59 research outputs found

    Ship detection on open sea and coastal environment

    Get PDF
    Synthetic Aperture Radar (SAR) is a high-resolution ground-mapping technique with the ability to effectively synthesize a large radar antenna by processing the phase of a smaller radar antenna on a moving platform like an airplane or a satellite. SAR images, due to its properties, have been the focus of many applications such as land and sea monitoring, remote sensing, mapping of surfaces, weather forecasting, among many others. Their relevance is increasing on a daily basis, thus it’s crucial to apply the best suitable method or technique to each type of data collected. Several techniques have been published in the literature so far to enhance automatic ship detection using Synthetic Aperture Radar (SAR) images, like multilook imaging techniques, polarization techniques, Constant False Alarm Rate (CFAR) techniques, Amplitude Change Detection (ACD) techniques among many others. Depending on how the information is gathered and processed, each technique presents different performance and results. Nowadays there are several ongoing SAR missions, and the need to improve ship detection, oil-spills or any kind of sea activity is fundamental to preserve and promote navigation safety as well as constant and accurate monitoring of the surroundings, for example, detection of illegal fishing activities, pollution or drug trafficking. The main objective of this MSc dissertation is to study and implement a set of algorithms for automatic ship detection using SAR images from Sentinel-1 due to its characteristics as well as its ease access. The dissertation organization is as follows: Chapter 1 presents a brief introduction to the theme of this dissertation and its aim, as well as its structure; Chapter 2 summarizes a variety of fundamental key points from historical events and developments to the SAR theory, finishing with a summary of some well-known ship detection methods; Chapter 3 presents a basic guideline to choose the best ship detection technique depending on the data type and operational scenario; Chapter 4 focus on the CFAR technique detailing the implemented algorithms. This technique was selected, given the data set available for testing in this work; Chapter 5 presents the results obtained using the implemented algorithms; Chapter 6 presents the conclusions, final remarks and future work

    Computationally efficient vessel classification using shallow neural networks on SAR data

    Get PDF
    O radar de abertura sintética (SAR) ´e um radar ativo montado em uma plataforma em movimento, que simula um comprimento de antena maior do que o comprimento real da antena física. De forma semelhante ao radar convencional, ondas eletromagnéticas são transmitidas sequencialmente e os ecos são coletados pelo radar. Com o devido processamento de sinal, este tipo de sistema ´e capaz de fornecer imagens de micro-ondas de alta resolução de uma área-alvo desejada, em praticamente todas as condições meteorológicas. Atualmente, os sistemas SAR tem sido amplamente utilizados para a deteção remota possuindo várias aplicações, como observação da superfície terrestre, cartografia e aplicações militares. Dado que ´e independente do clima e pode operar tanto de dia quanto de noite, o SAR pode ser uma fonte mais confiável quando comparado com imagens ´óticas [1]. A deteção e reconhecimento de navios em imagens SAR tornou-se um tópico importante de pesquisa nos últimos anos. Esta tese apresenta um algoritmo computacionalmente eficiente para a classificação de embarcações em imagens de SAR usando Redes Neuronais com um número reduzido de camadas, também conhecidas como shallow neural networks. A utilização de shallow networks para a classificação de embarcações será dividida em duas etapas: extração de características e classificação. A extração de características tem como objetivo reduzir a carga computacional que as deep neural networks causam nos recursos computacionais, extraindo antecipadamente características-chave da imagem SAR. Os baixos requisitos computacionais tornam esta implementação compatível com sistemas a bordo de navios e aplicações em tempo real. A classificação ´e realizada usando uma rede neural com um número reduzido de camadas, que utiliza parâmetros obtidos a partir de algoritmos de extração de características para classificar a embarcação presente na imagem de radar. O processo de extração de características processa dados do conjunto de dados Open SAR ship [2] para obter várias características da embarcação, como comprimento, largura, média, desvio padrão e o número de pontos de dispersão presentes na embarcação.Synthetic aperture radar (SAR) is an active radar that is mounted on a moving platform, simulating a longer antenna length than the physical antenna real length. Similar to a conventional radar, electromagnetic waves are sequentially transmitted and the backscattered echoes are collected by the radar. With the proper signal processing, this kind of system is able to provide high resolution microwave images of a desired target area by synthesising a larger antenna aperture, in virtually all-weather conditions. Nowadays SAR systems have been extensively used for remote sensing. It has various applications such as Earth surface monitoring, charting and militar applications. Since it is weather independent and is able to operate whether it is day or night, SAR can be a more reliable source when compared with optical imagery [1]. Ship detection and recognition in SAR images has become an importante topic in research in recent years. This thesis presents a computationally eficiente algorithm for the classification of vessels in SAR images using Neural Networks (NN) with a reduced number of hidden layers, also called Shallow Neural Networks (SNN). Herein the use of SNN for vessel classification will be divided into two main steps: feature extraction and classification. Feature extraction aims to lessen the burden deep neural networks cause on computational resources by extracting key features beforehand from the SAR image. The low computational requirements make this implementation compatible with onboard vessel systems and real time applications. The classification is implemented using a SNN that uses parameters obtained from feature extraction algorithms to classify the vessel present in the radar image. In this thesis feature extraction processes data from the Open SAR Ship dataset [2] in order to obtain the vessel’s various features, such as ship length, width, mean, standard deviation and the number of scatter points present on the vessel.N/

    Integration of techniques related to ship monitoring : research on the establishment of Chinese Maritime Domain Awareness System

    Get PDF

    State of the Art of Radar Images Recognition of Surface Ships by Means of Space Monitoring

    Full text link
    Поступила: 01.02.2024. Принята в печать: 01.03.2024.Received: 01.02.2024. Accepted: 01.03.2024.Проблема синтеза и анализа алгоритмов обработки радиолокационных изображений пространственно-распределенных целей, полученных средствами космического мониторинга, была и остается одной из наиболее значимых как с теоретических, так и практических позиций для обеспечения безопасности мореплавания, контроля за незаконной добычей рыбы, мониторинга и управления кризисными ситуациями, такими как естественные бедствия, миграционные потоки и другие. Одним из наиболее распространенных приложений названной проблемы является распознавание надводных кораблей, которому и посвящен данный обзор, выполненный по иностранным источникам. В связи с этим предлагаемый обзор, содержащий достаточно подробный анализ современных методов решения названной задачи, предложенных широким кругом авторов в последние десятилетия, будет полезен создателям и исследователям средств космического наблюдения за состоянием морской поверхности.The issue of synthesizing and analyzing algorithms of processing radar images of spatially distributed targets, obtained through space monitoring tools, remains one of the most significant both theoretically and practically. This is particularly crucial for ensuring maritime safety, monitoring illegal fishing activities, and managing crisis situations such as natural disasters and migration flows. One of the most common applications of this problem is the recognition of surface ships, to which this review is devoted. The review is performed using foreign materials. Thus, the proposed review, which includes a detailed analysis of contemporary methods addressing the mentioned challenges, proposed by a wide range of authors over the past decades, will be valuable for developers and researchers in the field of space observation of marine surface conditions

    Ship detection in SAR images based on Maxtree representation and graph signal processing

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric attributes are evaluated and associated with the Maxtree nodes. They form graph attribute signals which are processed with graph filters. The goal of this filtering step is to exploit the correlation existing between attribute values on neighboring tree nodes. Considering that trees are specific graphs where the connectivity toward ancestors and descendants may have a different meaning, we analyze several linear, nonlinear, and morphological filtering strategies. Beside graph filters, two new filtering notions emerge from this analysis: tree and branch filters. Finally, we discuss a ship detection architecture that involves graph signal filters and machine learning tools. This architecture demonstrates the interest of applying graph signal processing tools on the tree-based representation of images and of going beyond classical graph filters. The resulting approach significantly outperforms state-of-the-art algorithms. Finally, a MATLAB toolbox allowing users to experiment with the tools discussed in this paper on Maxtree or Mintree has been created and made public.Peer ReviewedPostprint (author's final draft

    Automatic Ship Detection of Remote Sensing Images from Google Earth in Complex Scenes Based on Multi-Scale Rotation Dense Feature Pyramid Networks

    Full text link
    Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.Comment: 14 pages, 11 figure

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Oil spill and ship detection using high resolution polarimetric X-band SAR data

    Get PDF
    Among illegal human activities, marine pollution and target detection are the key concern of Maritime Security and Safety. This thesis deals with oil spill and ship detection using high resolution X-band polarimetric SAR (PolSAR). Polarimetry aims at analysing the polarization state of a wave field, in order to obtain physical information from the observed object. In this dissertation PolSAR techniques are suggested as improvement of the current State-of-the-Art of SAR marine pollution and target detection, by examining in depth Near Real Time suitability
    corecore