresponding

offline and online algorithms presented in Chapter 3, are methods combining structural and

statistical pattern recognition paradigms, from which the concept of structural descriptions

with statistical classification comes from.

Pattern recognition is a field of study that focuses on how machines can distinguish patterns

in their environment and make decisions about the categories of the patterns [15]. In

that sense, the fundamental goal in pattern recognition is supervised or unsupervised

classification [15]. Given this goal, the functionality of pattern recognition systems can

be divided into two main successive tasks: description and classification. The first of

these tasks, the description task, extracts the set of properties or features required for

the characterisation of patterns, while the classification task involves mapping the set of

extracted features to a particular group or class. In Figure 2.2 the corresponding block

diagram for the pattern recognition process is shown.

Since the beginning of 1960s, time at which pattern recognition emerged as a new topic

for research, many mathematical methods have been proposed for solving pattern recog-

nition issues. Two major paradigms for implementing pattern recognition systems can be

distinguished in all those techniques [16]: statistical and structural.



Chapter 2. Theoretical Background 10

Data 
Mining

Data StreamsData 
Representation

T i me Seri es

1
Introduction

2
Theoretical 
Background

3
Structural 
Generative 
Descriptions

4
Proposed
Off-line SGD 
Algorithms

6
Proposed Online 
SGD Algorithms

5
Off-line 

Applications I

7
Online 

Applications I

8
Recursive 

Algorithms for 
Streaming data

9
Wavelet-based 
Velocity Density 

Estimation

9
Wavelet Density 

Estimation

Data Streams

Time 
Series

1
Introduction

2
Theoretical 
Background

3
Offline Structural 

Generative 
Descriptions

5
Online Structural 

Generative 
Descriptions

4
SGDs for Time 
Series Clustering

6
Exponentially 

Weigthed Moving 
Algorithms for 
Streaming data

7
Wavelet-based 
Velocity Density 

Estimation

8
Recursive 

Wavelet Density 
Estimation

Understanding of 
the problem

Understanding of 
the data

Data Mining

Evaluation of the 
Discovered 
Knowledge

Used of the 
Discovered 
Knowledge

Input Data

Knowledge

1
Data Description/
Representation

2
Data Mining Task

The Data Mining Process

Raw Data
Information 
(Patterns)

Discriminative Generative Hybrid

Machine Learning Approaches

1
Description Task

2
Classification Task

The Pattern Recognition Process

Input Pattern Class Label

Statistical Structural Hybrid

Description Approaches in Pattern Recognition 

1
Data Description/
Representation

2
Data Mining Task

The Data Mining 
Process

Raw Data
Information 
(Patterns)

Machine 
Learning

Pattern 
Recognition

Statistical Structural Hybrid

Description Approaches in Pattern Recognition 

Discriminative Generative Hybrid

Machine Learning Approaches

Introduction

Symbols representing 
properties of objects

Data

Data processed in 
an useful form

Information

Information put to 
productive use [XX]

Knowledge

Data processed for 
a purpose [XX]

Data given a 
meaning by way of 

context [XX]

Elementary and recorded 
descriptions of things, events, 
activities and transactions

Information 
combined with 

understanding and 
capability [XX]

Discrete, objective facts and 
observations, which are 

unorganised and 
unprocessed, and do not 

convey any specific meaning

Knowledge

Information

Data

Value
Meaning
Structure

High

Low

1
Description Task

2
Classification Task

The Pattern Recognition Process

Input Pattern Class Label

Figure 2.2: The pattern recognition framework.

In the statistical approach, also known as decision-theoretic approach, each input pattern

is treated as a single entity and then is described or represented by a fixed n-dimensional

vector of numerical features. In this way, the classification task involves the partition of

the feature space into regions, each of them associated with a single class [8]. Typically,

this is accomplished by applying firmly established techniques from discriminant analysis

framework or statistical decision theory.

In the structural approach, also referred to as syntactic pattern recognition due to its

origins in formal language theory [16], each pattern is treated as a combination of multiple

entities and then is described or represented by simpler subpatterns and their structural or

topological relations. In this context, the simplest or elemental subpatterns in which the

input pattern can be decomposed are usually called pattern primitives or simply primitives.

Syntactic approaches specifically considers the analogy between the structure of patterns

and the syntax of a language [17]. In that sense, primitives and input patterns are viewed

as the alphabet and the sentences, respectively [15]. The classification task is performed,

in those techniques, by matching or parsing the variable-length structural representation

of the pattern according to a set of syntax rules or grammars [18].
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Figure 2.3: Main pattern recognition approaches.

Both paradigms of pattern recognition have their corresponding advantages and disadvan-

tages. Statistical approaches are, to some extent, capable of handling pattern deformation

due to noise and distortion, because they are founded on numerical feature data [18].

Additionally, they allow the application, in the classification stage, of well-established sta-

tistical and decision-theoretic techniques [18]. However, a key issue inherent to these kind
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of approaches is the lack of description they offer regarding the pattern to be recognised

[4] and the incapability to handle variable-length descriptions. Note here that a set of

features may be useful for the categorisation of patterns into different groups; however,

it does not necessarily provide information related to their structure. In addition to this,

since statistical approaches rely on numerical features, when the number of classes is very

large or when the complexity of the patterns under study is very high, the number of fea-

tures required for the corresponding patterns characterisation also becomes very large [8].

In machine learning, this phenomenon is usually referred to as the curse of dimensionality

[19]. In general, in techniques belonging to this group, greater emphasis is given to the

classification stage rather than to the description phase [4].

For the case of structural approaches, their main advantage is the fact that they are

not only able to classify variable-length features, but also that they provide appropriate

pattern descriptions. However, there is not a generic solution for the selection or extraction

of pattern primitives, and it is difficult to construct syntactic grammars that embody a

precise criteria to differentiate among different groups. With regard to the latter issue,

grammars are either too simplistic, in order to be applied in different domains, or too

complex and, in that sense, requiring additional domain knowledge [5]. Furthermore,

structural approaches are, in their basic formulation, incapable to handle distortions and

noise [18].

2.2.1 Combined Statistical and Structural Models

A few years after the establishment of the pattern recognition framework it was noticed by

the research community that statistical and structural approaches could be complementary

[16]. Since then, multiple efforts have been dedicated to develop combined approaches that

allow taking advantage of the complementary capabilities and strengths of both paradigms

and then offer general solutions for most pattern recognition applications [18]. The litera-

ture related to such combined models is quite substantial, however, most of those research

efforts follow one of the following two strategies.
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2.2.1.1 Statistical into Structural

The first strategy is the inclusion of statistical information into structural approaches (see,

for example reviews in [20] and [18]). Approaches following this strategy can be cate-

gorised into two main groups. Methods within the first category rely on the inclusion

of statistical information into primitives via error correction transformation/matching or

into subpattern structures via stochastic production rules. Methods following the concept

of error transformation basically assume that in a string, a symbol can be transformed

into another according to a set of possible operations. In [21] a Bayes-based pattern defor-

mational model which considered a separate treatment of primitive syntactic information

(describing primitive structure) and semantic one (describing primitive properties) was

investigated. Stochastic production rules-based approaches rely on the introduction of

probabilistic aspects into the syntactic model by considering probabilistic structure vari-

ations of subpatterns. In this context, [22] studied a parsing algorithm that provided

probabilistic membership criteria for strings recognition. The second group of techniques

incorporating statistical information into pattern structures include approaches relying on

primitive generalisations which are introduced in primitives and subpatterns representa-

tions via attributed primitives [18]. In general terms, attributes are a set of numerical val-

ues that specify other characteristics of the primitives. Grammars considering attributed

primitives are referred in the literature as attributed grammars and they were introduced

in order to enable the computation of subpattern attributes during the parsing process.

In [23] is reported a system in which semantic rules of attributed grammars were used

to guide extraction of primitive and subpatterns attributes. In this context, the attempt

presented in [8] theoretically formalises the concept of attributed grammars as the initial

step toward the unification of syntactic and statistical pattern recognition approaches. A

relevant paper combining statistical/structural models is [24] where geometrical-statistical

shape descriptions are integrated into a handwritten characters recognition framework in

order to enhance robustness against shape deformation. The method specifically consid-

ers two types of features namely, quasi-topological (which are symbolic, qualitative and

discrete) and geometrical (which are numerical, quantitative and continuous). In this case

the classification stage is performed through structural matching algorithms.

Here is important to note that, although the proposed SGDs framework, presented in

Chapter 3, is mainly based on expressing structural aspects in a statistical form, it also
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incorporates the idea of attributed primitives. In this sense, the primitives selected in the

proposed SGDs framework have associated some numerical attributes that modify the way

they are combined to construct the corresponding subpatterns.

2.2.1.2 Structural into Statistical

The second strategy is based on including structural information into statistical approaches.

Here, just few authors have reported on this approach in the technical literature. In [25],

a procedure based on the combination of both structural and statistical features was pro-

posed for handwritten character recognition. Specifically, character structural features,

that is, strokes, intersections, holes, and extremes, were mapped into a fixed-length fea-

ture vector by a parameterising strategy that obtains continuous numerical values calcu-

lated in relation to the center of gravity of the pattern. The classification was performed

applying statistical classification based on a linear discriminant-based classifier. In the

context of optical character recognition, the approach described in [26] uses five shape

primitives, that is, stroke, hole, arc, crossing and endpoint to represent the structure of

each character, and then constructs a function called feature identification mapping that

maps structural representations of characters into binary feature vectors. These feature

vectors are subsequently processed using a statistical classification technique relying on

kD-trees. Statistical and structural approaches are combined in [27] for fingerprint image

postprocessing. Minutia structures are represented based on fingerprint ridges attributes

calculated around each minutia using minutia distance as statistical measure. In [4], a

character description method is presented, based on the evaluation of geometrical mo-

ments on structural representations of the characters in terms of circular arcs primitives.

Since, geometrical moments constitute a fixed-length feature vector a statistical classifier,

that is, neural network, is employed for the classification stage.

It is important to highlight that the proposed SGDs framework presented in Chapter 3 can

be categorised within this group of combined pattern recognition approaches, since it is

based on incorporating some structural characteristics of the time series into a fixed-length

feature vector. Note however that, in the proposed SGDs framework, the structure of the

time series is analysed in the probability domain.
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2.2.2 The Analysis by Synthesis

The novel SGDs time series representations proposed in Chapter 3, which considers a

module able to generate patterns similar to the input pattern, are particularly related to

the analysis-by-synthesis (ABS) speech recognition model introduced by Halle and Stevens

[28]. This model was formalised a few years before the syntactic pattern recognition

framework was firmly established. Note that according to Kanal [16], syntactic pattern

recognition is reminiscent of ABS.

The idea behind the ABS approach is to explain observed patterns in terms of a compact set

of hidden causes that generate them [29]. Specifically, the analysis-by-synthesis model, in

its initial formulation, assumes the generation of synthetic patterns and their corresponding

matching with input patterns. The emphasis is made on the use of a generative synthesiser

model that embodies the physical process governing input patterns generation and its

parameters adjustment using such input patterns. The characterisation and recognition of

a given pattern is then performed based on the set of parameters that provides the best

match between synthesised and input parameters.

In its initial formulation, the ABS recognition model relies on the mapping from the

pattern to the class space through an active feedback process [28]. Specifically, patterns

are internally generated in an analyser/synthesiser according to a flexible or adaptable

sequence of instructions, that is, a parameter adjustment/learning process, until a best

match with the input pattern is obtained. The recognition of patterns is performed by

examining the corresponding internal configuration that is, the corresponding parameters,

of the analyser/synthesiser for each pattern.

By considering that the term structural pattern recognition includes all those approaches

based on defining primitives and identifying allowable structures in terms of the relations

among primitives and substructures, it can be generalised that in broad terms structural

pattern recognition assumes that patterns are constructed or “generated” according to all

these elements, that is, according to their primitives, subpatterns and relations [16]. In

that sense, there is a generative process or mechanism underlying input patterns descrip-

tions, and then a fundamental connection between structural and ABS pattern recognition

frameworks. This connection becomes more evident when the emphasis is no longer placed

on identically matching input patterns or physical processes, but rather on constructing
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black box generative models that generate patterns with similar properties than the input

patterns.

2.3 The Machine Learning Framework

The idea of including generative aspects into the SGDs framework and algorithms of Chap-

ter 3 is taken from two main sources, the analysis-by-synthesis approach [28] (reviewed in

Section 2.2.2) and the hybrid machine learning framework discussed in [7]. The connection

with the latter framework comes from realising that the proposed generative descriptor can

be seen, within the machine learning framework, as a generative learning process.

Machine learning focuses on building computer systems able to adapt to their environment

and learn from their experience [30]. According to this framework, supervised classification

methods can be organised into two main groups: generative and discriminative [7, 31]. On

the one hand, generative approaches involve learning a model that describes the input/fea-

ture space based on the understanding of the causality between groups or classes and their

corresponding observed input/features. On the other hand, discriminative methods imply

the optimisation of a decision rule that organise data into different categories, without con-

sidering the causal relationships between input/feature data and the underlying generative

process.

Discriminative Generative

Machine Learning Approaches

Hybrid

Figure 2.4: Machine learning approaches.

Particularly, generative approaches involve two steps: first, the construction of a model

representing the joint distribution of the input features and the output labels for different

classes, and second, the formulation of a decision rule able to distinguish between those

categories using the constructed model. With respect to discriminative techniques, their

main objective is the direct finding of a decision rule that distinguishes between different

classes [32]. Figure 2.5 pictorially shows the two learning approaches.
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In a formal way, using the random variables X and C to represent input features and their

corresponding class labels, and assuming that X ∈ R and C ∈ N with C taking only a

fixed number of finite values corresponding to different classes. Generative classification

intends to learn the joint distribution P (X,C) by the use of parametric or nonparamet-

ric models, and then apply Bayes rule to compute the posterior conditional distribution

P (C|X) to assign the most likely label c for each new data vector x. In that sense, in

generative approaches, the classification task is effectively reduced to modelling the distri-

butions P (X,C) and P (C) for each class c. According to this, the decision process is based

on finding the class c with the highest probability of generation of the observation repre-

sented by the input feature vector x. In counterpart, discriminative classification involves

the direct learning of the classification rule defined by the posterior distribution P (C|X)

without the initial estimation of the joint distribution P (X,C). For that reason, discrimi-

native techniques can be interpreted as function fitting-based methods whose objective is

to learn a direct mapping from the input X to the output label C. This mapping can be

done either by the approximation of the conditional probability distribution P (C|X) or

through other methods that achieve minimal classification error.

Figure 2.5: Machine learning approaches [33]: (a) Generative; (b) Discriminative.

2.3.1 Discriminative versus Generative Techniques

Both discriminative and generative approaches have their own advantages and disadvan-

tages. Discriminative methods are generally believed to be superior to its generative coun-

terpart, since they focus their attention on finding a decision boundary that separates

different classes, and in that sense, they directly optimise the quantity of interest, that

is, the classification error [32]. In counterpart, general generative models are usually less
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optimised for classification task because they indirectly optimise the classification error by

learning descriptions of classes separately through their joint distributions [32, 34].

An important advantage of generative models is that, since an independent model is learned

for each class, they allow modular learning. As a consequence, there is a simplification in

the learning process because no interaction between models of different classes is consid-

ered. Moreover, in this context, addition or subtraction of classes is possible and straight-

forward. In contrast, the learning process of discriminative models is a global one since a

single model is learned for all classes, making difficult or impossible the addition or sub-

traction of classes [34, 35]. Note that the above concepts not only apply for binary and

multi-class classification problems both also for one class classifiers. Regarding one class

classifiers the distinction between the two machine learning approaches is subtler since the

task is reduced to finding a model that fits the data. In this case, generative approaches

construct a generation model for all the data, while discriminative approaches focus on

optimising only their frontier.

Furthermore, generative models capture the underlying generation process of a data pop-

ulation of interest, for that reason, they offer more insights about the structure of input

data [32] and allow the incorporation of prior knowledge about the domain [7]. On the

contrary, discriminative models possess a limited modelling capability, since they are fo-

cused on classification boundaries rather than the generation process of the data [36]; in

that sense, they generally ignore the rest of the space and they offer no insights about the

structure of input/feature data [32]. For this reason, discriminative approaches are usually

hard to interpret, because they are founded on the treatment of classes-feature relations

as a black box [32]. Finally, discriminative methods require more training data for the

parameters to converge [32], while generative models are capable of learning even in the

presence of some missing values [34].

The complementarity of generative and discriminative learning has motivated a number of

authors to seek hybrid methods in order to combine their strengths [37]. Additionally, as

data become more complex and high-dimensional, it is clear that a single method is not

sufficient to fulfil the exigencies of modern classification-based applications. In [32] it has

been suggested that an optimal classification strategy should include, firstly a generative

model to deal with missing and few amount of training data, and secondly, a discriminative
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model in order to converge to a model with lower asymptotic error when sufficient data is

available for discriminative learning.

2.3.2 Hybrid Machine Learning Approaches

Recently, a third category of classification techniques has been the focus of interest of the

research community, it includes all those algorithms referred in the literature as hybrid

approaches, whose fundamental idea is the incorporation of multiple classifiers, from the

previously explained generative of discriminative categories, into a single and more robust

classifier. The fundamental concept behind hybridisation is the fact that the combination

of classifiers overcomes deficiencies caused by the use of one particular algorithm. In that

sense, hybridisation allows exploiting the advantages of multiple classification approaches

while overcoming their weaknesses [38]. Relevant work involving hybridisation concepts is

the two stage classifier that combines Hidden Markov Models (HMM) and Support Vector

Machines (SVMs) introduced by [34] in the context of time series and sequence classi-

fication. In the first stage, referred as modelling stage, p-HMMs are used, in a p-class

problem, to map time series data into a fixed p-dimensional vector containing likelihood

scores which are indicators of how likely the model has generated a particular time series

or sequence. In the second stage, a SVM algorithm is used to classify time series data

according to corresponding likelihood scores. In [39], the authors proposed a two phase

generative-discriminative algorithm for visual categorisation based on the use of Fisher

Kernels, which are the derivative of the log likelihood of the parameters, as features for

classification. In the generative phase of the algorithm constellation models, trained using

the EM algorithm [40] are used to construct probabilistic models of object classes by repre-

senting the appearance and relative position of object parts. Fisher Kernels are calculated

from the constellation models and then, in the second phase of the classifier, they are used

by a SVM algorithm to perform the final classification. For supervised scene classification,

in [41] a two stage generative-discriminative classifier is investigated following the concept

of dimensionality reduction via latent generative models to improve classification perfor-

mance. Specifically, a probabilistic latent semantic analysis, a generative model from the

statistical text literature, is used in the first stage as a statistical clustering method to

discover latent topics. The idea here is the determination of the model with the highest
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probability of generation of the distribution of “visual words” that appear in a given im-

age. In the second stage, the topic distribution vector of each image is used as a feature

to train a KNN and SVM multiclass discriminative classifier.

It is important to note that, from the machine learning perspective, the SGDs represen-

tations proposed in Chapter 3 can be seen as a generative block, since it is based on

constructing a probabilistic model that describes the data at different resolutions. This

generative block, when combined with a discriminative classifier, will give rise to a novel

hybrid generative-discriminative algorithm.

2.4 The Knowledge Discovery in Databases (KDD) and the

Data Mining Frameworks

Before starting to review some relevant theoretical fundamentals of KDD and Data mining

frameworks it is important to clarify the concepts of data, information and knowledge

according to the way they are used and understood in this thesis.

2.4.1 Data, Information and Knowledge

Data, information and knowledge are some of the fundamental concepts of this era. These

three polyvalent concepts have been the focus of intense debate among experts from infor-

mation theory, artificial intelligence and KDD. In Table 2.1 some of their highly accepted

definitions are presented.

Table 2.1: Three definitions for data, information and knowledge.
Data Information Knowledge

• Discrete, objective facts and ob-
servations, which are unorganised
and unprocessed, and do not con-
vey any specific meaning [42].

• Data shaped into a form that
is meaningful and useful to human
beings [43].

• Information put to productive
use [44].

• Elementary and recorded de-
scriptions of things, events, activi-
ties and transactions [43].

• Data processed for a purpose [45] • Information combined with un-
derstanding and capability [43].

• Symbols representing properties
of objects, events and their envi-
ronment [46].

• Data given a meaning by way of
context [47].

• Structured and organized infor-
mation that has developed inside a
cognitive system [48].

From Table 2.1 it is clear that although there are no universally accepted definitions for

data information and knowledge, the implicit assumption is that information is extracted
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from data whereas knowledge is build up from information. In order to explore the process

associated with the transformation of these three concepts, in [49], Ackoff introduced the so

called Data-Information-Knowledge-Wisdom (DIKW) hierarchy which is usually depicted

in the form of a pyramid, with data at the base and wisdom at the top. Since in the

context of KDD only the first three concepts are relevant, the DIKW hierarchy can be

reduced to the Data-Information-Knowledge (DIK) pyramid shown in 2.6.

Figure 2.6: The Data-Information-Knowledge pyramid [46].

Note that in the DIK pyramid of Figure 2.6 a movement up in the pyramid involves a

qualitative refining process associated with an increase in meaning, structure and under-

standing. Note also that according to this model, there is not information without data

and, in turn, there is not knowledge without information.

Since the work presented in this thesis is aimed at the construction of representations of

time series and data streams, it can be located between the data and information blocks

of the pyramid of Figure 2.6.

2.4.2 The Knowledge Discovery in Databases Framework

The information age, is characterised by the speed and ubiquity of data and information.

According to Hilbert et al. [50], in 2007, humankind was able to store around 2.9 × 1020

bytes and to communicate (via TV, radio, Internet, telephone, etc) around 2× 1021 bytes.

This is evidence that today the amount of data being generated exceeds the human ability

to perform manual analysis and hence there is a crucial and urgent need for tools and

techniques for intelligent data processing and understanding.

The term Knowledge Discovery in Databases (KDD) was coined in 1989 by Gregory

Piatetsky-Shapiro in the workshop held in Detroit, USA, under the same name [51]. Since

then, the area has been subject of increasingly intensive research, attracting the attention

of people and scientists from most diverse fields and disciplines.
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In this thesis the classical definition of KDD is followed. According to [52], KDD is

the non trivial iterative and interactive process which focuses on identifying valid, novel,

potentially useful and understandable patterns in data. The fundamental goal of the whole

KDD process is the extraction and application of the knowledge derived from the patterns

extracted from data.

Note that since KDD denotes the overall process of extraction of high-level knowledge

from low-level data [53] its first step is the selection of the application domain as well as

the definition of the final goal of the knowledge discovery. Once the application domain

and the goal of the KDD process have been identified, the KDD process can be subdivided

into the sequence of iterative steps or stages shown in Figure 2.7 [53].

Knowledge

Data

aabbbc

Data 
Selection

Data 
Preprocessing

Data 
Transformation

Data Mining

Patterns 
Interpretation/
Evaluation

Target Data

Preprocessed 
Data

Transformed
Data

Patterns

Figure 2.7: The KDD process [52].

1. Data Selection, which, by taking into account considerations about the homogene-

ity of the data, focuses on the selection of a subset of data samples over which the

discovery will be performed.

2. Data Preprocessing, which includes operations such as data cleaning, data nor-

malisation as well as noise and outliers removal.

3. Data Transformation, which involves reducing the number of variables under con-

sideration and also considers the process of finding useful features to represent data.

4. Data Mining, which is aimed at the extraction of patterns of interest from trans-

formed data.
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5. Patterns Interpretation/Evaluation, which is oriented towards the interpreta-

tion and visualisation of the extracted patterns as well as its corresponding under-

standing in the context of the application domain.

2.4.3 Data Mining

The core of the KDD process is the data mining stage which refers to the formal study

of methods and algorithms for the extraction of implicit and useful information from data

[54]. In the data mining framework, raw data or simply data are characterized as recorded

facts while information is defined as the set of patterns underlying data.

Data mining is an interdisciplinary subfield of computer science involving methods lying at

the intersection of artificial intelligence, machine learning, statistics, and database systems.

According to the task they address, data mining algorithms can be categorised into the

following groups [30]:

1. Exploratory Data Analysis. It focuses on exploring the data in an interactive

and visual way to find patterns that may seem interesting to the user. Since it is an

interactive process involving the user, it posses a subjective element.

2. Descriptive Modeling. The goal here is to construct a model that describes the

data or the process generating the data. The main tasks included within this cate-

gory are: summarisation, density estimation, clustering, segmentation, dependency

modelling.

3. Predictive Modeling. The idea here is, using the known values or categories of a

variable, build up a model able to predict the category or value of unknown variables.

Within this category four main tasks can be distinguished: classification, regression,

prediction, and anomaly detection.

4. Discovering Patterns and Rules. It is aimed at finding combinations of items

that appear frequently in a data set

5. Retrieval by Content. The objective is to search for patterns similar to the ones

provided by the user. It is commonly used in the context of text and image data.
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2.4.4 Data Representation Stage of the Data Mining Block

In data mining algorithms, prior to the data mining task there is usually a feature extrac-

tion or feature reduction block, in which the main goal is the extraction of characteristic

quantities or properties from the data that serve as inputs for the data mining task. Ac-

cording to the KDD process of Figure 2.7 this block may be included within the data

transformation step. However, in many applications (including the work reported in this

thesis) the attention is focused on the extraction of patterns rather than the discovery of

knowledge, and hence the data mining step is usually detached from the KDD process and

employed separately. Therefore, in the work reported in this thesis the feature extraction

block could also be seen as part of the data mining step.

In this thesis, the generic name data representation is used to group all those substages

oriented towards the construction or extraction of a meaningful representation of input

data. Then, according to their functionality, and taken into account concepts from pattern

recognition reviewed in Section 2.2, two main stages in data mining algorithms can be

recognised: 1) the data representation block and 2) the data mining task itself (for example,

classification, clustering and segmentation.). See Figure 2.8 for a block diagram.

1
Data Representation

2
Data Mining Task

The Data Mining Process

Raw Data
Information 
(Patterns)

Figure 2.8: Functionality of the data mining process using pattern recognition concepts.

Note that although there is voluminous literature regarding the data mining framework,

many of the existing works are targeted at studying the data mining task rather than

focusing on the way data are described or represented prior to the application of a given

data mining algorithm. In this thesis the emphasis is specifically placed on the represen-

tation stage, and in this sense, the frameworks and algorithms proposed in this thesis are

aimed at the construction of time series and data streams representations that facilitate

and improve the mining task.
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Note that the rationale guiding the investigations proposed is the fact that the performance

of data mining algorithms directly depends on the richness of information contained in in-

put data, then superior levels of performance in the extraction of patterns from data can

only be reached by combining both robust mining algorithms with rich data representa-

tions.

2.5 Sparse Signal Processing

One of the key aspects of the SGDs framework and algorithms developed in this thesis is

the concept of multiresolution decomposition of data which has been taken from wavelet

theory. Wavelet-based analysis comprises a group of methods that fall within the so called

sparse signal processing [55] which focuses on the study of operators that provide sparse

representations of signals. In this context, sparsity is related to the property of using a

few number of coefficients to represent a given signal. Sparse signal processing includes

a wide range of techniques such as Fourier, Wavelet and Cosine transforms, Empirical

Mode Decomposition [56] as well as Frames [57, 58]. A succinct and general review of the

fundamental concepts behind wavelet theory, is presented in this section.

2.5.1 Wavelets and Multiresolution Approximations

Wavelet analysis is a well-established discipline whose basic concept is the projection of

data onto a set of basis functions in order to separate different scale information. Particu-

larly, in the Discrete Wavelet Transform (DWT) data is separated into detail coefficients

(fine-scale information) and approximation coefficients (large-scale information) by the

projection of the data onto an orthogonal dyadic basis system [59]. The Discrete Wavelet

Transform (DWT) is from the practical point of view the most important algorithm in

wavelet theory [60], since it is easy to implement and it reduces the computation time and

resources required. Multiresolution signal approximations are the theoretical foundations

for such transform.

The basic idea behind the concept of multiresolution approximations is the approximation

of signals at different level of resolutions by the use of orthogonal projections on different

spaces {Vm}m∈Z. In order to compute these projections an orthonormal basis for Vm is
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required. Specifically, a multiresolution approximation is a sequence of nested closed sub-

spaces {Vm}m∈Z in L2(R) that provides a formal approach for the construction of scaling

orthonormal bases. The formal definition for these particular types of approximations is

presented in Definition 1.

Definition 1. Multiresolution Approximation: A sequence {Vm}m∈Z of closed sub-

spaces of L2(R) is a multiresolution approximation if the following mathematical properties

are satisfied [55]:

1. Nested/Causality: ∀m ∈ Z, Vm+1 ⊂ Vm;

2. Density: lim
m→−∞

Vm = Closure {∪m∈ZVm} = L
2(R);

3. Separation: lim
m→∞

Vm = {∩m∈ZVm} = {0};

4. Scaling: ∀m ∈ Z, f(x) ∈ Vm ↔ f(x2 ) ∈ Vm+1;

5. Translation: ∀m, l ∈ Z, f(x) ∈ Vm ↔ f(x− 2ml) ∈ Vm;

6. Orthonormal Basis: ∃φ ∈ V0 | {φ(x− k)}k∈Z is an orthonormal

basis for V0.

The first property is related to the nested arrangement of the subspaces Vm. The second

property expresses the completeness of the nested subspaces which fill the whole L2(R)

space. The third property indicates that the subspaces are not too redundant since their

intersection only contain the zero element. The fourth property indicates self-similarity

in scale, which means that all subspaces Vm are time-scaled versions of each other by a

scaling factor of 12 . The fifth property demands self-similarity in time, which means that

each subspace Vm is invariant under shifts by integer multiples of l. Finally, the sixth

property is related to the existence of an orthonormal basis with integer shifts for each

subspace.

Within the context of DWT, the approximation of a function f(x) at a resolution 2−m is

defined as the orthogonal projection over the space Vm ∈ L2(R) with an expansion in a

scaling orthogonal basis of the form:

fVm(x) =
∑

k

am,kφm,k(x) ∀k ∈ Z (2.1)
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where fVm(x) is the approximation of f(x) at resolution 2
−m.

Note that in Equation (2.1) the orthonormal basis of the space Vm is constructed by

dilating and translating a single function φ called the scaling function and whose translated

and dilated versions are expressed by φm,k(x) = 2
−m/2φ(2−mx− k).

In Equation (2.1) the scaling function coefficients am,k are expressed by:

am,k = 〈f(x), φm,k(x)〉 =
∫ ∞

−∞
f(x)φm,k(x)dx ∀m, k ∈ Z (2.2)

where the operator 〈.〉 is used to denote inner product in L2(R).

In addition to the sequence {Vm}m∈Z, DWT also considers spaces Wm ∈ L2(R) related

to the orthogonal complement of Vm in Vm+1 which can be formally expressed as:

Vm−1 = Vm ⊕Wm (2.3)

The orthonormal basis of the space Wm is, similarly to the basis of Vm, constructed

by dilating and translating a single function ψ called the wavelet function and whose

translated and dilated versions are expressed by ψm,k(x) = 2
−m/2ψ(2−mx − k). In this

way, the orthogonal projection of f(x) in the spaceWm is obtained with a partial expansion

in its wavelet basis:

fWm(x) =
∑

k

dm,kψm,k(x) ∀k ∈ Z (2.4)

where the wavelet coefficients dm,k in Equation (2.4) are obtained by

dm,k = 〈f(x), ψm,k(x)〉 =
∫ ∞

−∞
f(x)ψm,k(x)dx ∀m, k ∈ Z (2.5)

According to Equation (2.3) and Equation (2.4) the orthogonal projection of f(x) onVm−1

can be decomposed as the sum of the orthogonal projections on Vm andWm.

fVm−1(x) = fVm(x) + fWm(x) (2.6)
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Note that in the DWT framework the spaces Vm andWm are called approximation and

detail spaces, respectively. Note also that for any resolution 2−m, {ψm,k}k∈Z is an or-

thonormal basis of Wm while for all resolutions, {ψm,k}m,k∈Z is an orthonormal basis of

L2(R).

Specifically, DWT is based on the successive decomposition of each approximation fVm(x)

into a coarser approximation fVm+1(x) plus the projection in the detail space fWm+1(x),

which formally can be expressed as:

fVm(x) = fVm+M (x) +
m+M∑

p=m+1

fWp(x) (2.7)

where 2−(m+M) is the resolution of the coarsest approximation of the analysis.

In the DWT framework, the function f(x) is assumed to be at resolution 20, and in that

sense, according to Equation (2.7), it can be expressed as the sum of a coarser approxima-

tion and the set of successive details:

f(x) =
∑

k

cM,kφM,k(x) +
M∑

m=1

∑

k

dm,kψm,k(x) (2.8)

In practice, DWT is usually implemented in a computationally efficient manner using

a set quadrature mirror filters (Mallat’s cascade algorithm) [59] whose basic idea is the

representation of wavelet basis as a set of high-pass and low-pass filters in a filter bank

structure [61].

2.6 Nonparametric Statistics

Since one of the main objectives of this thesis is to design domain independent time series

and data stream representation algorithms, concepts from nonparametric statistics, which

include all those techniques that do not rely on any particular distribution of the data,

become the essential elements when constructing/designing possible algorithmic solutions.

It is worth noting that all the proposed algorithms rely on nonparametric statistical con-

cepts. All these algorithms consider nonparametric density estimation as a fundamental
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building block. In this section the density estimation techniques relevant to the work

proposed in this thesis are briefly reviewed.

2.6.1 Density Estimation

Density estimation is the problem of estimating a probability density function from some

given observed data. This is a well studied problem for which several solutions have been

presented in the literature. Density estimation techniques can be categorised into two

main groups: parametric and nonparametric approaches. Within the nonparametric group,

Kernel Density Estimators (KDE) [62], Finite Gaussian Mixtures (FGM) [63], Orthogonal

Series Estimators (OSE) [64] and histograms [65] have been the focus of attention of the

majority of the research community.

In this thesis the attention is focused on FGMs and the so called Wavelet Density Estimator

(WDE) which is a special type of OSE.

2.6.1.1 Finite Gaussian Mixtures

Finite Gaussian mixtures-based density estimation techniques assume that the component

distributions belong to the parametric family of Gaussian functions. They are expressed

by:

f̂(x) =
M∑

j=1

ŵjϕj(x) =
M∑

j=1

ŵjN (x; μ̂j , Σ̂j) (2.9)

whereM is the number of components in the mixture, N (x; μ̂j , Σ̂j) is a normal distribution

with mean μ̂j , covariance matrix Σ̂j and ŵj is the mixture weight, with the constraint
∑
ŵj = 1.

The problem of estimating parameters in a finite Gaussian mixture has been extensively

studied in the literature. This work considers the well-known EM algorithm. For further

details the reader is referred to the seminal papers [40] in which the EM algorithm was

formalised and to [66] in which it was applied to Gaussian mixtures, respectively.
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2.6.2 Wavelet-based Density Estimation

Wavelet Density Estimators (WDEs) fall into the class of OSE methodology, originally

introduced by Cêncov in [67]. In the context of OSE, an unknown square integrable density

function f(x) can be expressed as a convergent series of orthogonal basis functions:

f(x) =
∑

j

bjϕj(x) (2.10)

where {ϕj}j∈J is a complete orthonormal system of basis functions for L2(R), bj is the

coefficient of the jth basis function and J is an appropriate set of indices that belongs to

Z. Then, if X1, X2, ..., Xn are the realisations of a random variable X, then the coefficient

bj can be expressed as the expectation: bj = 〈f, bj〉 =
∫
ϕj(x)f(x)dx = E[ϕj(X)] with

j ∈ J . Consequently, the jth series coefficient in an orthogonal series estimator can be

approximated by

b̂j =
1

n

n∑

i=0

ϕj(Xi) (2.11)

and the corresponding approximated density can be expressed as:

f̂(x) =
∑

j

b̂jψj(x) (2.12)

Wavelet density estimators follow the concepts described in Equation (2.11) and Equa-

tion (2.12); however, within the wavelet framework the density can be represented as an

orthogonal series of either scaling and wavelet functions or only scaling functions.

For the first alternative the corresponding density estimate can be formally expressed as:

f̂(x) =
∑

k

ĉj0,kφj0,k(x) +

j0+J∑

j=j0

∑

k

d̂j,kψj,k(x) (2.13)

where {φj0,k(x)}j0∈Z,k∈K plus {ψj,k(x)}j∈Z,k∈K is a complete orthonormal basis system

for L2(R), with K denoting an appropriate set of indices that belongs to Z, with j0 ∈ Z

referring to the index associated with the coarsest resolution of analysis 2−j0 , and with

J ∈ Z defining the number of decomposition levels. Since the estimator of Equation
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(2.13) is based on the concept of multiresolution approximation (as introduced in Section

2.5), the scaling and wavelet functions have the form φj0,k(x) = 2
−j0/2φ(2−j0x − k), and

ψj,k(x) = 2
−j/2ψ(2−jx− k), respectively.

In Equation (2.13) ĉj0,k and d̂j,k, refer to the approximated or empirical coefficients for

the scaling and wavelet functions, φj0,k(x) and ψj0,k(x), respectively. If X1, X2, ..., Xn are

the realisations of a random variable X with an unknown square integrable density f(x),

then coefficients ĉj0,k and d̂j,k can be approximated by:

ĉj0,k =
1

n

n∑

i=0

φj0,k(Xi) (2.14)

d̂j,k =
1

n

n∑

i=0

ψj,k(Xi) (2.15)

Regarding the second alternative for the density, the one that only considers scaling func-

tions, can be expressed as:

f̂(x) =
∑

k

ĉj0,kφj0,k(x) (2.16)

where the set {φj0,k(x)}j0∈Z,k∈K alone is a complete orthonormal basis system for L
2(R),

and j0 is the index associated with the base resolution for the analysis.

In this thesis the estimator defined by Equation (2.16), which is the simplest linear WDE

is the key block for the frameworks and algorithms proposed in Chapter 3 and Chapter 5.

The reason for this, is that the reduced computation complexity of the estimator allows

the construction of complex algorithms that involves multiple density estimation blocks.

The rate of convergence of orthogonal series estimators has been shown to be asymptot-

ically optimal (see [68] for further details). Additionally, since wavelet basis functions

possess good localisation properties, wavelet-based orthogonal series also have improved

local approximation capabilities. Moreover, regarding the precision of this type of estima-

tor, it depends on three aspects, the shape of the density to be estimated, the number of

data items considered for the estimation and the number of the decomposition levels in
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Equation (2.13) for the first alternative of the density, or the base resolution in Equation

(2.16) for the second alternative of the density.

In the relevant literature, different variants of the general estimator described by Equation

(2.13) to Equation (2.15) can be found (see, for instance [69–72]). These variants mainly

differ in two basic aspects: the first one is the strategy they follow to select which terms in

the series expansion should be kept, and the second one, is the way the series coefficients

are thresholded. By applying these strategies, the construction of linear and nonlinear

estimators is possible. A linear estimator can be constructed by keeping wavelet coeffi-

cients untouched. A non linear estimator can be constructed with soft or hard coefficients

thresholding strategies. Note that that the density estimation approaches of Equation

(2.13) to Equation (2.16) are based on a fixed-static data model and consequently they

address the density estimation problem from a batch processing perspective. Furthermore,

since wavelets are not a positive δ-sequence, density estimates may take negative values

in regions where the sample is sparse. Different solutions for this problem have been re-

ported in the literature, for example, taking the square root of the density [73] and using

non-negative wavelets. Further and in depth discussion on these procedures can be found

in [74].

Practical Implementation

The practical implementation of the estimators of Equation (2.13) and Equation (2.16)

makes use of two well known algorithms: a) the recursive algorithm introduced by [75], and

b) the Mallat’s cascade algorithm [59]. The Daubechies-Lagarias algorithm (see Appendix

A), is a numerical method for the calculation of scaling and wavelet values at a given point

with a predefined precision. This algorithm is necessary since, for most of the compactly

supported wavelet families, both scaling functions φ and wavelet functions ψ have no

explicit or closed form representation. On the other hand, Mallat’s cascade algorithm is

a fast and optimised procedure for the implementation of the DWT based on the use of

filter banks and nested spaces. For more details about these two procedures the reader is

referred to the original sources as well as to [74].

In broad terms, the implementation of the wavelet-based estimator is performed by choos-

ing in Equation (2.13) the index related to the coarsest resolution 2−j0 and the number of

decomposition levels J , then the scaling coefficients ĉj0,k and the wavelet coefficients d̂j,k
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for j ∈ {j0, j0 + 1, . . . , j0 + J} can be obtained by the use of Mallat’s cascade algorithm

starting from the high resolution scaling coefficients ĉJ,k firstly obtained by applying the

Daubechies-Lagarias algorithm over the original data.

2.7 Final Remarks

In this chapter an overview of the theoretical foundations for the frameworks proposed in

this thesis was presented. To this end, the different paradigms for pattern recognition and

machine learning as well as the main concepts from KDD and data mining were reviewed.

In addition to this, some algorithms from sparse signal processing and nonparametric

statistics which are relevant to the work presented in this thesis were also discussed.

In the following chapter the general formulation for the proposed SGDs representation

framework, as well as its suggested offline and online implementations, will be developed.
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Chapter 3

Structural Generative Descriptions

for Time Series Classification

In this chapter a novel domain independent time series representation framework is pre-

sented. By combining statistical and structural pattern recognition paradigms, this frame-

work describes the structure of time series in terms of different resolution probability-

domain subpatterns. The proposed framework, referred to as Structural Generative De-

scriptions (SGDs), allows the subsequent supervised and unsupervised classification of

the obtained time series representations using statistical decision theoretic classification

and clustering methods. Two offline and two online algorithmic instantiations are also

presented.

This chapter is organised as follows. Section 3.1 presents an introduction to the problem

of time series classification as well as some preliminary aspects of the proposed SGDs

framework. In Section 3.2 relevant work in the area of time series supervised/unsupervised

classification is briefly reviewed. In Section 3.3 the proposed SGDs framework is presented.

The corresponding off-line and online algorithmic instantiations are formulated in Section

3.4 and Section 3.5, respectively. Final remarks can be found in Section 3.6.

33
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3.1 Introduction

Time series classification constitutes an important subset of data mining applications since

a large number of domains involves this particular class of temporal data. Notable applica-

tion domains are among others, medical signal analysis, speech recognition, fault condition

monitoring, mining in temporal databases and robot sensor analysis.

Machine learning and data mining communities have extensively studied the problem of

time series classification, resulting in a plethora of solutions and algorithms. However, the

bulk of available statistical clustering and classification techniques have been formulated

in the context of static data (data whose feature values do not change over time) [2]. In

order to apply classification methods developed for static data to the context of time series,

usually one of the following strategies is followed [2]. The first strategy is an algorithmic-

based solution, in which the idea is to modify classification algorithms developed in the

context of static data to allow them to handle data whose features change with time,

this is generally accomplished by replacing the distance measure used for static data with

one suitable for time series. The second strategy is a data-based solution relying on

the conversion of time series data into static one and then directly apply classification

techniques developed for static data. Note that, the high amount of data dependency

present in time series data is generally ignored by readily available static data algorithms.

In this chapter, the attention is placed on investigating the impact of the data repre-

sentation stage in the solution of the generic time series classification problem. To this

end, a novel time series representation strategy that captures the inherent data depen-

dency of time series is formulated. Representations based on this strategy can be easily

incorporated into existing statistical classification algorithms. Specifically, by moving the

structural time series representation to the probability domain, the proposed framework is

able to combine statistical and structural pattern recognition paradigms in a novel fashion.

The proposed Structural Generative Descriptions (SGDs) framework has its foundations

on the observation that in complex pattern recognition problems, in which the structural

dependency is important, an effective strategy would be to describe each pattern in terms

of simpler subpatterns and the relations among them [2]. The proposed representation,

first decomposes time series patterns into simpler subpatterns, and then learns a proba-

bilistic model for each of these subpatterns (note that each probabilistic model can also be
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divided into simpler elements or primitives). The representation is completed by defining

the set of attributes and relations between primitives. In this context, the probabilistic

models are named as probability domain generative subpatterns and, their correspond-

ing simpler elements (primitives) are termed as probability domain generative primitives.

The representation is hence providing a description on how input time series patterns

are constructed from their given probabilistic subpatterns and/or primitives. Note also

that fixed-length feature vectors are used to describe the probability domain subpatterns

and primitives. This enables the applications of any of the well established statistical or

decision theoretic techniques in a subsequent supervised/unsupervised classification stage.

The SGDs framework described here treats time series sequences as stochastic processes

for which the probability density function contains all the statistical information required

for its characterisation. If this is the case, time series patterns and subpatterns can be

effectively characterised by considering their associated specific stochastic properties. Note

that the assumption underlying the proposed approach is general and does not depend

on the particular class of objects to be recognised. It holds for a great variety of time

series-based applications for which the hypothesis of grouping patterns according to their

corresponding structural generative properties is valid. Furthermore, the development of

a SGDs framework is also motivated by the fact that structural and statistical pattern

recognition frameworks possess complementary properties and then a combined approach

overcome some of their associated deficiencies while exploiting some of their advantages.

The time series description strategy using the SGDs framework proposed in this chapter

has three main advantages: 1) it provides a compact representation of time series patterns,

2) it allows the construction of domain-independent time series classification systems and,

3) it also provides a description of the generation process of input time series data.

In this chapter the SGDs framework is also extended to the online context, making it

suitable for data stream applications. Specifically, two different online algorithms based

on SGDs concepts are presented. Both algorithms comprise the same blocks as offline

SGDs, that is, multiresolution decomposition and density estimation, but in addition,

they include fast online formulations.

These algorithms only combine statistical and structural pattern recognition paradigms,

but they also fulfil some of the basic requirements for data stream mining algorithms: 1)

they process data in a fast and incremental way; 2) the updating time and the amount
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of memory needed are both constant, 3) they provide at any point in time a compact

representation of each data stream, and 4) they allow both concept shift and concept drift

detection.

3.2 Related Work

There is a great body of research, within machine learning and data mining communities,

dedicated to investigate outstanding issues on supervised and unsupervised time series

classification. However, none of the existing approaches has previously considered time

series representations similar to the proposed SGDs.

In this section, the literature on time series supervised and unsupervised classification

is reviewed using as reference the chosen time series representation. An experimental

comparison of time series representation methods and distance measures can be found in

[76], while an overview of time series clustering techniques can be found in [2].

3.2.1 Time Series Representations Found in Classification Approaches

According to the pattern recognition framework the time series representations used by

classification approaches can be categorised into statistical or structural. The great ma-

jority of the representation approaches available fall within the framework of statistical

pattern recognition which, by combining the categorisations introduced by [77] and [2],

can be grouped into two categories. The first group are descriptive techniques which

are based on the direct comparison of observations (raw data-based approaches) or the

conversion of time series data into a reduced fixed-length feature vector (feature-based

approaches), and the subsequent application of distance measures. The second category

includes inferential techniques (also known as model-based approaches in [2]) that rely on

the construction of statistical models for time series data and the posterior evaluation of

dissimilarity measures, but in this case, with respect to the underlying generation process

of time series patterns, generally assumed to be linear and Gaussian.

Within raw data-based descriptive approaches, techniques based on sampling [78], piecewise

approximation [79] and salient point [80] can be distinguished. Feature-based descriptive

methods can be categorised according to the transformation technique they employ or the
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domain in which the distance similarity measure is applied namely, autocorrelation, cross-

correlation, Fourier, Wavelets, Principal Component Analysis (PCA) and Single Value

Decomposition (SVD). On the other hand, inferential time series classification approaches

can be grouped according to the statistical model in which they are based on, e.g. ARIMA,

ARMA and Hidden Markov Models (HMMs).

Although, the majority of existing approaches fall within the framework of statistical

pattern recognition, some domain-specific solutions can be found relying on structural

pattern recognition concepts1. Relevant approaches within this category are the codebook

of key sequences proposed in [82], the Trend Description Language [83], the waveform

parsing system [84], as well as the Automatic Least Squares Error Signal Decomposition

Algorithm [85] and the fuzzy structural pattern recognition system [86]. Note that the so

called Symbolic Aggregate Approximation (SAX)[87], its novel versions the iSAX [88] and

the iSAX+[89], as well as its symbolic variant reported in [90] fall also within this category.

Shapelet transform-based techniques [91] which use shapelets as pattern primitives can be

also considered structural approaches.

Here it is important to highlight that the proposed SGDs framework is based on a time

series representation approach that is radically different from the one followed by the above

reviewed structural techniques. In the SGDs framework subpatterns and primitives are

extracted and analysed in the probability domain which makes easier to codify structural

aspects of the time series in a statistical form. Note that traditional time series representa-

tions like, for example, the aforementioned SAX [87], its variants [88–90], and the shapelet

techniques [91], are all of them based on extracting subpatterns in time domain.

3.2.2 SGDs vs Wavelet-domain Gaussian Mixtures Models

In speech recognition and sound processing a common feature extraction approach useful

for data mining tasks is the so-called Mel-scale Frequency Cepstrum (MFC), which is a

representation of the short-term power spectrum of the signal [92]. The MFC is based

on the cosine transformation of the log power spectrum on a nonlinear scale of frequency.

Note here that techniques based on the MFC approach, such as the popular wavelet domain

1Since structural techniques are based on the conversion of time series data into symbolic form, they
are also referred in the literature as symbolic techniques [81]
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Gaussian Mixture Models of Mel-scale Frequency Cepstral Coefficients (wavelet-MFCCs-

GMM) [93–95], may look similar to the proposed SGDs framework since both combine

a wavelet decomposition block with a Gaussian Mixture Model (GMM). However, there

are two fundamental differences between the two techniques. The first difference is that

different features are used for each technique, in MFCCs-GMM techniques they are the

MFC coefficients whereas in the proposed algorithm the vector of features includes the

parameters of each of the Gaussian Models employed to describe each pattern. Note also

that Gaussian models play a different role in these approaches, in the proposed approach

they are used for feature extraction whereas in techniques based on MFCCs-GMM they

are employed as a part of the classifier. The second difference is that, for the classifier, a

different type of learning is employed. Techniques based on MFCCs-GMM rely on a clas-

sifier with generative learning. In contrast, discriminative learning is used in the proposed

SGDs approach. The third difference is that, although techniques based on MFCCs-GMM

consider some structural ideas (decomposition input patterns into subpatterns) they are

not fully formulated using structural concepts such as patterns, subpatterns, primitives,

primitive’s attributes, primitive’s relations, as in the proposed approach.

3.2.3 Data Streams

With the expansion of the Internet and the progress of hardware technology a new class of

temporal data objects, referred to as data streams, is becoming pervasively and increasingly

important in a wide variety of applications, notable examples are: sensor networks, network

monitoring, transaction log analysis, financial tickers and web usage. What is common in

all these applications is that data arrive in a continuous online time-varying fashion at a

rapid rate and it is not feasible to exchange or to store all the arriving data in traditional

database management systems (DBMS) to operate on it [96].

In a formal way, a data stream is a real-time, continuous, ordered and unbounded sequence

of items whose order is implicit when it is represented by the arrival time or explicit when

it is indicated by time stamps [97]. This new class of data leads to three particular

computational challenges [98]. The first challenge is that algorithms designed to work

with this type of data should process each data item only once, that is, they should work

with only one pass of the data. The second challenge is related to the fact that algorithms

should have fixed space and time computational complexity, independent of the amount
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of data to be processed and independent of the time horizon for the analysis. Finally, the

third challenge is associated with the temporal component of the data, here algorithms

should take into account time dependent relations as well as the evolution of the underlying

data.

Traditional data mining techniques are designed to work with static records which generally

have no predefined notion of time [2], their formulation is based on the storage and analysis

of fixed static data archives that allow complex mining operations based on multiple passes

of the data. However, for the case of data streams, the computational challenges inherent

to this particular class of data, prevent the direct application of traditional data mining

methods to this domain.

There is a large volume of literature which has been dedicated to design data mining

methods suitable for streaming data (see for instance [98, 99] for some reviews). However,

most of the work has been focused on designing, adapting or improving the so called data

mining task algorithm, rather than constructing more robust data representations that

serve as input for such algorithms. In general, in previously proposed algorithms, raw data

is converted into characteristic or representative numeric features using incremental feature

extraction, selection or reduction blocks and then mining algorithms are applied over these

features. Usually, the resulting features do not take into account any temporal/structural

relation or dependency present in the data.

3.2.4 Data Stream Mining Approaches

Different data stream mining problems have been thoroughly studied in the literature,

resulting in a plethora of models, algorithms and applications. Different taxonomies can

be used to categorise the voluminous work within the data stream mining framework.

Aggarwal [98] and Gaber et al. [100] categorise available methods according to the data

mining problem they address, that is, clustering [101–106], classification [107, 108], in-

dexing [109, 110], frequent pattern mining [111–115], change detection [9, 116–119], sum-

marisation (including sketching, load shedding and synopsis construction) [120–130], and

forecasting [131].

Additionally, Gaber et al. [100] groups techniques according to their theoretical founda-

tions, distinguishing between data-based techniques, which focus on the summarisation
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of streaming data, and task-based techniques which put the attention on the design of

algorithms suitable for data streams. Within data-based techniques there are methods

based on sampling [132], load shedding [133, 134], sketching [123, 124, 135], synopsis con-

struction [136, 137], aggregation [106, 107], whereas within the task-based category there

are approximation algorithms, sliding window-based approaches [138, 139] and algorithm

output granularity [140, 141].

Since in this thesis the data streams mining problem is approached from the pattern

recognition perspective, the attention is placed on the way data streams are represented

prior to the application of the data mining task algorithm. For this reason, in this section,

previous work in the field is reviewed and grouped according to the representation used

for the algorithms following underlying concepts from pattern recognition and time series

data mining frameworks [2, 77]. Note that, since it is outside the scope of this chapter

to review all the existing work in the area, in this section, only relevant references to the

proposed SGDs algorithms are selected.

In general, from the point of view of the descriptors employed, two main families of data

stream mining algorithms can be distinguished in the literature: statistical approaches

and structural techniques. Within the statistical category, representations in turn can

be grouped into descriptive and inferential subcategories. On the one hand, statistical

descriptive techniques, which are related to the data-based techniques of [100], are based

on the extraction of a reduced number features or the summarisation of streaming data, and

the subsequent application of distance measures among the features. Statistical inferential

techniques, on the other hand, rely on the construction of statistical models for incoming

streaming data and the evaluation of dissimilarity measures with respect to the underlying

generation process of data streams patterns.

Within statistical descriptive approaches, there are techniques working directly with raw

streaming data, that is, sampling [132], load shedding [133, 134], aggregation [106, 107],

and methods based on transforming data streams to a different domain such as autocorre-

lation [138], Wavelets [142, 143], Haar Wavelet coefficient [102], DFT [103, 144], variance

[145]. Statistical inferential data stream mining approaches can be grouped according to

the statistical model in which they are based on, that is, Pearson’s correlation coefficient

[101], mean standard deviation and correlation [138], as well as local correlation integral
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[146]. Note that hybrid approaches combining statistical inferential and statistical descrip-

tive ideas can also be found in the literature. Examples of such approaches are: AR-DWT

[147], the regression-based method reported in [102], the histogram-based techniques of

[148, 149], as well as the autoregressive model proposed in [150].

Although, the majority of existing approaches fall within the framework of statistical pat-

tern recognition, some domain-specific solutions can be found incorporating some struc-

tural pattern recognition concepts. Relevant approaches within this category are: structure

aware sampling [151], and the small-space algorithm introduced in [105].

In the literature techniques including some multiresolution concepts can also be distin-

guished. Even though they are not explicitly defined using structural terms, they still

incorporate some structural ideas. One of the most relevant techniques within this cate-

gory is AWSOM [147] which is based on DWT concepts.

It is important to note that the computational restrictions inherent to data streams pro-

cessing algorithms prevent the application of complex structural representations for this

type of data. This is the reason why most of the work regarding data stream representation

is based on simple statistical features such as subsampling [132], statistical measures [145]

or correlation coefficients [101], all of them with a reduced computational burden. Note

that the few structural-based representation approaches available for data streams are also

constrained by the computational factor, and hence the subpatterns and primitives extrac-

tion is carried out, in all these approaches, in the time domain. In contrast, the proposed

SGDs-based data stream representations, which are based on extracting subpatterns and

primitives in the probability domain, manage to combine robust structural and statistical

aspects without compromising computational complexity.

3.3 The Structural Generative Descriptions (SGDs)

Framework

The proposed SGDs times series representations comprise two main stages, namely: mul-

tiresolution decomposition and density estimation. In the multiresolution decomposition

stage input time series are decomposed into subpatterns at different resolutions using a

given decomposition transform. In the density estimation stage, the obtained subpatterns

are mapped into the probability domain by using a selected density estimation technique.
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A key point of the time series description method proposed here, is the extraction of a rep-

resentation of time series data based on a combined time-domain and probability-domain

structural procedure in which the pattern decomposition is done in the time domain while

pattern analysis and primitives extraction are performed in the probability domain. This

procedure is depicted in Figure 3.1. Note that since in the proposed SGDs representation

framework primitives of probability subpatterns are assumed to be the base functions (for

example, Gaussian functions or orthogonal basis functions) used by the selected density es-

timation technique, then finding primitive’s attributes and primitive’s relations can be done

by means of semi-parametric and nonparametric density estimation techniques. Note also

that although the proposed SGDs representations are not formulated in linguistic terms,

they are structural in essence. This remark is in accordance to the findings reported in

[152], where the term structural pattern recognition is meant to refer to all methodologies

which attempt to describe objects in terms of their parts and the juxtaposition relations

between them.
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Figure 3.1: Proposed SGDs for time series.

3.3.1 The Structural Generative Description Block

The proposed SGDs assume a set of N univariate time series X = {xi}, i ∈ N =

{1, 2, . . . , N}, wherein each xi = {xi(t)} is an ordered sequence of n real valued obser-

vations taken at discrete times t ∈ T = {1, 2, . . . , n}. The objective of the description task
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is to extract, for each time series xi, a fixed-length feature vector fxi suitable to perform

the subsequent supervised or unsupervised classification tasks.

The first stage of the SGDs framework is a multiresolution transformation Γ∗ that decom-

poses the input time series pattern xi = {xi(t)}t∈T into a finite set {xip}p∈P of P different

time-domain resolution versions of the input pattern. For this, consider that initially xi is

decomposed according to the following general equation:

xim = {x
i
m(t)} = Γ(x

i;m) (3.1)

where the indexm ∈M = {M,M−1, . . . , 1} withM⊂ Z, is associated with the resolution

and M denotes the coarsest resolution of the decomposition process. If, in order to avoid

redundancy, instead of working directly with subpatterns xim the corresponding differences

x̃im between consecutive x
i
m are considered:

x̃im = x
i
m−1 − x

i
m (3.2)

Then the set {x̃iM , x̃
i
M−1 . . . , x̃

i
1} is the set of different resolution structural time-domain

subpatterns containing complementary information for xiM . This work considers a mul-

tiresolution transformation Γ based on the concept of nested subspaces with an approx-

imation operator that follows the properties described in Chapter 2 for multiresolution

approximations. Hence, the input pattern xi can be assumed similar to the highest reso-

lution pattern xi0, and in that sense it can be alternatively expressed as:

xi = xi0 = x
i
M + x̃

i
M + x̃

i
M−1 . . .+ x̃

i
1 (3.3)

Note that Equation (3.3) shows the structural characteristics of the proposed multires-

olution decomposition, in which the input pattern xi is constructed by combining its

corresponding subpatterns associated with different resolutions.

The second stage of the proposed SGDs is the mapping of subpatterns of Equation (3.3)

into the probability domain by estimating their probability density functions. Let us

consider the set of subpatterns defined by:
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{x̄ip}p∈P = {x
i
M , x̃

i
M , x̃

i
M−1 . . . , x̃

i
1} (3.4)

where {x̄ip}p∈P with P = {1, 2, . . . , P} and P = M + 1 denotes the set of P multireso-

lution time domain subpatterns of the time series pattern xi containing complementary

information at different resolutions, where x̄i1 = x
i
M and x̄

i
P = x̃

i
1, here x̄

i
p refers to the p

time domain subpattern of the input pattern xi.

Then the approximated probability density for the subpattern x̄ip using the estimator

parameters θip = {θ
i
k}k∈K, with K = {1, . . . ,K} andK denoting the number of parameters,

is expressed by f̂ ip(x̄
i
p,θ

i
p). Note that a key assumption in the framework proposed here

is that the estimated density f̂ ip(x̄
i
p;θ

i
p) is a probability domain version of x̄

i
p, denoted as

x̆ip, and in that sense, it is a probability domain subpattern for the time series pattern x
i.

Consequently, the set {x̆ip}p∈P is the set of probability domain subpatterns of x
i.

Note that in the proposed framework, there are no assumptions about the functional form

of the probability densities employed, and as a consequence their estimation is not re-

stricted to a particular parametric or nonparametric technique. The only requirement is

a sparse density representation, which means that for the subpattern x̄ip the estimated

density f̂ ip(x̄
i
p;θ

i
p) is expressed by a reduced number of parameters θ

i
p. Since probability

density functions embody all the information for the characterisation of stochastic pro-

cesses, the obtained probability domain subpatterns {x̆ip}p∈P can be used to generate or

synthesise time domain subpatterns with similar statistical properties as {x̄ip}p∈P . This

property makes the proposed probability domain subpatterns essentially generative.

Although, there are different procedures for density estimation in the literature, the three

most commonly used methods (which are kernel-based, Gaussian mixtures and orthogonal

series) can be expressed as the weighted combination of k base functions. These base

functions could be kernels, Gaussian functions or orthogonal functions, depending on the

case. Considering this, the estimated density for the time domain subpattern x̄ip can be

expressed according to Equation (3.5).

f̂ ip(x̄
i
p;θ

i
p) =

∑

k

αip,kh(x̄
i
p;β

i
p,k) (3.5)



Chapter 3. Structural Generative Descriptions for Time Series Classification 45

where αip,k represents the weight for the k
th term, and h(x̄ip;β

i
p,k) denotes the base function

with parameters represented by βip,k. Note, that in the left side of the equation the set of

parameters θip is equal to {α
i
p,k, β

i
p,k}k∈K.

For the SGDs representations proposed here, the set of base functions {h(x̄ip;β
i
p,k)}k∈K con-

stitute structural generative primitives for the probability domain subpattern x̆ip while the

sets {βip,k}k∈K and {α
i
p,k}k∈K, are the corresponding set of primitive’s attributes and the set

primitive’s relations, respectively. While the former set specifies particular characteristics

of the primitive, the latter set describes the way primitives are related in order to construct

a given probability domain subpattern. In this work the set of probability domain subpat-

terns is constructed using the same primitive (e.g. kernels, Gaussian functions, orthogonal

functions), but with different numerical attributes. The SGDs framework is based on de-

scribing the time series subpattern x̄ip using its primitive attributes set {β
i
p,k}k∈K and its

relations set {αip,k}k∈K. In this way, the input time series pattern x
i is described using the

set of attributes sets {{βip,k}k∈K}p∈P of structural probability domain primitives together

with the corresponding set of relations sets {{αij,k}k∈K}p∈P , both grouped together in fxi ,

which is a fixed-length feature vector.

3.3.2 Statistical Discriminative Classification using SGDs

The supervised/unsupervised classification of time series based on the proposed SGDs

does not require a grammar or a parsing algorithm, since the descriptions provided are

fixed-length pattern representations, and as a consequence, they allow the subsequent use

of well established techniques from statistical decision theory. Hence, the supervised or

unsupervised classification block can be formulated in general terms as the task of finding

a discriminant function g(fxi) which determines the class membership of the generative

structural description of the pattern xi expressed by the feature vector fxi .

3.4 Two Offline Algorithmic Instantiations

In this section, two algorithms based on the proposed SGDs framework are developed.

They differ in the density estimation technique selected for the structural generative de-

scriptor. The first algorithm, called SGDG, relies on the use of Finite Gaussian Mixtures

(FGM) which belongs to the semi-parametric category of density estimation techniques.
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The second algorithm, referred to as SGDW, is founded on Wavelet Density Estimators

(WDE) and belongs to the nonparametric density estimation category. Both algorithms

use the Discrete Wavelet Transform (DWT) for the multiresolution decomposition stage.

Note that DWT has been selected since: 1) it is the most popular multiresolution de-

composition method, 2) it has strong theoretical foundations, 3) there are fast algorithms

available and 4) it is a non redundant wavelet transform. Regarding the WDE and FGM

estimators they have been considered because: 1) among the sparse density estimators,

these techniques are among the simplest to implement and 2) they consider different base

functions namely, wavelets and Gaussian functions, and in this way they show how the

proposed SGDs framework can be implemented using different generative primitives.

3.4.1 Wavelet-based Multiresolution Decomposition

The first stage in the proposed SGDs-based algorithms is the multiresolution decomposition

of input time series patterns using DWT. For this, let the time series xi be decomposed

into scaling and wavelet coefficients according to DWT equations:

aiM,l =
〈
xi(t), φM,l(t)

〉
(3.6)

dim,l =
〈
xi(t), ψm,l(t)

〉
(3.7)

where M ∈ Z, m ∈ M = {M,M − 1, . . . , 1}, l ∈ L ⊂ Z and the operator 〈.〉 denotes

the inner product in L2(R). In Equation (3.6) and Equation (3.7), aiM,l and d
i
m,l are the

corresponding scaling and wavelet coefficients associated with resolutions 2−M and 2−m,

respectively. With the scaling function defined as φM,l(t) = 2
−M/2φ(2−M t − l) and the

wavelet functions expressed by ψm,l(t) = 2
−m/2ψ(2−mt − l). Here the index M is related

to the coarsest resolution 2−M .

Therefore, the time domain subpattern corresponding to the coarsest resolution 2−M is

xiM = {x
i
M (t)}t∈T where x

i
M (t) is calculated using:

xiM (t) =
∑

l

aiM,lφM,l(t) (3.8)
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Note that, within the DWT framework, detail coefficients dim,l and their corresponding

reconstructed time domain subpatterns x̃im = {x̃
i
m(t)}t∈T are the differences between

subpatterns associated with consecutive resolutions x̃im = x
i
m−1 − x

i
m. Therefore, x̃

i
m(t)

can be directly expressed as:

x̃im(t) =
∑

l

dim,lψm,l(t) (3.9)

In the DWT context, the highest resolution of the analysis is 20 and its associated pattern

xi0 is assumed equal to the input pattern x
i. Hence, it can be alternatively expressed as:

xi = xi0 = x
i
M + x̃

i
M + x̃

i
M−1 . . .+ x̃

i
1 (3.10)

Equation Equation (3.10) shows the structural organisation of the multiresolution decom-

position, in which the time series pattern xi is constructed by combining its corresponding

subpatterns at different resolutions.

Note that all the information of xiM and x̃
i
m is already contained in the corresponding set

of scaling coefficients aiM = {a
i
M,l}l∈L and wavelet coefficients d

i
m = {d

i
m,l}l∈L. In that

sense aiM,l and d
i
m,l can be viewed as condensed representations of x

i
M and x̃

i
m and then

considered wavelet domain subpatterns of xi. For clarity consider:

{x̄ip}p∈P = {a
i
M ,d

i
M ,d

i
M−1 . . . ,d

i
1} (3.11)

where {x̄ip}p∈P with P = {1, 2, . . . , P} with P = M + 1 denotes the set of P multiresolu-

tion wavelet domain subpatterns of the time series pattern xi containing complementary

information at different resolutions. Here x̄i1 = a
i
M and x̄

i
P = d

i
1.

Summarising, the proposed time series representation starts with a multiresolution trans-

formation Γ that decomposes the time series xi into a finite set of wavelet-domain subpat-

terns at different resolutions {x̄ip}p∈P .
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3.4.2 Density Estimation

The second stage in the SGDs framework is mapping the wavelet domain subpatterns of

Equation (3.11) into the probability domain. This is done by estimating their correspond-

ing probability densities using the WDE and FGM algorithms.

3.4.2.1 Wavelet-based Density Estimator (WDE)

The WDE algorithm relies on representing the probability density as an orthogonal series

of scaling and wavelet functions. This thesis considers the WDE with the lowest computa-

tional complexity which only considers scaling functions φ. Note that more complex density

estimators will significantly impact the computational burden of the proposed SGDs al-

gorithm since it considers the density estimation of every subpattern in a multiresolution

structure.

In the SGDs context, the probability domain subpattern x̆ip is the density of the time

domain subpattern x̄ip = {x̄
i
p(vp)}vp∈Vp ; Vp = {1, . . . , |x̄

i
p|} evaluated at point uq, where

the symbol |x̄ip| denotes the cardinality of x̄
i
p. The subpattern x̆

i
p is then defined by the

following WDE equation:

x̆ip = f̂
i
p(uq) =

∑

k

ĉip,j0,kφj0,k(uq) (3.12)

where φj0,k(uq) = 2
−j0/2φ(2−j0uq − k) is the scaling function associated with the base

resolution 2−j0 with j0 ∈ Z and k ∈ K ⊂ Z. Here uq ∈ U = {u1, . . . , uQ}; with U ⊂ R is

a set of Q points in which the corresponding density is evaluated. In Equation (3.12), the

scaling function coefficients ĉip,j0,k are estimated according to

ĉip,j0,k =
1

n

∑

vp

φj0,k(x̄
i
p(vp)) (3.13)

Note that for convenience WDEs are usually restricted to the space L2([0, 1]) and in that

sense, the input data requires to be normalised to the interval [0,1]. In this way, at

resolution 2−j0 , the set of translation parameters is k ∈ K = {−(2nφ − 1), . . . , 2j0} ⊂ Z,



Chapter 3. Structural Generative Descriptions for Time Series Classification 49

where nφ denotes the order of the scaling function filter (for instance, nφ = 1 for db1,

nφ = 2 for db2, and so on).

3.4.2.2 Finite Gaussian Mixtures (FGM) Estimator

The second density estimation method suggested is the FGM estimator which assumes

that the component distributions belong to the parametric family of Gaussian functions.

Here, the probability domain subpattern x̆ip which is the probability density of the wavelet

domain subpattern x̄ip = {x̄
i
p(vp)}vp∈Vp with Vp = {1, . . . , |x̄

i
p|}, can be expressed according

to the following equation:

x̆ip = f̂
i
p(uq) =

∑K
k=1 ŵ

i
p,kϕ

i
p,k(uq)

=
∑K
k=1 ŵ

i
p,kN (uq; μ̂

i
p,k, Σ̂

i
p,k)

(3.14)

where K is the number of components in the mixture, N (uq; μ̂ip,k, Σ̂
i
p,k) is a normal distri-

bution with mean μ̂ip,k, covariance matrix Σ̂
i
p,k and mixture weight ŵ

i
p,k evaluated at point

uq ∈ U . Here the mixture weights have the constraint
∑K
k=1 ŵ

i
p,k = 1.

3.4.3 Remarks on the SGDs Algorithmic Instantiations

The block diagram for the proposed algorithms is presented in Figure 3.2. Note that since

the SGDW algorithm relies on linear WDE as density estimate, primitives are the scaling

functions φ(∙), while their parameters {k}k∈K and their coefficients {ĉip,j0,k}k∈K are prim-

itive’s attributes and primitive’s relations, respectively. In contrast, in the SGDG algo-

rithm, primitives are the Gaussian functions ϕ(.) employed by the FGM density estimator,

with {μ̂ip,k}k∈K and {Σ̂
i
p,k}k∈K denoting primitive’s attributes and {ŵ

i
p,k}k∈K accounting

for primitive’s relations.

3.4.4 Features and Normalisation Strategies

In this section different alternatives for the feature vector are proposed. They differ in the

normalisation strategy they follow as well as in the characteristics of the primitive selected

as features.
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Figure 3.2: Proposed SGDW (Density Estimator=WDE) and SGDG (Density Estima-
tor=FGM) algorithms.

Normalisation is particularly required for SGDW algorithm to restrict the evaluation of

basis functions in the density estimation stage to the interval [0, 1]. Each data point

{x̄ip(vp)}vp∈Vp of the p time domain subpattern x
i
p is normalised according to the equation

x̂ip(vp) = (x̄
i
p(vp)− b

lower
p )/rp; where x̂

i
p(vp) is a normalised data point and the interval rp

is defined by rp = b
upper
p − blowerp . With bupperp and blowerp denoting the upper and the lower

observation bounds, which are related to the smallest and the greatest observation that

can be included in the WDE density estimate. Note that all the data points outside the

interval rp will be ignored by the WDE algorithm since they are outside the support of

the corresponding basis functions.

In this chapter global and local normalisation strategies are proposed. These strategies

basically differ in the selection of the upper and lower observation bounds, bu and bl. On

the one hand, global normalisation considers blowerp = μXp−3σXp and b
upper
p = μXp+3σXp ,

where μXp and σXp denotes the mean and standard deviation of all the p time domain

subpattern x̄ip of all the time series in a given data set X. This strategy, which is applicable

in cases where the whole data set is available, enables the use of the same set of basis

functions for the calculation of each WDE of all time series in a data set and in that

sense, it has a reduced computational burden . On the other hand, in local normalisation

blowerp = μxip−3σxip and b
upper
p = μxip+3σxip , where μxip and σxip are the mean and standard

deviation of a particular time domain subpattern x̄ip. Here, since different bases functions

are employed for each time series, additional parameters or attributes need to be included

in the feature vector. As a result, this strategy is computationally more expensive than

the global one.
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Among the advantages and disadvantages of choosing a particular feature and normalisa-

tion strategy, it can be highlighted that working directly with wavelet and scaling coeffi-

cients (for the case of SGDW), or working with means, covariances and mixture weights

(for the case of SGDG), is less computationally expensive than working with the recon-

structed density function. Note here that the coefficients/parameters can be seen as a

compact representation of the density. On the other hand, different normalisation strate-

gies, such as for example, global and local, offer different discrimination capabilities, as it

will become evident in the empirical evaluation of Chapter 4.

3.4.4.1 Features and Normalisation Strategies for SGDW

For the case of SGDW the following three strategies are studied:

Global coefficients as features : It considers that all probability domain subpatterns x̆ip for

all time series in a data set are constructed using a set of scaling functions {φj0,k}k∈K with

the same parameters k’s. Then, by defining a vector of scaling coefficients cip = {ĉ
i
p,j0,k
}k∈K,

the corresponding feature vector for pattern xi is

fxi = [c
i
1 • . . . • c

i
P ] (3.15)

where the symbol • denotes concatenation.

Local densities as features : The second alternative for the feature vector involves working

directly with the probability domain subpattern x̆ip = {f̂
i
p(uq)}uq∈U which is the density

function evaluated at some specific points uq ∈ U ; U ⊂ R. According to this the feature

vector fxi is expressed by:

fxi = [x̆
i
1 • x̆

i
2 • . . . • x̆

i
P ] (3.16)

Local coefficients as features : It assumes scaling functions with different parameters k

for the probability domain subpatterns x̆ip of each time series in a data set. If in Equa-

tion (3.12) and Equation (3.13) instead of using a generic k ∈ K, a specific kp ∈ Kp =

{−(2nφ− 1), . . . , 2j0} ⊂ Z is considered then the vector kip = Kp corresponding to each x̄
i
p

is additionally included on the feature vector which has the form
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fxi = [c
i
1 • . . . c

i
P • k

i
1 • . . . • k

i
P ] (3.17)

3.4.4.2 Features and Normalisation Strategies for SGDG

Regarding SGDG, no normalisation strategy is required, however two different alternatives

for the features are suggested.

Parameters as features : This strategy involves constructing feature vectors directly from

the sets of means, covariances and mixture weights of each probability domain subpattern

x̆ip. For this purpose, the vectors μ
i
p = {μ̂

i
p,k}k∈K, Σ

i
p = {Σ̂

i
p,k}j∈K and w

i
p = {ŵ

i
p,k}k∈K

are defined. Then, for each subpattern p the vector μip is sorted in an increasing order, in

such a way that, μip,l < μ̂ip,l+1 with l ∈ {1, 2, . . . ,K − 1}. Finally Σ
i
p and w

i
p are arranged

according to resulting order of μip. By following this strategy, the feature vector for x
i can

be expressed as:

fxi = [μ
i
1 • . . . • μ

i
P •Σ

i
1 • . . . •Σ

i
P •w

i
1 • . . . •w

i
P ] (3.18)

Densities as features : Similar to the third strategy for SGDW, it considers the density of

x̄ip evaluated at some specific points uq ∈ U ; U ⊂ R. Using x̆
i
p = {f̂

i
p(uq)}uq∈U to denote

the vector containing the corresponding values of the density evaluated at some points uq,

the feature vector can be defined by

fxi = [x̆
i
1 • x̆

i
2 • . . . • x̆

i
P ] (3.19)

Table 3.1 shows a summary of the above mentioned feature and normalisation strategies

for both SGDW and SGDG algorithms.

3.4.5 Computational Complexity

In this section the complexity analyses for the proposed SGDW and SGDG time series

representations are included. Since these representations comprise two subsequent steps,

their complexity can be estimated by considering the complexity of each algorithm involved
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Table 3.1: Features and normalisation strategies for SGDW and SGDG.

Algorithm Strategy Features Normalisation Feature Vector

SGDW1 Global
coefficients
as features

Scaling
function
coefficients

Global fxi = [c
i
1 • . . . • c

i
P ]

SGDW2 Local
densities
as features

Densities Local fxi = [x̆
i
1 • x̆

i
2 • . . . • x̆

i
P ]

SGDW3 Local
coefficients
as features

Scaling
function
coefficients

Local fxi = [c
i
1 • . . . c

i
P • k

i
1 • . . . • k

i
P ]

SGDG1 Parameters
as features

Means, co-
variances
and mixture
weights

- fxi = [μ
i
1 • . . .•μ

i
P •Σ

i
1 • . . .•Σ

i
P •w

i
1 • . . .•w

i
P ]

SGDG2 Densities as
features

Densities - fxi = [x̆
i
1 • x̆

i
2 • . . . • x̆

i
P ]

at each step. Additionally, since different strategies for the features for both SGDW and

SGDG representations are proposed, then they have different complexities associated.

Firstly, DWT decomposition has a complexity of O(N logN) [153]. Regarding the com-

plexity of the selected density estimation algorithm, for linear WDE it is O(N(2j0 +

2nφ)(2nφ − 1)3) where the term Nb = 2
j0 + 2nφ refers to the number of basis functions

evaluated at resolution 2−j0 to fully cover the interval [0, 1], nφ denoting the order of the

scaling function filter, and r expressing the precision in the evaluation of φ(.) [96]. For

the case of FGM the complexity is O(4IKN) [154], where K is the number of Gaussian

functions in the mixture and I is the number of iterations employed.

In this way, for WDE, the complexity of strategies based on coefficients as features (first

and third strategies) is the same as the complexity of the density estimation algorithm, that

is O(N(2j0+2nφ)(2nφ−1)3). Similarly, the complexity for the first strategy based on FGM,

parameters as features, is equal to the complexity of estimating FGM, ∼ O(4IKN). On the

other hand, for strategies relying on densities as features, which considers the evaluation

of the density at Q data points, the complexity is O((N + Q)(2j0 + 2nφ)(2nφ − 1)3) for

WDE and O(4IKN +QK) for FGM.

Since in the proposed framework a multiresolution strategy is followed, the density estima-

tion step is not applied over the original time series of length N , instead of that, it works

with the subpatterns generated by the DWT decomposition which have a reduced length

that depends on the decomposition level. Note that as the level increases, the number of

data points used by the corresponding density estimation block at that level decreases.

By considering that DWT includes an approximation of length N
2M
and a set of details at
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different resolutions with lengths N2 +
N
4 + ∙ ∙ ∙+

N
2M
then the complexity of estimating the

density of each element in a DWT structure using WDE is O(N(2j0 +2nφ)(2nφ − 1)3) for

the first and the third feature strategies and O((N+Q(M+1))(2j0+2nφ)(2nφ−1)3) for the

second strategy. In a similar way, the complexity of all the densities in a DWT structure

using FGM is O(4IKN) for the strategy based on coefficients and O(4IKN+QK(M+1)).

Finally, by combining the complexity of DWT decomposition and density estimation steps,

the overall complexity can be obtained, which for SGDW is given by O(N(2j0 + 2nφ +

logN)(2nφ − 1)3) when using coefficients as features and O((N +Q(M + 1))(2j0 + 2nφ +

logN)(2nφ−1)3) when using densities as features. For SGDG there is a complexity equal to

O((4IK+logN)N) when using parameters as features and O((4IK+logN)N+QK(M+

1)) when using densities as features.

3.5 Two Online Algorithmic Instantiations

The online algorithms proposed in this section follow the idea of the SGDs time series

representation framework presented in Section 3.3. However, since these algorithms are

intended to work with unbounded streaming data, the corresponding primitive’s attributes

and primitive’s relations are, in the online context, time dependent. Hence, a recursive

updating strategy is required for the SGDs representations, to obtain a time dependent

feature vector, every time a new data item becomes available.

Similar to the SGDs representations for time series, their online incremental counterpart

in turn can be divided into two main successive stages, namely: (1) online multiresolution

decomposition and (2) online density estimation. In the online multiresolution decomposi-

tion stage, incoming streaming data is decomposed into subpatterns at different resolutions

using linear filtering methods. In the online density estimation stage, data streams sub-

patterns are mapped into the probability domain by applying recursive density estimation

techniques. Both algorithms rely on the use of RWDE for the density estimation stage and

differ in the online multiresolution approach adopted. While the first algorithm, referred

to as OSGD-D, is based on an online implementation of DWT, the second algorithm, called

OSGD-E, is based on an ensemble of Exponential Weighting Moving Average (EWMA)

filters.
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Note that the proposed online SGDs algorithms assume a set of N univariate data streams

X = {xi}, i ∈ N = {1, 2, . . . , N}, where each xi = {xi(t)} is an ordered sequence of real

valued observations taken at discrete times t ∈ T = {1, 2, . . .}. Therefore, the objective

of the description task is to extract, every time a new data item becomes available, an

updated fixed-length feature vector fxi(t) from xi(t), suitable to perform subsequent data

mining tasks, that is, clustering and change detection.

3.5.1 Online Multiresolution Decomposition

The first step in the online SGDs algorithms proposed is the online multiresolution decom-

position of streaming data using online filtering concepts. On the one hand, the proposed

OSGD-D algorithm, is based on an Online Discrete Wavelet Transform (ODWT) which

can be seen as a set of low and high pass Finite Impulse Response (FIR) filters. On the

other hand, the proposed OSGD-E algorithm considers a multiresolution implementation

of Infinite Impulse Response (IIR) EWMA filters (MREWMA). Note that, since ODWT

relies on a bank of FIR filters (wavelet and scaling function filters) it is a sliding window-

based approach. In contrast, the MREWMA decomposition method, which is based on

IIR concepts, is an exponential window-based technique .

3.5.1.1 Online Discrete Wavelet Transform (ODWT)

The first online multiresolution decomposition proposed is based on DWT whose theoret-

ical foundations where presented in Chapter 2. In [59], Mallat proposed a fast algorithm

for computing the wavelet decomposition of signals based on representing the projection

of data onto the corresponding basis function as a filtering operation. In this way, con-

volution with a filter h̃ represents projection on the scaling function, whereas convolution

with a filter g̃ represents projection on a wavelet. Thus, coefficients at different resolutions

are obtained using the following equations

am = h̃ ∗ am−1 (3.20)

dm = g̃ ∗ am−1 (3.21)
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where am and dm are the vectors of scaling and wavelet coefficients associated with res-

olution 2−m, with the symbol ∗ denoting convolution, and m referring to the level of

decomposition. Here, the original signal is considered to be at level m = 0 and resolution

20 whereas the level m =M is associated with the coarsest resolution for the analysis 2−M ,

here m,M ∈ Z. Note that the procedure defined by Equation (3.20) and Equation (3.21)

has a recursive nature since, at level m, both the vector of scaling coefficients am and the

vector of wavelet coefficients dm are obtained using the vector of scaling coefficients at a

lower level of decomposition m− 1.

The online implementation of DWT proposed in this chapter consists in updating DWT

coefficients every time a new data item is available. Since data stream applications require

the online processing of arriving data then the updating strategy focuses only on updating

the most recent DWT coefficients at each resolution. For this, a sliding window approach

is followed in which different window sizes are employed at each level of decomposition.

Therefore, the length of window is equal to the length of the corresponding filter at that

decomposition level.

The proposed approach do not consider any down sampling operation as in [59], and in

that sense, different filters h̃ and g̃ are used at each level of decomposition. These filters

are directly applied over the vector xiw containing the data items covered by the sliding

window for data stream xi. Since these filters now depend on the level, they are denoted as

h̃m and g̃m, respectively. According to this, and in the context of the proposed framework,

Equation (3.20) and Equation (3.21) can be rewritten using matrix notation as:

aim(t) = h̃mx
i
wm (3.22)

dim(t) = g̃mx
i
wm (3.23)

where aim(t) and d
i
m(t) are the outputs of the filters h̃m and g̃m, respectively. Note that

aim(t)
′s and dim(t)

′s are the so called approximation and detail coefficients of xiwm . Here,

at level m, the filters are defined by

h̃m = [hm(0), . . . , hm(Lm − 1)] (3.24)

g̃m = [gm(0), . . . , gm(Lm − 1)] (3.25)
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where Lm is the length of the filter and the window covering the most recent Lm data

items at level m is expressed by:

xiwm = [x
i(t), . . . , xi(t− Lm + 1)]

T (3.26)

In Equation (3.22) and Equation (3.23) the most recent Lm data items of a data stream

xi, which are covered by a sliding window xiwm , are decomposed into scaling and wavelet

coefficients of resolution m.

According to the SGDs framework introduced in Chapter 3, and following inverse DWT

concepts, the online time domain subpattern of xi inside the window xiwM corresponding

to level M associated with the coarsest resolution 2−M can be expressed as:

xiM = a
i
M (t)hM (3.27)

The time domain subpatterns related to higher resolutions can be defined as:

x̃im = d
i
m(t)gm (3.28)

where hm and gm denote reconstruction filters and the subpatterns x
i
M and x̃

i
m have the

form xiM = [x
i
M (t), . . . , x

i
M (t − Lm + 1)]

T , x̃im = [x̃
i
m(t), . . . , x̃

i
m(t − Lm + 1)]

T . Figure

3.3 shows both the analysis as well as the synthesis digital filter structures for ODWT.

Note however, that in the proposed framework only the part related to the analysis is

used. Hence, the synthesis block is shown only for completeness, and because it helps to

understand the structural concepts behind the proposed ODWT algorithm. It is important

to highlight from Figure 3.3 the time variant nature of xiwm as well as of its corresponding

subpatterns xiM and x
i
m’s, which now depend on t.

The structural organisation of the proposed online multiresolution decomposition, in which

the data stream pattern xi is constructed by combining its corresponding subpatterns at

different resolutions, becomes more evident when the synthesis block of Figure 3.3 and the

following formal expression are considered:

xi(t) = xiM (t) +
∑

m

x̃im(t) (3.29)
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Hm +

Gm

aim(t)

Analysis filter bank Synthesis filter bank

dim(t)

xim
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xiwm

xiwm

aim(t)

dim(t)

Figure 3.3: ODWT filter banks.

In the SGDs framework, coefficients aiM (t) and d
i
m(t) are considered condensed represen-

tations of xM and x̃m, since they contain all the information corresponding to resolutions

2−M and 2−m, respectively. In this way, the set of P online multiresolution wavelet domain

subpatterns of xi at time stamp t can be expressed as:

{x̄ip(t)}p∈P = {a
i
M (t), d

i
M (t), d

i
M−1(t), . . . , d

i
1(t)} (3.30)

where {x̄ip(t)}p∈P with P = {1, 2, . . . , P} and P =M+1. Note that since one subpattern at

resolution 2M and M subpatterns at higher resolution are involved then the total number

of subpatterns P is equal to M + 1.

Note that from the point of view of digital signal processing, both h̃m and g̃m of Equa-

tion (3.24) and Equation (3.25) are in fact Weighted Moving Average (WMA) FIR fil-

ters. In that sense, Equation (3.22) and Equation (3.23) can be rewritten as am(t) =
∑Lm−1
k=0 hm(k)x(t−k) and dm(t) =

∑Lm−1
k=0 gm(k)xm(t−k), where am(t) and dm(t) are the

outputs of the scaling filter h̃m and the wavelet filter g̃m, respectively.

The pseudocode for the proposed ODWT approach is shown in Algorithm 3.1. The up-

dating strategy followed is depicted in Figure 3.4. A diagram showing how filters h̃m and

g̃m are arranged in the proposed online DWT structure is presented in Figure 3.3

Algorithm 3.1: ODWT (xiw, h̃M , {g̃m}m∈M,M )

1
Input: xiw: A vector with the Lm most recent data items available from data stream x

i; h̃M :
Scaling filter at level M associated with resolution 2−M ; {g̃m}m∈M: Set of wavelet filters;
M : Number of decomposition levels.

Output: aiM (t): The most recent scaling function coefficient for x
i(t) at decomposition level M ;

{ dim(t)}m∈M: Set of the most recent wavelet coefficients for x
i(t) at decomposition

levels m ∈ {1, . . . ,M}.
for m← 1 to M do

dim(t) = g̃mx
i
w

aiM (t) = h̃Mx
i
w
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Figure 3.4: Updating strategy for the proposed ODWT.

3.5.1.2 Multiresolution Exponentially Weighted Moving Average (MREWMA)

The second online multiresolution decomposition strategy proposed relies on the use of

exponential discounting concepts, and its main idea is the construction of IIR filters with

similar frequency response than the bank of wavelet FIR filters in a DWT structure. The

IIR filter here considered is the so called EWMA filter2, which is a recursive low-pass

IIR filter where the contribution of past observations decreases exponentially as more

observations become available.

Note that the EWMA filter represents data at a single resolution. Hence, in order to

construct a EWMA-based multiresolution structure, an ensemble of these linear filters,

each of them with a different cutoff frequency, is required. For this purpose, a methodology

similar to the one used for DWT is followed. Using m ∈ M = {1, . . . ,M}, M ⊂ Z to

denote the decomposition level associated with resolution 2−m, considering the original

data stream to be at m = 0, and relating the level at m = M to the coarsest resolution

2−M , then the output of the filter at level m can be defined by:

xim(t) = αmx
i
m−1(t) + (1− αm)x

i
m(t− 1) (3.31)

where 0 < αm < 1. In Equation (3.31) each output xim(t) is the weighted average of

the previous output of the filter xim(t − 1) and the most recent data item at previous

decomposition level xim−1(t). Note here that x
i
0(t) is the most recent data item of the

original data stream.

2In financial data analysis, this filter is also known as exponential smoothing [155], while in digital signal
processing, it is often called the alpha filter [156].
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According to Equation (3.31) the weights assigned to previous values of xim(t) decrease

exponentially depending on the value of parameter αm. Where the choice of αm depends

on the importance given to the current data item as compared to previous data items.

Then by choosing different values of αm for each decomposition level, a multiresolution

weighting scheme can be implemented.

Similar to Equation (3.27) the most recent element xiM (t) belonging to time domain sub-

pattern of xi corresponding to the level M associated with the coarsest resolution 2−M is

expressed as:

xiM (t) = αMx
i
M−1(t) + (1− αM )x

i
M (t− 1) (3.32)

Then, by considering the difference between consecutive approximations, subpatterns at

successive resolutions, x̃im(t) can be expressed by:

x̃im(t) = x
i
m−1(t)− x

i
m(t) (3.33)

where m ∈M = {1, . . . ,M},M⊂ Z.

The structural organisation of the proposed MREWMA becomes evident when, at a given

time stamp t, the sum of the online multiresolution subpatterns of x̃im(t) and x
i
M (t) is

considered. This sum which is equals to xi(t) can be formally expressed as:

xi(t) = xiM (t) +
∑

m

x̃im(t) (3.34)

Therefore, the set of P multiresolution subpatterns of xi(t) can be expressed by the fol-

lowing equation:

{x̄ip(t)}p∈P = {x
i
M (t), x̃

i
M (t), x̃

i
M−1(t) . . . , x̃

i
1(t)} (3.35)

where {x̄ip(t)}p∈P with P = {1, 2, . . . , P} and the total number of subpatterns P =M +1.

Using the z-transform the transfer function of this filter can be expressed as Hαm(z) =

αm
1−(1−αm)z−1

. In time domain the input-output relation of this filter can be expressed
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as hαm(t) = αm(1 − αm)
nu(t). Then, Equation (3.31) can be rewritten as xim(t) =

∑∞
k=−∞ hαm(k)x

i
m−1(t− k).

The updating strategy and the corresponding pseudocode for the proposed MREWMA are

shown in Figure 3.5 and Algorithm 3.2, respectively. Note that in Figure 3.5, the colour

indicates the importance given to new data, where the lighter the colour the higher the

importance.
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Figure 3.5: Updating strategy for the proposed MREWMA.

Algorithm 3.2: MREWMA (xi(t), {αm}m∈M,M )

1
Input: xi(t): the most recent data item available from data stream xi; {αm}m∈M: Set of

discounting parameters; M : Number of decomposition levels.
Output: xiM (t): approximation for x

i(t) at resolution M ; {x̃im(t)}m∈M: Set of details for x
i(t)

at resolutions m ∈M.
xi0(t) = x

i(t)
for m← 1 to M do

xim(t) = αmx
i
m−1(t) + (1− αm)x

i
m(t− 1)

x̃im(t) = x
i
m−1(t)− x

i
m(t)

+

Z-1

+

xim(t)xim-1(t)

-1
1- m

m

xim(t)~

Figure 3.6: Online EWMA.

For the estimation of each αm in the MREWMA algorithm an optimisation procedure is

used. This procedure minimises the following cost function:
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argmin
αm∈(0,1)

{ ∣
∣
∣ωh̃mc − ωEWMA(αm)c

∣
∣
∣

}

(3.36)

where ωh̃mc and ω
EWMA(αm)
c denote the normalised cutoff frequencies for the filter h̃m and

the EWMA filter with parameter αm, respectively.

The objective of Equation (3.36) is to find EWMA filters with similar frequency response

than the ones produced by the use of the scaling function filters h̃m of the ODWT approach.

For this purpose the optimisation criterion of Equation (3.36) is used to find the value of

αm that produces a filter with similar cutoff frequency than the scaling function filter

at decomposition level m associated with resolution 2−m. Note that in the proposed

MREWMA, only scaling function filters ar required, as it can be seen in Figure 3.6, where

its corresponding filter bank structure is depicted.

The frequency response for the db1 scaling function filter and the corresponding EWMA

approximations is shown in Figure 3.7. Additionally, Table 3.2 includes the correspond-

ing αm’s, estimated following the procedure of Equation (3.36), for the first six levels of

decomposition m of the first six wavelets from the Daubechies family.
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Figure 3.7: EWMA filters with similar frequency response than the db1 scaling function
filters of ODWT for different levels m.

Figure 3.8 shows the corresponding results when the traditional DWT and the proposed

ODWT and MREWMA algorithms are applied to an example non stationary data stream.
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Table 3.2: EWMA filters with similar cutoff frequency than scaling function filters from
the wavelet Daubechies family.

Wavelet
Decomposition Cutoff frequency of αm of corresponding

level scaling function filter (rad/π) EWMA Filter

db1

1 0.7964 0.8079
2 0.3581 0.5617
3 0.1744 0.3365
4 0.0864 0.1871
5 0.0440 0.0973
6 0.0220 0.0386

db2

1 1.0352 0.8650
2 0.5074 0.6180
3 0.2529 0.4475
4 0.1272 0.2613
5 0.0628 0.1378
6 0.0314 0.0691

db3

1 1.1373 0.8815
2 0.5655 0.7120
3 0.2827 0.4818
4 0.1414 0.2833
5 0.0707 0.1570
6 0.0346 0.0786

db4

1 1.1985 0.8903
2 0.5985 0.7294
3 0.2985 0.5001
4 0.1492 0.2997
5 0.0754 0.1646
6 0.0377 0.0902

db5

1 1.2378 0.8948
2 0.6189 0.7393
3 0.3094 0.5115
4 0.1539 0.3047
5 0.0770 0.1672
6 0.0393 0.0892

db6

1 1.2676 0.8983
2 0.6346 0.7465
3 0.3173 0.5203
4 0.1587 0.3123
5 0.0785 0.1701
6 0.0393 0.0892

Note that DWT results depicted in Figure 3.8 were obtaining by using an offline batch-

based processing approach which means that the decomposition process considered the

whole data stream and was applied once. On the contrary, results for ODWT and

MREWMA were obtaining by following an online approach. There are two main ob-

servations from this figure. The first one is that, both ODWT and MREWMA algorithms

are able to separate information at different scales. The second observation is that results

regarding detail coefficients for the level of decomposition m = 3 are the ones more dis-

similar respect to the result provided by the use of DWT. This is due to the fact that in

the offline implementation, at a given level of decomposition, each data sample is involved

in the computation of one single coefficient. On the contrary, in the online context, each

sample may be related to consecutive coefficients depending on the size of the wavelet
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or scaling filter (for ODWT) or depending on the value of the corresponding parameter

αm (for MREWMA). As a result, the decomposition provided by the proposed algorithms

is redundant, and this redundancy increases as the level of decomposition also increases.

Note however that redundancy could be an advantage in some cases, specially when dealing

with missing information.
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Figure 3.8: A comparison between DWT and the proposed ODWT and MREWMA
algorithms for a given example signal using db1 as wavelet.

3.5.2 Online Density Estimation

The second stage in the proposed online SGDs algorithms consists of mapping of online

multiresolution subpatterns obtained using either ODWT or MREWMA into the prob-

ability domain by estimating their corresponding probability densities. For this purpose

the RWDE suggested in [157] is used. Note that this estimator is based on EWMA con-

cepts and, in that sense, it relies on the use of an exponential discounting strategy for the

updating estimator’s coefficients.

Since in data streams applications are constrained by computational restrictions, this work

considers the simplest RWDE, which is a linear estimator defined by:
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f̂ ip(uq) =
∑

k

ĉip,j0,kφj0,k(uq) (3.37)

where φj0,k(uq) = 2
−j0/2φ(2−j0uq − k) is the scaling function associated with the base

resolution 2−j0 , j0 ∈ Z and k ∈ K ⊂ Z. Here uq ∈ U = {u1, . . . , uQ}; U ⊂ R denotes a set

of data points in which the density f̂ ip is evaluated.

In Equation (3.37), the estimator’s coefficients ĉip,j0,k(t) are recursively updated as new

data items arrive according to the equation:

ĉip,j0,k(t) = (1− θ)ĉ
i
p,j0,k
(t− 1) + θφj0,k(x̄

i
p(t)) (3.38)

where θ is the estimator’s discounting parameter that controls the emphasis assigned to

new data respect to the older one. Note that in this thesis the notation used for the

discounting parameter is different from the originally presented in [157]. Here, the term

1 − θ is the one associated with the weighting value for ĉip,j0,k(t − 1). By following this

strategy θ can be directly related to a sliding window of length w = 1/θ. In this way, if for

example, the estimation of the density related to the 100 most recent data items available

is required, then θ is set to 1/100. Moreover, it is important also to highlight that in

Equation (3.38) it is normally assumed that x̄ip(t) takes values within the interval [0, 1], in

this way the set of translation indices becomes K = {−(2nφ − 1), . . . , 0, . . . , 2j0} with nφ

denoting the length of the filter φj0 . For further details about the online implementation

of online WDE’s the reader is referred to [96, 157].

Recall that for the SGDs framework introduced in Section 3.3, at time stamp t, the online

probability domain subpattern x̆ip(t) related to the p-th decomposition level could be either

the density f̂ ip(uq) evaluated at some points uq, or could be the set of Nb scaling function

coefficients (where Nb = 2nφ+2
j0) which are a condensed representation of the former. By

taking into account that in the online context the algorithm with the lowest computational

complexity is preferred, then, for the online OSGDs algorithms the corresponding RWDE

coefficients from time domain subpattern x̄ip(t) are selected as the online probability domain

subpatterns for the data stream xi.
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3.5.2.1 Normalisation and Feature Vector Integration

The SGDs online alternatives also require the normalisation of input observations. In

order to restrict the evaluation of basis functions to the interval [0, 1] in the RWDE stage,

a similar approach than the one used in Section 3.4.4 for SGDW algorithms is followed.

Specifically, each online probability domain subpattern x̆ip(t) is then normalised according

to the equation x̂ip(t) = (x̆
i
0(t)− b

lower
p )/r; where x̂ip(t) is a normalised data point and the

interval r is defined by r = b
upper
p − blowerp . Here, blowerp and bupperp are the the upper and

the lower observation bounds related to the smallest and the greatest observation that can

be included in the RWDE density estimate. Note that all those data point outside the

interval r would be ignored by the RWDE algorithm since they are outside the support of

the corresponding basis functions.

For the online context global normalisation is choosen since, this strategy presents the

lowest computational time. This strategy considers the same bounds bupperp and blowerp for

the online probability domain subpatterns x̆ip(t) at the same decomposition level of all the

data streams xi in a data set. Hence, it is suggested to set blowerp = μXp−3σXp and b
upper
p =

μXp + 3σXp , where μXp and σXp denotes the mean and standard deviation of the set

{xip(t)}i∈N ,t∈T . By following this strategy the same set of basis functions {φj0,k}j0∈Z,k∈K

are used in RWDE at each level of decomposition p for all data streams in a data set.

Regarding the features, it is proposed to use the coefficients of the density estimator stage.

Formally, by defining a vector of scaling function coefficients cip(t) = {ĉ
i
p,j0,k
(t)}k∈K, the

corresponding feature vector for data stream pattern xi at time stamp t is expressed by:

fxi(t) = [c
i
1(t) • . . . • c

i
P (t)] (3.39)

where the symbol • denotes concatenation.

In Figure 3.9 the block diagrams for the proposed OSGD-D and OSGD-E algorithms are

depicted. Their corresponding psuedocodes are presented in Algorithm 3.3, for OSGD-D,

and Algorithm 3.4, for OSGD-E. It can be noted from Figure 3.9 that both algorithms

share the RWDE stage and the way time domain subpatterns are extracted is what makes

both techniques different. Since the ODWT stage in OSDG-D is based on FIR concepts

the set of the most recent Lm data items available are needed for the extraction of time
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domain subpatterns. In contrast, for the MREWMA stage in OSGD-E, which relies on

IIR concepts, only the most recent data item is required.
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Figure 3.9: Proposed OSGD-D (Online multiresolution decomposition=ODWT) and
OSGD-E (Online multiresolution decomposition=MREWMA) algorithms.

Algorithm 3.3: OSGD-D(x, P )

1
Input: xiwM = {x

i(t− LM + 1), . . . , xi(t)}: The set of LM most recent data items from data
stream xi ; M : Number of decomposition levels

Output: A feature vector fxi(t) for x
i at time stamp t.

1. Decompose xi(t) using Algorithm 3.1 to obtain, at time stamp t, the set of online
multiresolution subpatterns {x̄ip(t)}p∈P .

2. Using each x̄ip(t) estimate, at time stamp t, the corresponding probability domain subpattern

x̆ip(t) using RWDE.

3. For each xi obtain, at time stamp t, the corresponding feature vector using Equation 3.39.

Algorithm 3.4: OSGD-E(x, P )

1
Input: xi(t): The most recent data item available from data stream xi; M : Number of

decomposition levels
Output: A feature vector fxi(t) for x

i at time stamp t.
1. Decompose xi(t) using Algorithm 3.2 to obtain, at time stamp t, the set of online
multiresolution subpatterns {x̄ip(t)}p∈P .

2. Using each x̄ip(t) estimate, at time stamp t, the corresponding probability domain subpattern

x̆ip(t) using RWDE.

3. For each xi obtain, at time stamp t, the corresponding feature vector using Equation 3.39.

Figure 3.10 shows the corresponding OSGD-E and OSGD-D representations for a given

non stationary data stream, which presents three different temporal behaviours: 1) Sinu-

soidal behaviour (from time stamp 1 to 1000) 2) Sinusoidal behaviour plus high frequency

Gaussian noise (from time stamp 1001 to 2000) and 3) Gaussian noise behaviour (from

time stamp 2001 to 3000). The first aspect that is important to highlight from Figure

3.10 is that the two proposed representations are very similar, with a correlation 97.69%
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between them. It can also be observed that probability domain subpatterns associated

with different resolutions are able to capture different aspects of the studied stream. For

instance, for both techniques, the probability domain subpattern 1, is capable of modelling

the properties of the generation process at low frequencies while the probability domain

subpattern 2 is useful to capture high frequency characteristics.
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Figure 3.10: OSGD-D and OSGD-E representations for an example data stream.

3.5.3 Computational Complexity

In this section the complexity analysis of the proposed OSGD-D and OSGDG-E algorithms

is presented. Since these online data stream representations comprise two subsequent

stages, their complexity can be estimated by considering the complexity of each algorithm

involved at each stage.

Regarding the multiresolution stage, the proposed ODWT algorithm requires in total (L1+

L2+ . . .+LM ) +LM ≈ 3LM multiplications resulting in a complexity similar to O(3LM ),

where LM is the length of the filter at the coarsest resolution of the analysis 2
−M . On

the other hand, MREWMA involves 3 multiplications per coefficient, and since there are

2nφ + 2
m coefficients at the level of decomposition m, then its corresponding complexity

for the whole multiresolution structure is similar to O(9(2M+1)).
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The complexity of the density estimation stage, which for both algorithms is based on

RWDE, involves the evaluation of φj0,k(.) for each of the Nb = (2nφ+2
j0) scaling functions

employed using a given j0. This evaluation relies on the so called Daubechies-Lagarias

Algorithm (see Appendix A for more details) where two are the variables involved: the

order of the filter nφ, and the accuracy of the algorithm r. Hence, the complexity of

evaluating φj0,k(.) for a single scaling function is O(r(2nφ0 − 1)
3) while the complexity of

updating all the estimator’s coefficients is O(rNb(2nφ − 1)3).

By combining the complexity of the above defined multiresolution decomposition and den-

sity estimation stages, the complexity of the OSGD-D algorithm is O(3rLMNb(2nφ − 1)3)

while the complexity of the OSGD-E algorithm is O(9rNb(2
M+1)(2nφ − 1)3).

Note that the computational complexity of the proposed OSGD-based algorithms is the

same for every arriving data item and it does not depend on the amount of arriving data

to be processed.

Regarding the amount of memory, the OSDG-E algorithm only requires to store the last

available data item for each level of decomposition m and the corresponding αm, resulting

in a space complexity equal to 2M . For the case of OSGD-D, the scaling and wavelet

filters associated with each decomposition level in the multiresolution decomposition stage

as well as the last LM data items from the stream need to be stored in memory. This

results in a space complexity similar to 3LM .

3.6 Final Remarks

In this chapter, a novel time series representation framework suitable for classification ap-

plications involving time series and data streams was proposed. This representation relies

on including generative and structural aspects into a fixed length statistical feature vector

to allow the subsequent use of any of the well established decision-theoretic methods in

the classification stage. The proposed SGDs representation framework provides a com-

pact structural representation for time series and data stream patterns that captures the

generation process of the data at different resolutions. The framework comprises: 1) a

multiresolution decomposition stage in which input patterns are decomposed into simpler

subpatterns at different resolutions; and 2) a subsequent density estimation stage in which

decomposed patterns are mapped to the probability domain.
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In addition to this, two off-line and two online algorithms relying on the proposed SGDs

representation framework, as well as different strategies for the selection of their corre-

sponding features were also proposed. The off-line algorithms are based on DWT for the

multiresolution decomposition stage, and while the first algorithm uses WDE as density

estimator the second method is based on FGM to estimate the density.

Regarding online algorithms, the underlying idea was to reformulate the two stages of

off-line SGDs in a recursive manner in order to update the SGDs representations as new

data items become available. Hence, the online framework involves the online learning of

a set of different resolution probability-domain subpatterns for input data. The multires-

olution decomposition stage, for the first online algorithm proposed considers an online

implementation of DWT, while for the second online algorithm is based on EWMA filters.

Both algorithms rely on RWDE for the online density estimation stage.



In this electric age we see ourselves being translated more and more

into the form of information, moving toward the technological

extension of consciousness.

Marshall Mcluhan,

Understanding Media: The Extensions of Man, MIT Press, (1994)

Chapter 4

Empirical Evaluation of SGDs

Algorithms

In this chapter the empirical evaluation for the offline and online algorithmic instantiations

of the proposed SGDs framework is presented. The offline algorithms are evaluated in the

context of time series classification using benchmark synthetic and real world data. The

performance of the online algorithms is assessed in the context of change detection and

clustering of data streams.

This chapter is organised as follows. In Section 4.1, the empirical evaluation for the pro-

posed offline SGDs representations is conducted. Section 4.2 presents the corresponding

evaluation experiments for the proposed online SGDs algorithms. Final remarks are dis-

cussed in Section 4.3.

4.1 Empirical Evaluation Offline of SGDs Algorithms

The empirical evaluation of the proposed SGDs algorithms is divided into two parts. In

the first part the computation time of the SGDs algorithmic instantiations is evaluated. In

71
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the second part the performance evaluation of the algorithms is carried out on four classifi-

cation experiments. The first experiment evaluates the SGDs algorithms using a synthetic

data set. The second experiment is conducted on rolling element bearing vibration data

obtained from the Case Western Reserve University Bearing Data Center (CWRU) [158].

In the third experiment the algorithms are evaluated in a biometrics application using

ECG data. Finally, the fourth experiment uses 42 benchmark time series data sets from

the University of California Riverside (UCR) time series repository [159].

The procedures used in the assessment consider the fact that algorithms will have differ-

ent values for their corresponding tuning parameters. For this purpose grids with nodes

of the form (W,M, j0) for SGDW and with nodes of the form (W,M,K) for SGDG

are constructed, where each node is a particular combination of the tuning parame-

ters. On the above setting the evaluation is done for each identified node. Specifically,

W = {db1, db2, db3, bior1.3, bior5.5, coif1, coif3, sym2, sym4} is the wavelet of the DWT

decomposition stage, M ∈ {1, . . . , 6} is the number of decomposition levels, j0 ∈ {1, . . . , 6}

is the index related to the base resolution for the WDE stage in SGDW algorithms, and

K ∈ {1, . . . , 6} is the number of Gaussian functions in the FGM stage of SGDG ap-

proaches. The Symlet of order 4 (Sym4) is selected as the basis function for the WDE

stage in SGDW-based algorithms since it is the least asymmetrical wavelet function [74].

4.1.1 Computation Time Assessment

This assessment focuses on the estimation of the time required by a reference computer1

to obtain the different variants of the SGDs representations using in turn, different values

for their corresponding parameters. For this evaluation a data set comprising 10 stochastic

time series of length 1000 generated from the Gaussian distribution N (0, 1) is used. The

computation time required to obtain a given SGDs representation, using the proposed

SGDW and SGDG algorithms, with different normalisation and feature strategies is de-

picted in Figure 4.1. In order to facilitate visualisation, for each algorithm all those nodes

from the same wavelet and the same K or j0 (depending on the case) but with different

decomposition levels M are averaged. In this way, a surface for each algorithm with axes

consisting of the wavelet and K or j0 is obtained.

1 The computer system used to generate the results reported in this section was an Intel i5 2500k with
8 GB of RAM, running on Linux Ubuntu 11.04 and the simulation environment was MATLAB R2010b.
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Figure 4.1: Computation time for SGDs representations using an example data set of
10 time series of length 1000, generated from the Gaussian distribution N (0, 1).

The first aspect that is important to highlight from Figure 4.1 is that, since the density

estimation technique of SGDW algorithms have higher computational complexity than

the one used by the SGDG approaches, the three alternatives for the former are more

time consuming than the two versions evaluated for the latter. Note for example that

for the nine wavelets evaluated the lowest computation time for SGDW-based algorithms

is around 3 seconds, and it is obtained when j0 = 1. Conversely, the computation time

when using SGDG-based methods is close to 0.1 seconds for K = 1 and it increases as

the value of K increases. Furthermore, the slope of the surfaces of Figure 4.1 indicates

that in SGDG algorithms there is a high difference of complexity for different values of

K. In contrast, the complexity of SGDW-based algorithms suffer a subtle variation when

j0 is modified, specially when 1 < j0 < 3. Note that this is an expected result, since the

number of basis functions considered in the density estimation stage of SGDW algorithms

increases exponentially as j0 increases.

In Figure 4.2 the computation time obtained using SGDW and SGDG algorithms with

different values of M and K or j0, depending on the case, is averaged for each wavelet.

The first observation from Figure 4.2 is that, as it was shown in Figure 4.1, SGDG-based

algorithms are around 40% faster than whichever of the three SGDW-based methods. Note
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also that, in general, the resulting computation time for the proposed algorithms is quite

similar using different wavelets.
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Figure 4.2: Averaged computation time for SGDW and SGDG algorithms.

4.1.2 Performance Evaluation of the two SGDs Algorithmic Instantia-

tions

For the four experiments here conducted, the evaluation consists in obtaining the corre-

sponding representation using the proposed SGDs algorithms or a particular benchmark

method, for each and every one of time series in a given data set. Each representation is

evaluated considering different values of its tuning parameters.

Since the main purpose of these evaluations is the comparison of the description capabili-

ties of the proposed SGDs representations in the context of time series classification, the

resulting representations are used as inputs for one simple classifier. The chosen classifier is

the 1-NN algorithm, which among the time series classification and clustering community

is strongly recommended for comparisons [159]. The evaluation presented in this chapter

considers five distance measures. They are the Euclidean Distance (ED), the Standardized

Euclidean distance (SE), the Cosine distance (CO), the Chebyshev distance (CH) and the

Correlation distance (CR). More details about these distance measures are provided in

Table 4.1.

Regarding the benchmark time series representations the evaluation considers the 21 tech-

niques listed in Table 4.2, from which among the most relevant ones methods relying on

wavelet and Fourier transforms, Piecewise Aggregate Approximation (PAA) [160], Cheby-

shev polynomials and Autoregressive models could be cited. Note that PAA is the core

of the so called symbolic aggregate approximation algorithm (SAX) [87, 161], which is



Chapter 4. Empirical Evaluation of SGDs Algorithms 75

Table 4.1: Distance measures used in the experiments.

Name Abbr Description Formula

Euclidean dis-
tance

ED The traditional distance
between two points given
by the Pythagorean for-
mula.

ED(y, w) =
√
(y − w)(y − w)T *

Standardised
Euclidean
distance

SE Each coordinate difference
is scaled by dividing by
the corresponding element
of the standard deviation.

SE(y, w) =
√
(y − w)V −1(y − w)T **

Cosine
distance

CO One minus the cosine of
the included angle between
points (treated as vectors).

CO(y, w) = 1− yqT√
(yyT )(wwT )

.

Chebyshev
distance

CH It considers the greatest
difference along any coordi-
nate dimension.

CH(y, w) = maxi( |yi − wi|).

Correlation
distance

CR One minus the sample
correlation between points
(treated as sequences of
values).

CR(y, w) = 1− (y−ȳ)(w−w̄)T√
(y−ȳ)(y−ȳ)T

√
(w−w̄)(w−w̄)T

*where T denotes the transpose.
**where V is the diagonal matrix of variances at each coordinate.

a popular symbolic time series representation. In Table 4.2, the first four columns refer

to the representation number n, the representation technique name, its abbreviation, and

the parameter or parameters selected as features for each representation. The last column

includes information about the parameters setting of each representation, indicating the

tuning parameter and the corresponding range of values considered in the evaluation.

Note that in Table 4.2 three approaches based on DFT and two based on DCT concepts

are included. Specifically, DFT refers to the method in which the periodogram is used

as feature vector. Regarding DFTW, it refers to the Welch’s method of power spectrum

estimation in which the Fast Fourier Transform (FFT) is used to estimate the power

spectra based on sectioning each time series, obtaining the periodogram for each section,

and then averaging these localised periodograms [163]. With respect to DFT2 it relies

on transforming a given time series into the frequency domain using DFT and uses the

corresponding coefficients as features [164]. For the case of DCT-based algorithms, DCT

refers to a DCT-based quantisation method in which thresholding is applied over the DCT

coefficients of a given time series, and the time series reconstructed from these thresholded

coefficients is used as feature vector. DCT2 is the technique that considers DCT coefficients

directly as features.
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Table 4.2: Benchmark representation techniques used in the experiments.

n Representation Name Abbr. Features Tuning parameters and Range

1 Raw Data RAW Data points -
2 Statistical Moments SM Mean and variance -
3 Discrete Wavelet Transform DWT Wavelet coefficients at

different decomposition
levels

Decomposition Level: {0− lmax}

4 Chebyshev Polynomials CHEB Polynomial coefficients Order: {1, . . . , 20}
5 Piecewise Aggregate Approx-
imation [160]

PAA Segments Segments: {1, . . . , 20}

6 ARMA Models ARMA Model coefficients AR Order: {1, . . . , 6}, MA Order:
{1, . . . , 6}

7 ARIMA Models ARIMA Model coefficients AR Order: {1, . . . , 6}, MA Order:
{1, . . . , 6}

8 Multiscale Entropy [162] MSE Entropy at different
scales

Scales:{1, . . . , 15}

9 Fuzzy Multiscale Entropy [1] FMSE Entropy at different
scales

Scales:{1, . . . , 15}

9 Discrete Fourier Transform DFT Periodogram data points Nterms: {1, . . . , 30}
11 Discrete Fourier Transform
(Welch’s Method)

DFTW Periodogram data points Nterms: {1, . . . , 20}, Segments:
{1, . . . , 10}

12 Autocorrelation Function ACF Correlation at different
lags

Lags: {1, . . . , 15}

13 Polynomial POLY Polynomial coefficients Order: {1, . . . , 20}
14 Single Value Decomposition SVD Singular vectors Singular Vectors: {1, . . . , 20}
15 Principal Component Analy-
sis

PCA Principal Components Principal Components: {1, . . . , 20}

16 Energy of Wavelet Packets WPE Energy at different
branches of the decom-
posed tree

Decomposition Level: {0, . . . , lmax}

17 Statistical Moments of
Wavelet Packets

WPS Mean and variance of
coefficients at different
branches of the decom-
posed tree

Decomposition Level:{0, . . . , lmax}

18 Statistical Moments of Dis-
crete Wavelet Transform

DWTS Mean and variance of co-
efficients at different de-
composition levels

Decomposition Level: {0, . . . , lmax}

19 Discrete Cosine Transform DCT Transform coefficients Threshold: {0.1 : 0.05 : 0.5}
20 Discrete Cosine Transform
Version 2

DCT2 Transform coefficients Nterms: {10, 20, 30, . . . , 100}

21 Discrete Wavelet Transform
Version 2

DFT2 Transform coefficients Nterms: {10, 20, 30, . . . , 100}

Note also that in Table 4.2 lmax refers to the the maximum allowed level of decomposition

in a wavelet-based algorithm. This value is related to the last level for which at least one

coefficient is correct [165]. On the other hand, regarding cases in which the length of the

time series is less than 100 data points in DCT2 and DFT2 representations the range of

the tuning parameters is chosen to be {10, 20, 30, . . . , nmax∗10} with nmax = l\10 where

l is the length of the time series and the symbol \ denotes the integer division operator.

A similar experimental setting is followed for the four experiments. That is, a given

percentage of time series from each class is randomly selected as training set and then the

1-NN algorithm is applied to classify the remaining time series. The experiment is repeated
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100 times using the averaged classification error over the 100 trials as performance metric.

The five distance measures of Table 4.1 are used for the evaluation.

4.1.2.1 Experiment with Synthetic Data Set

The first experiment considers the evaluation of time series representations using a set of

3200 time series of 1000 data items each of them. There are 32 classes in this data set,

100 time series for each class. The experiment consists in predicting the class of the 90%

of time series (2880 time series) using for training only the 10% of the time series for each

class (320 time series in total).

The synthetic data is generated using the 32 prototype time series of Table 4.3 and Figure

4.3. The generation process of the time series related to a particular prototype involves

distorting horizontally the prototype, by randomly modified its given amplitude and by

adding noise, as well as distorting vertically the prototype, by introducing a random shift.

Table 4.3: Synthetic Time Series Data set.
NameFormula NameFormula
S1 sin( 1100 t) S17 5

10 sin(
9
100 t)−

2
10 sin(

1
10 t)

S2 sin( 4100 t) S18 4
1000

∑t
i=1(

2
100 sin(i)) +

2
1000

∑t
i=1(

8
100 sin(i))

S3 1
2 sin(

1
10 t) +

1
2 S19 5

10 sin(
4
100 t)−

1
10 sin(

1
10 t)

S4 ( 5100 sin(t)) S20 3
10 sin(

5
100 t+ 50)−

5
10 sin(

1
10 t)

S5 − 710(
15
1000 sin(t)) S21 6

10(
5
100 sin(t))) +

8
1000

∑t
i=1(

15
100 sin(i))

S6 3
1000

∑t
i=1(

1
100 sin(i)) S22 6

10(
5
100 sin(t) + 23))−

5
100

∑t
i=1(

15
100 sin(i))

S7 8
1000

∑t
i=1(

3
100 sin(i)) S23 5

10(
3
100 sin(t))−

5
10 sin(

2
100 t)

S8 3
10 sin(

4
100 t) +

3
10 sin(

5
100 t) +

3
10 sin(

6
100 t) S24 6

10(
4
100 sin(t))−

3
10 sin(

1
100 t)

S9 8
10 sin(

2
100 t) +

2
10 sin(

1
100 t) S25 3

10 sin(
3
10 t) +

3
10 sin(

2
10 t) +

3
10 sin(

1
10 t)

S10 5
10 sin(

1
100 t) +

8
100 sin(

2
100 t) +

8
100 sin(

4
100 t) S26 3

10 sin(
3
10 t) +

3
10 sin(

2
10 t) +

3
10 sin(

1
10 t+ 400)

S11 5
10 sin(

1
100 t + 100) +

2
10 sin(

5
100 t + 100) +

8
100 sin(

4
100 t+ 100)

S27 3
10 sin(

1
10 t) +

3
10 sin(

2
10 t) +

3
10 sin(

1
10 t+ 400)

S12 5
10 sin(

1
100 t+ 300) +

3
10 sin(

5
100 t) S28 3

10 sin(
5
10 t) +

3
10 sin(

2
10 t) +

3
10 sin(

1
10 t+ 300)

S13 6
10(

1
100 sin(t)) +

3
10(

1
10 sin(t)) S29 3

10 sin(
6
10 t) +

4
10 sin(

3
10 t) +

3
10 sin(

2
10 t+ 100)

S14 7
10(

1
100 sin(t) + 400) +

2
10(

5
100 sin(t)) S30 7

10 sin(
1
10 t) +

3
10 sin(

15
100 t) +

3
10 sin(

4
10 t)

S15 4
10 sin(

5
100 t) +

4
10 sin(

1
10 t) S31 5

10(
1
100 sin(t) + 400) +

4
10(

2
100 sin(t))

S16 5
10 sin(

1
10 t) +

3
10(

2
10 sin(t) + 80) S32 3

10(
2
100 sin(t) + 400) + 3

10(
8
100 sin(t)) +

3
10(

4
100 sin(t))

*sgn(X) denotes the signum function

Denoting a given prototype time series as p(t) then its corresponding 100 time series are

generated according to the following equation:

x(t) = (1 + h(t))p(t) + g(t); (4.1)
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Figure 4.3: Prototype time series from the synthetic data set.

with t = {1 + q(t), 2 + q(t)..., 1000 + q(t)}, where h(t) and q(t) are normally distributed

random signals whose points are drawn from N (0, 0.01), and N (0, 25), respectively. Re-

garding g(t), it is a uniformly distributed random noise to produce a Signal-to-Noise Ratio

(SNR) of 30 dB.

Results and Discussions on Synthetic Data Assessment: Results for the experiment

are summarised in Figure 4.4 where, for each distance measure, the corresponding time

series representation are sorted according to the averaged classification error. Note that in

Figure 4.4 only the node related to the best wavelet is considered for SGDW and SGDG

algorithms. Detailed results are presented in Table A.1 and Table A.2 from the Appendix

A.

The most important observation from Figure 4.4 is that the three SGDW-based algorithms

proposed report the three best performances. Regarding SGDG-based algorithms, they

perform consistently better than 19 out of 21 time series representations investigated, only

DFT2 and DFTW outperform them. It is important to note that since the time series
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included in this data set are periodic signals it is expected that a method designed for

the analysis of this type of signals such as DFT, DFT2, DFTW, DCT and DCT2 bring

the best result. However, as results reported in this section clearly show, the proposed

SGDW-based algorithms outperform such representations in this context. Moreover, note

that for all the distance measures evaluated, with the exception of SE, the SGDW1 algo-

rithm produces the best representation irrespectively of the chosen wavelet. Furthermore,

the performance of SGDW3, with whichever wavelet is better than the 21 benchmark rep-

resentation studied. Regarding SGDGs algorithms, SGDG1 provided the best result only

for the Cosine distance measure. An additional observation is that, both SGDW-based

and SGDG-based algorithms offer high performance, in terms of lower classification error,

regardless of the distance measure selected for the 1-NN classifier.

In respect to the benchmark representations, it can be observed from Figure 4.4 that in 4

out of the 5 of the distance measures evaluated DFT2 provides the best result. DFTW,

which is the best benchmark representation for the Cosine distance, gives the second best

result for the remaining four distance measures.
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Figure 4.4: Errors for different distance measures for synthetic data experiment.

The pixel plots from Figure 4.5 show how the proposed algorithms perform when different

levels of decomposition M and different base resolutions j0 are chosen. In Figure 4.5 a

different pixel plot is presented for each wavelet and, in this sense, a set of nine plots are
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the related to the SGDW1 algorithm (Figure 4.5a) and nine are related to the SGDG1

algorithm (Figure 4.5b). Note also that only results for ED are presented. In these

pixel plots the colour is related to the averaged classification error over 100 trials. The

darker the colour the smaller the classification error. Note that to facilitate visualisation

a different scale is used for each method. From Figure 4.5, the first observation is that

low classification errors ar obtained with different wavelets. This result, which applies

for both algorithms, implies that regardless of the wavelet employed in the decomposition

stage, the proposed SGDs-based algorithms will consistently perform at acceptable levels.

The second aspect that is important pointing out is that, for this particular experiment,

SGDW1 provides a good performance with a wider range of values for its parameters M

and j0. In contrast, using the SGDG1 algorithm, low classification errors are only obtained

when M = 0 which refers to the situation in which the density estimation stage directly

works with input time series patterns, without any multiresolution decomposition involved.
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Figure 4.5: Pixel plots for SGDW1 (a) and SGDG1 (b) algorithms in Synthetic data
experiment using ED as distance measure.

4.1.2.2 Experiment with data from Case Western Reserve University Bearing

Data Center

The second experiment considers the evaluation of the proposed time series representations

in the context of bearing health condition identification where the diagnosis is based on

the analysis of vibration signals in the form of time series. The data set includes 765 time
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series of length 2048 from 12 bearing conditions. The number of time series per condition

is variable. The experiment consists in predicting the class (condition) of the 50% of the

time series in each class using the other 50% time series for training.

This experiment is conducted on rolling element bearing vibration data obtained from the

Case Western Reserve University Bearing Data Center (CWRU) [158]. The reason for

the selection of this data set is three-fold: (1) it is a real world application, (2) it is well

documented and publicly available, and (3) traditional solutions are domain dependent.

Regarding the last reason, note that proposed SGDs framework is intended to be domain

independent.

Inductor
Motor Dynamometer

Coupling

Torque 
transducer

Accelerometer Drive end 
bearing

Fan end 
bearing

Figure 4.6: Scheme diagram of test stand for the experiment [1].

The original CWRU data set considers four different defect sizes, three different bearing

locations and the detection scenario in which no load is applied to the induction motor.

Then twelve bearing vibration signals for twelve bearing conditions are extracted from the

test stand shown in Figure 4.6.

The data set for the experiment is constructed according to the experimental setting

proposed in [1] and [166], where data samples of 2, 048 points are extracted from the

original signals to form the data set described in Table 4.4. Note that the length of the

data samples is selected to be 2,048 points based on the fact that the time spanned by each

of them covers about five motor revolutions. Further details about the CWRU vibration

data can be found in [158]. Figure 4.7 shows sample time series representative of each of

the twelve bearing conditions from Table 4.4.

Results and Discussions on the CWRU Experiment: Figure 4.8 shows, for each

distance measure, the averaged classification error reported for each representation ordered

in an ascending manner. Note that, for the case of the proposed SGD-based algorithms only

the node related to the wavelet that reported the best performance is included. Detailed

results for this experiment are included in Table A.3 and Table A.4 from Appendix A.
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Table 4.4: Description of the CWRU data set [1, 166].

Bearing condition Defect size (inches) Number of data samples Condition No.

Normal 0 119 1

Outer Race (OR)
0.007 59 2
0.014 59 3
0.021 59 4

Rolling Element (RE)
0.007 59 5
0.014 59 6
0.021 59 7
0.028 58 8

Inner Race (IR)
0.007 58 9
0.014 59 10
0.021 59 11
0.028 58 12
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Figure 4.7: Time series for the twelve bearing conditions from the CWRU data set.

The first observation from Figure 4.8 is that SGDW1 algorithm is the best overall represen-

tation, reporting the best performance in 4 out of 5 distance measures evaluated and the

second best in the remaining one (CO). The ACF representation is the second best overall

technique and the best benchmark representation providing the lowest classification error,

when using the Correlation distance; and reporting the second best result for the rest of

the distance measures. The third best overall algorithm is the proposed SGDW3 which

in 4 out of 5 distance measure provides the second best classification error. The above

results suggest that vibration data from different motor conditions presents very specific

autocorrelation patterns. This is the reason why not only ACF but also the autoregressive

models i.e. ARIMA and ARMA are some the best representations for this kind of data.

An additional observation from Figure 4.8 is that the structural generative strategy used

by the proposed SGDW1 and SGDW3 algorithms, allow them to distinctively capture

changes in the autocorrelation structure of data.

The second aspect that is important to highlight is that, as observed in Section 4.1.2.1
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no matter which wavelet is selected the SGDW1 algorithm performs well. Specifically, in

3 out of 5 distance measures (ED, SE and CH) the classification error obtained using

whichever wavelet W in the SGDW1 algorithm is lower than the error provided by any

of the 21 benchmark algorithms studied. Contrary to the expectations, the SGDW2 al-

gorithm, which was one of the top three algorithms in the previous experiment, reported

a degraded performance when applied over vibration data, appearing in the group of the

top ten representations only when the SE measure is used. Regarding SGDG-based algo-

rithms, it can observed from Figure 4.8 that in 4 out of the 5 distances evaluated SGDG1

reports better results than SGDG2. The above results suggest that selecting coefficients

as features, which is the case for SGDW1 and SGDW3, or selecting parameters as fea-

tures, which is the case SGDG1, outperform strategies based on densities (i.e. SGDW2

and SGDG2). The reason for this is the fact that the corresponding coefficients or param-

eters, depending on the case, condense all the information contained in the density using

a reduced number of features. Note that improved generalisation can be obtained with

a reduced number of highly discriminative features instead of with a combination of dis-

criminative, redundant and vague features. Moreover, the local approximation capabilities

of the basis functions used in the density estimation stage of SGDW algorithms makes

them superior than the SGDG algorithms that consider global Gaussian functions for the

density estimation block. Here, it is important pointing out that even when SGDG1 is

in general better than about the 75% of the evaluated benchmark representations, it is

outperformed by ACF, ARIMA and ARMA algorithms when using ED, CO, CH or CR

distance measures.

The pixel plots of Figure 4.9 are used to analyse the difference in performance in SGDW1

and SGDG1 algorithms when different waveletsW , different levels of decompositionM and

different base resolutions j0 are selected. Each of these pixel plots is related to one wavelet

and is related to the averaged classification error over 100 trials using ED as distance

measure. For ease of visualisation different colour scales are used for each method.

The main observation regarding Figure 4.9 is that, similar to what it was obtained for the

Synthetic experiment, for both algorithms different wavelets provide good classification

performance. Regarding the range of values for the parameters M and j0 that provide low

classification errors, it can be seen from Figure 4.9a and Figure 4.9b, that the SGDW1

algorithm provides good results with a wider range of values for its parameters than the

SGDG1 algorithm. Note that this is related to the good localisation capabilities of the basis
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Figure 4.8: Errors for different distance measures for for CWRU experiment.

functions employed by density estimation technique considered in the SGDW1 algorithm.

This implies that the resulting representations will be highly specific for different values of

j0. It is also important to highlight that, contrary to the result obtained with the synthetic

data set of experiment of Section 4.1.2.2, in this experiment low classification errors are

obtained when K, the number of Gaussians in the mixture of the density estimation stage,

is equal to one. This result is directly related to the specific characteristics of the time

series evaluated. Note that since the available vibration data is almost normally distributed

then using a single Gaussian function would be enough to characterise the corresponding

density. This also applies for the density of the decomposed subpatterns. The reason why

more discrimination between classes is obtained using SGDs with K = 1 is related to the

fact that the support of the additional Gaussian functions would be almost the same for

time series of all classes, hence negatively impacting the generalisation performance of the

classification algorithm.

4.1.2.3 ECG Biometrics Experiment

In the third experiment the proposed SGDs representations are evaluated in an ECG-

based biometric application. Biometrics is concerned with the identification, verification
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Figure 4.9: Pixel plots for SGDW1(a) and SGDG1(b) algorithms in CWRU experiment
using ED as distance measure.

or screening of individuals based on their physiological (fingerprint, face recognition, palm

print, hand and ear geometry, iris and retina scans) or behavioural (keystroke dynamics,

gait analysis, signature and voice recognition) traits or characteristics [167, 168]. In recent

years, there has been an increasing interest in the use of some particular biosignals, that

is, electrocardiogram (ECG), electroencephalogram (EEG) and electrodermal response

(EDR), for the design of more robust human identification systems. Among them, the

ECG has attracted particular attention as a biometric trait since it not only have sufficient

unique physiological properties to identify an individual but it also provides a real-time

liveness feedback. ECG-based biometric techniques can be categorised into two main

groups: fiducial point dependent techniques which rely on the detection of the so called

fiducial points (such as P wave, QRS complex, T wave, etc.) and fiducial point independent

approaches which are based on processing the ECG in a holistic manner without the need

to localise fiducial points [169].

In this section the proposed SGDs representations are investigated in a fiducial point

independent ECG biometric framework using the short-term rest ECG data base from

[169–171]. This data base includes 3 minutes of one-lead ECG data from 48 individuals

sampled at 200Hz extracted using the Vernier EKG-BTA sensor. The experiment considers

the 16 individuals for which data from two different sessions is available. Specifically,

excerpts of 9 seconds are extracted for each ECG recording to a create a data base of 640
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time series of length 1800. The task consists in, using the 50% of the ECG excerpts from

each individual for training, identify the individual from whom each of the remaining 50%

of the ECG excerpts belong to. Figure 4.10 shows example ECG excerpts from the 16

individuals considered in the experiment.
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Figure 4.10: Example ECG excerpts from the 16 individual of the ECG data base.

Results and Discussions on the ECG Biometrics Data Experiment: In Figure

4.11 a summary of the performance results for this experiment are presented. For each

distance measure, the time series representations are sorted according to the reported

averaged classification error. For the case of SGDW-based and SGDG-based algorithms

only the node related to the best wavelet is considered. Detailed results are presented in

Table A.5 and Table A.6 from the Appendix.

The most important observation from Figure 4.11 is the fact that the proposed SGDW3

and SGDW1 algorithms are the best overall representations. They report the best per-

formances for the five distance measures evaluated. The SGDW2 algorithm is the third

best overall representation, providing the third best results in 4 out of 5 of distance mea-

sures. Regarding benchmark representations, ACF is the fourth best overall technique and

the best benchmark representation. In respect to SGDG-based algorithms, the proposed

SGDG2 and SGDG1 are the fifth and sixth best algorithms among all the representations

evaluated.
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Figure 4.11: Sorted results for ECG biometrics experiment.

Another aspect that is important to highlight is that, similar to results obtained for Syn-

thetic data and CWRU experiments, low classification errors in SGDW3 or SGDW1 algo-

rithms can be obtained using whichever of the nine wavelets studied in the multiresolution

decomposition stage. Note the fact that for the 5 distance measures evaluated the classifi-

cation error obtained using whichever wavelet in SGDW3 and SGDW1 algorithms is lower

than the error reported by any of the 21 benchmark representations evaluated. Note that

the SGDW2 algorithm, which reported performances better than the ones obtained using

any of the 21 benchmark representations in 4 out of 5 distance measures, offers favourable

results only for some particular wavelets. Note also that regarding SGDG-based algo-

rithms, the SGDG1 algorithm, which is the third best algorithm when using SE, also

outperforms all benchmark representations with any of the nine wavelets for that distance

measure.

The SGD-based algorithms are also assessed when different levels of decomposition M

and different base resolutions j0 or different numbers of Gaussian functions K (depending

on the case) are used. Figure 4.12 shows pixel plots in which each pixel is related to the

averaged classification error over 100 trials obtained with a particular combination of these

parameters. Note that for each wavelet a different pixel plot is used and that for all the
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plots only ED is considered as distance measure. To make easier the visualization of results

different colour scales for each method are used.

In Figure 4.12 can be observed that for both algorithms, different wavelets provide favor-

able classification performance. Moreover, similar to results obtained in the previous two

experiments, there is also a specific range of values for the parameters M and j0 or K

that provide low classification errors. Specifically, as it can be seen from Figure 4.12a and

Figure 4.12b, for SGDW3 the best results are obtained using M ≤ 2 and 3 ≤ j0 ≤ 6 while

for SGDG1 they are related to M ≤ 1 for 2 ≤ K ≤ 6 and 2 ≤ M ≤ 4 for j0 = 1. It

is important to highlight here that, even though the range of parameters that provide a

favourable performance is application specific, it is clear that this range will also depend

on the modelling capabilities of algorithm selected for the density estimation stage. Re-

sults reported in Figure 4.12 indicate that if the number of probability domain subpatterns

(related to parameter M) as well as their corresponding number of primitives (related to

either parameter j0 or parameter K, depending on the case) fall within a particular range

then the resulting SGDs representations will provide an acceptable performance.
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Figure 4.12: Pixel plots for SGDW3(a) and SGDG1(b) algorithms in ECG biometrics
experiment using ED as distance measure.
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4.1.2.4 Experiment with data from University of California Riverside

In the fourth experiment the proposed SGDs time series representations are evaluated using

42 benchmark data sets from the UCR time series clustering/classification repository [159].

Each data set includes time series of fixed length. The length of the time series varies from

60 to 1639 data items depending on the data set. The number of classes in the data sets

goes from 2 to 50 classes and the number of time series per data set varies 56 from 9236.

For each data set the experiment consists in using the 50% of the time series for training

predict the corresponding class of the remaining 50%.

Table 4.5 shows the description of the UCR data sets, including the name of the data set,

its abbreviation, the length of the corresponding time series, as well as the size of the data

set (number of time series per data set) and the number of classes. An additional column

is included indicating the maximum number of decomposition levels (lmax) for wavelet-

based representations, namely, DWT, WPE, WPS, and DWTS, when db6 is selected as

wavelet.

Results and Discussions on UCR Experiment: Results for this experiment, for both

benchmark and proposed representations, are summarised in Table 4.6 and in Figure 4.13

to Figure 4.18. Table 4.6 shows the algorithm that reports the lowest averaged classifi-

cation error for each of the 42 data sets studied and the five distance measure employed.

Figure 4.13 presents the number of data sets for which a given representation reported

the best result for each of the five distance measures. In addition to this, in Figure 4.14

to Figure 4.18 pixels plots are used to summarise the performance results for all time

series representation in all the data sets evaluated. Each pixel plot corresponds to the

classification performance using a particular distance measure. The axes of the plot are

the representation algorithm (y-axis) and the data set (x-axis). In this way, each pixel

represents the best averaged classification error obtained using a given algorithm in a par-

ticular data set. The colour of the pixel indicates the magnitude of the classification error.

The darker the colour the smaller the classification error. The time series representations

with the worst performance are located at the bottom of the plot. Note that pixel plots

involves the arrangement of the data sets according to the average of the averaged classi-

fication errors obtained for all representations. Further details regarding this experiment

are shown in Tables A.7 and Table A.8 from the Appendix A.
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Table 4.5: Description of data sets.

n Data set Abbr Length Size Classes lmax

1 50words 50w 270 905 50 4
2 Adiac Adc 176 781 37 4
3 Beef Beef 470 60 5 5
4 CBF CBF 128 930 3 3
5 ChlorineConcentration ChlC 166 4307 3 3
6 CinC ECG torso Cinc 1639 1420 4 7
7 Coffee Coff 286 56 2 4
8 CricketX CriX 300 780 12 4
9 CricketY CriY 300 780 12 4
10 CricketZ CriZ 300 780 12 4
11 DiatomSizeReduction DiSR 345 322 4 4
12 ECG200 ECG2 96 200 2 3
13 ECGFiveDays ECG5 136 884 2 3
14 FISH Fish 463 350 7 5
15 FaceAll FacA 131 2250 14 3
16 FaceFour Fac4 350 112 4 4
17 FacesUCR FacU 131 2250 14 3
18 Gun Point GunP 150 200 2 3
19 Haptics Hapt 1092 463 5 6
20 InlineSkate InLS 1882 650 7 7
21 Lighting2 Ltg2 637 121 2 5
22 Lighting7 Ltg7 319 143 7 4
23 MALLAT Mall 1024 2400 8 6
24 MedicalImages MedI 99 1141 10 3
25 MoteStrain MotS 84 1272 2 2
26 OSULeaf OsuL 427 442 6 5
27 OliveOil OliO 570 60 4 5
28 SonyAIBORobotSurfaceII SnS2 65 980 2 2
29 SonyAIBORobotSurface SnS 70 621 2 2
30 StarLightCurves StLC 1024 9236 3 6
31 SwedishLeaf SweL 128 1125 15 3
32 Symbols Symb 398 1020 6 5
33 Trace Trce 275 200 4 4
34 TwoLeadECG 2ECG 82 1162 2 2
35 Two Patterns TWoP 128 5000 4 3
36 WordsSynonyms WorS 270 905 25 4
37 Synthetic control SynC 60 600 6 2
38 uWaveGestureLibrarX uWGX 315 4478 8 4
39 uWaveGestureLibraryY uWGY 315 4478 8 4
40 uWaveGestureLibraryZ uWGZ 315 4478 8 4
41 Wafer Wafr 152 7164 2 3
42 Yoga Yoga 426 3300 2 5

The first observation from Table 4.6 and Figure 4.13 to Figure 4.18 is that, for the 42

data sets evaluated, there is not a particular time series representation that always brings

the best performance. This finding agrees with Jain [172], in the sense that there is not a

universally good data representation and, as it was recognised by [3], each representation

generally tends to encode only those features well presented in its own representation space

and inevitably incurs in the loss of useful information for the, in this case, classification

tasks. These results demonstrate the difficulty in choosing an effective representation for

a given time series data set without prior knowledge and careful analysis.
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Table 4.6: Algorithm that reported the lowest averaged classification error over 100
trials for each data set in UCR Experiment.

Data set ED SE CO CH CR

50w PAA PAA PAA CHEB PAA
Adc SGDW2 SGDW2 SGDW2 SGDW2 SGDW2
Beef PCA SVD PCA PCA PCA
CBF CHEB PAA CHEB CHEB CHEB
ChlC SVD SVD PCA PCA SVD
Cinc SVD SVD SVD PCA PCA
Coff ACF ACF ACF ACF ACF
CriX SGDW3 SGDW3 SGDW3 SGDW3 SGDW3
CriY SGDW3 SGDW3 SGDW3 SGDW3 SGDW3
CriZ SGDW3 SGDW3 SGDW3 SGDW3 SGDW3
DiSR SGDW1 DWT SGDW1 SGDW1 SGDW1
ECG2 SM SM SGDG1 SM SGDG1
ECG5 DFT2 DFT2 DFT2 DFT2 DFT2
Fish PCA SVD SVD SVD SVD
FacA DCT2 DWT CHEB CHEB CHEB
Fac4 PCA PAA PAA DCT PAA
FacU DCT2 DWT CHEB CHEB DCT2
GunP DFT2 DFT DFT2 DFT2 DFT2
Hapt SGDW3 SGDG2 SGDW3 SGDW3 SGDW3
InLS ARIMA WPE ARIMA ARIMA ARIMA
Ltg2 SGDW3 SGDG2 SGDG1 SGDW3 SGDW3
Ltg7 DCT2 PAA DWT DCT2 DWT
Mall SGDW3 SVD SGDW3 SGDW3 SGDW3
MedI SGDW2 SGDW3 SGDW2 SGDW2 SGDW2
MotS PAA PAA DWT PAA DWT
OsuL SGDW3 SGDW3 SGDW3 SGDW3 SGDW3
OliO SGDW1 SGDG2 SGDW1 SGDW1 SGDW1
SnS2 PAA DCT2 DCT2 PAA RAW
SnS PAA PAA PCA PCA DCT2
StLC SGDW3 SGDW3 SGDW3 SGDW3 SGDW3
SweL SGDW2 DFT SGDW2 SGDW2 SGDW2
Symb SGDW3 SGDW3 SGDW3 SGDW2 SGDW3
Trce POLY POLY POLY POLY WPE
2ECG SVD PCA SVD SVD PCA
TWoP DCT2 CHEB PAA DCT2 DCT2
WorS PAA PAA DWT CHEB DWT
SynC DCT2 DWT SGDW3 CHEB SGDW3
uWGX PAA PAA DCT2 CHEB DCT2
uWGY DCT2 PAA DCT2 PAA DCT2
uWGZ DCT2 PAA DWT DCT2 DWT
Wafr DFT2 DFT2 DFT2 CHEB DFT2
Yoga DWT DWT DWT PAA DWT

Despite the above finding, it is important to highlight that the proposed SGDW3 algo-

rithm offers a consistent performance in the experiments evaluated. According to results

presented in Table 4.6 and Figure 4.13 this algorithm is the best overall representation,

reporting the lowest classification error for a larger number of data sets than any other

representation. Specifically, the SGDW3 algorithm is the best algorithm for ED, CO, CH,

and CR distances, and the second best for SE.

In Table 4.6 and Figure 4.13, it can also be observed that, when the CO or CR are used

as distance measures, in 16 out of 42 data sets the lowest classification error is obtained
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Figure 4.13: Number of data sets for which the representations evaluated reports the
best result in the UCR experiment.

using one of the proposed algorithms. On the other hand, when ED or CH are considered

in 14 out of 42 data sets, the proposed algorithms provides the best performance. For

the case of SE SGD-based algorithms give the best result in 11 out of 42 data sets. An

additional observation from Table 4.6 is the fact that for some particular data sets the

proposed algorithms provide the best performance for the majority of the distance measures

investigated. Here we can cite, Adc, CriX, CriY, CriZ, DiSR, Hapt, Lgt2. Mall, Medl,

OsuL, OliO. StLC, SweL, Symb. Note also that many factors influence the classification

complexity of a given data sets. Among them we could cite for instance, not only aspects

related to the data sets themselves like the number of classes, the length and the complexity

of the time series, but also characteristics intrinsic to the representation space of the time

series representation algorithms selected (for example, the separation between classes and

the geometrical complexity of class boundaries).

Special attention deserves PCA which appears on the top five representations according

to Figure 4.14 to Figure 4.18. After a closer look into Table 4.6 and Figure 4.13, it

can be can seen that although PCA reported competitive results for the majority of the

data sets, it is the best algorithm in only 1 to 4 data sets, depending on the distance

measure selected. The reason why PCA is consistently good in this context is related to
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the compression capabilities of this algorithm. Note that the highly dimensional nature of

time series negatively impacts the generalisation performance of classification algorithms.

Hence, PCA, which extracts a reduced number of features from data, enables classification

algorithms to focus only on a few number of time series components with high variability

and then, indirectly, it improves generalisation.

When SE is used as distance measure the proposed SGDW1 and SGDW3 algorithms show

a degraded performance (see Figure 4.15). This is particulary more evident for DiSR,

Mall, OliO, and Fish data sets. An explanation for is that the underlying normalisation

procedure of this distance makes all the elements of the feature vector, related to the

coefficients of the densities at different resolutions, to have the same standard deviation

and as a consequence the same level of importance. This will make the elements of the

feature vector related to regions of large difference in probability in the corresponding

densities to be as important as the elements related to regions with small difference.

Regarding the pixel plots of Figure 4.14 to Figure 4.18, it can be seen that the proposed

SGDs-based algorithms are located in the top half of the pixel plots. This means that

the performance of all the five SGDs-based algorithms is at least better than the 50%

of the benchmark representations evaluated in the experiment. A second observation is

that according to the pixel plots corresponding to CO (Figure 4.16) and CR (Figure 4.18)

the proposed SGDW3 is the best representation for this set of 42 benchmark time series.

Moreover, when using ED (Figure 4.14) or CH (Figure 4.17) as distance measures, SGDW3

is the fourth best technique.
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Figure 4.14: Results for UCR experiment using ED as distance measure.
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Figure 4.15: Results for UCR experiment using SE as distance measure.
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Figure 4.16: Results for UCR experiment using CO as distance measure.

W
af

r
E

C
G

5
S

nS
S

nS
2

D
iS

R
S

tL
C

2E
C

G
M

al
l

S
ym

b
E

C
G

2
G

un
P

Tr
ce

C
in

c
C

B
F

M
ot

S
Y

og
a

C
of

f
C

hl
C

S
yn

C
Lt

g2
O

liO
Fa

c4
Fa

cU
Fa

cA
S

w
eL

M
ed

I
TW

oP
Fi

sh
O

su
L

Lt
g7

uW
G

X
uW

G
Z

B
ee

f
A

dc
uW

G
Y

C
riZ

C
riX

C
riY

In
LS

W
or

S
50

w
H

ap
t

 

 PCA
SVD

CHEB
SGDW3

DCT2
PAA
DCT

SGDW2
DWT

SGDW1
SGDG1
SGDG2

RAW
DFTW
DFT2

DFT
ACF

ARMA
POLY

ARIMA
WPS

DWTS
WPE

FMSE
MSE

SM

A
ve

ra
ge

d 
cl

as
si

fic
at

io
n 

er
ro

r [
%

]

0

10

20

30

40

50

60

70

80

90

100

Figure 4.17: Results for UCR experiment using CH as distance measure.
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Figure 4.18: Results for UCR experiment using CR as distance measure.

4.2 Empirical Evaluation of Online SGDs Algorithms

The empirical evaluation of the proposed online SGDs algorithms is divided into two

major parts. In the first experiment the proposed algorithms are assessed in terms of their

usefulness in the context of change detection. The second set of experiments is focused on

the applicability of the proposed algorithms in clustering of multiple parallel data streams.

The assessment is carried out using synthetic and real world data.

4.2.1 OSGD-based Data Stream Change Detection Framework

Detecting changes in the properties of a given data stream is one of the key data stream

mining tasks since it covers a broad range of related applications such as fault detection in

engineering systems [173–176], intrusion detection in computer networks [177, 178], fraud

detection in internet or online transactions [179, 180] and sensor networks [181, 182].

Change detection has been particularly studied by the statistics research community, where

the traditional approach involves considering different probability densities of the data,

each of them related to a different time interval. Usually two time intervals are used, the

first one related to past values and the second one covering the most recent data available.

In the statistical context, the change detection formulation relies on comparing the two

densities to find if there is a significant difference between them. Relevant change point

detection algorithms within this framework are CUSUM [13] and GLR [12]. It is important

to highlight here, that the majority of the statistical-based change detection techniques
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are in essence parametric, since they rely on pre-specified autoregressive, state space or

probability density models [10]. This dependency on a particular model is clearly the

major limitation for parametric statistical change detection approaches.

The OSGDs algorithms proposed in Chapter 3 can be used to construct nonparametric

data stream change detection algorithms that follow a formulation similar to the one above

described for statistical-based techniques. However, since OSGDs data stream represen-

tations do not assume any particular model for the distribution of the data, the resulting

approach overcomes the limitation regarding the pre-specification of any particular model.

This is the reason why researchers have started to look for more flexible change detec-

tion solutions that do not necessarily rely on specific models, relevant works within this

category are the methods reported in [11] and [10] which rely on the direct and relative

estimation of the ratio of the probability densities, respectively.

In this section two different OSGDs representations are assessed, each of them associated

with different weighting strategies for the RWDE stage. Note that a given weighting

strategy in RWDE is related to the importance assigned to old or past data in respect to

the new one. Hence, different weighting strategies will capture, indirectly, the temporal

difference in the underlying generation process of the data. Therefore, the idea of the

OSGD-based change detection algorithm here sketched is to use two OSGDs, one that

gives more importance to old data and one focuses more on new data, and compare them

using a distance measure. Note that, in order to allow the evaluation of the distance

between the corresponding two OSGDs representations, they should share the same values

for their corresponding parameters P and j0 as well as they should use the same wavelets

in both multiresolution decomposition and density estimation stages.

The block diagram for the proposed OSGD-based data stream change detection framework

is depicted in Figure 4.19. In this figure the acronym OSDG1 is used to denote the online

representation that puts more importance to new data while the term OSGD2 refers to the

representation that focuses on old data instead. The notation w1 and w2, with w1 < w2,

is used to denote the size of the window related to OSGD1 and OSGD2 respectively.

Note that, as it was explained in Section 3.5, the discounting parameter θ that controls

the number of data items or observations considered for the estimation of the density

in the RWDE stage of the proposed algorithms is the inverse of the window size. Note

also that the complexity of the proposed change detection framework can be reduced by
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considering that OSGD1 and OSGD2 share the same multiresolution stage and therefore

only the RWDE stage is different. Figure 4.20 shows a modified version OSDG-based data

stream change detection framework in which the same multiresolution stage is used for

both OSGD1 and OSGD2 blocks.

New arriving 
data item

Data stream 1

Data stream 2

Data stream N

...

Clustering 
Algorithm

* ** *
***

*
** **
*

* *
*
* *
**

* *
***
*

+
+
++

+
++++ +

Online Stage

Offline Stage Clustering Results
Online
SGDs

Online
SGDs

Online
SGDs

...

RWDE

Data stream

...

ODWT

OSGD-D

Feature Vector Integration

Feature Vector

Online
Subpattern at 
resolution P

Online
Subpattern at 
resolution 2

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Online
Subpattern at 
resolution 1

RWDE RWDE

RWDE

Data stream

...

MR-EWMA

OSGD-E

Feature Vector Integration

Feature Vector

Online
Subpattern at 
resolution P

Online
Subpattern at 
resolution 2

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Online
Subpattern at 
resolution 1

RWDE RWDE

WDE

Time series

...

DWT
SGDW

Feature Vector Integration

Feature Vector

Subpattern at 
resolution P

Subpattern at 
resolution 2

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Subpattern at 
resolution 1

WDE WDE

FGM

Time series

...

DWT
SGDG

Feature Vector Integration

Feature Vector

Subpattern at 
resolution P

Subpattern at 
resolution 2

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Structural 
Generative 
Parameters

Subpattern at 
resolution 1

FGM FGM

Time Series 1

Time Series 2

Time Series N

...

SVMs

* ** *
***

*
** **
*

* *
*
* *
**

* *
***
*

+
+
++

+
++++ +

Structural-Statistical 
Description Discriminative 

Classification
Classification 

Results
SGDs

SGDs

SGDs

...

...

...

...

New arriving 
data item

Data stream

Simmilarity/
Distance
Measure
Algorithm

Online Stage

Detection
Results

Online
SGDs I...
Online
SGDs II

V2 V1 V0 V-1

W2 W1 W0

L2(R)

New arriving 
data item

Data stream

Simmilarity/
Distance
Measure

OSGD-based Change 
Detection Framework

Detection
Results

OSGD1...
OSDG2

New arriving 
data item

Data stream
Simmilarity/
Distance
Measure

OSGD-based Change Detection Framework

Detection
ResultsMREWMA

or
ODWT...

RWDE1

RWDE2

Figure 4.19: Block diagram for the proposed OSGD-based data stream change detection
framework.
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Figure 4.20: Block diagram for the modified OSGD-based data stream change detection
framework.

Recall that, in the context of data streams, the change detection problem can be formu-

lated in the following way. Let xi = {xi(t)} denote an ordered sequence of real valued

observations taken at discrete times t ∈ T = {1, 2, . . .}, the objective of the change de-

tection algorithm is to detect when changes in the properties of the underlying generation

process of the data stream xi have occurred.

4.2.1.1 Data Stream Change Detection Experimental Setting

The experiments in this section aim at assessing the potential usefulness of the proposed

OSGDs algorithms in the context of change detection for data streams. For this purpose

the proposed OSGD-based change detection framework is evaluated using synthetic data

first. A data set of 240 streams, each of them containing 4000 data items, is constructed.

Here, each stream belongs to one of the four main categories shown in Table 4.7, that

is, change in mean, change in variance, change in frequency content and change in the
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deterministic generation process. Note that each category is in turn decomposed into

three subcategories: slow change; moderate change; and abrupt change. There are in total

12 subcategories in the whole data set. The experiment consists in using the OSGD-based

framework to detect the points in which the synthetic data streams change its underlying

properties.

Table 4.7: Synthetic data set used for the change detection experiment.

Change Subtypes Description Time stamp
of change

No. of
Streams

Change
in
mean

Slow
linear
change

From time stamps 1 to 2000 the data is drawn from N (0, 1);
from 2001 to 3000 the data of each time stamp ts is drawn
from N (0.4∗(ts−2000), 1); and from 3000 to 4000 the data
is drawn from N (4, 1).

2000− 3000 20

Moderate
linear
change

From time stamps 1 to 2000 the data is drawn from N (0, 1);
From 2001 to 2500 the data of each time stamp ts is drawn
from N (0.8∗(ts−2000), 1); and from 2501 to 4000 the data
is drawn from N (4, 1).

2000− 2500 20

Abrupt
change

From time stamps 1 to 2000 the data is drawn from N (0, 1)
while from 2001 to 4000 the data is drawn from N (4, 1).

At 2000 20

Change
in
variance

Slow
linear
change

From time stamps 1 to 2000 the data is drawn from N (0, 1);
from 2001 to 3000 the data of each time stamp ts is drawn
from N (0, 1 + 0.004 ∗ (ts − 2000)); and from 3000 to 4000
the data is drawn from N (0, 3).

2000− 3000

Moderate
linear
change

From time stamps 1 to 2000 the data is drawn from N (0, 1);
From 2001 to 2500 the data of each time stamp ts is drawn
from N (0, 1 + 0.008 ∗ (ts − 2000)); and from 2501 to 4000
the data is drawn from N (0, 3).

2000− 2500 20

Abrupt
change

From time stamps 1 to 2000 the data is drawn from N (0, 1)
while from 2001 to 4000 the data is drawn from N (0, 3).

At 2000 20

Change
in
freq.
content

Slow
linear
change

From time stamps 1 to 2000 the data is generated from
sin(0.07 ∗ ts); from 2001 to 3000 the data of each time
stamp ts is generated from sin(0.07 ∗ ts)+N (0, 9−5 ∗ (ts−
2000)); and from 3000 to 4000 the data is generated from
sin(0.07 ∗ ts) +N (0, 0.09).

2000− 3000 20

Moderate
linear
change

From time stamps 1 to 2000 the data is generated from
sin(0.07 ∗ ts); from 2001 to 2500 the data of each time
stamp ts is generated from sin(0.07 ∗ ts) + N (0, 1.8−4 ∗
(ts − 2000)); and from 2501 to 4000 the data is generated
from sin(0.07 ∗ ts) +N (0, 0.09).

2000− 2500 20

Abrupt
change

From time stamps 1 to 2000 the data is generated from
sin(0.07∗ ts) while from 2001 to 4000 the data is generated
from sin(0.07 ∗ ts) +N (0, 0.09).

At 2000 20

Change
in
deterministic
generation
process

Slow
linear
change

From time stamps 1 to 2000 the data is generated from
0.7 ∗ sin(0.06 ∗ ts) + 0.3 ∗ sin(0.18 ∗ ts); from 2001 to 3000
the data of each time stamp ts is generated from (0.7 −
2−4 ∗ ts)∗sin(0.06∗ ts)+(0.3+2−4 ∗ ts)∗sin(0.18∗ ts); and
from 3000 to 4000 the data is generated from 0.5∗sin(0.06∗
ts) + 0.3 ∗ sin(0.18 ∗ ts).

2000− 3000 20

Moderate
linear
change

From time stamps 1 to 2000 the data is generated from
0.7 ∗ sin(0.06 ∗ ts) + 0.3 ∗ sin(0.18 ∗ ts); from 2001 to 2500
the data of each time stamp ts is generated from (0.7 −
4−4 ∗ ts)∗sin(0.06∗ ts)+(0.3+4−4 ∗ ts)∗sin(0.18∗ ts); and
from 2501 to 4000 the data is generated from 0.5∗sin(0.06∗
ts) + 0.5 ∗ sin(0.18 ∗ ts).

2000− 2500 20

Abrupt
change

From time stamps 1 to 2000 the data is generated from
0.7 ∗ sin(0.06 ∗ ts) + 0.3 ∗ sin(0.18 ∗ ts) while from 2001 to
4000 the data is generated from 0.5 ∗ sin(0.06 ∗ ts) + 0.5 ∗
sin(0.18 ∗ ts).

At 2000 20
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The performance of the proposed algorithms is evaluated using different pairs of window

sizes w1 and w2 as well as different values for parameters M and j0. The Euclidean

distance is used to assess the dissimilarity between the two OSGDs instantiations employed

in the change detection frameworks. Note that in order to compare the two OSGDs

instantiations considered by the framework the corresponding representations provided by

the two OSGDs algorithms should comprise the same number of elements and for that

reason their parameters M and j0 should be set to be the same.

Figure 4.21 and Figure 4.22 show an example data set from each of the 12 subcategories

present in the data set as well as the their corresponding OSGD-E-based change detection

result for different pairs of window sizes. For these figures, the OSGDs algorithm selected

use one level of decomposition in the ODWT or MREWMA stage (M = 1) and a base

resolution equal to 2−2 in the RWDE stage (j0 = 2). In Figure 4.21 and Figure 4.22 the

colour axis, whose scale is the same for all subfigures, represents the Euclidean distance

between OSGD1 and OSGD2. In this way, the darker the colour larger the dissimilarity

between the OSGDs representation using w1 as window size respect to the one using w2.

Note also that for a better visualisation, only the last 3000 data items are plotted.

The first observation from Figure 4.21 and Figure 4.22 is that different pairs of window

sizes bring different detection capabilities in terms of the Euclidean distance between the

two OSGDs representations employed. The second observation is that such detection

capabilities depend on the nature of the change present in the data. In this respect, the

streams for which larger Euclidean distance were obtained after a given change in the

stream are the ones involving changes in the mean of the underlying generation process of

the data. On the other hand, the streams from the four category, which involves changes

in the deterministic properties of the data, are the most difficult detection scenarios since

only for a reduced number of pair of windows the Euclidean distance reported a significant

increment.

By considering that the change in the properties of the data streams studied is set to

start at time stamp 2001, then it can be seen that, as it is theoretically expected, there

is a shorter delay in the detection of data streams with abrupt changes (streams 3 and 6

in Figure 4.21 and streams 9 and 12 in Figure 4.22). This means that there is a bigger

difference between OSGD1 and OSGD2 for such cases, which in turn indicates that the

proposed data stream representations properly characterised both old and new data.
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Figure 4.21: Example data streams from the first six subcategories of the data set
and their corresponding Euclidean distance obtained using the proposed change detection

framework using OSGD-E representations.

It is clear that the optimum pair of window sizes will depend on the nature of the changes

required to be detected and, in that sense, one of the key strengths of the algorithm is

that the size of the windows involved, which is related to the horizon for the analysis, can

be modified accordingly without increasing the complexity of the algorithms. In this way,

the OSGD-based change detection framework offers the possibility of choosing between a

wide range of window size combinations. For instance, for the case of data stream 1 in

Figure 4.21 window sizes that would guarantee good detection results would be all those

pair of windows whose difference is larger than 200 (w2 − w1 > 200) with the size for

the first window set to be w1 < 250. Note however, that reducing the window size in

OSGDs algorithms implies directly reducing the number of data items involved in the

density estimation stage and, in that sense, constructing probability domain subpatterns

that ignore most of the past values of the stream.

Note also that although changes related to streams from the four main category (changes

in the deterministic properties of the stream) are more difficult to detect, an appropriate
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Figure 4.22: Example data streams from the first six subcategories of the data set
and their corresponding Euclidean distance obtained using the proposed change detection

framework using OSGD-E representations.

pair of window sizes for the proposed OSGD-based change detection framework still can

be found. In the reminder of this section results regarding OSGD-D representations are

omitted since they are very similar to the ones presented for OSGD-E in Figure 4.21 and

Figure 4.22.

The performance of the OSGDs framework is investigated in terms of the number of

false alarms (NFA) detected as well as in terms of the detection delay (DD) incurred

when identifying changes. For this purpose, a simple threshold thr that is applied over

the resulting Euclidean distance computed between OSGD1 and OSGD2 is defined. This

threshold accounts for a specified number of times that the mean of the Euclidean distances

when there is no change involved is exceeded. For instance, when thr is set to 2 the detected

changes in the stream will refer to all those situations in which the mean of the Euclidean

distance between OSGD1 and OSGD2 is higher than two times the mean of the distance

associated to no change.
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For the twelve subcategories of streams in the synthetic data set the mean of the Eu-

clidean distances when there is no change involved are obtained by averaging the distances

associated with time stamps 1000 to 1050 in each stream. Then, the resulting means

corresponding to streams from the same subcategory are averaged.

Once the threshold thr has been defined, the NFA and the DD can be obtained considering

the time stamps and duration of the changes present in each stream from Table 4.7. For

each of the 240 streams, the NFA as well as the DD are calculated using as reference the

true changes identified when different pairs of window sizes are selected in OSGD-based

detection framework. For visualisation purposes pixel plots are constructed in which each

pixels is associated with either the averaged detection delay or the averaged number of false

alarms, depending on the case, obtained for the 20 streams from the same subcategory

using a particular pair of window sizes as well as specific values for parameters M and j0.

Figure 4.23 and Figure 4.24 show the performance of the OSGD-based change detection

framework when different values for the parameterM (in OSGD-D algorithm) or parameter

j0 (in OSGD-E algorithm) are selected. Note that these figures are related to data streams

with the first type of change. Also note that the same scale is employed for each pixel

plot related to the same metric. The main observation from Figure 4.23 and Figure 4.24

is that, as it expected for change detection algorithms, there is a tradeoff between NFA

and DD and, in that sense, for each pair of windows, as NFA decreases the corresponding

DD increases and viceversa. The second observation is that in general, OSGD-E presents

a reduced NFA while maintaining competitive results for DD in respect to results reported

using OSGD-D. Note that, for all combinations of parameters, except for M = 2, j0 = 3

(Figure 4.24d), the NFA reported by the OSGD-E algorithm is smaller than the one

obtained using OSGD-D with the same parameters. Another aspect that is worth to

highlight from Figure 4.23 and Figure 4.24 is that regarding the parameter j0, the best

results in terms of both NFA and DD for both algorithms are obtained when j0 = 3, except

for Figure 4.24d. Note that j0 is the parameter related to the base resolution in RWDE

and, in that sense, it controls the localisation capabilities of the resulting density estimate.

Density estimates obtained using j0 < 3 are estimates that capture the main trends in the

density but are not suitable for representing discontinuities and local oscillations.

Figure 4.25 and Figure 4.26 show the averaged NFA and the averaged DD for the twelve

subcategories shown in Table 4.7 using OSGD-D as the method for the change detection
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Figure 4.23: Pixel plots for NFA and DD in OSGD-D-based detection algorithm for
different pair of window sizes and different values of the threshold thr: (a) M = 1 and

j0 = 2; (b) M = 1 and j0 = 3; (c) M = 2 and j0 = 2, (d) M = 2 and j0 = 3.
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framework. For these figures the number of decompositions levels M is set to 1, while the

base resolution j0 is set to 2. Figure 4.25 shows results for the first four subcategories of

changes: (a) Slow linear change in mean, (b) Moderate linear change in mean, (c) Abrupt

change in mean, (d) Slow linear change in variance. Figure 4.26 shows results for the fifth

to the ninth type of changes: (a) Moderate linear change in variance, and (b) Abrupt

change in variance, (c) Slow change in frequency content, (d) Moderate change frequency

content. Finally, Figure 4.27 depicts results for the last four subcategories: (a) Abrupt

change in frequency content, (b) Slow change in deterministic properties, (c) Moderate

change deterministic properties, and (d) Abrupt change in deterministic properties. Note

that in Figures 4.25 and Figure 4.26 the black colour in DD pixel plots indicates that the

corresponding algorithm fail to detect changes within the 1000 data items posterior to the

starting point of the change. On the contrary, non black pixels in DD pixel plots, means

that the pair of window sizes are able to detect the underlying changes in the properties

of the data stream. Regarding NFA pixel plots, white pixels means that there are no false

alarms detected in such cases, while black pixels are associated with situations in which

the number of false alarms is equal or higher than 40.

As it can be observed from Figure 4.25 to Figure 4.27 the most difficult type of change to be

detected is the one related to changes in the underlying deterministic generation process of

the data (Figure 4.27b to Figure 4.27d). Furthermore, among the 12 subcategories studied,

slow changes in deterministic properties (Figure 4.27b) is the most challenging kind of

change. The reason for this is that the particular type of deterministic change studied

here involves a data stream that keeps its stochastic properties (mean and variance) almost

unaltered. In this way, changes can only be detected by capturing subtle differences in the

probability density of the data. Note here that the proposed OSGDs representations are

able to capture such differences since they are based on estimating the probability density

of the data at different resolutions.

4.2.2 Clustering of Multiple Data streams

One of the fundamental mechanisms for understanding and learning is the organisation

of data into meaningful or natural groups [172]. Cluster analysis is the formal study of

methods and algorithms for grouping objects according to their intrinsic characteristics or

similarity [172]. Clustering aims at identifying the underlying structure in an unlabeled
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Figure 4.24: Pixel plots for NFA and DD in OSGD-E-based detection algorithm for
different pair of window sizes and different values of the threshold thr: (a) M = 1 and

j0 = 2; (b) M = 1 and j0 = 3; (c) M = 2 and j0 = 2, (d) M = 2 and j0 = 3.
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Figure 4.25: Pixel plots for NFA and DD using OSGD-D-based detection algorithm for
the first four subcategories of changes studied using M = 1 and j0 = 2.



Chapter 4. Empirical Evaluation of SGDs Algorithms 107

Thr

NFA

 

 

2 3 4 5

w1=50, w2=100
w1=50, w2=150

w1=100, w2=150
w1=50, w2=200

w1=100, w2=200
w1=150, w2=200
w1=50, w2=250

w1=100, w2=250
w1=150, w2=250
w1=200, w2=250
w1=50, w2=300

w1=100, w2=300
w1=150, w2=300
w1=200, w2=300
w1=250, w2=300
w1=50, w2=350

w1=100, w2=350
w1=150, w2=350
w1=200, w2=350
w1=250, w2=350
w1=300, w2=350
w1=50, w2=400

w1=100, w2=400
w1=150, w2=400
w1=200, w2=400
w1=250, w2=400
w1=300, w2=400
w1=350, w2=400
w1=50, w2=450

w1=100, w2=450
w1=150, w2=450
w1=200, w2=450
w1=250, w2=450
w1=300, w2=450
w1=350, w2=450
w1=400, w2=450
w1=50, w2=500

w1=100, w2=500
w1=150, w2=500
w1=200, w2=500
w1=250, w2=500
w1=300, w2=500
w1=350, w2=500
w1=400, w2=500
w1=450, w2=500

instances

10 20 30 40

Thr

DD

 

 

2 3 4 5

time stamps

200 400 600 800 1000

(a)

Thr

NFA

 

 

2 3 4 5

w1=50, w2=100
w1=50, w2=150

w1=100, w2=150
w1=50, w2=200

w1=100, w2=200
w1=150, w2=200
w1=50, w2=250

w1=100, w2=250
w1=150, w2=250
w1=200, w2=250
w1=50, w2=300

w1=100, w2=300
w1=150, w2=300
w1=200, w2=300
w1=250, w2=300
w1=50, w2=350

w1=100, w2=350
w1=150, w2=350
w1=200, w2=350
w1=250, w2=350
w1=300, w2=350
w1=50, w2=400

w1=100, w2=400
w1=150, w2=400
w1=200, w2=400
w1=250, w2=400
w1=300, w2=400
w1=350, w2=400
w1=50, w2=450

w1=100, w2=450
w1=150, w2=450
w1=200, w2=450
w1=250, w2=450
w1=300, w2=450
w1=350, w2=450
w1=400, w2=450
w1=50, w2=500

w1=100, w2=500
w1=150, w2=500
w1=200, w2=500
w1=250, w2=500
w1=300, w2=500
w1=350, w2=500
w1=400, w2=500
w1=450, w2=500

instances

10 20 30 40

Thr

DD

 

 

2 3 4 5

time stamps

200 400 600 800 1000

(b)

Thr

NFA

 

 

2 3 4 5

w1=50, w2=100
w1=50, w2=150

w1=100, w2=150
w1=50, w2=200

w1=100, w2=200
w1=150, w2=200
w1=50, w2=250

w1=100, w2=250
w1=150, w2=250
w1=200, w2=250
w1=50, w2=300

w1=100, w2=300
w1=150, w2=300
w1=200, w2=300
w1=250, w2=300
w1=50, w2=350

w1=100, w2=350
w1=150, w2=350
w1=200, w2=350
w1=250, w2=350
w1=300, w2=350
w1=50, w2=400

w1=100, w2=400
w1=150, w2=400
w1=200, w2=400
w1=250, w2=400
w1=300, w2=400
w1=350, w2=400
w1=50, w2=450

w1=100, w2=450
w1=150, w2=450
w1=200, w2=450
w1=250, w2=450
w1=300, w2=450
w1=350, w2=450
w1=400, w2=450
w1=50, w2=500

w1=100, w2=500
w1=150, w2=500
w1=200, w2=500
w1=250, w2=500
w1=300, w2=500
w1=350, w2=500
w1=400, w2=500
w1=450, w2=500

instances

10 20 30 40

Thr

DD

 

 

2 3 4 5

time stamps

200 400 600 800 1000

(c)

Thr

NFA

 

 

2 3 4 5

w1=50, w2=100
w1=50, w2=150

w1=100, w2=150
w1=50, w2=200

w1=100, w2=200
w1=150, w2=200
w1=50, w2=250

w1=100, w2=250
w1=150, w2=250
w1=200, w2=250
w1=50, w2=300

w1=100, w2=300
w1=150, w2=300
w1=200, w2=300
w1=250, w2=300
w1=50, w2=350

w1=100, w2=350
w1=150, w2=350
w1=200, w2=350
w1=250, w2=350
w1=300, w2=350
w1=50, w2=400

w1=100, w2=400
w1=150, w2=400
w1=200, w2=400
w1=250, w2=400
w1=300, w2=400
w1=350, w2=400
w1=50, w2=450

w1=100, w2=450
w1=150, w2=450
w1=200, w2=450
w1=250, w2=450
w1=300, w2=450
w1=350, w2=450
w1=400, w2=450
w1=50, w2=500

w1=100, w2=500
w1=150, w2=500
w1=200, w2=500
w1=250, w2=500
w1=300, w2=500
w1=350, w2=500
w1=400, w2=500
w1=450, w2=500

instances

10 20 30 40

Thr

DD

 

 

2 3 4 5

time stamps

200 400 600 800 1000

(d)

Figure 4.26: Pixel plots for NFA and DD using OSGD-D-based detection algorithm for
the fifth to ninth subcategory of changes studied using M = 1 and j0 = 2.
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Figure 4.27: Pixel plots for NFA and DD using OSGD-D-based detection algorithm for
the last four subcategories of changes studied using M = 1 and j0 = 2.
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data set by systematically organising data into homogeneous groups, in such a way that

the similarity among data items within the same group and the dissimilarity among data

items from different groups are jointly maximised [2].

In general, as it was highlighted in Section 3.2.3, in data stream mining tasks, such as

clustering, classification, rule discovery, segmentation and summarisation, a fundamental

issue that must be addressed is finding an appropriate representation for streaming data

[81]. Two are the main reasons that make data representation essential for clustering

tasks: 1) reduction in dimensionality [81], and 2) improvement in cluster stability [172].

Specifically, in clustering applications, data representation is a crucial factor that directly

influence the performance of the algorithms due to the fact that a good data representation

will produce compact and isolated clusters that can be easily identified even by a simple

clustering algorithm [172].

In this section an online SGDs-based clustering framework is proposed. In the proposed

framework the OSGDs algorithms proposed in Section 3.5 are used to extract online rep-

resentations for streaming data. Similar to the framework reported in [103, 106] and [183],

the proposed data stream clustering framework divides up the clustering process into online

and offline phases. In the online phase, incremental representations of the data streams

are constructed using the proposed OSGDs-based algorithms. In the offline phase the cor-

responding clustering of such representations is performed using an incremental clustering

technique. The block diagram for the proposed OGSDs-based data streams clustering

framework is depicted in Figure 4.28.

Since the proposed OSGDs representations are expressed as fixed-length vectors, their

subsequent clustering, at each time stamp t, can be performed using any feature-based

technique. As a proof of concept, an online implementation of the popular k-means algo-

rithm is proposed as the clustering algorithm. Note that in [103] k-means was adapted for

its application in online contexts, suggesting an incremental strategy that considers the

cluster centers obtained at time stamp t as the initial values for centres at the subsequent

time stamp t + 1. For the sake of completeness, its theoretical foundations are briefly

reviewed.

The k-means algorithm: The k-means algorithm is the most popular and the

simplest partitional clustering method. The goal of k-means is to find the best

partition of a data set X into K groups such that the squared error between the
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cluster’s centroid and the data points included in a given cluster is minimised [172].

Specifically, this algorithm tries to minimise the sum of the squared error over all

clusters expressed by the following objective function:

J =
K∑

k=1

∑

xi∈Ck

‖ xi −mk ‖
2 (4.2)

where ‖ xi −mk ‖2 is the squared Euclidean distance between a data point xi and

the cluster’s centroid mk. More details about the formulation and extensions of this

algorithm can be found in [172].

Note that what makes conceptually different the proposed SGDs-based clustering frame-

work respect to solutions reported in [103, 106] and [183], is the fact that the proposed

approach makes use of more robust features that combine structural and statistical aspects

without compromising the resulting computational complexity.

The problem of clustering multiple parallel data streams assumes a set of N univariate data

streams X = {xi}, i ∈ N = {1, 2, . . . , N}, here each xi = {xi(t)} is an ordered sequence of

real valued observations taken at discrete times t ∈ T = {1, 2, . . .}. The objective of the

clustering algorithm is to seek, at time stamp t, a K-partition of X, C = {C1, C2, . . . , CK}

with K ≤ N , such that Ci 6= ∅; ∪Ki=1Ci = X and Ci ∩ Cj = ∅ for all i, j = 1, . . . ,K with

i 6= j.

4.2.2.1 Data Stream Clustering Experimental Setting

The data used for the evaluation is the daily 5 km x 5 km mean temperature data set for

the UK from the UK’s National Weather Service (Met Office)[184], which includes 10, 359

cells, identified using the Ordnance Survey National Grid. The grid covers the whole of

the UK (including Northern Ireland). Each cell consists of 17, 167 data items, where each

item represents an estimate for the mean temperature of the centre point of the 5 x 5 km

grid cell for a given day between 1960-2006. In the evaluation each time series of mean

temperatures for a given cell is treated as a single data stream and hence, the data set

includes 10, 359 streams.

The experiment consists in obtaining, at every time stamp, OSGDs representations (using

either OSGD-D or OSGD-E algorithms) for the 10, 359 data streams and then cluster the
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resulting feature vectors using incremental k-means [103]. In the evaluation a pre-defined

number of clusters nc is considered.
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Figure 4.28: The proposed OSGD-based data streams clustering framework.

This section presents maps showing the clustering results for both OSGD algorithms ob-

tained when: 1) the parameter nc is varied (Figure 4.29), 2) when the time stamp is

different (Figure 4.30), and 3) when the parameters of the OSGDs algorithms are modified

(Figure 4.31). Note that since the size of the window is set to 365 for the above described

three cases and the data is sampled on a daily based then the maps depicted in Figure

4.29, Figure 4.30 and Figure 4.31, which were obtained for the last day of a given year,

are in fact the OSGDs representations that consider all the data for the year in question.

Note also that the parameter j0 is set to 3 for all experiments

The first observation from Figure 4.29 is that the clustering results obtained using OSGD-

D and OSGD-E are similar for same number of clusters nc evaluated. Specifically, there is

97.91%, 95.34%, 95.95% and 92.23% correlation between the maps corresponding to nc = 2,

3, 4 and 5, respectively. The second observation is related to the fact that when increasing

the number of clusters to 3, 4 or 5 (Figure 4.29b, Figure 4.29c and Figure 4.29d, as well

as Figure 4.29f, Figure 4.29g, and Figure 4.29h) it can be noted that there is more cluster

diversity in the northern regions of the country. On the contrary, locations associated

with the southern part of the UK are largely associated with same cluster for the different

values of nc investigated. The above results means that the time series representations

obtained for the southern locations in the UK are more similar among each other than the

ones related to northern locations.
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Figure 4.29: Clustering results for daily temperatures in the UK at a particular date
using both OSGDE and OSGDD algorithms with w = 365, M = 1 and different values

for the number of clusters nc.
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Figure 4.30 shows clustering results for both algorithms evaluated at four specific days

keeping nc constant. According to this figure results obtained using OSGD-D and OSGD-

E are very similar to each other with a correlation between maps of 94.81%, 94.20%,

96.33%, 95.34% for the 31/12/1976, the 31/12/1986, the 31/12/1996, and the 31/12/2006

respectively. Note also that the resulting clusters are similar among the four specific dates

investigated. This result is clearly the expected one for the temperature in a particular

region since, independently of the date, there will be always a large degree of spatial

correlation between temperatures related to contiguous locations.

Clustering results for different values of the parameter M in OSGD-D and OSGD-E algo-

rithms are depicted in Figure 4.31. Two are the main observations from this figure. The

first one is that in general, for both algorithms, results obtained for the two values of M

evaluated are largely similar, which means that in this particular application one level of

decomposition (M = 1) in either the ODWT or MREWMA stages of OSGDs algorithms

will bring acceptable clustering results. The second observation is that, for this particular

experiment, similar to what happens for the assessments related to Figure 4.29 and Figure

4.30, OSGD-D and OSGD-E algorithms with the same values for parameters M and j0

produce similar clustering results. In this case, there is 95.10% and 95.86% correlation

between OSGD-D and OSDG-E when M = 1 and when M = 2, respectively.

Finally, it is important to highlight, that the above experiments confirm, at least in an em-

pirical way, that the proposed OSGDs representations when used in clustering applications

involving sensor data, will bring coherent and meaningful information.

4.3 Final Remarks

In this chapter, the empirical evaluation of two offline and two online algorithmic instan-

tiations for the proposed SGDs framework was presented. Synthetic data as well ass real

world data are considered for the evaluation. The real world data used for the offline

algorithms includes bearing vibration data from an inductor motor, ECG data from 16

volunteers, as well as a collection of 42 benchmark time series from diverse disciplines used

as benchmark for the time series mining research community. For online algorithms the

real world data selected includes air pollution data from Hong Kong and Temperature

data from the UK.
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Figure 4.30: Clustering results for daily temperatures in the UK at different dates using
both OSGDE and OSGDD algorithms with w = 365, M = 1 and nc = 3.
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Figure 4.31: Clustering results for daily temperatures in the UK at a particular date
using OSGD-E and OSGD-D algorithms with different values of M and with w = 365,

nc = 3 for both methods.

The results reported for the two offline experiments show that the new time series data

representation framework here proposed outperforms the 21 benchmark time series repre-

sentation included in the evaluation. Regarding the third offline experiment, the algorithms

based on the proposed framework reports the best outcome in 33.8% of the data sets evalu-

ated considering all distance measures studied. In contrast, the best benchmark algorithm

reports the best outcome in only 11.9% of the cases. Moreover, by considering each dis-

tance measured separately, the proposed SGDW3 algorithm reports the larger number of

best outcomes in 4 out of 5 distances.

The online algorithms have been assessed in the context of two data mining tasks namely,

change detection and multiple data streams clustering. The results show the potential of

the proposed online SGDs framework as a promising alternative to traditional online data

stream processing algorithms. In a great variety of systems and processes different types

of events, related to particular states of operation or behaviour, need to be discovered

as early as possible. In this context, online algorithms such as the proposed OSGDs

representations, which help to provide online information about emerging events, can be

of immense value for the decision making process.



The mathematician’s patterns, like the painter’s or the poet’s must

be beautiful; the ideas, like the colors or the words, must fit

together in a harmonious way. Beauty is the first test: there is no

permanent place in this world for ugly mathematics.

Godfrey H. Hardy,

A mathematician’s apology (1940)

Chapter 5

Data Stream Evolution Diagnosis

using RWDE

A plethora of algorithms have been designed for mining streaming data; however, only

few approaches have been reported for the online characterisation of its evolution. In this

chapter, a novel framework for diagnosing the evolution of multidimensional streaming data

which incorporates a recursive wavelet-based density estimation approach is proposed. In

the proposed framework changes in streaming data are characterised by the use of local

and global evolution coefficients. In addition to this, for the analysis of changes in the

correlation structure of data, a recursive implementation of Pearson’s correlation coefficient

using exponential discounting is proposed. Visualisation tools, such as temporal and spatial

velocity profiles [9], are here extended to fit into the proposed framework.

This chapter is organised as follows. Section 5.1 presents a brief introduction to the

problem of evolution detection in the context of streaming data. In Section 5.2, theoretical

background regarding RWDE is briefly reviewed. In Section 5.3 the proposed data stream

evolution diagnosis framework is presented. Section 5.4 includes the empirical evaluation

of the framework. Final remarks are presented in Section 5.5.

116



Chapter 6. Data Stream Evolution Diagnosis using RWDE 117

5.1 Introduction

In streaming data analysis, data evolution refers to the process in which important changes

occur over time in the trends of a given data stream due to changes in the underlying

phenomena [9]. Algorithms for the diagnosis of evolution in data streams assume that, by

analysing changes in data, valuable insights can be obtained to characterise the phenomena

under study.

Although several algorithms can be found in the literature dealing with the problem of

data stream mining, regarding the diagnosis of data evolution, the most relevant work

to the method presented in this chapter is the concept of velocity density proposed by

Aggarwal in [9] which measures the rate of change of data concentration at a given spatial

location over a user-defined time horizon.

In this chapter, a novel evolution diagnosis framework for data streams is proposed. This

framework is based on extending the concept of velocity density estimation, originally

introduced within the context of Kernel Density Estimation (KDE), to RWDE. The pro-

posed framework has some important advantages with respect to the approach reported

in [9]: 1) it requires a significant lower amount of memory; 2) the proposed algorithms are

computationally less complex; and 3) for higher dimensional data, it allows the diagnosis

of data evolution separately for each dimension with only one pass of the data.

Although it has been previously suggested that data evolution can be estimated by means

of velocity density estimation, the proposed method is fundamentally different from [9]

in the following aspects. The first difference is the method selected for the estimation of

probability densities. Note that the proposed framework uses a RWDE optimised for online

applications instead of an off-line KDE. The second difference is that in [9], the velocity

density is formulated in terms of sliding windows whereas in the proposed framework it

considers exponential discounting. Moreover, in [9] to estimate velocity density profiles

and in general to quantify data evolution two types of densities are considered namely,

a forward density estimate and a reverse density estimate. The main idea in [9] is to

compare a density that assigns more importance to old data with one that puts more

emphasis on new data. Note that in the proposed method the concepts of reverse and

forward density do not apply and instead of that a pair of density estimates related to

different exponential discounting/updating strategies for the coefficients of each estimator
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is used. The last important difference is that in the proposed framework velocity densities

are formulated in a separate way for each dimension. This capability not only allows the

localised diagnosis of data evolution in each dimension, but also it provides the basis for

the detection of particular dimensions or combinations of dimensions in the data which

are relevant for a given data change.

In the proposed framework, the characterisation of changes in streaming data relies on

concepts such as evolution coefficients and correlation between evolution coefficients. An

evolution coefficient is an indicator of the level of significance of data changes at each par-

ticular time stamp. Here a high level of evolution is associated with significant changes of

data concentrations at various spatial locations over a particular time horizon. The corre-

lation coefficient between the evolution coefficients related to different dimensions captures

changes in the correlation structure of the data. Specifically, a recursive implementation

of the Pearson’s correlation coefficient based on exponential discounting is proposed. The

two visual profiles proposed in [9] relying on the concept of velocity density namely, tem-

poral velocity profiles and spatial velocity profiles, are also extended here to the context of

proposed RWDE-based VDE framework.

5.2 Theoretical Background

5.2.1 Recursive Wavelet Density Estimator (RWDE) Overview

5.2.1.1 Batch WDE

The main idee of WDEs, which were introduced in Chapter 2, is that an unknown square

integrable density function f(x), with X1, X2, ..., Xn denoting the realisations of a random

variableX, can be expressed as the convergent series of orthogonal basis functions in L2(R).

Depending on the type of basis functions employed (only scaling functions or scaling and

wavelet functions), in WDEs two main alternatives for the density can be formulated. Since

data streams applications are constrained by computational restrictions, in this chapter

the simplest WDE is considered. This linear estimator is defined by:

f̂(x) =
∑

k

ĉj0,kφj0,k(x) (5.1)
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where φj0,k(x) = 2
−j0/2φ(2−j0x− k) is the scaling function associated with the base reso-

lution 2j0 with the index j0 ∈ Z and k ∈ K ⊂ Z. In order to simplify notation, this work

considers scaling function filters whose support at resolution 2−j0 = 0 is 2nφ − 1 with nφ

denoting the order of the filter. The well known Daubechies and Symmlets wavelet families

include scaling functions with these characteristics. Assuming that each Xi is normalised

to take only values within the interval [0, 1], and considering [2j0k, 2j0(k + 2nφ − 1)] to be

the support of φj0,k, then K = {−(2nφ − 2), . . . , 0, . . . , (2
j0 − 1)} (the reader is referred to

[96] for more details). In Equation (5.1), coefficients ĉj0,k are estimated according to

ĉj0,k =
1

n

n∑

i=1

φj0,k(Xi) (5.2)

It has been shown in [74] that the estimator f̂(x) is suboptimal. However, since in the

proposed framework the interest is placed on the fast evaluation of the relative difference

between densities rather than in their precise estimation, then the prompt detection of

relative changes in the density will be very useful. Note that the density estimation

process in the linear WDE of Equation (5.1) is in fact a projection into the space Vj0 and

as a result the density obtained is an approximate version of the true density at resolution

2−j0 . For further details about this type of estimator the reader is referred to Chapter 2

and to [74].

5.2.1.2 Extension to higher dimensions

The estimator described above can be easily extended to higher dimensions by consider-

ing multidimensional multiresolution analysis and their corresponding multidimensional

wavelets. In this case, by considering Xi = (X
1
i , X

2
i , . . . , X

m
i ) ∈ R

m to be the realisations

of a multidimensional random variable X and using x = (x1, x2, . . . , xm) ∈ Rm then the

m-dimensional density can be expressed as:

f̂(x) =
∑

k

ĉj0,kΦj0,k(x) (5.3)

where, k = (k1, k2, . . . , km) ∈ Zm and j0 ∈ Z. The m-dimensional approximation of the

scaling coefficients can be extended from Equation (5.2) and can be expressed as:
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ĉj0,k =
1

n

n∑

i=1

Φj0,k(Xi) (5.4)

where the m-dimensional basis function is defined by Φj0,k(x) =
⊗m
d=1 φj0,k(xd) with the

symbol
⊗
denoting tensor product. Note that Equation (5.3) and Equation (5.4) are based

on the concept of separable multiresolution approximations [185], in which m-dimensional

scaling functions are defined as the tensor product of m one-dimensional scaling functions.

5.2.1.3 Recursive WDE

For the online implementation of the WDE the recursive estimator proposed by [157],

referred to as RWDE, is used. This estimator originally comprises two stages. The initial

stage is an off-line stage in which an initial estimate of the density is obtained using the

batch WDE of Equation (5.1) and Equation (5.2). In the second stage, which is an online

one, the estimator’s coefficients ĉj0,k(t) are recursively updated as new data items arrive

according to the equation:

ĉj0,k(t) = (1− θ)ĉj0,k(t− 1) + θφj0,k(Xt) (5.5)

where Xt, the newest data item available, denotes the realisation of a random variable

X at time t. Since coefficients ĉj0,k are recursively estimated each time a new data item

arrives, the temporal index t is included. Note that Equation (5.5) defines an exponential

discounting strategy for the estimator coefficients where the parameter θ controls the

emphasis assigned to new data respect to older one1.

It is important to point out a specific issue of the updating strategy described by Equation

(5.5). When the newest data item available Xt falls outside the support of the scaling

function φj0,k, the product (1 − θ)φj0,k(Xt) is zero and then the updating of coefficient

ĉj0,k(t) does not yield the expected results. Note that in such circumstances, ĉj0,k(t) should

be equal to its past value. In order to fix this problem it is proposed to use the selective

coefficients evaluation method reported in [96]. In this way, prior to the updating of ĉj0,k(t)

it is checked if Xt falls within the interval [2
j0k, 2j0(k + 2nφ − 1)], which is the support of

φj0,k. If Xt is inside this interval then Equation (5.5) is used; otherwise, the coefficient is

1 In order to find a simple direct relation between θ and the window size parameter used, for the weight
assigned to the previous value of the coefficients cj0,k, in this chapter the term (1− θ) is used instead of θ.
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left unchanged. For further details about this procedure and the implementation of RWDE

the reader is referred to [96].

5.2.2 The Velocity Density Estimation Framework

The velocity density concept, first introduced in [9] in the context of KDE and sliding

windows, is based on the intuitive idea that high levels of evolution in a given data stream

are associated with changes in relative data concentrations at some given spatial locations.

According to this, such changes can be captured by estimating the variations in the prob-

ability density of the data in a given spatial location over time. Specifically, the concept

of velocity density relies on the difference between two probability densities, each of them

associated with a particular temporal weighting strategy for the data covered by the sliding

window (t − ht, t), where ht defines the length of the temporal window. For this purpose

in [9] a forward time slice density estimate and a reverse time slice density estimate are

employed. While the former is related to the probability density for all data items covered

by the sliding window giving a higher importance to new data, the latter relies on comput-

ing the probability density emphasizing the importance of old data. Hence, the larger the

difference between these two densities the higher the amount of change in the data stream

at that given time t. Additionally, since different values for ht are related to different time

horizons for the analysis, with large values of ht, long-trends can be investigated whereas

by using a small ht, short-term trends can be studied.

Note that, in its original formulation, the computation of velocity density requires the

storage in memory of all data items covered by the sliding window. Also note that in

[9] the probability densities are estimated using KDE, which require the same number of

Gaussian functions than the number of data items used for the estimation. It is evident

then that if ht is chosen to be large, not only the amount of memory required will increase

but also the computational burden of the algorithm will be higher. An additional burden of

the approach reported in [9], is that for the case of high dimensional data, the evaluation of

the amount of evolution at each particular dimension involves scanning the data more than

once. The above three disadvantages prevent the potential deployment of the framework

in real world applications.

In order to overcome the above issues and in order to provide an intuitive user-friendly

data stream evolution algorithm, a novel method for the estimation of velocity density is
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proposed in this chapter. The proposed method uses a different density estimator and

relies on a rather different data discounting strategy.

5.3 Proposed RWDE-based Velocity Density Estimation

Framework

There are various reasons why RWDE is chosen as the estimator in the proposed velocity

density estimation framework. Firstly, this algorithm does not require the storage of past

data items in memory. In addition to this, it employs a fixed number of basis functions,

independent of the number of data items used for the estimation. Furthermore, the use

of this particular type of estimator not only allows the evaluation of data evolution at

each dimension separately, but it also renders a radically different and computationally

less expensive framework for the estimation of local and global evolution coefficients.

It is important to point out a fundamental conceptual difference of the proposed RWDE-

based framework respect to the approach reported in [9]. In [9], the evolution diagnosis

framework is based on velocity densities which are constructed by comparing two probabil-

ity density functions estimated using one sliding window but applying different temporal

weighting strategies for the data covered by the window. Hence, the key idea in [9] is

the use of a spatiotemporal kernel function that is a time-factored version of the spatial

kernel traditionally used in the KDE context. In contrast, the proposed density estimation

framework relies on the use of two recursive exponential windows which, for the updating

of the density estimates at a given time stamp, only require the last data item available.

Following this approach the difference between two probability densities can be captured

by applying different exponential discounting strategies to old data and new data.

The main advantage of the proposed method is that it requires constant time for the

computation of the densities, independent of any window size. Note here that using the

framework reported in [9] the quantification of long-term changes in data is performed by

increasing the size of the sliding window. Consequently, the amount of memory required

and the computational complexity of the algorithm increases. In contrast, in the proposed

approach, long-term trends in data can be analysed without increasing neither memory

storage nor computational burden.
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The two approaches for velocity density estimation are depicted in Figure 5.1. Note that

the two main differences are: 1) the data used for the estimation of the density; and 2) the

type of window used for the estimation. While the method shown in Figure 5.1a requires

all the data that falls inside the sliding window, the technique shown in Figure 5.1b works

only with one data item. Regarding the window employed, we can see that the weighting

strategy for approach reported in [9], as shown in Figure 5.1a, is in fact a linear one;

whereas for the proposed approach (Figure 5.1b) is of an exponential nature.
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Figure 5.1: Windows used in the evolution diagnosis frameworks. (a) Framework re-
ported in [9]; (b) Proposed RWDE-based VDE framework.

5.3.1 Proposed Velocity Density Framework

The algorithms proposed in this section consider a multivariate data stream similar to

the one defined in Section 5.2.1.2 whose multidimensional data items at time t, Xt =

(X1t , X
2
t , . . . , X

m
t ) ∈ R

m, are assumed to be the realisations of a multidimensional random

variable X.

5.3.1.1 Density Estimation

In the proposed framework, which follows the RWDE concepts reviewed in Section 5.2.1,

velocity densities are calculated using a pair ofm-dimensional probability density estimates

of the form:
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f̂θ(x, t) = cnorm

m⊗

d=1

f̂dθ (xd, t) (5.6)

where the symbol
⊗
denotes the tensor or outer product of two vectors, θ defines a

given discounting strategy, d ∈ D = {1, 2, . . . ,m} is index related to the dimension of

the data and cnorm is a normalisation constant to make
∫
x f̂θ(x, t) = 1. Note that here

x = (x1, x2, . . . , xm) ∈ Rm. In Equation (5.6), each one-dimensional density is in turn

expressed as:

f̂dθ (xd, t) =
∑

k

ĉdj0,k(t)φj0,k(xd) (5.7)

with the coefficients of the estimator recursively updated each time a new data item is

available according to:

ĉdj0,k(t) = (1− θ)ĉ
d
j0,k
(t− 1) + θφj0,k(X

d
t ) (5.8)

where Xdt refers to the last data item available at time t and dimension d. Here, k ∈ K =

{−(2nφ − 2), . . . , 0, . . . , (2j0 − 1)}.

Note that in Equation (5.6), Equation (5.7) and Equation (5.8) the temporal variable t is

introduced to both, density estimates and coefficients, to indicate their time dependency.

According to the above equations, the procedure to estimate a given multidimensional

density f̂θ(x, t), at each time stamp t is performed in two steps. The first step estimates

the m one-dimensional densities using Equation (5.7). The second step combines the

one-dimensional densities using Equation (5.6).

As it was described in Section 5.2.1, the RWDE algorithm originally comprises two stages

namely, an off-line and an online stage. Since in data stream applications the estimation

of an initial density estimate is not feasible, in the RWDE implementation proposed the

estimator’s coefficients are initialised to zero, that is, ĉdj0,k(0) = 0 ∀k ∈ K. Note also

that for the evaluation of Equation (5.6) and Equation (5.7) the same set of P points

β = {bP }p∈1,2,...,P , with bP ∈ [0, 1], is needed for all dimensions. Since RWDE involves two

general stages, that is, updating of estimator’s coefficients and evaluating the density in a

set of P points β, the pseudo code has been split into Algorithm 5.1 and Algorithm 5.2,

respectively. Note that these algorithms are related to the one-dimensional case.
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Algorithm 5.1: RWDE updating(j0,Xt,θ,{ĉj0,k(t− 1)}k∈K)

1
Input: j0: Resolution of scaling functions; Xt: newest data item; θ: Discounting parameter;

{ĉj0,k(t− 1)}k∈K: Scaling function coefficients at time t− 1;.
Output: {ĉj0,k(t)}k∈K: Updated scaling function coefficients at time t.
for k ← −(2nφ − 1) to 2j0 do
if Xt ≥ 2j0k and Xt ≤ 2j0(k + 2nφ − 1) then

ĉj0,k(t) = (1− θ)ĉj0,k(t− 1) + θφj0,k(Xt);
else

ĉj0,k(t) = ĉj0,k(t− 1);
comment: If the new arriving data item Xt falls within the support of the scaling function
then update the scaling function coefficient otherwise make it equal to its past value.

Algorithm 5.2: RWDE evaluation(j0,{cj0,k(t)}k∈K,β)

1
Input: j0: Resolution of scaling functions; {cj0,k(t)}k∈K: Updated scaling function coefficients at

time t; β = {bp}p∈{1,2,...,P}: Set of points for the evaluation of the density.

Output: {f̂d(Xβ , t)}Xβ∈β : Updated probability density function at time t.
for Xβ ← b1 to bP do
for k ← −(2nφ − 1) to 2j0 do

f̂d(Xβ , t) = ĉj0,k(t)φj0,k(Xβ);
comment: Evaluate the probability density estimate at a grid of points Xβ ∈ β.

Since the velocity density framework is based on the quantification of the difference between

two densities, in the proposed approach a pair of RWDE with different values for θ is

required. The procedure to obtain the appropriate pair of values for θ is described in the

the following section.

5.3.1.2 Choice of parameter θ

The procedure for the selection of the parameter θ involves making the weighting value of

a particular past coefficient equal to a user defined parameter cmin, related to the desired

weighting value for coefficient ĉj0,k(t−w), where w is an hypothetical window length, with

0 < cmin < 1, w > 1 and w ∈ N. In order to accomplish this, first consider that Equation

(5.5) can be expanded in the following way:

ĉj0,k(t) = (1-θ)tĉj0,k(0)

+ (1-θ)t−1θĉj0,k(1) + (1− θ)
t−2θĉj0,k(2)

+ . . . (1-θ)θĉj0,k(t− 1) + θφj0,k(x(t))

(5.9)



Chapter 6. Data Stream Evolution Diagnosis using RWDE 126

According to Equation (5.9) the weight assigned to coefficient ĉj0,k(t−w), that is the last

coefficient covered by an hypothetical window of length w, is (1− θ)t−(t−w)θ. Taking this

into account, θ can be estimated from the following equation:

(1-θ)t−(t−w)θ = cmin(1− θ)θ

(1-θ)w−1 = cmin

θ = 1-(cmin)
1/(w−1)

(5.10)

For normalisation purposes, in Equation (5.10) it is considered that weighting value for

the coefficient ĉj0,k(t−w) should be equal to cmin times the weighting value of coefficient

ĉj0,k(t− 1) which is (1− θ)θ. The experiments of Section 5.4 consider cmin = e
−1 = 0.3679

which means that the weighting value corresponding to the coefficient obtained at time

t−w (that is, the oldest element in the hypothetical window) has a contribution of 36.79%.

It is easy to see that by choosing this particular value for cmin, θ becomes approximately

equal to 1/w.

The characteristics of different discounting strategies are shown in Figure 5.2, where the

weighting values assigned at time stamp 900 to the coefficients related to previous time

stamps using three different values of θ is plotted. Note that in Figure 5.2 the curves are

normalised using (1 − θ)θ equal to 1. Regarding the notation, the value of θ associated

with a particular exponential window w is denoted as θw.
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Figure 5.2: Weighting strategies for different values of θ.

Since in the proposed velocity density framework two densities are required, each of them

related to different discounting strategies, Equation (5.10) is evaluated using two different

window lengths, w1 and w2. Then the notation θw1 and θw2 is used to refer the discounting

parameters associated with w1 and w2, respectively. Note that w1, w2 ∈ N, are user defined

quantities whose values depend on the desired time horizon for the analysis. Therefore, if

w2 > w1, then w1 is related to a hypothetical window that includes less number of data
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items for the density estimation than the ones included by the window associated with w2.

Here, w2 − w1 implicitly expresses a given time horizon for the analysis. In this work, in

order to achieve results similar to the ones obtained using the velocity density estimation

framework of [9], it is proposed that w1 should be the quarter of w2, that is, w1 = w2/4.

This selection would guarantee that the associated densities would significantly differ from

each other when some changes in the last w2 items are present. Note that w2 is the largest

window considered.

5.3.1.3 Velocity Density Estimation

In this section two different strategies for the estimation of the velocity density are sug-

gested. The first method is mainly useful for visualisation purposes. The second approach

is more appropriate for the fast computation of local an global evolution coefficients.

Velocity Density Estimation from Densities (VDD)

The first strategy for velocity density estimation is based on evaluating the difference

between two density estimates of the data using the densities themselves. This method

is referred to as Velocity Density estimation from Densities (VDD). In this case, by us-

ing the one-dimensional densities of Equation (5.7), the one-dimensional velocity density

V d(θw1 ,θw2 )
(Xd, t) at location Xd and time t for dimension d is defined by:

V d(θw1 ,θw2 )
(Xd, t) =

f̂dθw1(x, t)− f̂
d
θw2
(x, t)

w2 − w1
(5.11)

where θw1 and θw2 are two different exponential discounting strategies, with w1 and w2,

referring to the window lengths used for the estimation.

The velocity density for the entire set of dimensions V(θw1 ,θw2 )(X, t) at spatial location X

and time t can be expressed as:

V(θw1 ,θw2 )(X, t) =
f̂θw1(x, t)− f̂θw2(x, t)

w2 − w1
(5.12)

Note in Equation (5.12) f̂θw1(x, t) and f̂θw2(x, t) are multidimensional densities. Since

the total volume under each of the probability densities involved in Equation (5.11) and
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Equation (5.12) is equal to the unit, then the maximum volume contained in the VDD is

2. Note also that here the term spatial location refers to a specific point inside the support

of either a given multidimensional density or a given multidimensional velocity density.

It is also important to highlight that one of the advantages of the above velocity density

formulation, is that it allows the use of different discounting strategies for each dimension.

Velocity Density Estimation from Coefficients (VDC)

Since the main objective of the velocity density framework is the quantification of the

rate of change in data over a particular time horizon and by considering that in the

context of RWDE the way a given density varies over time is directly related to the way

its corresponding parameters change; then an alternative velocity related to the change in

the density estimator’s coefficients can be used to realise an alternative formulation. This

strategy is called Velocity Density estimation from Coefficients (VDC).

This velocity density estimation strategy has the advantage of a reduced computational

burden since it is directly evaluated from the estimator’s coefficients, avoiding the evalua-

tion, at every time stamp t, of the density (using either Equation (5.6) or Equation (5.7))

in a set of points β. This alternative velocity can be expressed, for the one-dimensional

case, as:

V̂ d(θw1 ,θw2 )
(k, t) =

ĉdθw1(k, t)− ĉ
d
θw2
(k, t)

w2 − w1
(5.13)

where ĉdθwx(k, t) = [ĉ
d
j0,−2nφ−1(t), . . . , c

d
j0,2j0

(t)] is a vector containing the (2j0 + 2nφ −

2) estimator’s coefficients using the discounting strategy defined by wx. Note here that

the velocity defined by Equation (5.13) is a discrete function since k is a discrete set of

translation parameters for the scaling function φj0,k.

The VDC for the entire set of dimensions is defined as:

V̂(θw1 ,θw2 )(k, t) =
ĉθw1(k, t)− ĉθw2(k, t)

w2 − w1
(5.14)

where ĉθwx(k, t) =
⊗m
d=1 ĉ

d
θwx
(k, t) is the tensor product of the d one-dimensional vector of

coefficients. Note that in order to compute velocity densities directly from the estimator’s
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coefficients the same base resolution 2−j0 is used for each of the vectors of coefficients

involved.

5.3.2 Visualisation of Changes in 2-dimensional Data

In this section, the concepts of Temporal Velocity Profiles (TVPs) and Spatial Velocity

Profiles (SVPs) introduced in [9], which are tools for visualising changes in two dimensional

streaming data, are extended to the RWDE context. Note that in the proposed framework,

the construction of TVPs and SVPs is based on VDDs since in VDCs the set of points β

is fixed (equal to the number of estimator’s coefficients employed) and does not allow the

visualisation of a particular spatial location of the data with a higher level of detail.

5.3.2.1 Temporal Velocity Profiles (TVPs)

The temporal velocity profile is defined as the global overview of the velocity density at

different spatial points for a given specific time [9]. Hence, this profile is a surface plot of

the velocity density using a user defined grid of spatial locations among the two predefined

dimensions. Note that this visualisation tool is build up on two dimensional velocity

densities.

For the construction of TVPs a discretised version of the velocity density is required. This

discrete VDD is obtained by evaluating Equation (5.11) in a set of points β = {bP }p∈1,2,...,P .

Note that this set contains the P points in which each of the two densities used in the

construction of the velocity density are evaluated. By increasing the number of points in

β a more detailed TVP is obtained.

5.3.2.2 Spatial Velocity Profiles (SVPs)

This visualisation profile is defined as the spatial overview of the reorganisations that are

taken place in the density of the data at specific spatial points [9]. It is useful for getting

more insights about how data is shifting from some particular location to another. Note

that in this context, a data shift means that the probability of some particular values

in the data increases while the probability of other values decreases. data Specifically,

SVPs allow the user to easily observe the associated directions of all those changes that
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are taking place in the data. Intuitively, when data is shifting from one spatial location

to another the source of the shift shows a reduction in the probability density whereas

the destination of the shift shows an increment. Therefore, there is an increasing gradient

from the source to the destination of the shift. The basic idea behind this profile is, firstly,

the estimation of the gradient at given grid of spatial locations and then the plotting of

the corresponding velocity vectors as arrows at these locations.

For the construction of SVPs a set of points β along each dimension in respect to which the

gradient of the velocity density will be evaluated is used. Then for each spatial location

X in this grid the velocity gradient along the i-th dimension is defined by

Δvi(X, t) = lim
ε→0

V(θw1 ,θw2 )(X + εi, t)− V(θw1 ,θw2 )(X, t)

ε
(5.15)

where εi = ε.ei is an ε-perturbation along the i-th dimension and with ei denoting a unit

vector. The corresponding TVP and SVP for an example two-dimensional data stream

are shown in Figure 5.3. It can be observed from this figure that the two profiles clearly

show that there is a change in the statistical properties (mean and variance) of the second

dimension of the stream. Both profiles are useful to identify the data locations relevant

to this change. In addition to this, SVP also indicate that the main concentration of data

moves from 0.5 to 0.7 in the second dimension.

5.3.3 Characterising Data Evolution

In order to characterise if specific trends are occurring at specific data locations the esti-

mation of local and global data evolution coefficients is proposed. Regarding the charac-

terisation of changes in the correlation structure of the data this is obtained by estimating

the correlation between evolution coefficients.

5.3.3.1 Evolution Coefficient (EC)

In order to quantitatively address the level of significance of changes in streaming data

the evaluation of both local and global data evolution coefficients using VDC is proposed.

Local evolution coefficients (LECs) are related to single dimensions of the data stream

whereas the global coefficients (GEC) consider the entire sets of dimensions.
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Figure 5.3: A two dimensional data stream (a) and its corresponding TVP (b) and
SVP (c) representation.

The proposed framework is based on the observation that, at time t, the amount of evo-

lution of a given data stream is directly proportional to the sum of all the changes in the

estimator’s coefficients. Note here that, in the specific context of RWDE, each of these

coefficients is related to a particular spatial location and hence changes in data concen-

trations at given locations directly produce variations in the value of the corresponding

coefficients. In this sense, a high level of evolution in a given data stream is associated

with significant changes over time in the estimator’s coefficients.

An important advantage of the proposed framework is that since velocity densities are

separately computed for each dimension then evolution coefficients can also also be ob-

tained in the same fashion. For the case of highly dimensional data, this is an important

capability that allows the straightforward identification of dimensions in data in which

data evolution is relevant and dimensions in which data is not significatively changing. In

this way the LEC corresponding to the dimension d of the data is defined by:

Ed(θw1 ,θw2 )
(t) = (w2 − w1)

∑

k

|V̂ d(θw1 ,θw2 )(k, t)| (5.16)

Note here that by using Equation (5.16) not only it can be quantified in which particular

dimension the data are more significantly evolving but also it can be found a subset of the
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most relevant dimensions for that underlying data change.

If a general overview of the evolution is needed then a global evolution coefficient can

be used. In this work it is proposed to estimate the GEC by averaging the evolution

coefficients at each dimension Ed(θw1 ,θw2 )
(t) according to:

Ẽ(θw1 ,θw2 )(t) =
1

m

m∑

d=1

Ed(θw1 ,θw2 )
(t) (5.17)

The corresponding LECs and GEC for an example 3-dimensional data stream are shown in

Figure 5.4. It can be noted from Figure 5.4(b) that the LECs that detect the most relevant

changes are the ones associated with the dimensions in which the data is changing, that

is x2 and x3. Regarding the GEC, Figure 5.4(b) shows that the global evolution for the

example data stream significantly increases around the time stamps 1000 and 1500, which

are the time stamps related to the changes in x2 and x3.
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Figure 5.4: Evolution Coefficients. (a) A three dimensional example data stream; (b)
the corresponding LECs and GEC.

5.3.3.2 Correlation Between Evolution Coefficients

Since the proposed framework is based on the estimation of evolution separately at each

dimension then, the correlation structure of the data can be assessed by finding the cor-

relation between evolution coefficients corresponding to different dimensions. In this way,

the different degree of correlation between changes related to different dimensions can be

found. To this end, it is proposed to compute the correlation coefficient (CC) between two

one-dimensional streams using the Exponential Weighted Moving Correlation Coefficient
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(EWMCC) algorithm of Equation (5.18). Note that the EWMCC algorithm is in turn

based on an exponential discounting concepts. For simplicity let us consider at and bt to

be the data items at time stamp t for the data streams a and b, respectively. Then the

proposed EWMCC algorithm between streams a and b can be expressed as:

EWMCC(t)(a, b) =
Ct −NtĀtB̄t√

D2t −Nt(Āt)2
√
E2t −Nt(B̄t)2

(5.18)

with:

Āt = (1−Nt−1)Āt−1 +Nt−1at; Ct = (1− 1
wα
)Ct−1 + atbt; Et = (1− 1

wα
)Et−1 + b

2
t ;

B̄t = (1−Nt−1)B̄t−1 +Nt−1bt; Dt = (1− 1
wα
)Dt−1 + a

2
t ; Nt = (1− 1

wα
)Nt−1 + 1.

where the user defined term wα denotes the window size, with 0 ≤ 1
wα
≤ 1.

Note that we have inserted the temporal index to the correlation since it is a recursive

and time dependant variable. Note also that all the elements of Equation (5.18) are also

computed recursively. Here Āt and B̄t are the recursive version of the mean of at and

bt, respectively. Similarly, Dt and Et are the recursive versions of the sum of a
2
t and b

2
t ,

respectively. The recursive implementation of the product of at and bt is given by Ct;

whereas Nt is a recursive variable related to the number of data items effectively included

inside the exponential window. It is also important to mention that for the computation

of Āt and B̄t we use the term Nt
−1 instead of 1wα to provide an improved approximation

for time stamps in which the number of past data samples is lower than the size of the

window wα, that is when t < wα. For initialisation, it is considered that Ā1 = a1, B̄1 = b1,

C1 = a1b1, D1 = a21, E1 = b21 and D1 = 1. The pseudo code for the proposed EWMCC is

shown in Algorithm 5.3.

5.3.3.3 Finding Relevant 2D Projections of Data

The plotting of TVPs and SPVs is relevant for all those pair of dimensions (2D projections)

in which the correlation structure of the data is more significantly evolving. Since the

computational complexity of the recursive calculation of CCs is minimal, the procedure

to find relevant pairs of dimensions involves estimating the CCs among all combinations

of pairs of dimensions. At first glance, this procedure may seem prohibitive, however by

noting that some of the recursive variables involved in Equation (5.18) are repeatedly

used for each pair of dimensions then its applicability becomes feasible. Specifically, by
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Algorithm 5.3: EWMCC(at,bt,θ,γt−1);

1
Input: at: Data item at time t for the data stream a; bt: Data item at time t for the data stream

b; wα: Window size parameter; γt−1 = {Āt−1,B̄t−1, Ct−1,Dt−1,Et−1, Nt−1}: Set of
recursive parameters for the estimation of the correlation coefficient.

Output: EWMCC(t)(a, b): Correlation coefficient between streams a and b at time t; γ(t):
Updated set of recursive parameters.

Āt = (1−Nt
−1)Āt−1 +Nt

−1at;
B̄t = (1−Nt

−1)B̄t−1 +Nt
−1bt;

Ct = (1− 1
wα
)Ct−1 + atbt;

Dt = (1− 1
wα
)Dt−1 + a

2
t ;

Et = (1− 1
wα
)Et−1 + b

2
t ;

Nt = (1− 1
wα
)Nt−1 + 1.

EWMCC(t)(a, b) =
Ct−NtĀtB̄t√

D2t−Nt(Āt)
2
√
E2t−Nt(B̄t)

2

comment: Evaluate the EWMCC between the one-dimensional streams of evolution coefficients
a and b at time t.

considering that in a m-dimensional data stream there are Nc 2-combinations of the form

(m2 ), then to compute all of them using Equation (5.18) we require to keep m recursive

means (either Ā(t) or B̄(t)), m recursive sums of squared one-dimensional data streams

(either a(t)2 or b(t)2) as well as Nc recursive products a(t)b(t). Note that we only require

to keep one recursive variable D(t) since it is common to all dimensions. Then, in total

2m +Nc + 1 recursive variables need to be maintained. For instance if m = 100 we have

Nc = 4925 combinations of pairs of dimensions for which the storage of 5951 variables is

required. Furthermore, the updating of each of these recursive variables involves only two

simple multiplications.

5.3.3.4 Computational Complexity

The complexities of the proposed VDD and VDC are directly related to the complexity

of the one-dimensional RWDE in which they both rely on. RWDE in turn involves, for

each data item Xi, the evaluation of the scaling function φj0,k(Xi) for each of the Nb =

(2j0+2nφ−2) scaling functions employed using j0. The evaluation of φj0,k(Xi) is performed

using the so called Daubechies-Lagarias Algorithm (see [74] for more details) where two are

the variables involved, namely, the order of the filter nφ and the precision of the algorithm

r (this work considers r = 9). Specifically, the complexity of evaluating φj0,k(Xi) for a

single scaling function is O(r(2nφ−1)3). In this sense, O(rNb(2nφ−1)3) is the complexity

of updating all the estimator’s coefficients at every time stamp. According to this, the

complexity of the one-dimensional VDC is O(2rNb(2nφ− 1)3) while the complexity of the
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m-dimensional VDC is O(2mrNb(2nφ − 1)3). Since VDD, in addition to the updating of

the estimator’s coefficients also involves the evaluation of the density in a set of P points,

its complexity for the one-dimensional case is given by O(2r(Nb + P )(2nφ − 1)3) whereas

for the m-dimensional it is O(2mr(Nb + P )(2nφ − 1)3).

5.3.3.5 Computational Complexity Comparison

In this section, the computational complexity of the proposed VDD and VDC methods is

theoretically compared with the velocity density framework proposed in [9], which from

now on is referred to as VDKDE. For the one-dimensional case, the complexity of VDKDE

is O(2htP ), where ht is the length of the sliding window and P is the number of points in

which the density is evaluated. For the m-dimensional case it is O(2mhtP
m). Note here

that the number of points in which the densities are evaluated depends on the number

dimensions m.

For comparison, the number of multiplications required to compute velocity densities using

VDC, VDD and VDKDE, varying the number of dimensions of the data m, the size of the

window for the analysis ht and the number of P points in which each density is evaluated,

is shown in Table 5.1.

Table 5.1: Complexity comparison of velocity density methods.
m ht P VDC* VDD* VDKDE

1 1000 10 1.4e+05 2.0e+05 2.0e+04
10 1000 10 1.4e+06 2.0e+06 2.0e+14
50 1000 10 6.8e+06 9.9e+06 1.0e+55

1 5000 10 1.4e+05 2.0e+05 1.0e+05
10 5000 10 1.4e+06 2.0e+06 1.0e+15
50 5000 10 6.8e+06 9.9e+06 5.0e+55

1 10000 10 1.4e+05 2.0e+05 2.0e+05
10 10000 10 1.4e+06 2.0e+06 2.0e+15
50 10000 10 6.8e+06 9.9e+06 1.0e+56

1 1000 20 1.4e+05 2.6e+05 4.0e+04
10 1000 20 1.4e+06 2.6e+06 2.0e+17
50 1000 20 6.8e+06 1.3e+07 1.1e+70

1 5000 20 1.4e+05 2.6e+05 2.0e+05
10 5000 20 1.4e+06 2.6e+06 1.0e+18
50 5000 20 6.8e+06 1.3e+07 5.6e+70

1 10000 20 1.4e+05 2.6e+05 4.0e+05
10 10000 20 1.4e+06 2.6e+06 2.0e+18
50 10000 20 6.8e+06 1.3e+07 1.1e+71

*Using r = 9, nφ = 4, j0 = 4

The most important observation from Table 5.1 is that, since the proposed VDC and VDD

algorithms are independent of the window size ht, they are significantly less complex than
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VDKDE, specially for cases involving higher dimensions. If, for instance, it is required to

analyse a 50-dimensional data stream using a sliding window size of 1000 and considering 10

points for the evaluation of the forward and reverse densities at each dimension, VDKDE

will require, at every time step, 1.0e+56 multiplications, while the proposed VDC and

VDC will require 6.8e+06 and 9.9e+06, respectively.

5.4 Empirical Evaluation

In this section the empirical evaluation of the proposed data stream evolution diagnosis

framework is presented2. The evaluation consists of three parts. The first one is the

assessment for the selection of parameters of the algorithms. The second part includes

performance comparisons against the VDKDE which is selected as benchmark algorithm.

Finally, the third part includes the application of the framework in two real world appli-

cations.

5.4.1 Assessment of the proposed algorithm

The assessment of the proposed framework includes comparisons between evolution coeffi-

cients obtained varying one of the parameters of the proposed algorithms at a time namely,

the order of the scaling function nφ, the family of the scaling function, the initial resolution

2−j0 , the pair of window sizes for the analysis w1 and w2. Note that comparisons involve

evolution coefficients since they convey, in a single number, the total amount of varia-

tion contained in the whole velocity densities. For this assessment the one-dimensional

data stream depicted in Figure 5.5a is used, which from data item 1001 to 2000 shows a

representative evolution.

In Figure 5.5f it can be seen that, for the proposed framework, different wavelet families

can capture the evolution of a data stream. Wavelets from the Symlets family are chosen as

they are the “least asymmetric” compactly supported orthogonal wavelets usually selected

in most of the applications involving WDE [74].

The order of the scaling function nφ also impacts the resulting evolution coefficient as it

is shown in Figure 5.5e. In general, it can be observed from Figure 5.5e that from the six

2 The computer system used to generate the results reported in this section was an Intel i5 2500k with
16 GB of RAM, running on Linux Ubuntu 11.04 and the simulation environment was MATLAB R2010b.
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orders evaluated only the wavelet of order 1, that is Sym1, presents a degraded behaviour.

It is important to highlight that nφ is directly related to approximation capabilities of the

scaling function and in that sense, it is recommended to use nφ = 4 which is usually the

order selected in the WDE literature [74].

The pair of window sizes w1 and w2 are application specific parameters since they define the

time horizon for the analysis. Figure 5.5b and Figure 5.5c evaluate the effect of modifying

the difference w2 − w1 (by maintaining w1 fixed and only changing w2) and the effect of

simultaneously increasing w1 and w2 (by maintaining constant the difference w2 −w1). It

can be observed from Figure 5.5b and Figure 5.5c that different pairs of window sizes are

useful to distinguish the evolution in the example data stream. Note however that as the

difference between w2 and w1 increases the magnitude of their corresponding evolution

coefficients also increases. Note also that, when using larger window sizes high values for

the evolution coefficients persist, some time stamps after the data stream has finished to

change. According to Figure 5.5b this period of high evolution values is approximately

equal to two times w2.

Regarding the relation between evolution coefficients and the resolution 2−j0 , in Figure 5.5d

it can be seen that, apart from j0 = 0, different values of j0 produce evolution coefficients

able to correctly detect the evolution in the example data stream. The selection of a

particular value for j0 will mainly depend on the underlying distribution of the data as

well as the number of data items considered for the estimation, which, in the proposed

framework, is controlled by the size of the windows w1 and w2. As in this case the

underlying distribution of data is unknown, for the selection of j0 it is proposed to follow

a similar approach than the one used to select the bandwidth parameter in KDE, that

is to select j0 according to the optimal value for a normal distribution. Therefore, using

100 random samples of size n from a normal distribution N (0, 1), an approximation of the

Mean Integrated Squared Error (MISE) between the true density and their WDE estimates

is obtained. Specifically five different values j0 are evaluated using 500 values of n, ranging

from 10 to 10000 data items. Then, for each value of n the value of j0 that reports the

lowest MISE is selected as optimal. It is important to recall that for WDE and RWDE

input data requires to be normalised between the range [0, 1] and that we do not consider

the variance of the data for the selection of j0. In Figure 5.6 we show the optimal values

of j0 for the different values of n evaluated.
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Figure 5.5: Evolution coefficients for an example data stream (a) versus: (b) the dif-
ference w2 − w1; (c) the pair of window sizes w1 and w2; (d) the index j0 related to the
resolution 2−j0 ; e) the order of the scaling function nφ; (f) the scaling function employed.
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Figure 5.6: Selection of j0.

5.4.1.1 Data Items Processing Capacity in the Estimation of Global Evolution

Coefficients

This section focuses on the evaluation of the number of data items that can be processed

per second for the estimation of the GECs. For this purpose the following variables are

changed: i) the order of the filter nφ, and ii) the initial resolution 2
−j0 . Note that since

nφ is similar for Daubechies and Symlets families the reported results are valid for both

wavelet families.

The first observation from Table 5.2 is that the number of data items that can be processed

per second is inversely proportional to the order of the filter. It can also be noted that,

whichever value for nφ is chosen, GECs can be updated about 10 times per second for a 100-

dimensional data stream. Then, the real time estimation of GECs for highly dimensional

data is clearly feasible with the proposed approach. Regarding the number of data items

that can be processed per second varying the resolution 2−j0 , it can be seen from Table

5.2, that in general it is of the same magnitude for different values of the index j0.

5.4.2 Comparisons against benchmark algorithm

5.4.2.1 Computational complexity

In this section the time complexity of proposed and benchmark velocity density frameworks

in the construction of TVPs is empirically evaluated. There are two aspects included in the

comparisons: i) the number of data items processed per second versus the time window ht;

ii) the number of data items processed per second versus the number of points P chosen



Chapter 6. Data Stream Evolution Diagnosis using RWDE 140

Table 5.2: Data items per second for the estimation of GECs.
Order of the Filter nφ

m j0 1 2 3 4 5 6

1

0 4522 2215 1356 963 846 818
1 4437 2180 1361 959 843 808
2 4225 2159 1348 957 850 808
3 3961 2086 1313 952 842 807
4 3568 2000 1310 957 842 799
5 3317 1984 1299 945 818 800

10

0 501 230 139 97 86 82
1 482 229 139 97 85 81
2 457 225 137 98 86 82
3 427 216 134 97 85 81
4 382 206 134 96 85 81
5 353 204 133 96 85 79

100

0 51 23 14 10 9 8
1 49 23 14 10 9 8
2 46 22 14 10 9 8
3 43 22 13 10 8 8
4 38 21 13 10 9 8
5 36 21 13 10 8 8

for the evaluation of the velocity density. The corresponding results are shown in Figure

5.7.
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Figure 5.7: Number of data items processed per second: a) for different values of ht; b)
for different values of P .

Note that the time required for the proposed approach to process a particular number of

data items is independent from the value of ht and in that sense independent from the

number of data items covered by the exponential window. For this reason, in Figure 5.7a

only one curve is plotted for the proposed RWDE algorithm. In contrast, for the VDE

method based on KDE different different values of ht correspond to different processing

times for a given number of data items. It is clear from Figure 5.7a that even though for

small values of ht the VDKDE framework requires less processing time for the construction
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of TVPs, in general the proposed approach is preferred since the obtention of TVPs is

independent of the time horizon for the analysis.

Regarding the number of points P selected at each dimension for the evaluation of TVPs,

it can be observed from Figure 5.7b that, for similar values of β, TVPs obtained with the

proposed framework have a reduced processing time. For instance, in about two seconds

the proposed approach is able to provide around 35 updates of the TVP using 30 points

for each dimension, while the VDKDE algorithm requires about 4 seconds.

5.4.2.2 Detection Capabilities

The detection capabilities of the proposed and benchmark velocity density estimation al-

gorithms are compared in this section. For this purpose, one stream from each subcategory

of the synthetic data set of Table 4.7 from Chapter 4 (which includes streaming data from

twelve subcategories of changes) is used. The experiment consists in obtaining, for each

stream selected, the local evolution coefficient at each time stamp using VDKDE and

VDC frameworks with different values for ht, for the case of VDKDE, and with different

combinations of window sizes w1 and w2, for VDC. For VDKDE the value for the spatial

kernel smoothing parameter hs is determined using the Silverman’s approximation rule

[62] as it is suggested by [9]. According to Silverman’s approximation rule, the smoothing

parameter for a data set with n points and standard deviation σ is given by 1.06σn−1/5.

Regarding VDC, Sym4 is selected as basis function since it is the usual choice for WDE

[74]. In respect to j0 it is set to 3 following the criteria suggested in Section 5.4.1. Note also

that, for this particular experiment w1 is selected to be equal to w2/4. The corresponding

results are depicted in Figure 5.8 to Figure 5.10.

Two are the main observations from Figure 5.8 to Figure 5.10. The first one is that the two

velocity density frameworks evaluated have different detection capabilities which can be

adjusted by varying their corresponding parameters. The second aspect that is important

to highlight is that the benchmark approach fails to detect the evolution in the sixth to

the twelfth data streams which are the ones involving changes in frequency content (data

streams 7 to 9) and changes in the deterministic generation process (data streams 10 to

12). On the contrary, the proposed VDC framework is able to detect changes in the

twelve types of data streams studied. The reason for this is directly related to the type of

estimator employed by the proposed velocity density framework: as it has been pointed



Chapter 6. Data Stream Evolution Diagnosis using RWDE 142

out in [186], WDEs are able to capture local features in the density since they rely on basis

functions with good localisation properties in time and frequency.
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Figure 5.8: Data streams from the first four subcategories of changes and their corre-
sponding LECs using VDKDE and VDC with different parameters.

Another aspect that is important to highlight from Figure 5.8 to Figure 5.10 is that

among the four main types of changes studied, the most challenging one for proposed

velocity density framework is the type related to changes in the frequency content of the

stream (data streams 7 to 9). The reason for this is that this particular type of change

does not distinctly modify the density of the stream. In order to improve the detection

capabilities regarding changes in the spectrum, the stream would need to be decomposed

into different frequency bands, and then apply the VDC algorithm to each band. However,

this procedure will increase the computational complexity of the algorithm. Note that this

is the approach followed in the OSGD-based detection framework proposed in Chapter 3

for one-dimensional data.

It is also important to point out that, as it is expected, among the three subcategories

included within each of the four main type of changes, shown in Figure 5.8 to Figure

5.10, the ones involving low linear changes (data streams 1, 4, 7, and 10) are the most

challenging for both the VDKDE and the VDC frameworks.
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Figure 5.9: Data streams from the fifth to the ninth subcategory of changes and their
corresponding LECs using VDKDE and VDC with different parameters.
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Figure 5.10: Data streams from the last four subcategories of changes and their corre-
sponding LECs using VDKDE and VDC with different parameters.

5.4.3 UK’s Daily Temperature from 1960-2006

In this section, the proposed data stream evolution diagnosis framework is evaluated using

the daily 5 km x 5 km gridded temperature data set for the UK from the UK’s National

Weather Service (Met Office) [184]. The daily gridded data set of mean temperatures

for the period 1960 to 2006 is used. The grid includes 10, 359 cells, identified using the

Ordnance Survey National Grid, and covers the whole of the UK (including Northern

Ireland). Each cell consists of 17, 167 values, where each value represents an estimate for
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the mean temperature of the centre point of the 5 x 5 km grid cell for a given day between

1960-2006. Each time series of mean temperatures for a given cell is treated as a single

data stream and in that sense the data set includes 10, 359 streams.

The experiment consists in obtaining the VDC, and in turn the corresponding local evo-

lution coefficient at each point in the grid for each of the 17, 167 time stamps. Two

pairs of window sizes of the form [w1, w2] are evaluated. The two pair of windows con-

sider the period of one year for w1, that is w1 = 365. Regarding the second window,

w2 = (5)(365) = 1825 and w2 = (10)(365) = 3650 are used for the first and second pair of

windows, corresponding to five years and ten years, respectively.

In order to facilitate the visualisation of results, maps of the UK showing the average of

evolution coefficients over 1 year (Figure 5.11a and Figure 5.11c) and over 5 years (Figure

5.11b and Figure 5.11d) are shown. The first observation from Figure 5.11 is that, as it is

expected for the case of temperature in a particular region, results obtained are spatially

correlated. It can can also be observed from Figure 5.11a and 5.11b that in general the

southern part of the UK is the one with the highest temperature evolution for the two time

periods studied. Another important aspect that is worth highlight is that both the Western

islands and Orkney islands, in the north west and north east of the maps, respectively,

also show higher temperature evolution respect to the rest of the northern areas of the

country.
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Figure 5.11: Averaged evolution coefficient for daily temperatures in the UK for year
2006, over 1 year (a) and over 5 years (b) using w1 = 365, w2 = 1825; over 1 year (c) and

over 5 years (d) using w1 = 365, w2 = 3650.
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An additional observation regarding Figure 5.11 is that the averages of evolution coeffi-

cients over 1 year and over 5 years obtained using the same pair of windows are very similar

with a correlation of 93.61% between Figure 5.11a and Figure 5.11b, and a correlation of

89.04% between Figure 5.11c and Figure 5.11d. This means that the averaged temperature

evolution for all the days in the year 2006 respect to the five or ten previous years was

similar to the averaged evolution for all the days in the years 2002 to 2006 in respect to

the same precedent years reference. Note also that results corresponding to different pair

of windows are different. Particularly, it can be observed that as the difference between

w1 and w2 increases the related evolution also increases, this is the expected result since

more temperature variation is involved in larger time horizons.

In Figure 5.12 the annual averages of evolution coefficients corresponding to years 1976,

1986, 1996 and 2006, obtained using the pair of windows [365, 3650], are depicted. These

maps indicate that for the first two decades studied, 1976 and 1986, the temperature

evolution in the UK was largely uniform across the 10, 359 sensing locations. On the

contrary, for decades 1996 and 2006 the southern part of the country was the one that

presented more important changes in temperature trends.
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Figure 5.12: Annual averages of evolution coefficients for daily temperatures in the UK
for year 1976 (a), 1986 (b), 1996 (c) and 2006 (d), using w1 = 365 and w2 = 3650.

The correlation between the temperature evolution of the London borough of Westminster

and the rest of the locations in the UK for the period 1960 − 2006 is also investigated.

For this purpose, at every time stamp, the correlation coefficient is computed for the past

365 (wα = 365) and the past 1825 (wα = 1865) evolution coefficients between the cell
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corresponding to Westminster (Easting: 530709 Northing: 179631) and the remaining

10, 358 cells in the grid. Specifically, the two pair of windows used in Figure 5.11 are

used, that is [365, 1825] and [365, 3650]. Then the resulting 17, 167 correlation coefficients

at each location are averaged to produce the maps depicted in Figure 5.13. The main

observation from results of Figure 5.13 is that, as it is expected for geospatial data, the

temperature evolution is spatially correlated. In this sense, the remaining cell locations

included in London, as well as the cells associated with East of England and South East

England are the regions that report the highest correlation of temperature evolution. The

second observation is related to the fact that the averaged correlation between evolution

coefficients corresponding to the same pair of window sizes but with different wα are

similar, with a 2D correlation of 99.06% when using wα = 365 and a correlation of 98.81%

for wα = 1825. Furthermore, the degree of similarity between results related to the same

wα but different window sizes are also similar with 99.01% correlation between Figure

5.13a and Figure 5.13b and 98.40% correlation between Figure 5.13c and Figure 5.13d.
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Figure 5.13: Correlation coefficient between evolution coefficients from 1960− 2006 for
the London borough of Westminster (white square) and the rest of the locations in the
UK. (a) using w1 = 365, w1 = 1825 and wα = 365; (b) using w1 = 365, w1 = 3650 and
wα = 365; (c) using w1 = 365, w1 = 1825 and wα = 1825; (d) using w1 = 365, w1 = 3650

and wα = 1825.

Surface plots related to the annual averages of evolution coefficients for the 10, 359 locations

in the UK, obtained using the two pair of windows studied are shown in Figure 5.14. The

main observation regarding these figures is that in both (Figure 5.14a and Figure 5.14b)

four main periods of high temperature evolution across all the country can be distinguished,



Chapter 6. Data Stream Evolution Diagnosis using RWDE 147

that is, ∼ 1965− 1967, ∼ 1974− 1977, ∼ 1982− 1984 and ∼ 1989− 1991. These periods

appear when using the two pairs of windows investigated.

(a)

(b)

Figure 5.14: Annual average of evolution coefficients for the 10, 359 data streams of the
data set using (a) [w1 = 365, w2 = 1865] and (b) [w1 = 365, w2 = 3650].

5.4.4 Hong Kong’s Air Pollution Index for 2000-2012

The second real world experiment considers the hourly Air Pollution Index (API) from

the Air Quality Monitoring Network of the Environmental Protection Department (EPD)

Hong Kong. The network comprises 14 fixed stations that monitors respirable suspended

particulate (RSP), sulphur dioxide (SO2), carbon monoxide (CO), ozone (O3) and nitro-

gen dioxide (NO2). Figure 5.15a shows the location of the stations. Specifically, API is

calculated, at each station, by first normalising the measurements of each pollutant to the

scale 0 to 500 based on the 1-hour, 8-hour or 24-hour average concentrations, depending

on the pollutant. Then the maximum of the normalised-averaged measurements is selected

to indicate the overall pollution level at each station [187].
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The experiment consists in obtaining the local evolution coefficient, for every hour between

01/01/2000 and 15/11/2012 for each of the 14 stations in the network (shown in Figure

5.15a). According to this there are 14 one-dimensional data streams of evolution coefficients

with a total of 112, 467 data items each of them. One pair of window sizes is evaluated,

while the first window considers the period of one month that is w1 = (30)(24) = 720, the

second window is set to cover the period of 5 months w2 = (5)(30)(24) = 3600.

For visualisation, all the evolution coefficients related to each station are averaged and then

apply a nearest neighbour interpolation to obtain a map showing the averaged evolution

coefficient for the whole Hong Kong area for the period 2000−2012. Figure 5.15b shows the

corresponding results. The first observation from Figure 5.15b is that the areas covered by

Yuen Long, Tung Chung and Eastern stations are the ones that report, for a time horizon

of 5 months, the highest API evolution. In contrast, Kwai Chung, Mong Kok, Central and

Causeway Bay are the stations whose pollution levels present the lower evolution.

In order to show how the proposed EWMCC can be useful in this type of applications,

we obtain, at every time stamp, the correlation coefficient for the past 8640 evolution

coefficients (wα = 8640, related to the number of days in a year ) between each of the

91 2-combinations of the 14 stations. In this way, a data stream of 112, 467 correlation

coefficients is obtained for each of the 91 combinations. Then for each combination all the

resulting correlation coefficients are averaged. In this way we produce the pixel plot shown

in Figure 5.16 where each pixel is related to the averaged correlation coefficient for one of

the 91 combinations of the 14 stations. Note that the diagonal of the pixel plot of Figure

5.16 is related to the correlation of the evolution coefficients of a given particular station

with itself and hence the value of the associated pixels is always set one.

The first important observation from Figure 5.16 is that there are two clusters in which the

API evolution of the 14 stations of the network can be categorised. While the first cluster

includes Causeway Bay, Central and Mong Kok stations, the second cluster comprises the

remaining 11 stations. Note that, since the API evolution is more similar among stations

belonging to the same cluster in Hong Kong two main zones with similar evolution in

pollution levels can be distinguished, the first one is related to the central part of the city

whereas the second corresponds to the surrounding areas. In contrast, it can be seen that

the API of Central/Western and Tung Chung stations are highly correlated with Eastern

and Yuen Long stations, respectively. According to this, when the pollution levels in the
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Figure 5.15: Results for Hong Kong’s pollution experiment. (a) Location of the mon-
itoring stations; (b) Averaged evolution coefficient using w1 = 720 and w2 = 3600 for

2000− 2012.
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Figure 5.16: Averaged correlation coefficients for evolution coefficients from different
stations using wα = 3600.



Chapter 6. Data Stream Evolution Diagnosis using RWDE 150

former stations present some change it can be expected that the pollution in the latter

stations may also report some degree of evolution.

In Figure 5.17 pixel plots related to the local evolution coefficients for the 14 monitoring

stations in Hong Kong at each of the 112, 467 time stamps are presented. While the first

plot (Figure 5.17a) is related to the pair of window [720, 3600], the second plot (Figure

5.17b) considers the pair [3600, 7200]. The most important observation regarding these

figures is that there is a great amount of evolution variability for the two pair of windows

evaluated. While, for Figure 5.17a the period of more evolution corresponds to the second

semester of 2007, for Figure 5.17b, it is related to the first semester of 2011. The second

observation is that, in general, the evolution is higher when using the first pair of windows.

This means that there are larger changes in pollution levels when the evolution between

the last month of API data respect to the past five months is considered; than when the

evolution between the past five months of data respect to the past 10 months is considered.
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Figure 5.17: LECs for the 14 stations of the API Hong Kong data base using (a)
[w1 = 720, w2 = 3600] and (b) [w1 = 3600, w2 = 7200].

Finally, in order to show how the 2D visual profiles of Section 5.3.2 can be obtained for this

experiment, the API of all monitoring stations can be considered a multidimensional data

stream, where the API associated with each station is one of its 14 dimensions. Then it

would be possible to think about TVPs and SVPs between different stations in the network.

Figure 5.18 depicts the corresponding TVP and SVP for the 15/11/2012 considering as

the first dimension data from Central station, while for the second dimension two other
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stations located in different areas of the city are selected, that is, Causeway Bay and Yuen

Long.
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Figure 5.18: TVPs and SVPs for API Hong Kong at 15/11/2012 using w1 = 720 and
w2 = 3600.

It can be observed from Figure 5.18 that in the TVP related to Central-Causeway Bay

stations there are more locations in which the reorganisation of data takes place. This

means that data is evenly changing/evolving in the two dimensions. In the corresponding

SVP (Figure 5.18c) it can be seen the associated directions of these changes. Regarding

TVP and SVP related to Central-Yuen Long stations, in Figure 5.18b and Figure 5.18d, it

can be seen that the reorganisation of data mainly takes place on the first dimension, that

is the dimension associated with the Central station. This can be explained by the fact

that Yuen Long station is located relatively far from Central station and, as results from

Figure 5.16 also show, there is a low correlation between the data evolution associated

with this two stations.
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5.5 Final Remarks

In this chapter a novel multidimensional data stream evolution diagnosis framework which

extends the velocity density concepts introduced in [9] to the context of RWDE is proposed.

The proposed data evolution framework provides a novel and powerful tool for the analysis

of data evolution of geospatial temporal data which can complement available geospatial

modelling techniques providing new insights for a better understanding of the underlying

phenomena. Algorithms such as the proposed in this chapter pave the way for real time

multidimensional monitoring systems.

Results reported in this chapter show the potential of the proposed framework which, for

the evaluated experiments, report a significant reduction in computational complexity re-

spect to the method proposed in [9]. Furthermore, the capability of estimating velocity

densities and in turn, the capability of obtaining evolution coefficients at each dimen-

sion, makes the proposed algorithm superior and more robust compared to its KDE-based

alternative.

Regarding the relation between the proposed OSGD-based detection framework of Chapter

4 and the velocity density proposed in this chapter, it can be highlighted that even though

both algorithms rely on the difference of two RWDE for the assessment of the degree

of change in a given data stream, the following key differences can be highlighted. The

OSG-based detection framework is formulated in the context of one dimensional data

streams and, since it considers a multiresolution decomposition stage, the detection of

changes in a given data stream involves comparing the corresponding one-dimensional

densities at each decomposition level using Euclidean distance. On the contrary, since the

RWDE-based velocity density is designed to work with multidimensional data streams,

the quantification of the rate of change in data involves the construction of both one-

dimensional and multidimensional densities and the integration of the difference between

the resulting densities.
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Conclusions

The aim of this thesis was to propose novel representations for time series and streaming

data suitable to perform off-line and online data mining tasks. In order to achieve this aim,

two main frameworks were proposed: 1) the structural generative description framework,

and 2) the RWDE-based velocity density estimation framework. These frameworks and

their corresponding algorithms were assessed in the context of different and diverse data

mining problems in which the representation of data plays a fundamental role. The data

mining tasks investigated include off-line classification of time series, change detection in

data streams and online clustering of parallel data streams. This chapter summarises the

research outcome and the findings of the work carried out in this thesis.

6.1 Contributions

Although the work reported in this thesis contributes to the data mining research field

in a wide range of aspects, in general, the emphasis is placed on the importance of the

representation stage in the process of extraction of useful information from data. The

contributions made in this research can be summarised as follows:

• The Structural Generative Descriptions (SGDs) Framework: A novel time

series representation framework was proposed, which in order to combine structural

and statistical pattern recognition paradigms, moves the extraction of elemental

subpatterns from data to the probability domain. This framework is based on the

decomposition of time series patterns into a set of different resolution subpatterns in

time or any other transformed domain. Hence, the representation strategy proposed

relies on the construction fixed-length feature vectors using the sets of attributes and
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the sets of relations among the most elemental subpatterns obtained which are called

primitives.

The main advantage of this data representation strategy is that it allows the incorpo-

ration of information about the generation process of the data at different resolutions

into a compact and fixed-length feature vector. SGDs are a robust representation

strategy that is able to extract the best of both worlds to create descriptions for

temporal data that combine in a unique way some of the best features of structural

and statistical pattern recognition paradigms. On the one hand, SGDs inherit the

powerful representation capabilities of structural pattern recognition in which com-

plex subpatterns are decomposed into simpler subpatterns, and where the structural

or topological relations are taken into account for the characterisation of input pat-

terns. On the other hand, SGDs representations express the structural generation

process of the data using statistical numerical features, which not only are robust to

noise and pattern distortion, but also reduce the classification task to the partition

of the feature space into regions, each of them associated to a particular class.

An additional advantage of the proposed SGDs representations is the fact that they

can be directly incorporated into any of the existing decision theoretic classification

approach developed for static data, such as Support Vector Machines (SVMs) and

Neural Networks (NNs). It is worth emphasising that, since SGDs are domain in-

dependent representations for temporal data, they are not restricted to a particular

time series or data stream application.

Finally, it is important to mention that the SGDs framework can be implemented in

a variety of ways since it is not restricted to the use of particular algorithms in its

corresponding multiresolution decomposition and density estimation stages. A great

variety of both multiresolution decomposition techniques and density estimation ap-

proaches can be combined to construct novel SGDs representations for temporal

data. The key idea here is to map decomposed time series subpatterns into the prob-

ability domain by applying a density estimation operation. And then constructing

fixed-length feature vectors, either using some given points sampled from the density,

or using the parameters that were used to build up the density.

• Design and implementation of Offline SGDs Algorithms:
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Two offline algorithms based on this framework as well as different alternatives for

their corresponding features were proposed. While the first algorithm, SGDW, com-

bines DTW with WDE, the second algorithm, SGDG, considers DTW and FGM.

Although both algorithms are based on the same concepts, the conceptual differences

regarding the estimation of the densities provide different representation capabilities.

Note that while WDE is based on approximating a given density by an expansion

of orthogonal functions called wavelets, FGM consider an optimisation procedure

to express the density as a linear combination of Gaussian functions with different

amplitudes and bandwidths.

• Design and implementation of Online SGDs Algorithms: In order to make

the proposed SGDs representations suitable for the analysis of the increasingly rele-

vant streaming data, the SGDs framework was also extended to the online context.

For this purpose two novel online data stream representation algorithms incorpo-

rating SGDs concepts were proposed. The basic idea behind these algorithms is the

online multiresolution decomposition of streaming data and the corresponding online

density estimation of the resulting decomposed subpatterns. For the online multires-

olution decomposition of data, in turn, two novel online decomposition methods were

proposed. While the first method is based on an optimised online implementation of

the DWT using a bank of scaling function filters, the second method is based on ap-

proximating the DWT decomposition using a bank of EWMA IIR filters. Regarding

the online density estimation stage the two OSGDs algorithms use RWDE.

In addition to combine statistical and structural pattern recognition paradigms, the

proposed OSGDs algorithms also fulfil some of the key requirements for data stream

analysis, that is, they process data in a fast and incremental way with a constant

updating time and with a constant amount of memory; they provide a compact

representation of each data stream at any time; and they allow both concept shift

and concept drift detection.

Regarding the compatibility with existing data stream mining techniques, it is im-

portant to mention that since the OSGDs algorithms represent data streams using

fixed-length feature vectors they can be easily combined with both traditional dis-

tance measures for time series data such as DTW and Euclidean distance as well as

with whichever decision theoretic-based or statistical-based algorithms such as SVMs

and neural networks.
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• Design and implementation of RWDE-based Velocity Density Estimation:

A framework for diagnosing the evolution of multidimensional data streams was de-

veloped. This framework is based on the idea of incorporating a RWDE, which is a

density estimation technique specifically designed for online settings, into the context

of the VDE introduced in [9]. The resulting framework, which has a reduced compu-

tational complexity independent of any window size for the analysis, makes possible

the fast diagnosis of data evolution at all dimensions and at relevant combinations

of dimensions with only one pass of the data.

Note that the key contribution regarding the proposed RWDE-based diagnosis frame-

work is replacing sliding window-based forward and reverse density estimates by a

pair of density estimates related to different exponential discounting/updating strate-

gies for the coefficients of the estimators employed. This strategy not only remarkably

reduces the amount memory required by the algorithm but also makes it independent

of any time horizon selected for the analysis.

An additional important contribution in this research area is the fact that, in the

proposed framework, velocity densities are formulated in a separate way for each

dimension, allowing localised diagnosis. Furthermore, in the proposed framework,

the characterisation of changes in the structure of streaming data is based on the

concept of correlation between evolution coefficients. Specifically, a recursive imple-

mentation of the Pearson’s correlation coefficient based on exponential discounting

was proposed.

6.2 Future Venues of Research

There are several research venues open and worth future investigation. In this section the

most relevant ones are described and organised according to the corresponding framework.

• Offline SGDs

Since SGDs of Chapter 3 are a new representation for time series data several venues

for future research are open. Specifically, future work should explore the formula-

tion and applicability of the proposed framework in other primary data mining tasks

such as clustering, segmentation, summarisation as well as change and anomaly de-

tection. Moreover, taking into account that the basic idea of the framework is the
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representation of time series by decomposing them into simpler subpatterns and

the construction of generative models for each subpattern by combining generative

primitives, it is clear that future work can also be directed towards the investiga-

tion of different ensembles of multiresolution decomposition and density estimation

techniques that may produce improved results.

Furthermore, in Chapter 4, as a proof of concept, we evaluated the proposed SGDs

framework using one of the simplest discriminative classifiers, the 1-NN algorithm,

future work should investigated improvements in performance when more sophisti-

cated methods are used in feature-based discriminative classification stage.

Taking into account the experimental evaluation of Chapter 4, in which the proposed

algorithms reported outstanding results regarding motor vibration data and human

ECG data, future work should be also directed towards designing specific machine

condition monitoring algorithms as well as biometrics systems based on the proposed

SGDs representations.

Even though WDE and FGM were suggested as methods for the density estima-

tion block in the SGDs algorithms, the proposed framework is not restricted to a

particular density estimation technique. The only requirement is a sparse density

representation, which means that for the extracted subpatterns the estimated density

is expressed by a reduced number of parameters or attributes. This is an interest-

ing venue for further research, as increased discriminative power can be obtained by

structural descriptions with primitives with a balanced tradeoff between sparsity and

localisation.

Another interesting topic for future research is the fact that improved classification

results can be expected when using SGDs representations by selecting different sets

of parameters for the densities at each level of decomposition. However, note that,

in order to allow the subsequent feature-based classification, all the time series in a

data set need to be represented using the same set of features. Furthermore, follow

up research can also be directed towards investigating procedures for the selection of

points uq since, for the proposed algorithms, better classification performance can be

expected when an optimisation procedure is followed in the selection of these points.

Finally, since the proposed framework is a domain-independent approach, not re-

stricted to particular time series or signals, future work should explore its applica-

bility in other time series application domains.
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• Online SGDs Algorithms

Regarding the proposed online SGDs implementations, future work should particu-

larly focus in the assessment of the applicability of the algorithms in other related

data stream mining tasks such as classification, segmentation and motif discovery. In

the context of classification, follow up research should focus on evaluating a OSGDs-

based classifier in some of the typical data stream applications such as network traffic

and sensor data analysis.

Regarding segmentation, the proposed OSGDs algorithms can be adapted to break

up a data stream into meaningful parts, which is a fundamental problem with many

multimedia applications. In this context, the proposed algorithms can serve the

important function of helping summarize mass of multimedia materials as well as

providing points of access that facilitate their browsing and retrieval.

Since the detection of repeated subsequences, also known as motif discovery, is a

fundamental problem for several higher level data mining algorithms, future work

can be also directed towards the formulation of online motif discovery algorithms

based on the proposed OSGDs algorithms. In recent years there has been significant

research effort spent on efficiently discovering motifs in time series databases using

the offline approaches. However, as a result of the streaming nature of the new

data that is being generated, there is the need now to perform this discovery in an

online fashion. Online SGDs-based motif discovery techniques will find application

on financial data assessment, robot path analysis and patient monitoring.

In addition to this, since the empirical evaluation of OSGDs presented in Chapter 4

was more focused on showing the applicability of the algorithms in change detection

and clustering problems rather than on proposing a particular algorithm, future work

should also investigate data mining approaches in which more robust algorithms are

employed in the distance/similarity evaluation and clustering stages. Note that, as a

proof of concept, the investigation only considered the Euclidean distance combined

with a simple threshold, for the case of change detection, while we only evaluate

k-means, for the case of clustering.

In regards to clustering applications, a further venue of future research is the assess-

ment of the proposed online representations in the context of hierarchical clustering.

For instance, an interesting future work could be the incorporation OSGDs into the

Online Divisive Agglomerative Clustering (ODAC) approach [101].
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Furthermore, since the proposed ODWT and MREWMA algorithms are by them-

selves promising online multiresolution decompositions with low computational cost,

follow up research can also be directed towards the application of these algorithms in

real-time signal processing domains. Note that, since the online multiscale decompo-

sition of signals is extremely useful in different time series mining tasks, future work

should investigate the inclusion of the proposed ODWT and MREWMA algorithms

in existing data stream mining solutions.

• RWDE-based Velocity Density Framework

In the context of the proposed RWDE-based VDE framework the main lines for

future work include its evaluation in different application domains. Specifically, in

meteorological and air pollution modelling in which is of fundamental importance

to know in real time the evolution of meteorological variables or the evolution of

pollutants in a given area. Note that since these two specific applications usually

involve taking into account a great number of variables an evolution diagnosis tech-

nique such as the proposed RWDE-based VDE framework, which was designed to

deal with online highly dimensional data, would be potentially useful.

A third relevant application for the proposed evolution framework is the online diag-

nosis and prognosis of machinery health condition, where the key idea us to forecast

damage propagation trend in rotary machinery and to provide alarms before a fault

reaches critical levels. Note that in this context machine condition prognosis par-

ticularly refers to the use of available observations to forecast upcoming states of

the machine. Prognosis is a relatively new mechanical systems and signal process-

ing research area that is intended to complement traditional maintenance strategies

commonly used in industry such as corrective and preventive maintenance.

Biology is the fourth potential application for the proposed framework which can be

used as a novel analytic tool for the assessment of phenotypic change in different

plant species and organisms. Note here that rapid phenotypic changes can be caused

by that environmental changes, such as climate changes.

Finally, further research should also focus on the applicability of the proposed VDE

framework in the context of robust system modelling and anomaly detection al-

gorithms for WSN where there are important limitations regarding computational

resources. In this specific context, online and multivariate diagnosis algorithms, such
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as the proposed one, are the key to make possible distributed sensor data analysis

solutions.
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[4] E. S. Garćıa-Treviño, and J. A. Barria, “Structural generative descriptions for time

series classification,” IEEE Transactions on Cybernetics, (Submitted).
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Appendix A

A.1 Daubechies-Lagarias Algorithm

In the context of WDEs and RWDEs, it is necessary to find values of compactly supported

orthogonal wavelets at arbitrary points. Since scaling and wavelet functions for this type

of wavelet families have no explicit representation (except for the db1 wavelet), then the

Daubechies-Lagarias algorithm [75] is required. This algorithm provides, for all compactly

supported orthogonal wavelet filters, a fast numerical calculation of the value of scaling φ

and wavelet ψ functions at a given point with some predefined accuracy r.

Note that although the Daubechies-Lagarias algorithm is useful for all orthogonal wavelet

filters, the formulation presented in this section is useful for scaling and wavelet functions

from the Daubechies and Symlets families, whose support, for both φ and ψ functions, is

[0, 2nφ − 1] with nφ denoting the order of the scaling function filter.

Let x to be an arbitrary point within the interval (0, 1), and let the operator dyad(x) =

{d1, d2, . . . , dr, . . .} denote the set of 0-1 digits in the dyadic representation of x, in such a

way that x =
∑∞
j=1 dj2

−j . Using dyad(x, n) = {d1, d2, . . . , dr} to denote the subset of the

r digits from dyad(x).

Let h = (h0, h1, . . . , h2nφ−1) be the vector of coefficients of the scaling function filter φ.

Denoting two (2nφ − 1)× (2nφ − 1) matrices of the form:

T0 =
(√
2h(2i−j−1)

)
for 1 ≤ i, j ≤ 2nφ − 1 (A.1)

T1 =
(√
2h(2i−j)

)
for 1 ≤ i, j ≤ 2nφ − 1 (A.2)
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In [75], Daubechies and Lagarias found that φ(x) can be approximated by considering the

following expression:

lim
r→∞

Td1Td1 . . . Tdr =











φ(x) φ(x) . . . φ(x)

φ(x+ 1) φ(x+ 1) . . . φ(x+ 1)
...

...
...

φ(x+ 2nφ − 2) φ(x+ 2nφ − 2) . . . φ(x+ 2nφ − 2)











(A.3)

Regarding the evaluation of wavelet function ψ at some specific point x, the procedure

involves the following vector:

u(x) =
{
(−1)1−[2x]hi+1−[2x]

}

i=0,...,2nφ−2
(A.4)

where the operator [x] represents the highest integer less than x. If for some i the index

i+ 1− 2[x] is negative or larger than nφ − 1 then the corresponding element of u is zero.

Let e = (1, 1, , . . . , 1) be a row vector of ones and v be defined as:

v(x, r) =
1

2nφ − 1
eT

∏

i∈dyad(2x,r)

Ti (A.5)

By considering Equation A.4 and Equation A.5 ψ(x) can be expressed as:

ψ(x) = lim
n→∞

u(x)T v(x, r) (A.6)
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A.2 Detailed Results from Chapter 4

In this section detailed results for the four off-line experiments of Chapter 3 are pre-

sented. For the first three experiments, that is, for the Synthetic data experiment (Section

4.1.2.1), the CWRU experiment (Section 4.1.2.2) and the ECG biometrics experiment

(Section 4.1.2.3) results are presented separately for benchmark and for the proposed algo-

rithms. Table A.1, Table A.3 and Table A.5 report results for benchmark representations

while Table A.2, Table A.4 and Table A.6 present results for the proposed SGDs-based

algorithms. Note that the detailed results presented in these tables include the average,

the minimum, and maximum of the classification error over the 100 trials, as well as the

value of the corresponding tuning parameter that reported the best averaged classification

error for each representation. These results are arranged according to the distance mea-

sure employed. Regarding the proposed algorithm, Table A.2, Table A.4 and Table A.6

additionally categorise the results into nine categories according to the wavelet W used by

the algorithms.

Regarding the UCR experiment of Section 4.1.2.4, Table A.7 we report the performance

results obtained when using ED, SE and CO as distance measure for the 1-NN algorithm,

while Table A.8 include the corresponding results for CH and CR measures. This two tables

include, the average classification error over 100 trials for the best time series representation

(either a benchmark technique or a proposed SGD-based algorithm) for each data set,

indicating within brackets the name of corresponding representation as well as the values

of the tuning parameters that reported this performance.
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Table A.1: Classification error over 100 trials for benchmark representations in Synthetic
data experiment

d Method Avg Min Max Node d Method Avg Min Max Node d Method Avg Min Max Node

ED

SM 12.25 10.76 13.65 (1)

SE

SM 12.33 10.62 14.13 (1)

CO

SM 44.87 42.05 47.08 (1)
DWT 1.62 0.66 3.06 (3) DWT 1.87 0.66 3.12 (3) DWT 3.38 2.12 5.03 (4)
CHEB 0.60 0.17 1.49 (20) CHEB 0.64 0.31 1.25 (20) CHEB 3.64 2.33 5.28 (18)
PAA 0.78 0.35 1.53 (13) PAA 0.74 0.24 1.22 (13) PAA 2.03 1.08 3.30 (13)
ARMA 26.34 24.13 28.78 (2,2) ARMA 96.88 96.88 96.88 (1,1) ARMA 26.81 24.34 29.38 (2,2)
ARIMA 36.81 34.76 38.82 (2,1) ARIMA 96.88 96.88 96.88 (1,1) ARIMA 36.07 33.99 38.44 (1,2)
MSE 1.52 0.56 2.71 (15) MSE 1.53 0.76 2.78 (15) MSE 14.19 11.56 17.12 (15)
FMSE 8.49 6.53 11.39 (5) FMSE 6.40 3.99 8.30 (15) FMSE 17.40 14.62 20.38 (15)
DFT 1.84 1.18 3.06 (30) DFT 1.02 0.38 1.98 (30) DFT 1.75 0.97 2.81 (30)
DFTW 0.26 0.00 0.76 (15,4) DFTW 0.35 0.00 0.94 (19,8) DFTW 0.37 0.03 0.90 (13,4)
ACF 1.19 0.24 2.08 (15) ACF 1.59 0.76 3.19 (15) ACF 0.93 0.24 3.12 (15)
POLY 14.67 12.74 17.33 (2) POLY 12.29 10.21 15.69 (2) POLY 16.74 14.37 19.20 (3)
SV D 1.64 0.49 3.72 (20) SV D 1.57 0.59 2.85 (20) SV D 2.76 1.63 4.03 (7)
PCA 1.75 0.66 3.33 (20) PCA 1.72 0.76 3.61 (18) PCA 3.82 2.22 5.14 (19)
WPE 11.04 8.40 13.06 (6) WPE 25.48 22.78 31.49 (6) WPE 10.40 8.19 13.47 (6)
WPS 2.22 1.08 3.58 (6) WPS 24.30 21.42 28.12 (1) WPS 3.38 1.98 4.76 (6)
DWTS 5.01 3.12 7.08 (6) DWTS 11.89 9.58 15.21 (6) DWTS 7.99 5.42 10.38 (6)
DCT 1.21 0.38 2.15 (0.15) DCT 96.88 96.88 96.88 (0.1) DCT 2.82 1.67 4.58 (0.5)
DCT2 0.81 0.24 1.63 (70) DCT2 0.81 0.38 1.70 (50) DCT2 2.10 1.28 3.06 (80)
DFT2 0.16 0.03 0.80 (70) DFT2 0.20 0.07 0.49 (80) DFT2 0.44 0.14 1.32 (50)
RAW 1.27 0.66 2.64 (1) RAW 1.27 0.42 2.19 (1) RAW 3.49 2.47 4.65 (1)

CH

SM 12.49 11.15 14.90 (1)

CR

SM 93.74 93.12 93.82 (1)
DWT 3.01 1.77 4.69 (3) DWT 3.44 1.91 4.79 (4)
CHEB 0.79 0.17 1.70 (18) CHEB 4.06 2.50 5.83 (19)
PAA 0.86 0.35 2.08 (13) PAA 4.65 2.99 6.08 (7)
ARMA 27.00 24.58 29.86 (2,2) ARMA 28.37 25.76 30.87 (2,2)
ARIMA 35.88 33.78 38.75 (2,1) ARIMA 36.86 34.58 39.79 (1,2)
MSE 3.77 2.22 5.87 (15) MSE 24.24 21.74 27.60 (15)
FMSE 10.22 7.99 12.78 (5) FMSE 24.71 22.08 29.24 (15)
DFT 2.63 1.84 3.85 (30) DFT 1.81 1.04 3.37 (30)
DFTW 0.27 0.00 0.52 (13,4) DFTW 0.47 0.03 1.28 (19,4)
ACF 0.92 0.28 1.98 (15) ACF 28.66 26.60 31.42 (15)
POLY 15.82 13.47 18.37 (2) POLY 26.66 24.27 29.34 (4)
SV D 2.15 1.08 3.68 (10) SV D 3.23 1.94 5.24 (14)
PCA 2.77 1.67 4.34 (20) PCA 3.87 2.64 5.66 (18)
WPE 12.46 9.17 15.69 (6) WPE 10.47 8.09 13.61 (6)
WPS 4.70 3.33 6.35 (6) WPS 3.47 1.84 5.24 (6)
DWTS 7.11 5.21 9.72 (6) DWTS 8.06 5.66 10.21 (6)
DCT 1.85 0.80 2.88 (0.3) DCT 2.86 1.53 4.44 (0.5)
DCT2 1.11 0.42 2.15 (90) DCT2 2.03 0.73 3.78 (70)
DFT2 0.22 0.03 0.90 (80) DFT2 0.42 0.17 1.11 (60)
RAW 21.53 20.03 22.88 (1) RAW 4.27 3.12 5.45 (1)
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Table A.2: Averaged classification error over 100 trials for SGD-based algorithms in the
Synthetic data experiment

SGDW1 SGDW2 SGDW3 SGDG1 SGDG2
d W Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node

ED

db1 1.81 0.31 3.12 (1,4) 7.21 4.06 11.25 (2,2) 0.33 0.00 0.94 (1,5) 11.96 9.38 15.94 (0,4) 9.66 6.25 13.75 (3,2)
db3 1.42 0.31 3.12 (2,4) 6.51 3.44 10.00 (2,2) 0.46 0.00 1.56 (1,5) 12.22 8.12 17.50 (0,4) 9.23 5.62 12.81 (3,2)
db6 1.44 0.31 3.44 (2,4) 9.53 5.62 13.44 (2,2) 0.77 0.00 1.88 (1,5) 12.41 8.75 16.25 (0,4) 13.35 9.69 16.56 (3,2)
bior1.3 1.66 0.31 3.12 (2,4) 7.39 3.75 10.31 (2,2) 0.34 0.00 0.94 (1,5) 12.22 9.38 16.88 (0,4) 9.74 6.56 13.44 (3,2)
bior5.5 1.31 0.31 3.12 (2,4) 5.03 2.81 7.19 (3,2) 0.96 0.00 1.88 (0,6) 12.16 8.44 15.94 (0,4) 15.68 11.56 19.38 (0,2)
coif1 1.33 0.00 4.06 (1,5) 6.91 4.69 9.69 (2,2) 0.44 0.00 1.25 (1,5) 12.07 7.81 16.25 (0,4) 12.31 9.69 17.19 (1,2)
coif3 1.64 0.31 3.44 (1,6) 9.31 5.94 13.44 (2,2) 0.55 0.00 1.88 (1,5) 11.99 8.12 16.25 (0,4) 15.58 11.56 20.00 (0,2)
sym2 1.02 0.00 3.44 (2,4) 6.27 3.75 10.31 (3,2) 0.36 0.00 1.88 (1,5) 11.91 7.81 16.88 (0,4) 12.25 9.38 15.00 (3,2)
sym4 1.38 0.00 3.75 (2,4) 8.24 5.00 11.25 (1,1) 0.58 0.00 1.25 (1,5) 12.24 8.75 15.94 (0,4) 15.73 12.81 19.06 (0,2)

SE

db1 0.49 0.00 1.88 (1,5) 13.52 10.62 17.50 (0,2) 0.29 0.00 1.56 (0,5) 5.52 3.12 9.38 (0,2) 7.83 5.31 11.25 (3,2)
db3 1.72 0.62 3.12 (0,4) 13.34 9.06 17.81 (0,2) 0.30 0.00 1.56 (0,6) 5.37 2.19 8.44 (0,2) 6.71 3.75 11.25 (3,2)
db6 1.68 0.62 3.12 (0,4) 13.23 9.38 17.19 (0,2) 0.31 0.00 1.25 (0,6) 5.51 2.81 10.31 (0,2) 12.89 9.38 16.88 (0,2)
bior1.3 0.54 0.00 1.56 (1,5) 11.48 6.88 93.75 (1,1) 0.33 0.00 1.88 (0,6) 5.36 2.19 9.38 (0,2) 8.85 5.31 13.12 (3,2)
bior5.5 1.65 0.31 3.12 (0,4) 13.61 10.31 16.88 (0,2) 0.29 0.00 1.88 (0,5) 5.59 3.12 9.38 (0,2) 12.78 9.06 15.94 (0,2)
coif1 1.78 0.31 4.06 (0,4) 13.41 9.69 17.19 (0,2) 0.29 0.00 2.19 (0,6) 5.33 2.81 8.44 (0,2) 7.50 4.69 10.94 (1,2)
coif3 1.70 0.31 3.44 (0,4) 13.22 9.38 18.44 (0,2) 0.31 0.00 1.56 (0,5) 5.33 2.81 9.06 (0,2) 12.97 8.75 17.81 (0,2)
sym2 1.75 0.62 3.75 (0,4) 13.53 9.06 18.12 (0,2) 0.32 0.00 1.25 (0,5) 5.43 2.19 9.69 (0,2) 9.90 6.56 13.44 (2,2)
sym4 1.86 0.62 3.75 (0,4) 13.30 8.75 17.19 (0,2) 0.31 0.00 1.88 (0,6) 5.39 2.81 8.44 (0,2) 12.84 9.69 16.56 (0,2)

CO

db1 1.56 0.31 3.44 (1,4) 7.33 4.06 11.56 (2,2) 0.27 0.00 0.94 (1,5) 12.14 8.75 15.62 (1,2) 9.28 5.31 12.50 (3,2)
db3 1.70 0.62 3.75 (3,3) 6.02 3.44 10.00 (1,1) 0.62 0.00 1.56 (1,5) 12.73 9.06 16.88 (0,4) 9.21 5.62 12.19 (3,2)
db6 1.87 0.00 3.44 (3,3) 11.93 7.81 15.94 (3,2) 0.95 0.00 1.88 (1,5) 12.94 10.00 15.94 (0,4) 13.18 6.88 17.50 (3,2)
bior1.3 1.45 0.31 3.12 (2,4) 8.82 5.00 13.12 (1,1) 0.38 0.00 1.56 (1,5) 12.39 8.75 16.56 (1,2) 9.86 5.94 13.44 (3,2)
bior5.5 1.72 0.00 4.06 (2,4) 6.56 4.06 10.00 (3,2) 1.02 0.00 2.19 (0,5) 12.81 8.12 16.88 (0,4) 15.79 11.56 20.62 (1,2)
coif1 1.66 0.31 4.38 (1,5) 5.91 3.12 10.62 (1,1) 0.55 0.00 1.88 (1,5) 12.91 7.19 16.25 (0,4) 12.94 9.38 16.88 (1,2)
coif3 2.15 0.31 5.00 (2,4) 10.95 7.81 14.37 (1,1) 0.72 0.00 1.88 (1,5) 12.77 8.75 17.50 (0,4) 16.05 11.56 21.25 (1,2)
sym2 1.24 0.00 2.81 (2,4) 6.93 3.75 10.31 (3,2) 0.51 0.00 1.88 (1,5) 12.45 8.75 16.88 (0,4) 12.60 9.69 15.94 (3,2)
sym4 2.07 0.31 5.00 (1,5) 8.58 5.62 12.19 (2,2) 0.80 0.00 2.81 (1,5) 12.69 8.44 16.88 (0,4) 16.07 12.19 20.00 (0,2)

CH

db1 3.51 1.56 6.25 (1,4) 9.28 6.56 12.19 (2,2) 1.32 0.31 3.12 (1,3) 13.70 10.00 17.19 (0,4) 12.46 9.06 15.62 (3,2)
db3 3.07 0.94 5.00 (2,3) 9.25 5.94 13.44 (2,2) 2.87 1.25 5.94 (1,2) 13.80 9.38 18.44 (0,4) 12.23 8.12 18.12 (3,2)
db6 4.31 1.88 6.56 (1,4) 11.95 8.75 16.25 (2,2) 2.88 0.94 7.50 (0,4) 13.96 10.31 20.31 (0,4) 15.73 11.56 20.00 (3,2)
bior1.3 3.58 1.56 6.56 (1,4) 9.62 6.25 12.50 (2,2) 1.29 0.00 3.44 (1,3) 14.03 10.94 17.50 (0,4) 12.17 8.44 18.44 (3,2)
bior5.5 3.94 2.19 5.94 (2,3) 7.24 4.69 11.88 (1,2) 2.92 0.62 5.62 (0,4) 14.07 10.31 18.12 (0,4) 17.26 12.50 21.56 (0,2)
coif1 3.94 2.19 6.25 (2,3) 9.13 5.31 12.50 (1,1) 2.30 1.25 4.69 (1,2) 14.15 10.31 17.81 (0,4) 14.05 10.00 18.75 (1,2)
coif3 4.24 2.19 6.56 (1,4) 12.57 9.38 16.56 (2,2) 2.76 0.31 5.94 (0,4) 13.96 9.06 18.75 (0,4) 16.85 11.88 21.56 (0,2)
sym2 3.46 1.56 5.94 (2,3) 9.30 5.00 13.44 (1,1) 2.16 0.94 4.69 (1,2) 14.17 10.31 19.06 (0,4) 14.85 10.94 18.75 (3,2)
sym4 3.74 1.88 6.25 (2,3) 10.13 5.00 14.69 (1,1) 2.96 0.94 5.94 (0,4) 13.80 8.44 18.12 (0,4) 16.82 12.81 20.62 (0,2)

CR

db1 1.61 0.31 3.75 (1,4) 7.12 3.75 10.62 (2,2) 0.31 0.00 0.94 (1,5) 12.73 8.75 16.56 (0,4) 9.48 6.56 13.44 (3,2)
db3 1.66 0.31 3.44 (3,3) 5.99 2.81 8.44 (1,1) 0.64 0.00 1.88 (1,5) 12.88 9.38 17.19 (0,4) 8.83 5.00 11.88 (3,2)
db6 1.77 0.31 4.38 (3,3) 12.07 8.75 16.25 (3,2) 1.01 0.00 2.81 (1,5) 13.07 9.38 16.25 (0,4) 12.94 9.06 17.19 (3,2)
bior1.3 1.29 0.31 3.12 (2,4) 8.62 5.94 12.50 (2,2) 0.32 0.00 0.94 (1,5) 12.16 8.75 16.88 (1,3) 10.42 7.19 15.62 (3,2)
bior5.5 1.70 0.31 3.12 (2,4) 6.38 3.44 9.38 (3,2) 1.13 0.00 2.19 (0,6) 12.84 9.06 15.94 (0,4) 15.70 11.56 19.69 (1,2)
coif1 1.57 0.31 3.44 (1,5) 6.15 3.44 10.00 (1,1) 0.62 0.00 1.56 (1,5) 13.13 9.69 17.50 (0,4) 13.29 8.75 16.88 (3,2)
coif3 2.23 0.94 5.00 (2,4) 10.79 7.50 15.00 (1,1) 0.79 0.00 2.50 (1,5) 12.91 9.06 17.19 (0,4) 16.48 10.31 21.56 (1,2)
sym2 1.26 0.00 2.50 (2,4) 6.74 4.69 9.69 (3,2) 0.55 0.00 1.56 (1,5) 12.65 8.75 16.56 (0,4) 12.53 9.69 17.50 (3,2)
sym4 2.10 0.62 4.06 (2,4) 8.82 5.94 13.75 (2,2) 0.68 0.00 1.88 (1,5) 13.06 9.38 18.12 (0,4) 15.93 11.88 20.00 (2,2)
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Table A.3: Classification error over 100 trials for benchmark representations in CWRU
experiment

d Method Avg Min Max Node d Method Avg Min Max Node d Method Avg Min Max Node

ED

SM 3.28 1.06 5.29 (1)

SE

SM 13.87 10.32 19.05 (1)

CO

SM 35.49 30.16 40.21 (1)
DWT 66.15 62.17 70.63 (6) DWT 46.05 41.80 50.79 (1) DWT 44.79 41.01 48.68 (6)
CHEB 42.15 38.36 46.03 (15) CHEB 43.57 39.15 49.21 (3) CHEB 54.42 49.21 59.79 (17)
PAA 50.08 45.50 55.56 (4) PAA 50.24 45.24 56.35 (4) PAA 66.76 61.90 70.63 (20)
ARMA 1.07 0.00 2.91 (1,6) ARMA 84.39 84.39 84.39 (1,1) ARMA 0.85 0.00 2.12 (2,5)
ARIMA 0.70 0.00 2.38 (4,6) ARIMA 84.39 84.39 84.39 (1,1) ARIMA 0.78 0.00 2.65 (2,6)
MSE 2.75 1.32 4.76 (15) MSE 2.57 1.06 3.97 (15) MSE 6.12 3.70 8.47 (15)
FMSE 27.70 23.54 32.54 (14) FMSE 27.84 24.07 31.48 (14) FMSE 31.92 28.31 36.24 (15)
DFT 33.01 27.78 38.36 (29) DFT 33.66 29.63 37.83 (30) DFT 39.54 35.45 43.92 (19)
DFTW 0.97 0.00 2.12 (20,8) DFTW 3.49 1.32 6.35 (20,6) DFTW 1.56 0.53 2.91 (20,9)
ACF 0.43 0.00 1.59 (14) ACF 0.41 0.00 1.32 (14) ACF 0.35 0.00 1.06 (14)
POLY 33.01 26.98 37.83 (20) POLY 51.36 46.30 56.35 (1) POLY 33.53 29.63 38.36 (20)
SV D 55.96 50.79 59.52 (6) SV D 56.12 52.12 60.05 (4) SV D 75.00 70.63 78.04 (19)
PCA 55.64 52.12 60.85 (7) PCA 55.75 51.85 60.32 (6) PCA 82.02 77.78 86.77 (20)
WPE 4.75 2.91 7.41 (4) WPE 2.54 1.32 4.76 (4) WPE 5.00 2.65 7.67 (4)
WPS 2.36 1.06 3.97 (4) WPS 11.93 7.67 16.14 (2) WPS 4.30 2.65 6.35 (4)
DWTS 2.03 1.06 3.70 (3) DWTS 15.93 11.11 20.11 (2) DWTS 5.65 3.17 8.47 (3)
DCT 67.16 65.08 69.31 (0.5) DCT 84.39 84.39 84.39 (0.1) DCT 20.78 17.20 24.34 (0.5)
DCT2 40.29 35.98 44.18 (20) DCT2 46.77 40.48 52.65 (20) DCT2 52.11 46.56 57.94 (40)
DFT2 1.27 0.26 2.91 (90) DFT2 0.73 0.00 2.38 (100) DFT2 0.88 0.00 2.38 (90)
RAW 81.22 78.84 83.33 (1) RAW 80.95 78.31 82.80 (1) RAW 28.30 24.34 32.01 (1)

CH

SM 3.01 1.32 4.76 (1)

CR

SM 76.72 76.72 76.72 (1)
DWT 72.54 67.72 78.04 (1) DWT 44.85 40.21 49.74 (6)
CHEB 42.46 37.57 47.88 (15) CHEB 50.01 44.44 53.44 (19)
PAA 51.74 45.24 56.08 (5) PAA 75.88 70.37 80.42 (20)
ARMA 1.24 0.00 3.17 (6,2) ARMA 0.82 0.26 2.65 (2,5)
ARIMA 0.94 0.00 2.65 (4,6) ARIMA 0.82 0.00 3.44 (2,6)
MSE 3.04 1.59 5.29 (14) MSE 5.85 3.44 8.99 (14)
FMSE 32.24 26.46 36.24 (13) FMSE 35.42 31.22 39.42 (15)
DFT 35.46 31.22 39.95 (19) DFT 38.42 34.39 42.33 (19)
DFTW 2.97 1.32 5.82 (18,9) DFTW 3.96 1.06 6.08 (20,8)
ACF 0.58 0.00 1.85 (15) ACF 0.36 0.00 1.32 (15)
POLY 32.87 27.78 38.62 (20) POLY 33.63 29.63 38.36 (20)
SV D 57.08 51.85 61.38 (4) SV D 75.33 71.43 79.89 (20)
PCA 57.25 52.38 61.38 (6) PCA 82.15 78.57 85.71 (19)
WPE 6.98 4.50 9.52 (4) WPE 6.20 3.17 8.73 (4)
WPS 5.00 2.91 6.88 (4) WPS 4.76 2.91 7.41 (4)
DWTS 2.96 1.32 6.61 (3) DWTS 6.01 3.70 8.47 (3)
DCT 66.46 63.23 69.05 (0.5) DCT 20.90 16.67 24.87 (0.5)
DCT2 38.75 32.80 42.59 (20) DCT2 45.96 41.80 52.91 (40)
DFT2 5.12 2.91 7.94 (80) DFT2 2.12 0.79 4.76 (100)
RAW 79.34 76.98 81.75 (1) RAW 29.99 25.93 34.66 (1)
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Table A.4: Averaged classification error over 100 trials for SGD-based algorithms in the
CWRU experiment

SGDW1 SGDW2 SGDW3 SGDG1 SGDG2
d W Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node

ED

db1 0.33 0.00 1.59 (3,4) 7.30 5.03 9.26 (3,1) 0.62 0.00 1.32 (4,2) 2.25 0.79 4.23 (3,1) 8.43 5.82 12.17 (4,1)
db3 0.33 0.00 1.59 (3,4) 5.50 3.70 7.41 (3,1) 0.63 0.00 1.85 (3,2) 1.91 0.79 3.17 (3,1) 11.00 8.47 14.29 (5,1)
db6 0.37 0.00 1.06 (2,6) 4.70 2.91 6.88 (3,1) 0.75 0.00 1.85 (3,2) 1.89 0.79 3.17 (3,1) 13.19 10.32 16.40 (4,1)
bior1.3 0.25 0.00 1.59 (3,4) 4.93 2.12 7.41 (3,1) 0.86 0.00 2.38 (2,2) 2.12 0.79 4.23 (3,1) 14.84 12.17 18.78 (0,2)
bior5.5 0.39 0.00 1.59 (3,4) 5.71 3.70 8.47 (4,1) 0.80 0.00 1.85 (3,2) 2.59 1.06 3.97 (3,1) 15.05 11.90 19.58 (0,2)
coif1 0.33 0.00 1.59 (3,4) 7.28 5.03 10.58 (2,1) 0.72 0.00 1.85 (3,2) 2.20 0.53 3.97 (3,1) 14.60 10.85 18.52 (1,1)
coif3 0.32 0.00 1.59 (2,5) 6.79 4.23 9.26 (2,1) 0.48 0.00 1.59 (3,2) 1.85 0.26 3.44 (3,1) 13.30 10.32 16.67 (4,1)
sym2 0.27 0.00 1.06 (2,5) 5.97 3.17 8.47 (3,1) 0.72 0.00 1.85 (1,3) 2.62 1.32 3.97 (3,1) 7.37 5.03 9.79 (2,1)
sym4 0.19 0.00 0.79 (2,5) 3.48 1.85 6.61 (2,1) 0.68 0.00 1.85 (3,2) 2.19 0.53 3.97 (3,1) 14.45 10.85 18.52 (3,1)

SE

db1 0.31 0.00 1.32 (2,5) 7.13 4.23 8.99 (4,1) 6.22 3.97 10.05 (1,2) 15.18 11.11 18.25 (0,2) 8.14 5.03 11.11 (4,1)
db3 0.27 0.00 1.06 (2,5) 5.25 2.38 8.47 (3,1) 7.06 3.97 10.58 (1,2) 15.10 11.90 18.78 (0,2) 10.06 8.20 13.76 (5,1)
db6 0.24 0.00 1.32 (3,5) 5.07 2.12 7.14 (2,1) 7.08 4.50 9.26 (0,2) 15.32 11.38 19.84 (0,2) 11.59 9.26 14.02 (4,1)
bior1.3 0.31 0.00 1.06 (2,5) 4.75 2.91 6.61 (3,1) 6.93 3.44 9.52 (1,2) 15.02 10.58 18.78 (0,2) 14.46 11.38 19.84 (0,2)
bior5.5 0.24 0.00 1.32 (2,5) 6.27 3.97 8.99 (4,1) 7.21 4.76 9.79 (0,2) 15.16 11.38 19.58 (0,2) 14.49 10.85 18.25 (0,2)
coif1 0.31 0.00 1.59 (2,5) 7.24 5.29 9.52 (2,1) 7.14 5.29 10.05 (0,2) 15.03 10.85 18.78 (0,2) 14.15 10.32 17.72 (2,1)
coif3 0.21 0.00 1.59 (2,5) 6.16 4.50 8.47 (2,1) 7.17 5.03 9.52 (0,2) 15.52 12.17 19.05 (0,2) 13.65 10.58 17.46 (4,1)
sym2 0.23 0.00 1.06 (2,5) 5.95 3.70 8.47 (3,1) 7.16 4.76 10.05 (0,2) 15.24 11.38 18.52 (0,2) 7.45 5.29 10.85 (2,1)
sym4 0.24 0.00 1.85 (2,5) 3.79 2.12 5.82 (2,1) 6.51 4.23 8.73 (1,2) 15.04 10.85 17.99 (0,2) 14.50 11.64 18.78 (0,2)

CO

db1 0.59 0.00 2.38 (3,4) 8.25 6.08 11.11 (2,1) 0.58 0.00 1.32 (3,2) 2.19 0.79 3.70 (3,1) 8.70 6.08 11.11 (4,1)
db3 0.49 0.00 1.59 (2,5) 7.07 4.76 10.05 (3,1) 0.66 0.00 1.59 (4,2) 1.94 0.53 3.44 (3,1) 11.40 8.99 14.02 (5,1)
db6 0.35 0.00 1.59 (3,5) 6.25 3.17 8.73 (3,1) 0.56 0.00 1.59 (3,2) 1.92 0.53 3.44 (3,1) 13.60 10.85 17.46 (4,1)
bior1.3 0.45 0.00 1.32 (3,5) 9.99 7.14 12.43 (5,1) 0.65 0.00 1.59 (2,2) 2.28 1.06 4.23 (3,1) 16.09 12.70 19.05 (4,1)
bior5.5 0.62 0.00 2.38 (2,4) 10.77 7.67 13.23 (4,1) 0.69 0.00 1.59 (3,2) 2.37 0.79 3.70 (3,1) 16.38 13.76 19.05 (3,1)
coif1 0.62 0.00 2.12 (3,4) 11.31 8.99 14.02 (2,1) 0.58 0.00 2.12 (3,2) 2.06 0.26 3.97 (3,1) 22.20 17.72 28.31 (4,1)
coif3 0.33 0.00 1.32 (2,5) 8.88 6.08 11.64 (3,1) 0.49 0.00 1.59 (3,2) 1.74 0.53 3.44 (3,1) 19.22 15.87 22.22 (4,1)
sym2 0.40 0.00 1.85 (2,5) 8.18 5.03 11.11 (4,1) 0.59 0.00 1.32 (3,2) 2.60 1.06 4.50 (3,1) 20.38 17.99 23.02 (4,1)
sym4 0.47 0.00 1.32 (2,5) 5.42 3.97 7.41 (3,1) 0.67 0.00 1.59 (3,2) 2.07 0.26 3.97 (3,1) 22.98 20.63 25.93 (4,1)

CH

db1 0.51 0.00 1.85 (3,4) 7.61 5.29 10.32 (3,1) 1.52 0.00 2.91 (3,2) 3.06 1.32 6.61 (0,1) 8.70 5.82 11.64 (4,1)
db3 0.50 0.00 1.85 (3,4) 6.23 4.23 9.26 (3,1) 1.23 0.26 2.38 (2,2) 2.83 1.06 4.50 (3,1) 11.99 8.99 14.81 (4,1)
db6 0.54 0.00 1.59 (2,4) 5.78 3.44 7.94 (3,1) 0.85 0.00 2.12 (2,2) 2.99 1.32 5.29 (0,1) 13.74 10.32 18.25 (1,1)
bior1.3 0.46 0.00 1.85 (3,4) 5.44 3.70 8.47 (3,1) 1.34 0.26 2.38 (2,2) 2.89 1.32 4.50 (0,1) 14.87 11.38 17.99 (0,2)
bior5.5 0.44 0.00 1.32 (2,4) 6.68 3.97 10.05 (3,1) 1.27 0.26 3.44 (1,2) 3.08 1.06 5.03 (0,1) 14.66 11.38 17.99 (0,2)
coif1 0.51 0.00 1.59 (2,4) 7.15 5.03 10.05 (2,1) 1.52 0.26 2.91 (2,2) 2.96 1.59 5.29 (0,1) 14.45 11.64 17.46 (0,2)
coif3 0.49 0.00 1.59 (2,5) 7.24 3.70 8.99 (2,1) 1.03 0.00 2.12 (3,2) 3.01 1.06 5.56 (0,1) 13.75 10.05 16.93 (4,1)
sym2 0.52 0.00 2.12 (3,4) 6.68 3.97 9.52 (3,1) 0.98 0.26 2.38 (1,2) 3.11 1.32 4.76 (0,1) 7.31 5.56 9.79 (2,1)
sym4 0.54 0.00 1.85 (2,5) 3.76 2.12 5.56 (2,1) 1.44 0.53 2.65 (1,2) 3.07 1.06 5.29 (0,1) 14.59 12.17 17.72 (0,2)

CR

db1 0.54 0.00 2.38 (3,4) 8.34 4.76 12.17 (2,1) 0.57 0.00 1.32 (5,2) 2.35 0.53 4.50 (3,1) 8.46 5.29 12.17 (4,1)
db3 0.47 0.00 1.85 (2,5) 6.94 5.29 9.52 (3,1) 0.69 0.00 1.85 (3,2) 1.95 0.79 3.97 (3,1) 11.42 8.73 14.55 (5,1)
db6 0.46 0.00 2.12 (3,5) 6.36 4.50 8.99 (3,1) 0.57 0.00 1.85 (3,2) 2.08 1.06 3.70 (3,1) 13.68 10.32 17.46 (4,1)
bior1.3 0.44 0.00 1.59 (3,4) 9.99 7.14 13.49 (5,1) 0.77 0.00 2.38 (2,2) 2.39 1.06 3.97 (3,1) 16.25 12.96 21.69 (4,1)
bior5.5 0.56 0.00 2.38 (2,4) 10.60 8.47 12.96 (4,1) 0.73 0.00 2.38 (3,2) 2.34 1.06 4.23 (3,1) 16.43 13.49 19.58 (3,1)
coif1 0.63 0.00 2.12 (3,4) 11.22 8.47 14.55 (2,1) 0.66 0.00 2.12 (3,2) 2.23 0.79 3.97 (3,1) 24.17 19.84 28.57 (4,1)
coif3 0.38 0.00 1.59 (2,5) 8.98 6.88 12.70 (3,1) 0.49 0.00 1.32 (3,2) 2.06 0.79 4.23 (3,1) 18.49 15.08 21.43 (2,2)
sym2 0.40 0.00 1.06 (2,5) 8.10 5.82 11.38 (4,1) 0.63 0.00 1.59 (3,2) 2.37 1.06 4.50 (3,1) 20.68 17.99 24.34 (4,1)
sym4 0.49 0.00 1.59 (2,5) 5.28 3.44 7.41 (3,1) 0.67 0.00 1.85 (3,2) 2.40 0.79 4.50 (3,1) 23.19 20.63 25.40 (4,1)
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Table A.5: Classification error over 100 trials for benchmark representations in ECG
experiment

d Method Avg Min Max Node d Method Avg Min Max Node d Method Avg Min Max Node

ED

SM 19.69 15.94 25.31 (1)

SE

SM 20.03 16.25 24.06 (1)

CO

SM 58.78 54.37 62.81 (1)
DWT 78.59 74.06 82.19 (2) DWT 66.84 61.56 73.12 (2) DWT 82.16 78.75 86.88 (2)
CHEB 60.87 56.56 66.25 (3) CHEB 67.81 61.56 75.00 (2) CHEB 80.81 75.94 85.62 (20)
PAA 63.78 58.44 70.94 (8) PAA 64.16 59.69 70.00 (8) PAA 78.93 73.75 84.06 (16)
ARMA 33.06 28.12 38.12 (3,1) ARMA 93.75 93.75 93.75 (1,1) ARMA 29.80 25.00 36.56 (4,1)
ARIMA 39.74 33.44 47.50 (2,1) ARIMA 93.75 93.75 93.75 (1,1) ARIMA 39.28 33.75 45.62 (2,1)
MSE 35.34 30.63 40.31 (15) MSE 34.88 30.31 40.00 (15) MSE 55.91 50.62 60.00 (15)
FMSE 65.78 60.31 72.81 (15) FMSE 63.22 57.19 68.44 (15) FMSE 74.17 69.06 78.44 (15)
DFT 61.41 56.56 65.62 (28) DFT 61.66 55.62 68.44 (27) DFT 72.70 67.81 77.81 (27)
DFTW 32.77 28.75 37.50 (20,7) DFTW 26.73 22.81 31.56 (20,7) DFTW 48.56 41.88 54.37 (20,9)
ACF 7.58 4.69 10.31 (15) ACF 7.63 5.31 11.25 (15) ACF 7.64 5.31 11.88 (15)
POLY 58.93 53.44 65.00 (14) POLY 55.51 50.00 60.94 (14) POLY 63.60 57.81 69.06 (10)
SV D 70.68 67.19 75.62 (1) SV D 67.26 61.88 71.88 (2) SV D 84.27 79.06 87.19 (14)
PCA 84.07 80.00 89.38 (4) PCA 83.86 79.06 87.19 (4) PCA 91.31 87.81 94.38 (12)
WPE 33.21 29.06 37.50 (5) WPE 25.13 20.94 30.00 (6) WPE 27.61 22.81 31.56 (6)
WPS 18.17 13.75 22.19 (3) WPS 21.20 15.94 25.62 (1) WPS 35.04 30.63 41.88 (3)
DWTS 21.90 17.50 27.50 (3) DWTS 21.63 17.19 29.69 (1) DWTS 35.86 30.63 42.50 (4)
DCT 81.03 76.25 88.12 (0.5) DCT 93.75 93.75 93.75 (0.1) DCT 90.30 87.81 92.50 (0.5)
DCT2 62.65 57.19 69.06 (10) DCT2 71.68 65.31 76.56 (30) DCT2 71.36 64.69 75.94 (50)
DFT2 20.87 15.94 27.81 (30) DFT2 27.05 22.19 31.87 (60) DFT2 32.23 26.56 38.44 (100)
RAW 92.00 90.00 93.75 (1) RAW 91.49 89.06 93.75 (1) RAW 92.48 90.94 93.75 (1)

CH

SM 19.85 15.31 23.12 (1)

CR

SM 93.78 92.81 94.38 (1)
DWT 84.95 80.00 90.00 (2) DWT 81.96 77.81 85.62 (2)
CHEB 60.38 55.62 65.00 (3) CHEB 80.63 77.19 84.69 (20)
PAA 65.04 60.62 70.94 (3) PAA 83.52 79.69 88.75 (16)
ARMA 32.36 26.88 38.12 (3,1) ARMA 30.86 25.94 36.56 (4,1)
ARIMA 40.97 36.56 46.88 (2,1) ARIMA 40.71 36.25 47.19 (2,1)
MSE 40.58 35.00 46.56 (15) MSE 69.33 64.38 73.75 (15)
FMSE 71.19 66.56 75.31 (15) FMSE 78.42 73.44 83.12 (15)
DFT 65.71 59.69 70.62 (28) DFT 73.30 69.69 78.75 (27)
DFTW 41.31 36.25 47.19 (17,6) DFTW 63.03 57.81 68.12 (18,7)
ACF 7.65 5.00 10.94 (14) ACF 6.68 3.75 10.00 (14)
POLY 58.45 54.06 65.31 (14) POLY 63.44 58.75 69.38 (10)
SV D 70.91 65.62 75.62 (1) SV D 85.27 80.94 89.38 (14)
PCA 83.61 78.44 88.44 (4) PCA 91.62 88.12 94.06 (11)
WPE 36.19 31.87 41.88 (5) WPE 27.65 23.44 33.44 (6)
WPS 22.06 19.06 25.94 (1) WPS 34.91 30.63 41.25 (3)
DWTS 22.15 17.50 25.62 (1) DWTS 35.62 28.44 40.00 (4)
DCT 81.77 78.44 86.25 (0.5) DCT 90.27 86.88 92.50 (0.5)
DCT2 62.98 58.44 68.75 (10) DCT2 70.77 65.00 75.62 (50)
DFT2 24.73 19.69 29.06 (30) DFT2 41.95 35.00 48.44 (30)
RAW 89.33 87.19 91.88 (1) RAW 85.16 80.94 89.69 (1)
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Table A.6: Averaged classification error over 100 trials for SGD-based algorithms in the
ECG biometrics experiment

SGDW1 SGDW2 SGDW3 SGDG1 SGDG2
d W Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node Avg Min Max Node

ED

db1 1.81 0.31 3.12 (1,4) 7.21 4.06 11.25 (2,2) 0.33 0.00 0.94 (1,5) 11.96 9.38 15.94 (0,4) 9.66 6.25 13.75 (3,2)
db3 1.42 0.31 3.12 (2,4) 6.51 3.44 10.00 (2,2) 0.46 0.00 1.56 (1,5) 12.22 8.12 17.50 (0,4) 9.23 5.62 12.81 (3,2)
db6 1.44 0.31 3.44 (2,4) 9.53 5.62 13.44 (2,2) 0.77 0.00 1.88 (1,5) 12.41 8.75 16.25 (0,4) 13.35 9.69 16.56 (3,2)
bior1.3 1.66 0.31 3.12 (2,4) 7.39 3.75 10.31 (2,2) 0.34 0.00 0.94 (1,5) 12.22 9.38 16.88 (0,4) 9.74 6.56 13.44 (3,2)
bior5.5 1.31 0.31 3.12 (2,4) 5.03 2.81 7.19 (3,2) 0.96 0.00 1.88 (0,6) 12.16 8.44 15.94 (0,4) 15.68 11.56 19.38 (0,2)
coif1 1.33 0.00 4.06 (1,5) 6.91 4.69 9.69 (2,2) 0.44 0.00 1.25 (1,5) 12.07 7.81 16.25 (0,4) 12.31 9.69 17.19 (1,2)
coif3 1.64 0.31 3.44 (1,6) 9.31 5.94 13.44 (2,2) 0.55 0.00 1.88 (1,5) 11.99 8.12 16.25 (0,4) 15.58 11.56 20.00 (0,2)
sym2 1.02 0.00 3.44 (2,4) 6.27 3.75 10.31 (3,2) 0.36 0.00 1.88 (1,5) 11.91 7.81 16.88 (0,4) 12.25 9.38 15.00 (3,2)
sym4 1.38 0.00 3.75 (2,4) 8.24 5.00 11.25 (1,1) 0.58 0.00 1.25 (1,5) 12.24 8.75 15.94 (0,4) 15.73 12.81 19.06 (0,2)

SE

db1 0.49 0.00 1.88 (1,5) 13.52 10.62 17.50 (0,2) 0.29 0.00 1.56 (0,5) 5.52 3.12 9.38 (0,2) 7.83 5.31 11.25 (3,2)
db3 1.72 0.62 3.12 (0,4) 13.34 9.06 17.81 (0,2) 0.30 0.00 1.56 (0,6) 5.37 2.19 8.44 (0,2) 6.71 3.75 11.25 (3,2)
db6 1.68 0.62 3.12 (0,4) 13.23 9.38 17.19 (0,2) 0.31 0.00 1.25 (0,6) 5.51 2.81 10.31 (0,2) 12.89 9.38 16.88 (0,2)
bior1.3 0.54 0.00 1.56 (1,5) 11.48 6.88 93.75 (1,1) 0.33 0.00 1.88 (0,6) 5.36 2.19 9.38 (0,2) 8.85 5.31 13.12 (3,2)
bior5.5 1.65 0.31 3.12 (0,4) 13.61 10.31 16.88 (0,2) 0.29 0.00 1.88 (0,5) 5.59 3.12 9.38 (0,2) 12.78 9.06 15.94 (0,2)
coif1 1.78 0.31 4.06 (0,4) 13.41 9.69 17.19 (0,2) 0.29 0.00 2.19 (0,6) 5.33 2.81 8.44 (0,2) 7.50 4.69 10.94 (1,2)
coif3 1.70 0.31 3.44 (0,4) 13.22 9.38 18.44 (0,2) 0.31 0.00 1.56 (0,5) 5.33 2.81 9.06 (0,2) 12.97 8.75 17.81 (0,2)
sym2 1.75 0.62 3.75 (0,4) 13.53 9.06 18.12 (0,2) 0.32 0.00 1.25 (0,5) 5.43 2.19 9.69 (0,2) 9.90 6.56 13.44 (2,2)
sym4 1.86 0.62 3.75 (0,4) 13.30 8.75 17.19 (0,2) 0.31 0.00 1.88 (0,6) 5.39 2.81 8.44 (0,2) 12.84 9.69 16.56 (0,2)

CO

db1 1.56 0.31 3.44 (1,4) 7.33 4.06 11.56 (2,2) 0.27 0.00 0.94 (1,5) 12.14 8.75 15.62 (1,2) 9.28 5.31 12.50 (3,2)
db3 1.70 0.62 3.75 (3,3) 6.02 3.44 10.00 (1,1) 0.62 0.00 1.56 (1,5) 12.73 9.06 16.88 (0,4) 9.21 5.62 12.19 (3,2)
db6 1.87 0.00 3.44 (3,3) 11.93 7.81 15.94 (3,2) 0.95 0.00 1.88 (1,5) 12.94 10.00 15.94 (0,4) 13.18 6.88 17.50 (3,2)
bior1.3 1.45 0.31 3.12 (2,4) 8.82 5.00 13.12 (1,1) 0.38 0.00 1.56 (1,5) 12.39 8.75 16.56 (1,2) 9.86 5.94 13.44 (3,2)
bior5.5 1.72 0.00 4.06 (2,4) 6.56 4.06 10.00 (3,2) 1.02 0.00 2.19 (0,5) 12.81 8.12 16.88 (0,4) 15.79 11.56 20.62 (1,2)
coif1 1.66 0.31 4.38 (1,5) 5.91 3.12 10.62 (1,1) 0.55 0.00 1.88 (1,5) 12.91 7.19 16.25 (0,4) 12.94 9.38 16.88 (1,2)
coif3 2.15 0.31 5.00 (2,4) 10.95 7.81 14.37 (1,1) 0.72 0.00 1.88 (1,5) 12.77 8.75 17.50 (0,4) 16.05 11.56 21.25 (1,2)
sym2 1.24 0.00 2.81 (2,4) 6.93 3.75 10.31 (3,2) 0.51 0.00 1.88 (1,5) 12.45 8.75 16.88 (0,4) 12.60 9.69 15.94 (3,2)
sym4 2.07 0.31 5.00 (1,5) 8.58 5.62 12.19 (2,2) 0.80 0.00 2.81 (1,5) 12.69 8.44 16.88 (0,4) 16.07 12.19 20.00 (0,2)

CH

db1 3.51 1.56 6.25 (1,4) 9.28 6.56 12.19 (2,2) 1.32 0.31 3.12 (1,3) 13.70 10.00 17.19 (0,4) 12.46 9.06 15.62 (3,2)
db3 3.07 0.94 5.00 (2,3) 9.25 5.94 13.44 (2,2) 2.87 1.25 5.94 (1,2) 13.80 9.38 18.44 (0,4) 12.23 8.12 18.12 (3,2)
db6 4.31 1.88 6.56 (1,4) 11.95 8.75 16.25 (2,2) 2.88 0.94 7.50 (0,4) 13.96 10.31 20.31 (0,4) 15.73 11.56 20.00 (3,2)
bior1.3 3.58 1.56 6.56 (1,4) 9.62 6.25 12.50 (2,2) 1.29 0.00 3.44 (1,3) 14.03 10.94 17.50 (0,4) 12.17 8.44 18.44 (3,2)
bior5.5 3.94 2.19 5.94 (2,3) 7.24 4.69 11.88 (1,2) 2.92 0.62 5.62 (0,4) 14.07 10.31 18.12 (0,4) 17.26 12.50 21.56 (0,2)
coif1 3.94 2.19 6.25 (2,3) 9.13 5.31 12.50 (1,1) 2.30 1.25 4.69 (1,2) 14.15 10.31 17.81 (0,4) 14.05 10.00 18.75 (1,2)
coif3 4.24 2.19 6.56 (1,4) 12.57 9.38 16.56 (2,2) 2.76 0.31 5.94 (0,4) 13.96 9.06 18.75 (0,4) 16.85 11.88 21.56 (0,2)
sym2 3.46 1.56 5.94 (2,3) 9.30 5.00 13.44 (1,1) 2.16 0.94 4.69 (1,2) 14.17 10.31 19.06 (0,4) 14.85 10.94 18.75 (3,2)
sym4 3.74 1.88 6.25 (2,3) 10.13 5.00 14.69 (1,1) 2.96 0.94 5.94 (0,4) 13.80 8.44 18.12 (0,4) 16.82 12.81 20.62 (0,2)

CR

db1 1.61 0.31 3.75 (1,4) 7.12 3.75 10.62 (2,2) 0.31 0.00 0.94 (1,5) 12.73 8.75 16.56 (0,4) 9.48 6.56 13.44 (3,2)
db3 1.66 0.31 3.44 (3,3) 5.99 2.81 8.44 (1,1) 0.64 0.00 1.88 (1,5) 12.88 9.38 17.19 (0,4) 8.83 5.00 11.88 (3,2)
db6 1.77 0.31 4.38 (3,3) 12.07 8.75 16.25 (3,2) 1.01 0.00 2.81 (1,5) 13.07 9.38 16.25 (0,4) 12.94 9.06 17.19 (3,2)
bior1.3 1.29 0.31 3.12 (2,4) 8.62 5.94 12.50 (2,2) 0.32 0.00 0.94 (1,5) 12.16 8.75 16.88 (1,3) 10.42 7.19 15.62 (3,2)
bior5.5 1.70 0.31 3.12 (2,4) 6.38 3.44 9.38 (3,2) 1.13 0.00 2.19 (0,6) 12.84 9.06 15.94 (0,4) 15.70 11.56 19.69 (1,2)
coif1 1.57 0.31 3.44 (1,5) 6.15 3.44 10.00 (1,1) 0.62 0.00 1.56 (1,5) 13.13 9.69 17.50 (0,4) 13.29 8.75 16.88 (3,2)
coif3 2.23 0.94 5.00 (2,4) 10.79 7.50 15.00 (1,1) 0.79 0.00 2.50 (1,5) 12.91 9.06 17.19 (0,4) 16.48 10.31 21.56 (1,2)
sym2 1.26 0.00 2.50 (2,4) 6.74 4.69 9.69 (3,2) 0.55 0.00 1.56 (1,5) 12.65 8.75 16.56 (0,4) 12.53 9.69 17.50 (3,2)
sym4 2.10 0.62 4.06 (2,4) 8.82 5.94 13.75 (2,2) 0.68 0.00 1.88 (1,5) 13.06 9.38 18.12 (0,4) 15.93 11.88 20.00 (2,2)
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Table A.7: Classification error over 100 trials for UCR Experiment using ED, SE and
CO as distance measures.

ED SE CO
Data set Avg Node Avg Node Avg Node

50w 30.60 (PAA,18) 30.39 (PAA,18) 31.38 (PAA,18)
Adc 22.55 (SGDW2,db3,1,4) 23.28 (SGDW2,db6,0,4) 22.58 (SGDW2,db3,1,4)
Beef 22.43 (PCA,10) 22.63 (SV D,16) 18.50 (PCA,10)
CBF 0.00 (CHEB,20) 0.02 (PAA,16) 0.01 (CHEB,17)
ChlC 1.93 (SV D,19) 1.93 (SV D,19) 1.97 (PCA,19)
Cinc 0.14 (SV D,20) 0.12 (SV D,20) 0.13 (SV D,18)
Coff 0.96 (ACF ,15) 1.33 (ACF ,14) 0.22 (ACF ,12)
CriX 31.82 (SGDW3,db1,2,3) 29.62 (SGDW3,db3,0,3) 29.82 (SGDW3,db1,2,3)
CriY 32.25 (SGDW3,db3,6,4) 32.14 (SGDW3,db3,0,3) 29.91 (SGDW3,db1,2,3)
CriZ 31.99 (SGDW3,db1,1,4) 28.79 (SGDW3,db6,0,3) 29.40 (SGDW3,db3,1,3)
DiSR 0.07 (SGDW1,db6,2,2) 0.16 (DWT ,1) 0.14 (SGDW1,db6,2,2)
ECG2 0.00 (SM ,1) 0.00 (SM ,1) 0.00 (SGDW4,db1,0,1)
ECG5 0.01 (DFT2,40) 0.00 (DFT2,10) 0.00 (DFT2,40)
Fish 16.78 (PCA,16) 17.49 (SV D,16) 16.55 (SV D,16)
FacA 6.29 (DCT2,30) 5.80 (DWT ,1) 6.28 (CHEB,19)
Fac4 9.29 (PCA,15) 4.84 (PAA,18) 8.73 (PAA,18)
FacU 6.33 (DCT2,30) 5.44 (DWT ,2) 6.27 (CHEB,20)
GunP 3.31 (DFT2,60) 4.02 (DFT ,13) 3.25 (DFT2,80)
Hapt 48.99 (SGDW3,db1,4,3) 49.32 (SGDW5,db3,5,2) 48.37 (SGDW3,db1,4,4)
InLS 15.57 (ARIMA,6) 31.47 (WPE,5) 14.59 (ARIMA,6)
Ltg2 17.59 (SGDW3,db6,5,2) 19.85 (SGDW5,db6,6,1) 17.64 (SGDW4,db6,5,1)
Ltg7 28.83 (DCT2,10) 29.84 (PAA,17) 32.54 (DWT ,2)
Mall 1.46 (SGDW3,db3,3,4) 2.14 (SV D,5) 1.41 (SGDW3,db6,4,3)
MedI 21.16 (SGDW2,db3,6,2) 21.88 (SGDW3,db3,6,2) 21.42 (SGDW2,db3,6,2)
MotS 5.80 (PAA,16) 6.08 (PAA,16) 4.87 (DWT ,1)
OsuL 25.34 (SGDW3,db3,2,3) 21.60 (SGDW3,db3,6,2) 24.60 (SGDW3,db3,2,3)
OliO 9.38 (SGDW1,db1,6,1) 11.26 (SGDW5,db1,5,2) 9.93 (SGDW1,db1,6,1)
SnS2 2.21 (PAA,20) 2.13 (DCT2,30) 2.30 (DCT2,50)
SnS 0.95 (PAA,14) 1.44 (PAA,14) 1.62 (PCA,14)
StLC 2.92 (SGDW3,db1,5,3) 3.44 (SGDW3,db1,2,3) 2.91 (SGDW3,db1,5,3)
SweL 12.09 (SGDW2,db6,4,2) 12.64 (DFT ,27) 12.17 (SGDW2,db6,4,2)
Symb 1.95 (SGDW3,db1,4,2) 2.08 (SGDW3,db1,3,2) 2.30 (SGDW3,db1,3,2)
Trce 0.00 (POLY ,3) 0.00 (POLY ,3) 0.00 (POLY ,3)
2ECG 0.16 (SV D,15) 0.12 (PCA,15) 0.10 (SV D,15)
TWoP 1.19 (DCT2,20) 2.03 (CHEB,19) 1.22 (PAA,20)
WorS 30.30 (PAA,18) 30.16 (PAA,19) 30.67 (DWT ,1)
SynC 0.84 (DCT2,20) 0.75 (DWT ,1) 1.54 (SGDW3,db1,6,3)
uWGX 23.54 (PAA,15) 23.65 (PAA,15) 23.76 (DCT2,20)
uWGY 29.25 (DCT2,20) 29.47 (PAA,20) 29.39 (DCT2,20)
uWGZ 29.93 (DCT2,10) 29.85 (PAA,13) 30.36 (DWT ,1)
Wafr 0.12 (DFT2,90) 0.10 (DFT2,30) 0.13 (DFT2,100)
Yoga 7.32 (DWT ,4) 6.78 (DWT ,2) 7.25 (DWT ,4)
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Table A.8: Classification error over 100 trials for UCR Experiment using CH and CR
as distance measures.
CH CR

Data set Avg Node Avg Node

50w 32.25 (CHEB,16) 31.36 (PAA,18)
Adc 24.38 (SGDW2,db3,1,4) 22.45 (SGDW2,db3,1,4)
Beef 29.47 (PCA,10) 20.33 (PCA,16)
CBF 0.01 (CHEB,15) 0.01 (CHEB,17)
ChlC 2.09 (PCA,19) 2.01 (SV D,19)
Cinc 0.19 (PCA,18) 0.11 (PCA,17)
Coff 1.04 (ACF ,12) 0.00 (ACF ,8)
CriX 33.19 (SGDW3,db3,1,4) 29.62 (SGDW3,db1,2,3)
CriY 33.99 (SGDW3,db1,1,3) 29.67 (SGDW3,db1,1,3)
CriZ 33.57 (SGDW3,db3,1,4) 29.58 (SGDW3,db3,1,3)
DiSR 0.14 (SGDW1,db6,2,2) 0.14 (SGDW1,db6,2,2)
ECG2 0.00 (SM ,1) 0.00 (SGDW4,db1,0,1)
ECG5 0.07 (DFT2,100) 0.01 (DFT2,30)
Fish 21.32 (SV D,16) 17.29 (SV D,20)
FacA 9.86 (CHEB,19) 6.35 (CHEB,19)
Fac4 11.95 (DCT ,0.25) 8.96 (PAA,18)
FacU 9.85 (CHEB,19) 6.59 (DCT2,40)
GunP 5.79 (DFT2,90) 3.40 (DFT2,30)
Hapt 50.22 (SGDW3,db1,4,3) 49.09 (SGDW3,db1,4,4)
InLS 16.11 (ARIMA,6) 15.36 (ARIMA,6)
Ltg2 16.61 (SGDW3,db6,5,1) 17.76 (SGDW3,db6,5,2)
Ltg7 31.30 (DCT2,40) 32.19 (DWT ,2)
Mall 1.96 (SGDW3,db3,3,3) 1.47 (SGDW3,db6,4,3)
MedI 23.94 (SGDW2,db6,6,2) 21.46 (SGDW2,db3,6,2)
MotS 6.58 (PAA,11) 4.83 (DWT ,1)
OsuL 31.25 (SGDW3,db3,3,2) 24.47 (SGDW3,db3,2,2)
OliO 10.43 (SGDW1,db1,6,4) 9.90 (SGDW1,db1,5,2)
SnS2 3.73 (PAA,14) 2.18 (RAW ,1)
SnS 1.92 (PCA,6) 1.62 (DCT2,40)
StLC 3.31 (SGDW3,db1,4,2) 2.89 (SGDW3,db1,5,3)
SweL 14.52 (SGDW2,db6,5,2) 12.09 (SGDW2,db6,4,2)
Symb 2.90 (SGDW2,db6,6,1) 2.32 (SGDW3,db1,3,2)
Trce 0.01 (POLY ,3) 0.00 (WPE,4)
2ECG 0.26 (SV D,15) 0.07 (PCA,15)
TWoP 2.36 (DCT2,30) 1.24 (DCT2,20)
WorS 31.63 (CHEB,18) 30.75 (DWT ,1)
SynC 1.22 (CHEB,15) 1.69 (SGDW3,db1,6,4)
uWGX 24.83 (CHEB,14) 23.67 (DCT2,20)
uWGY 31.24 (PAA,14) 29.27 (DCT2,20)
uWGZ 31.23 (DCT2,10) 30.26 (DWT ,1)
Wafr 0.16 (CHEB,20) 0.10 (DFT2,80)
Yoga 9.31 (PAA,18) 7.35 (DWT ,4)
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