1,277 research outputs found

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A survey on pseudonym changing strategies for Vehicular Ad-Hoc Networks

    Full text link
    The initial phase of the deployment of Vehicular Ad-Hoc Networks (VANETs) has begun and many research challenges still need to be addressed. Location privacy continues to be in the top of these challenges. Indeed, both of academia and industry agreed to apply the pseudonym changing approach as a solution to protect the location privacy of VANETs'users. However, due to the pseudonyms linking attack, a simple changing of pseudonym shown to be inefficient to provide the required protection. For this reason, many pseudonym changing strategies have been suggested to provide an effective pseudonym changing. Unfortunately, the development of an effective pseudonym changing strategy for VANETs is still an open issue. In this paper, we present a comprehensive survey and classification of pseudonym changing strategies. We then discuss and compare them with respect to some relevant criteria. Finally, we highlight some current researches, and open issues and give some future directions

    Secure and Authenticated Message Dissemination in Vehicular ad hoc Networks and an Incentive-Based Architecture for Vehicular Cloud

    Get PDF
    Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized network. VANETs are likely to be widely deployed in the future, given the interest shown by industry in self-driving cars and satisfying their customers various interests. Problems related to Mobile ad hoc Networks (MANETs) such as routing, security, etc.have been extensively studied. Even though VANETs are special type of MANETs, solutions proposed for MANETs cannot be directly applied to VANETs because all problems related to MANETs have been studied for small networks. Moreover, in MANETs, nodes can move randomly. On the other hand, movement of nodes in VANETs are constrained to roads and the number of nodes in VANETs is large and covers typically large area. The following are the contributions of the thesis. Secure, authenticated, privacy preserving message dissemination in VANETs: When vehicles in VANET observe phenomena such as accidents, icy road condition, etc., they need to disseminate this information to vehicles in appropriate areas so the drivers of those vehicles can take appropriate action. When such messages are disseminated, the authenticity of the vehicles disseminating such messages should be verified while at the same time the anonymity of the vehicles should be preserved. Moreover, to punish the vehicles spreading malicious messages, authorities should be able to trace such messages to their senders when necessary. For this, we present an efficient protocol for the dissemination of authenticated messages. Incentive-based architecture for vehicular cloud: Due to the advantages such as exibility and availability, interest in cloud computing has gained lot of attention in recent years. Allowing vehicles in VANETs to store the collected information in the cloud would facilitate other vehicles to retrieve this information when they need. In this thesis, we present a secure incentive-based architecture for vehicular cloud. Our architecture allows vehicles to collect and store information in the cloud; it also provides a mechanism for rewarding vehicles that contributing to the cloud. Privacy preserving message dissemination in VANETs: Sometimes, it is sufficient to ensure the anonymity of the vehicles disseminating messages in VANETs. We present a privacy preserving message dissemination protocol for VANETs

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable

    A Secure and Distributed Architecture for Vehicular Cloud and Protocols for Privacy-preserving Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    Given the enormous interest in self-driving cars, Vehicular Ad hoc NETworks (VANETs) are likely to be widely deployed in the near future. Cloud computing is also gaining widespread deployment. Marriage between cloud computing and VANETs would help solve many of the needs of drivers, law enforcement agencies, traffic management, etc. The contributions of this dissertation are summarized as follows: A Secure and Distributed Architecture for Vehicular Cloud: Ensuring security and privacy is an important issue in the vehicular cloud; if information exchanged between entities is modified by a malicious vehicle, serious consequences such as traffic congestion and accidents can occur. In addition, sensitive data could be lost, and human lives also could be in danger. Hence, messages sent by vehicles must be authenticated and securely delivered to vehicles in the appropriate regions. In this dissertation, we present a secure and distributed architecture for the vehicular cloud which uses the capabilities of vehicles to provide various services such as parking management, accident alert, traffic updates, cooperative driving, etc. Our architecture ensures the privacy of vehicles and supports secure message dissemination using the vehicular infrastructure. A Low-Overhead Message Authentication and Secure Message Dissemination Scheme for VANETs: Efficient, authenticated message dissemination in VANETs are important for the timely delivery of authentic messages to vehicles in appropriate regions in the VANET. Many of the approaches proposed in the literature use Road Side Units (RSUs) to collect events (such as accidents, weather conditions, etc.) observed by vehicles in its region, authenticate them, and disseminate them to vehicles in appropriate regions. However, as the number of messages received by RSUs increases in the network, the computation and communication overhead for RSUs related to message authentication and dissemination also increases. We address this issue and present a low-overhead message authentication and dissemination scheme in this dissertation. On-Board Hardware Implementation in VANET: Design and Experimental Evaluation: Information collected by On Board Units (OBUs) located in vehicles can help in avoiding congestion, provide useful information to drivers, etc. However, not all drivers on the roads can benefit from OBU implementation because OBU is currently not available in all car models. Therefore, in this dissertation, we designed and built a hardware implementation for OBU that allows the dissemination of messages in VANET. This OBU implementation is simple, efficient, and low-cost. In addition, we present an On-Board hardware implementation of Ad hoc On-Demand Distance Vector (AODV) routing protocol for VANETs. Privacy-preserving approach for collection and dissemination of messages in VANETs: Several existing schemes need to consider safety message collection in areas where the density of vehicles is low and roadside infrastructure is sparse. These areas could also have hazardous road conditions and may have poor connectivity. In this dissertation, we present an improved method for securely collecting and disseminating safety messages in such areas which preserves the privacy of vehicles. We propose installing fixed OBUs along the roadside of dangerous roads (i.e., roads that are likely to have more ice, accidents, etc., but have a low density of vehicles and roadside infrastructure) to help collect data about the surrounding environment. This would help vehicles to be notified about the events on such roads (such as ice, accidents, etc.).Furthermore, to enhance the privacy of vehicles, our scheme allows vehicles to change their pseudo IDs in all traffic conditions. Therefore, regardless of whether the number of vehicles is low in the RSU or Group Leader GL region, it would be hard for an attacker to know the actual number of vehicles in the RSU/GL region

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general
    • …
    corecore