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ABSTRACT OF DISSERTATION

Secure and Authenticated Message Dissemination in Vehicular ad hoc Networks

and an Incentive-based Architecture for Vehicular Cloud

Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized net-

work. VANETs are likely to be widely deployed in the future, given the interest shown

by industry in self-driving cars and satisfying their customers various interests. Prob-

lems related to Mobile ad hoc Networks (MANETs) such as routing, security, etc.

have been extensively studied. Even though VANETs are special type of MANETs,

solutions proposed for MANETs cannot be directly applied to VANETs because all

problems related to MANETs have been studied for small networks. Moreover, in

MANETs, nodes can move randomly. On the other hand, movement of nodes in

VANETs are constrained to roads and the number of nodes in VANETs is large and

covers typically large area. The following are the contributions of the thesis.

Secure, authenticated, privacy preserving message dissemination in VANETs:

When vehicles in VANET observe phenomena such as accidents, icy road condition,

etc., they need to disseminate this information to vehicles in appropriate areas so

the drivers of those vehicles can take appropriate action. When such messages are

disseminated, the authenticity of the vehicles disseminating such messages should be

verified while at the same time the anonymity of the vehicles should be preserved.



Moreover, to punish the vehicles spreading malicious messages, authorities should be

able to trace such messages to their senders when necessary. For this, we present an

efficient protocol for the dissemination of authenticated messages.

Incentive-based architecture for vehicular cloud: Due to the advantages such

as flexibility and availability, interest in cloud computing has gained lot of attention

in recent years. Allowing vehicles in VANETs to store the collected information in

the cloud would facilitate other vehicles to retrieve this information when they need.

In this thesis, we present a secure incentive-based architecture for vehicular cloud.

Our architecture allows vehicles to collect and store information in the cloud; it also

provides a mechanism for rewarding vehicles that contributing to the cloud.

Privacy preserving message dissemination in VANETs: Sometimes, it is suf-

ficient to ensure the anonymity of the vehicles disseminating messages in VANETs.

We present a privacy preserving message dissemination protocol for VANETs.

KEYWORDS: Vehicular Ad Hoc Networks, Vehicular Cloud, Security and Privacy

in Vehicular Networks.

Kiho Lim
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Chapter 1

Introduction

Vehicular Ad Hoc Networks (VANETs) provide ubiquitous connectivity to mobile

users on the road and efficient vehicle-to-vehicle communication that can help in

implementing Intelligent Transportation Systems (ITS). ITS can provide support for

various types of applications such as collision prevention, traffic monitoring, traffic

flow control, providing information about nearby services. [35] Another important

application of VANETs is that since vehicles are connected to the Internet, the users

could enjoy the services, the infotainment, and the entertainments, supported on the

Internet while they are moving.

VANETs are special type of MANETs (Mobile Ad hoc Networks). The main

difference between the two is that nodes in VANETs are vehicles on the roadway and

their movement is constrained to roads whereas nodes in MANETs move randomly.

One of the primary goals of VANETs is to increase road safety. In order to achieve

this goal, vehicles monitor phenomena on the roads and inform other vehicles about

abnormal and dangerous traffic condition such as icy roads, heavy congestion, or car

accidents. Adversaries could exploit this by injecting malicious messages for their

own benefit or to deliberately disrupt the users. Thus, securing VANETs from such

adversaries is important.

In VANETs, each vehicle is equipped with a communication device to communi-

cate with other vehicles and designated roadside infrastructure, called road side units,

to exchange safety related information. These vehicle nodes and roadside infrastruc-
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ture together form a self-organized network, called a Vehicular Adhoc Network. In

VANETs, various type of techniques are required such as beaconing, forwarding,

broadcasting, and routing to deliver messages to the destination through appropri-

ate nodes. Due to the high mobility of vehicle nodes, the network topology changes

frequently. Our main aim is to address the security and routing issues in VANETs.

Next, we present the necessary background, motivation for our research, and the

problems addressed in this dissertation.

1.1 Background

In this section, we introduce the security architecture, trust issues, key and certificate

management, and attacks in VANETs and existing solutions, which our research is

based on.

1.1.1 Security Architecture

Requirements of Security Services

Security mechanisms in MANETs have been extensively studied; however, they are

not suitable for VANETs due to the unique characteristics of VANETs, so they can’t

be directly applied to VANETs. Despite a broad range of challenges facing securing

vehicular communication, the security issues must be addressed and solved for the

successful deployment of VANETs. Since the drivers and the vehicles in VANETs

rely on shared information to make decisions, they would be vulnerable to malicious

and misbehaving nodes; so proper mechanisms need to be implemented for detecting

and thwarting attacks from such malicious nodes. The security services of VANETs

typically need to meet the following requirements [60], [80], [68]:

1. Integrity: The integrity service is to deal with the accuracy, consistency, and

the completeness of messages during transmission. In order to prevent attackers

2



from altering or injecting messages, integrity of messages should be ensured.

Also, a reliable time source for accurate time synchronization and a reliable

positioning system for precise location information could be used to protect

communication against attacks such as replay-attack or position spoofing attack.

2. Availability: In VANETs, time critical messages such as emergency traffic in-

formation must be handled at any given time. If one channel is not available

due to failure or attack, there must be alternative means to maintain vehicular

network availability all the time.

3. Authentication: Every message exchanged must be authenticated to identify

the sender of the message. Vehicles should react only to information or events

generated by legitimate senders.

4. Non-repudiation: This service is designed to identify misbehaving nodes or

attackers and prevent them from denying messages transmitted by them. Any

vehicle related information for communication, such as location, speed, and

time, will be stored in a tamper-proof On-Board Unit. It also could be used

by authorities for investigation to reproduce the scene of an accident with the

same sequence and content of the messages communicated before the accident.

5. Real-time constraints: Vehicles move with high velocity. In some situations

like time-sensitive communication, a real-time response is essential, so time

constraints should be respected.

6. Privacy: All driver information such as identity, location and speed, should be

protected against unauthorized observers. Also, an observer should not be able

to trace the routes of the vehicles.
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Network Model

Two types of communicating entities are presented in the currently explored archi-

tectures of VANETs. The first type is a vehicle node which forms the majority of

all VANET nodes.The second type is the roadside base stations, usually called RSUs

(Road Side Units). The radio used for communication is Dedicated Short-Range Com-

munications (DSRC), which has been allocated as a new band in 1999 by the Federal

Communications Commission; the band allocated was 75MHz at 5.9GHz frequency

for Intelligent Transport System(ITS) applications in North America. Also, the IEEE

802.11p standard supports the communication channel and technology. Communica-

tion in VANETs could be either direct communication between vehicles or through

multiple wireless link hops. Vehicles operate as both endpoints and routers. Vehicular

networking will enable vehicle-to-vehicle communication, vehicle-to-RSU communica-

tion, and vehicle-to-existing infrastructure networks communication [80].

High velocity of vehicle is a real-time constraint in VANETs. For example, if

two vehicles are moving in opposite direction on highways, they would only have a

very short connection time between them. Also, unlike MANETs in which nodes

move randomly, vehicles move along the roads, hence their mobility is constrained.

Vehicles in VANET are equipped with a wireless communication device and compu-

tation resources to perform security tasks. Also, additional devices such as a Global

Positioning System (GPS) and an Event Data Recorder (EDR) could be present to

provide the location of vehicles. Vehicles also have a tamper-proof storage for private

information such as private/public keys and electronic license plate information [80].

Message Categories

Many applications are waiting for deployment in VANETs. These applications can be

divided into two major categories, namely safety related applications and non safety

related applications [65, 80].
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1. Safety-related applications

For example, collision avoidance warning messages, emergency brake warning mes-

sages, traffic light warning messages, or lane merging warning messages could be sent

to warn drivers. Since the messages sent by this type of application help drivers make

critical decisions, ensuring the security and reliability of such messages is essential.

• Traffic information messages: Messages contain information such as road con-

dition and accidents. Messages are sent to all vehicles within specific area for

safety and typically they are not time-critical messages.

• General safety-related messages: This type of messages are used for general

safety applications such as cooperative driving. Due to the high mobility of

vehicle nodes, message contents are time sensitive, hence they should arrive

within the preset time window.

• Liability-related messages: This type of messages are used for liability-related

applications, which share traffic information and drivers are responsible for the

traffic information. For example, if the message originator need be traced back

to investigate an accident by the law enforcement authorities, the authorities

should be able to trace the message to its sender.

2. Non-safety-related Application

There are non safety related applications, such as traffic optimization, automatic

payment services, location-related services, and driver infotainment services. This

type of applications do not have time-critical messages, but securing messages for such

services (e.g., payment services) and protecting user privacy (e.g., location service)

are still very important for such applications.
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1.1.2 Trust Issues

Establishing trust between communicating vehicles is still one of the major challenging

problems. Especially in safety applications, trust is a key element as receiving nodes

make decisions with the critical information from the safety application while moving

at high speed. Therefore, VANETs should ensure authenticity and trustability of

every message before using it [65].

In VANETs, each node needs to be equipped with a trust system that can make

trust decisions. There are two approaches to establish trust. The first approach is the

infrastructure-based trust establishment, which relies on trusted and global central

authority. Another approach is the self-organizing trust establishment, where the

system is built up and adapted dynamically for the environment [83]. The details of

these approaches are discussed next.

Infrastructure-based Trust Establishment

There are many approaches for infrastructure based trust establishment. In this type

of trust establishment, trust relies on a static security infrastructure and certificates

are used in most cases. Here, we review some such approaches.

• Classical Certificate-based Systems: This is the traditional trust system with

certificates. At the initial stage, certificates are issued by a central authority

and later they are used for trust verification. One of the example is the simple

Public Key Infrastructure, where trust is based on the public keys of nodes [23].

• Kerberos: Kerberos system is designed to improve security and prevent replay

attacks. In Kerberos system, a central Key Distribution Center (KDC) authen-

ticates users to issue a valid trust token. The trust token contains a session key,

a validity period, and the requesting node’s identity encrypted with the server’s

secret key [32], [54].
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• Pseudonyms: The above mentioned approaches disclose the identities of nodes

to interact with other nodes (user ID, public key, attributes). In a VANET,

user privacy is indispensable feature and revealing user information should

be minimized. One of the solutions to address privacy issues is the use of

pseudonyms [83]. The trusted central authority issues and manages pseudonyms

and can verify the original identities associated with user’s pseudonyms.

• Blind Signature: Blind signature [16] is used for a signer to electronically sign a

message without knowing the content of the message, so the certificates remain

anonymously within the trust systems. Blind signature is a flexible mecha-

nism and it can be used in conjunction with other approaches including above

mentioned certificate based approaches.

• Zero Knowledge / Non-interactive zero knowledge: With Zero-knowledge ap-

proach [28], a node can prove its certified message using knowledge of secret in-

formation without disclosing the content. This is a fundamental cryptographic

mechanism and has been used in many applications, however, it’s not suitable

for VANETs due to the limited computation and communication capabilities of

nodes, which require heavy interaction between prover and verifier. In order to

prevent heavy interaction, Non-interactive zero knowledge proofs can be used

with a mono-directional interaction [7]. The proofs allow the prover and verifier

to share a common, short, and random string. This lightweight interaction for

trust establishment is a key factor for high mobility nodes in VANETs, so Non-

interactive zero knowledge approach could be used as one of possible solutions

for trust mechanism.

• Digital Credentials: With Digital Credentials approach [9], nodes having certifi-

cates can selectively disclose the properties of the data fields in the certificates

without revealing any other information. This approach could address secu-
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rity and privacy issues. So the property values are a component of node’s

secret/public keys and a verifier can access all properties except the prover’s

properties without holding all of the prover’s secret key.

• Group Signatures: In a group signature approach [17], a single public key

matches with a large number of private keys. A private key is assigned to

every member of the group and the group members use it to generate their

signatures that can be verified with the corresponding public key. The major

feature of this approach is that non-group members still can verify a signature

generated by a group member, but they cannot find which member actually

signed it. This provides some extent of anonymity as the signer remains anony-

mous to outsiders. However, the central authority has an ability to trace the

signer with respective private key when necessary.

• Threshold Cryptography: This approach was first introduced in [71]. Unlike

above mentioned physically centralized trust systems, threshold cryptography

based trust system only uses the centralized entity for initialization. With

(k,n) threshold scheme, a secret is shared between k parties and any n parties

can rearrange the secret to prevent security attacks. This scheme was used to

share secret keys in Adhoc Networks [91], but a critical drawback exists; if the

available nodes are less than n, then the trust system does not work properly.

So, this approach is not suitable for VANETs as the network topology changes

frequently with moving vehicles.

All of the above trust systems are not suitable for VANETs because of the dynamic

environment of VANETs. Nodes in VANETs are moving vehicles with the limited

resources for computation and storing security related data.
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Self-organizing Trust Establishment

VANETs require a modified form of trust establishment due to the highly dynamic

nodes. Connection to the security infrastructure for verification may not be available

all the time. Also, nodes may need to make a decision quickly based on unverified

information, which is sent by unidentified nodes. Hence, for self-organizing trust

establishment 1) no trusted third party is involved. (e.g., online infrastructure) and

2) no global knowledge is shared between the nodes.

Trust relationships in VANETs change dynamically with the duration of con-

nection with neighboring nodes. The more time a node remains connected with its

neighbors, the higher will be the trust established with them. Therefore, mechanisms

for trust establishment are categorized as follows.

• direct establishment: Trust is established through direct communication be-

tween nodes.

• indirect establishment: Trust relationships are transferable as nodes share the

information about their trust relationship with other nodes.

• hybrid establishment: Trust is established by combining both direct and indirect

mechanisms.

Related Works on Trust Issues

Many approaches have been studied to address trust issues in VANETs. In this sec-

tion, we introduce some of the recently proposed approaches.

Proxy Signature-based RSU Message Broadcasting

Biswas et al. [6] proposed proxy signature based message broadcasting to ensure

message integrity, authentication of broadcasted messages, and authentication of the

RSU to the OBUs. In this network model, Road Side Controllers (RSC) are involved
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for communication in addition to the traditional entities in a VANET including Cer-

tificate Authority (CA), Road Side Units (RSU), On-Board Unit (OBU). A RSC

manages a group of RSUs which are securely connected.

Two major aspects of this proxy signature based scheme are 1) Authentication of

RSU as a valid group member of a RSC group to the OBUs, 2) delivery of messages

signed by the RSU for the RSC. In this approach, an RSU advertises the certificate

including the identity of the RSC, the public key of the RSC, the identity of the RSU,

the MAC address of the RSU, and the location information. And the initial beacon

message has a hash value in addition to the message contents. When an OBU receives

a message, it uses the public key of the RSC, the MAC address of the RSU, and the

location of the designated RSU for verification. In the approach, the signature guar-

antees the integrity of the message and confirms that the RSU is one of the member

of the RSU group managed by the RSC. Once the received RSU’s MAC address is

verified, the OBU can join the RSU group. Also, the location information attached

to message is compared to the actual location of the RSU.

Anonymous Authentication (PAAVE)

The protocol for anonymous authentication in Vehicular Networks using Smart

Cards [56] has been proposed to address the privacy preservation issue with traceabil-

ity by authority. This scheme is based on smart cards to generate instant anonymous

keys between vehicles and roadside units and provides anonymous authentication and

location privacy with a vehicle storing one cryptographic key.

A smart card used in this scheme includes an embedded integrated circuit chip,

which is a secure micro-controller with internal memory. The smart cards can store

large volume of data, perform functions like encryption/decryption, and connect to a

smart card reader. With the benefits of the smart card including physical security and

many security techniques, the user privacy is protected. Vehicular Security Module

10



(VSM) is a module on a smart card that securely stores identity information such as

the identity of the driver and cryptographic keys for secure communication. So all

messages for communication need to pass through the VSM for encryption. Also, all

received messages are decrypted by the VSM as the VSM has all the cryptographic

information.

This scheme consists of the following three components: authentication, session

key establishment and message verification. The first component is Authentication

Process. An OBU needs to authenticate itself to the nearby RSU before joining the

network for communication. If the target RSU is located within the communication

range of the vehicle, then it sends a message to the RSU to be verified. If there is no

RSU within the transmission range of the vehicle, then it simply broadcasts a message

in plain text to ask its neighbors for the nearest RSU’s public key. After obtaining the

pubic key of the nearest RSU, the vehicle now can communicate with the RSU. The

second component is obtaining session keys for communication. Every RSU issues a

new session key to an OBU for each session after any OBU is authenticated by the

RSU. The session key is securely stored in the VSM and is not accessible to any OBU.

The third component is communication and message verification. Since messages need

to be encrypted by the VSM before transmission, upon receiving messages, the VSM

also decrypt the messages.

1.1.3 Attacks on VANETs

Attacks on VANETs

In VANETs, it is important to account for non-cooperating entities because malicious

nodes can deliberately mislead other vehicles by disseminating false traffic information

and degrade the network performance. In this section, possible attacks in VANETs

are discussed [75], [68], [59].

• Denial of Service Attack : In this type of attack, the attackers attempt to make
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the communication channels unavailable or take control of vehicle’s resources. It

can degrade the network’s performance and also affect driver’s safety, especially

when safety-related application is affected. For example, if the attacker creates

a massive network traffic on the road, when accident occurs, the approaching

vehicles are prevented from receiving warning messages due to the denial of

service attack.

• Message Suppression Attack : In this type of attack, an attacker selectively

drops messages from the network. The dropped message could be safety related

messages or critical information for the receiver. Also, the attacker may attempt

to replay the dropped message later and mislead the drivers.

• Fabrication Attack : In this type of attack, an attacker attempts to transmit

fabricated messages into the network. The messages sent by the attacker could

contain false traffic information or fake identity information. It can also contain

false warning messages and certificates.

• Alteration Attack : In this type of attack, an attacker attempts to alter existing

messages. The attacker can change the content of the message or delay the

message transmission.

• Replay Attack : In this type of attack, an attacker attempts to send an earlier

message again to take advantage of the situation at the time of sending. Since

a message is replayed, this is called replay attack.

• Sybil Attack: If fake information is reported by a single malicious vehicle, it is

not sufficient to be convinced and trusted. Some applications require several

vehicles for the same information to be accepted as true. In this type of attack,

a single malicious vehicle acts as multiple vehicles by creating a large number of

pseudonyms. Since the vehicles trust the fake information and make decisions
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based on the fake information, preventing this type of sybil attacks is crucial in

VANET.

• Privacy Attack: If vehicles are required to have a unique identity in the messages

transmitted, sybil attack may be prevented. However, if such unique identity is

used, an observer may be able to identify the vehicle by tracking the messages

it transmits. Hence, privacy issues also need to be addressed while protecting

sybil attacks.

As seen above, such attacks prevent the enjoyable environment of VANETs.

Hence, it’s important to address the security issues while the solutions do not af-

fect the performance of the network.

1.1.4 Secure Routing and Data Dissemination in VANETs

Security aspect of VANET infrastructure is a very important and has not been dealt

with the attention it deserves. Because of the impact on the safety and security

of passengers in the vehicles, designing protocols for delivering messages securely is

important.

In addition to the communication device, many authors assume that each vehicle

is equipped with a reliable positioning device (e.g., a Global Positioning System),

so it can obtain accurate location and time information. To ensure that all security

constraints are carefully handled, we assume a scenario where the adversaries can

intercept any message in the VANET.

Because of their potential impact on the safety and security of human being in

the vehicles, designing protocols for exchanging messages securely is important. The

security objectives are authentication, non repudiation of signaling packets, protect-

ing conditional user privacy, detecting and correcting malicious data, and excluding

misbehaving nodes from route discovery while messages are transmitted efficiently.
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Figure 1.1: VANET Routing

Next, we review some of existing solutions for security and their problems.

SAODV

Secure Ad-hoc On Demand distance Vector routing [88] is based AODV [58] routing

protocol and aims at providing integrity, authentication and non-repudiation routing

information. Also, with the help of digital signatures, it authenticates the non muta-

ble fields of messages and hash chains to secure the mutable information fields such

as Hop count information. A random number (seed) is generated by the node every

time it sends a route request (RREQ) or route reply (RREP) message. The random

number uses the time to live field in the IP header to set the max hop count and also

sets the hash field and the identifier field of the hash function. The receiver calculates

the hash value using the random number and compares if the top hash values are the

same to verify the hop count. This function is repeated every time a RREQ or RREP

is sent out.
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SPAAR

Secure Position Aided Ad hoc Routing (SPAAR) [15] makes use of precise positional

information about nodes. This position information helps in improving efficiency by

reducing unnecessary routing messages and securing MANETs. SPAAR uses asym-

metric cryptography, certificate authorities and timestamps to prevent attacks from

malicious nodes. The necessary entities in this approach are a public/private key

pair for every node, a certificate server for binding the identity of nodes to their

public keys. The public key of the certificate server is known to each node in the

network. The certificate server offers authentication, confidentiality, non repudia-

tion and integrity. Each node also maintains a public and private key pair with its

neighbors. These key pairs are generated from the global key pair on detection of

new neighbors. Multi-hop messages need to be signed with the private key of the

sending node and be encrypted with the public key of the receiver. This enables

neighbors to verify the presence and identity of its neighbor. The destination has to

verify the identity of the sender. Nodes maintain tables to record information about

one hop neighbors and recent destinations. The destination table also contains the

speed of nodes so that their subsequent positions can be calculated. Table update

messages are piggybacked on every routing message which enables periodic position

information exchange. This reduces the load on one hop table to store recent po-

sition information. Topology changes are very frequent in VANETs and have to be

detected and recorded instantaneously with the help of periodic hello messages. If a

node does not know the position of any other node in the network, it sends out loca-

tion request messages. Location request message is propagated in the network and if

any intermediate node possesses information about the coordinates of the requested

node, it sends a location reply message back to the requesting node. This approach

using asymmetric cryptography requires a lot more processing time for end-to-end

and hop-by-hop communication because of the sheer size of the VANET, hence this
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approach is not scalable to be applied in VANETs.

GSIS

A Secure and Privacy Preserving Protocol (GSIS) proposed by X Lin et al. [44] uti-

lizes group based keys and ID based keys to help identify vehicles in various traffic

scenarios. This method focuses on helping traffic authorities and telecommunication

systems at providing conditional privacy while ensuring the safety of the drivers.

The safety of vehicle-to-vehicle as well as vehicle-to-roadside unit communication is

discussed. Group signatures are used to secure the communication between vehi-

cles and ID based signatures are used to secure the communication with roadside

units. The protocol attempted to achieve data origin authenticity, data integrity,

vehicle anonymity, RSU ID exposure, prevention of RSU replication, and vehicle ID

traceability. Bilinear pairing [8] (which helps reduce the length of keys) and the var-

ious problems associated with Diffie Hellman key exchange [21] form the basis of the

proposed Group based and ID based signatures.

The membership managers and traffic managers are the primary entities in the

GSIS system. The membership managers provide security and system parameters

to the mobile and roadside units and also send out private and group keys to these

units. The traffic managers are responsible for collecting information when identities

of vehicles need to be revealed. Certificate revocation lists are maintained to maintain

a list of compromised vehicles and their certificates. Once a vehicle is determined as

compromised, new group and private keys are generated for the remaining safe nodes

and are sent out.
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Securing Vehicular Ad hoc NETworks

Raya and Habaux [63] aim at maintaining the message legitimacy to protect VANETs

from outsider attacks. The concept of safety messages is an integral part of this

scheme. Since they consider only safety related applications, confidentiality is ne-

glected. As a result of that, encryption is not needed and authentication suffices.

Session key based authentication schemes are used to serve safety related applica-

tions. This scheme assumes that every vehicle is loaded with a private/public key

pair and is familiar with other entities in its own group thereby desiring the content of

communication to be kept secret and not disclosed outside of the group. This model

classifies the attack models into:

1. Insider vs Outsider attack model

2. Malicious vs Rational attack model

3. Active vs Passive attack model

4. Local vs Extended attack model

This model also considers more sophisticated attack models such as the Hidden ve-

hicle attack, the tunnel attack, Wormhole and Bush telegraph attacks. They assume

the physical devices are equipped with tamper proof devices for the transmission of

the messages. Since each safety message is attached with both a digital signature

and a certificate, an attempt is made to reduce the additional overhead with the use

of symmetric keys. Session keys are better for nodes maintaining contact for an ex-

tended period of time. The use of pair-wise keys and group keys are used depending

on the trust level of vehicles.

As it is considered unwise to preload vehicles with shared pair-wise keys, the pair-

wise key establishment is a dynamic process. The communicating entities exchange

public keys and certificates, and the pair-wise session keys. The keys produced are

used as the hash keys for the HMAC scheme which is then used for authenticating

messages. However, congestion due to heavy traffic load makes this approach not
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very desirable. To help deal with the heavy overhead due to pair-wise keys, group

based signature schemes were proposed. Group joining and leaving is another factor

that was separately considered. Group joining is not a big issue because loading the

joining vehicle with the group key wasn’t very complicated. However, a leaving node

caused problems as a new key has to be computed for the entire group. Hence the

concept of creating secure groups was introduced, that does not require the computa-

tion of a new group key every time a node left the group. This scheme would protect

the group from outsider attacks but not insider attacks.

Secure Position Based Routing

Harsch et al. [30] aim at providing a comprehensive solution to protect network op-

erations by securing geographic routing operations. The main focus is to secure

operations such as beaconing, exchange of node co-ordinates, geo-location discovery,

multihop (geographic unicast, topologically scoped broadcast, geographically scoped

broadcast and geographically scoped anycast) communication, precision of the lo-

cation service and forwarding. Their approach is a position based routing specific

security solution. Location information received by nodes should correspond to legit-

imate physical node positions. Since location information is stored in location tables,

plausibility of location information is preferred over the preciseness of node locations

at that instant of time. Nodes must be made responsible for authentically report-

ing their location information without being threatened by impersonation attacks.

Authentication, integrity and non repudiation of packets, freshness of location infor-

mation, authorization and reliability of location tables are features of this approach.

A certificate authority loads each vehicle with public/private key pairs and cer-

tificates which contain the CA lifetime, the CA identifier and an attribute list. The

packet’s time and location fields are used as inputs to conduct a series of plausibility
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checks. The packet is discarded if it fails any one of these plausibility checks. Two

types of signatures are applied to every packet with a source signing the immutable

fields and each hop signing the mutable field of the packet. Each hop checks the

validity of the source and sender signatures and replaces the mutable information

and sends it after resigning it. The plausibility checks are performed to check the

validity of the packet lifetime, the allowable range of transmission of the forwarding

node that sends it and the allowable velocity with which it is allowed to forward it.

If any of these fail, the packet is dropped.

Time and Location Critical Emergency Message Dissemination

Zhuang et al. [92] focus mainly on emergency message (EM) dissemination. The

focus on the time and location criticality (TLC) aspect has led to the simplification

of the radio transceiver design and the contention based MAC protocol for VANETs

operating on a single channel. Existing protocols achieved message dissemination to

different nodes via different channels but the proposed protocol tried to achieve it

using a single channel. The EMs are sent from the Point of Interest (POI) to vehicles

closer receiving a more detailed message and vehicles receiving messages with less

detail. The POI is generally an accident site and the messages have varying degrees

of detail so as to notify as many vehicles as possible and avoid pileups by suggesting

different routes or a vehicle to slow down. Vehicles that are closer have a higher

Signal to Interference and Noise Ratio (SINR) and hence get a more detailed message

so they can maneuver quicker and the degree of detail decreases with distance.

This EM dissemination is achieved with the help of the Scalable Modulation &

Coding (SMC) scheme. SMC does bit to symbol mapping in the modulation map-

ping which determines the level of detail for the messages. The Road Side Units

collect vehicle cluster information by observing forward and reverse traffic patterns
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and provide this cluster information to the TLC framework.

This proposes an effective way for EM dissemination while reducing cost and

connection complexity by using a single channel. However, the need to deal with

handover delays has to be dealt with to further refine this scheme.

Global Public Key Algorithm for Secure Location Service

The geographic routing protocol proposed by Pradeep et al. [61] based on the bilinear

pair based cryptography. A global key is used which reduces the overhead caused by

digital signatures and path verification of certificates. The use of global keys has

no negative effect on the location service while retaining authenticity by reducing

signature size. Location information of every node is maintained in a location server

and is provided to a source vehicle on request. The importance of the tamper proof

device on an OBU is highlighted as the privacy, decrypted location info, ID and cryp-

tographic credentials are protected from illegal external access. The steps involved in

the algorithm are simple with the message being signed first and encrypted with the

public key parameters generated by the bilinear mapping. A signed message has its

authenticity protected. A timestamp is included to identify the freshness of a packet.

The final steps of the protocol are the decryption and signature verification. This

ensures hop by hop authentication and end to end protection.

Delay-efficient Geodynamic Group Based Authentication

Riley et al. [66] proposed a geodynamic authentication protocol with geodynamic

groups of vehicles formed with distinct group boundaries. A trusted leader is se-

lected for the whole group and vehicles can change group membership based on their

geographic location. The authentication scheme utilizes a public key cryptography
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system called the Group Based Hybrid Authentication Protocol to create dynamic

groups. Symmetric key cryptography provides secure communication with group keys

being distributed by trusted group leaders. This scheme ensures privacy, non repu-

diation and authentication of senders with groups being maintained with small sets

of control messages. The electronic license plate information which maps all relevant

information about the car, driver and a pseudonym is stored in the form of a unique

identifier. A Transportation Authority (TA) maintains identifier to pseudonym. Ev-

ery vehicle is loaded with a subset of certificates which are periodically replaced with

new ones from the pool of certificates maintained by the TA. Key exchange between

nodes is achieved with the application of the Diffie Hellman Key agreement proto-

col [21]. Geodynamic groups are created with the help of distribution algorithms with

nodes assuming any one of the following roles: 1. Group leader: The selected group

leader periodically sends its group leader to all the members of the group and also

periodically distributes a fresh group key to all group members. Messages within the

group, to another group and to the TA go through the group leader.

2. Group member: A node can be a member of more than one group but can never

be a group leader if it’s a member of more than one group. A group member can

create and send safety messages to members of a group.

3. Non member: A non member encrypts a search message with the public key of

the law agency and broadcasts it to all the nodes in the region. A random number

is also included in the search message. If the random number is smaller than that

of one of the other members, it becomes a member else it becomes the leader of the

group. Privacy of individuals is maintained while non repudiation is provided by the

law agency when needed.
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A Novel Message Fabrication Detection (MEFAD) for Beaconless Routing

The goal of the MEFAD scheme [19] is to prevent malicious in-transit packets or

messages creating havoc in beaconless contention based routing (CBR). Vehicles in

the same geographic region collaborate with each other to elect a trustworthy vehicle

to forward packets to a destination. Every vehicle in the region participates in this

contention based approach to elect a trustworthy forwarder. Malicious nodes can

create falsified messages in order to intercept packets and this leads to lost or delayed

packets. In the MEFAD scheme, when the source node broadcasts a packet to be

forwarded to the destination, every neighboring node receiving this packet competes

for obtaining the right to forward the packet. The vehicles set a timer which depends

on their distance from the destination. The vehicle whose timer expires faster than

that of every other vehicle gets the privilege to forward the packet. Every other

vehicle has to drop that packet after a forwarder has been selected. This process is

repeated till all the packets are successfully sent to the destination. Malicious nodes

may take advantage of the use of timers to create fabricated time information in order

to obtain forwarding rights.

The IREQ packets sent by the source have a source ID, source and destination

position info and the Velocity of the source. The neighbors respond with a IREP

packet containing their ID, sending time of the response packet, their position and

their velocity (these can be exploited and modified by a malicious node). Once the

right to forward is obtained, the packet is forwarded with a packet ID, timestamp

and the packet data. In order to detect malicious nodes in the MEFAD scheme, each

node assumes the role of decider, claimer or verifier. The decider is usually the source

making the final forwarding decision. The claimer claims forwarding rights by sending

the response packet to all the neighbors and the third role is that of the Verifier who

has to be in the transmission range of the sender and claimer in order to verify the

authenticity of the claimer.
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Message Authentication: ECDSA Based Approach

The Elliptic Curve Digital Signature Algorithm (ECDSA) [51] is a variant of the

digital signature algorithm. The ECDSA scheme operates on elliptic curve groups

with elliptic curve domain parameters mutually selected by source and destination

nodes to generate public/private key pairs. The source and destination exchange

some public and private information and generate a shared secret key based on the

selected domain parameters. This scheme is known as the Elliptic Curve Diffie Hell-

man scheme. The source vehicle uses private and public (known to every node in the

VANET) keys. A cryptographic hash function is used to encrypt the message and

sender generates a signature pair using secret key, hashed message and domain pa-

rameter. This is encrypted with the source’s private key and sent to the destination.

The destination uses the source’s public key to decrypt this message. The resulting

signature is verified using the shared key and receiver’s private key.

TACKing together efficient Authentication

VANETs require an efficient On Board Unit (OBU) key management scheme that

maintains sender validity, message integrity, short term linkability and long term un-

linkability, traceability and revocability. Studer et al. [74] suggest the Temporary

Anonymous Certified Keys (TACK) scheme which prevents mischievous nodes from

linking vehicles different keys. Timely revocation of nodes and eavesdroppers is guar-

anteed while reducing overhead of vehicle to vehicle communication. An OBU ensures

message integrity and short term linkability by signing a broadcast message using a

short lived private/public key pair. The trusted central authority provides a short

lived Certificate (a TACK) which identifies the owner of the key pair as a valid OBU.
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The OBU uses a group key provided by the regional authority (RA) to produce a

group signature which proves validity without revealing any OBU identifying infor-

mation. A TACK is valid only till an OBU is within range of the issuing RSU. If it

moves into the region of another RSU, it must prove its validity and request for a new

TACK. Once a malicious node is detected the central authority creates a revocation

token and sends it to all the RSUs. These tokens are generated with the help of the

private/public key pair of the malicious node. All TACKs are short lived so that re-

voked OBUs can be removed in a timely fashion. RSU includes expiration time when

signing a certificate. RSUs check revocation lists for the validity of an OBU when it

receives a TACK request. It then uses the group signature and group public key to

provide a new TACK to a valid OBU. This technique is efficient against Sybill attacks

to spot mischievous nodes sending multiple TACK requests within a single acceptable

time slot. The random number used for group signature time generation can be used

to track back to OBUs sending multiple TACK requests. Additional bandwidth is

required for TACK requests and updates. The most expensive operation was found

to be the OBU-RSU short term key updates.

S3P: A Secure and Privacy Protecting Protocol

In S3P [3], the Public Key Infrastructure is used to provide anonymous and secure

communications by identifying VANET nodes. Multiple Certificate Authorities (CAs)

are used to manage identities and credentials with each node registered with only one

local CA. The local CA issues a certificate with a unique ID, period of validity and a

Public/Private Key pair. Compromised certificates have to be revoked by the CAs.

Each vehicle maintains two key sets with the first one being used to sign safety mes-

sages and the other one being the emergency key set which is used in emergency

situations. Digital signatures are replaced with Keyed hash mechanisms to balance
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computational overhead. Each key pair is used once and key pair sets have to be

refreshed after they have been exhausted. When a malicious node is detected, the

CA sends a notification message to every node except the malicious one. When the

nodes receive this notification message, they switch to the emergency key set. The

ID of the malicious node is encrypted with its own public key and sent to all the

nodes. The CA then generates new key sets and sends it to the notified nodes. The

wait time for the new key set is minimal. The safety messages are usually encrypted

with their long term private keys in order to prevent any node from denying sending

a message. Safety messages contain timestamps which it signs with the help of its

updated internal clock. All the nodes in the network maintain anonymity and achieve

non repudiation with the help of this protocol.

The following table is a summary and comparison of the approaches reviewed in

this section.

Table 1.1: Comparison of techniques

Approach Security Mecha-

nism

Objectives Overhead Scalability

SOADV Digital Signatures

and Hash Chains

Authentication of

signaling packets

Average Average

SPAAR Certificate Authority

and timestamps

Authentication, in-

tegrity, non repudia-

tion and confidential-

ity

Average Good

GSIS Group and ID based

signatures

Conditional privacy,

authentication

Average Good
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Raya et al.

scheme

Pairwise and Group

based keys

Confidentiality Low Average

Harsch et al.

scheme

Pairwise, group and

session keys, rate

limit mechanisms

Position based rout-

ing

High High

Time and Lo-

cation critical

Emergency

Message

dissemination

Scalable modulation

and coding

Emergency Message

dissemination

Low Average

Efficient

Certificate

Management

in VANETs

Special certificates

like valid and adver-

sary certificates

Privacy, non repudia-

tion and anonymity

Low High

Proxy based

signature

based RSU

message

broadcasting

Proxy signatures Privacy through un-

forgeable proxies

Average Average

Global Public

Key algo-

rithm for

secure loca-

tion service

Bilinear pair based

cryptography using

group keys

Hop by hop authenti-

cation and end to end

protection

Average Good
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Delay efficient

Geodynamic

group based

authentica-

tion

Group based Hybrid

Authentication Pro-

tocol

Privacy of sender,

authentication

High Average

Protocol for

anonymous

authentica-

tion using

smart cards

Smart cards on VSM

with various sym-

metric encryption

techniques, session

keys

Non Repudiation and

integrity of messages

Average high

A novel mes-

sage fabrica-

tion detection

for beaconless

routing

Contention based

routing

Message Fabrication

detection

High Good

Message au-

thentication:

ECDSA based

approach

Elliptic Curve Digital

Signature Algorithm

Message Origin Au-

thentication

Average Good

TACKing

together

efficient au-

thentication,

revocation

and privacy

Temporary Anony-

mous certified keys

Sender validation,

short term linka-

bility, long term

unlinkability, trace-

ability, revocability

Average Low
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S3P: A Secure

and Privacy

protecting

protocol for

VANETs

Multiple certificate

authorities and keyed

hash mechanisms

Malicious node de-

tection

Low Average

1.2 Motivation and Problem Addressed and Solved in the Dissertation

Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized network.

With benefits such as enhancing road safety, and user convenience, VANETs are likely

to be widely deployed in the future, given the interest shown by industry in self-

driving cars and satisfying their customers various interests. Vehicles could collect

information such as road condition, accidents, available parking space in parking

garages, etc. and those information could be used by other drivers for various purpose

such as avoiding congested roads, finding vacant parking spaces, etc.

Problems related to Mobile ad hoc Networks (MANETs) have been extensively

studied. Issues related to routing, security, etc. have been extensively studied for

MANETs. Even though VANETs are special type of MANETs, solutions proposed

for MANETs cannot be directly applied to VANETs because all problems related to

MANETs have been studied for small networks; moreover, in MANETs, nodes can

move randomly. On the other hand, movement of nodes in VANETs are constrained

to roads and the numbers of nodes in VANETs is large and covers typically large

area. Hence, it is very important to design security mechanisms to authenticate and

verify transmitted messages while protecting user privacy and preventing malicious

activities/attacks. Also, it’s necessary to address selfish nodes problems in the hybrid

VANET environments.
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In this dissertation, we address and solve the following problems.

Secure, authenticated, privacy preserving message dissemination in VANETs:

When vehicles discover incidents or observe phenomena such as accidents, congestion,

icy road condition, etc., they need to disseminate this information to vehicles in ap-

propriate areas so the drivers of those vehicles can take appropriate action. When

such messages are disseminated, the authenticity of the vehicles disseminating such

messages should be verified and the integrity of the messages should be guaranteed

while at the same time the anonymity of the vehicles (drivers) should be preserved.

In addition, legal authorities should be able to trace the messages to their senders

when necessary. (e.g. reconstructing accidents, spreading malicious messages, etc.)

In this dissertation, we present an efficient protocol for the dissemination of authen-

ticated messages [41] which utilized the RSUs that have higher computation power.

Our scheme preserves the anonymity of the vehicles while at the same time allows

legal authorities trace the messages to the message sender when necessary.

Incentive-based architecture for vehicular cloud: Cloud computing has gained

lots of attention in recent years because it provides advantages such as flexibility and

availability. Allowing vehicles in VANETs to store the collected information in the

cloud would facilitate other vehicles retrieve this information when they need; more-

over, the cloud owner can delete obsolete information and use the information for

various purposes such as traffic management, parking management. etc. Also, un-

derutilized resources of vehicles such as communication, computation, storage, could

be used by Vehicular Cloud. For this, we present a secure incentive-based architec-

ture for vehicular cloud [39]. Our architecture allows vehicles to collect and store

information in the cloud; it also provides a mechanism for rewarding vehicles that

contributing to the cloud.

29



Privacy preserving message dissemination in VANETs: There are various

types of messages in VANETs and sometimes, it is sufficient to ensure the anonymity

of the vehicles disseminating messages and encryption of messages is not necessary.

In order to protect user location privacy, we present a privacy preserving message

dissemination protocol for VANETs without using traditional cryptography [42].

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows.

• In Chapter 2, we present an efficient protocol for propagating the phenom-

ena observed by vehicles in VANETs to vehicles in appropriate regions so they

can use them to make informed decision. Our protocol utilizes RSUs that have

higher computation power than OBUs to authenticate and disseminate the mes-

sages about the phenomena observed by vehicles within an RSU’s transmission

range.

• In Chapter 3, we present an architecture for vehicular cloud and an incentive

based solution, called secure token reward system, to entice vehicular nodes to

participate in the network.

• In Chapter 4, we present a scheme to preserve user location privacy for vehicular

communication using non-negative matrix factorization. This scheme does not

require traditional cryptography to protect privacy while it can still calculate

the location of the event occurred.

• Chapter 5 summarizes the results and discusses the future research directions.
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Chapter 2

An Efficient Protocol for Authenticated and Secure Message Delivery in

Vehicular Ad Hoc Networks

In Vehicular Ad Hoc Networks (VANETs), anonymity of the nodes sending messages

should be preserved, while at the same time the law enforcement agencies should be

able to trace the messages to the senders when necessary. It is also necessary that the

messages sent are authenticated and delivered to the vehicles in the relevant areas

quickly. In this chapter, we present an efficient protocol for fast dissemination of

authenticated messages in VANETs. It ensures the anonymity of the senders and

also provides mechanism for law enforcement agencies to trace the messages to their

senders, when necessary.

2.1 Background and Related Works

In the past, several researchers addressed the security issues in VANETs. Raya et

al. [63] proposed a protocol in which each vehicle needs to be preloaded with a large

number of private keys, as well as their corresponding anonymous certificates. How-

ever, with limited storage space of On-Boars-Units (OBUs) of the vehicles and the

nature of highly dynamic network, this is not suitable for VANETs. In [44], a security

protocol based on group signature and identity-based signature scheme was proposed

to meet the unique requirements of vehicular communication networks. This protocol

addressed privacy issues with traceability, so real identity of vehicles are traceable for
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resolving a dispute. However, the verification of each group signature may cause high

computation overhead when the density of the traffic increases. In [86], a sponta-

neous privacy-preserving protocol based on revocable ring signature with a feature

for authenticating the safety messages locally; but this scheme is not scalable because

every vehicle, with limited computation power, needs to participate in message verifi-

cation process. In [48], an ID-based authentication framework with adaptive privacy

preservation for VANETs is proposed using adaptive self-generated pseudonyms as

identifiers. Hao et al. [29] proposed a cooperative message authentication protocol for

VANETs to alleviate vehicles’ computation burden by allowing vehicles to share veri-

fication tasks. Hsiao et al. [81] proposed an efficient broadcast authentication scheme

to reduce communication and computation overhead using fast authentication and

selective authentication.

In a more recent work [43], Lin et al. proposed a cooperative authentication

scheme for VANETs using an evidence-token approach to distribute the authentica-

tion workload, without direct involvement of a trusted authority (TA). The vehicles

obtain an evidence token as they make contribution to the network and benefits are

given to nodes based on the tokens. Wang et al. [31] proposed an accelerated se-

cure in-network aggregation strategy to accelerate message verification and reduce

computational overhead using the aggregation structure and TESLA scheme.

Although the studies mentioned above solved the security and privacy issues to

different extent, scalability issue has not been addressed well. Also, authenticated

messages are not disseminated efficiently under the above algorithms. RAISE [89],

also tried to address these issues with the help of RSUs, but under their approach,

RSUs must notify all other vehicles whether a message from a particular vehicle is

valid or not which results in message overhead. Wu et al. [85] proposed a message au-

thentication scheme for intra and inter RSU range using RID key table with all RSUs’

ID and session keys. Priya et al. [62] proposed a group authentication protocol to
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address group authentication and conditional privacy. These schemes reduced com-

munication overhead significantly with the aid of the RSU, but efficient dissemination

of messages still remains as issues. We propose an efficient message authentication

protocol which overcomes these problems. In our protocol, RSUs not only authenti-

cate messages sent by vehicles fast, but also disseminate messages through the other

RSUs to the vehicles in the appropriate areas quickly. Also, in order to efficiently

secure messages when forwarded, our approach uses the basic idea behind the onion

routing scheme [27] for signing and forwarding messages to the nearby RSUs.

The rest of the chapter is organized as follows. Section 2.2 introduces the system

model, assumptions, problem statement and solution objectives. Section 2.3 presents

our proposed protocol in detail. In Section 2.4 we present an analysis of our protocol.

Finally, we summarize the results in Section 2.5.

2.2 System Model

In this section, we introduce the system model, assumptions, problem statement and

solution objectives.

2.2.1 System Model

We assume that the following three types of entities exist in the network: a Trusted

Authority (TA), Road Side Units (RSUs), and On Board Units (OBUs).

• Trusted Authority (TA): The TA issues certificates for vehicles. It also

manages all private information about vehicles including certificates and shares

them securely with RSUs upon request. The TA and the RSUs are able to

communicate with each other securely via wired or wireless network, so the

RSUs can verify vehicles’ certificate with the TA and also can obtain identities

of vehicles from the TA when investigations are required by legal authorities.
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• Road Side Units (RSUs): The RSUs are located along the roads and play

an important role in verifying the authenticity and integrity of messages sent

by vehicles and forwarding them to other RSUs as well as vehicles within its

transmission range. Each RSU also stores private information about vehicles

such as identity (ID), pseudo ID, public key, shared key and timestamp in a

tamper proof device. In addition, each RSU creates a group key and shares it

with all vehicles within its transmission range, so the RSU can encrypt messages

using the group key and broadcast them to the vehicles within its transmission

range. The group key is updated periodically. All the RSUs in the system are

assumed to be connected by a network so an RSU can disseminate a message

to vehicles in any region quickly. For simplicity, we assume that all RSUs have

same transmission range.

• On Board Units (OBUs): An OBU, installed on the vehicles, is assumed

to have significantly shorter communication range and less computation power

than RSUs.

2.2.2 Assumptions

We assume that any vehicle that is within a target RSU’s transmission range is

capable of sending/forwarding messages to the RSU through other vehicles using

a routing protocol suitable for VANETs [4, 47, 70, 77]. RSUs have larger storage

space and computation power than OBUs. Also, RSUs are connected to each other

through wired or wireless network. Hence, our protocol utilizes RSUs not only to

verify the authenticity and integrity of the messages received from vehicles, but also

to disseminate those messages to the vehicles in appropriate regions through other

RSUs, when necessary. A scenario of how a message is forwarded to an RSU by

a vehicle for authentication and further dissemination is illustrated in Figure 2.1.

Figure 2.2 illustrates how an RSU disseminates an authenticated message to vehicles
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in appropriate regions through other RSUs.

We also make the following assumptions.

1. The TA and RSUs are totally trusted and are assumed to be not compromised.

2. When a vehicle is registered, the locations of RSUs and their public keys are

stored in the OBUs installed in the vehicles and they are updated during renewal

of vehicle registration. So, at any given time, an OBU knows the nearest RSU.

2.2.3 Problem Statement and Solution Objectives

When a vehicle senses an incident such as accident, bad road condition due to weather,

traffic jam, etc., it needs to send that information to vehicles in appropriate regions

so their drivers (or vehicles themselves, if they are self driving) can take appropriate

action. When such messages are sent, the integrity and authenticity of the messages

sent by the vehicles should be verified while at the same time the anonymity of the

senders of these messages should be preserved. i.e, the identities of the vehicles (or

drivers) should not be revealed to any other vehicle (driver). The proposed method

should be scalable. The protocol should take into consideration the limited computa-

tion power of the OBUs. Also, retaining satisfactory security is essential as attacks to

the network can be very dangerous and life-threatening to drivers due to the nature

of messages in VANET, so the protocol should prevent possible attacks, which will

be discussed in section 2.4. If a RSU is not within the transmission range of vehicles

sending messages, the original messages are forwarded to the RSU through other ve-

hicles, hence the protocol should be robust against malicious nodes in the network.

In this chapter, we present a protocol which addresses and solves all of the above

problems.

To preserve the anonymity of the vehicles, our protocol uses pseudo IDs of the

vehicles for message transmission. Since RSUs have more computation power, au-

thentication of messages and dissemination of messages are carried out by the RSUs.
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Since message dissemination is carried out by RSUs, the protocol is scalable and mes-

sages are not unnecessarily broadcasted to vehicles in regions that do not require the

message.

Our goal is to design a protocol which achieves the following objectives.

• Privacy preservation: During the transmission of a message, identities of

the vehicles transmitting the message should be protected. However, when the

authorities need to obtain user information for legal investigation, they should

be able to do so.

• Message integrity: Integrity of messages should be ensured during the trans-

mission of messages. No one in the middle should be able to modify the messages

transmitted.

• Source authentication: The source of messages should be efficiently authen-

ticated to prevent impersonation attack.

• Low storage space usage: OBUs have limited storage space, so its usage

requirement should be low for the transmission and the verification of messages.

• Low communication overhead: All communication should be done with low

overhead.

• Fast verification and efficient dissemination: Messages should be verified

within a short time and disseminated quickly and efficiently to appropriate

users, even to users in another RSU’s area.

Next, we describe our protocol in detail.

2.3 Proposed Protocol

In this section, we first present the basic idea behind our protocol and then describe

the protocol in detail. The notations used in this chapter are listed in Table 2.1.
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2.3.1 Basic Idea Behind our Protocol

The proposed protocol has the following phases:

• Phase 1: Group Key and Symmetric key Establishment. When a vehicle

leaves the area covered by an RSU and enters an area covered by another RSU, it

initiates communication with the new RSU and establishes a shared symmetric

key with the new RSU so it can send encrypted messages using the symmetric

key to the nearby RSU. It also gets its pseudo ID and the group key from the

RSU. The group key is used by the RSU to encrypt messages and send them to

the vehicles in the area covered by the RSU. A vehicle uses its pseudo ID in all

communications. Here, by the area covered by an RSU, we mean the area that

lies within the transmission range of the RSU.

• Phase 2: Vehicles Sending Messages to RSU for Dissemination: After

completing Phase 1, a vehicle can send messages to the RSU. It uses the shared

symmetric key established in Phase 1 to encrypt the message as well as compute

the digest of the messages it sends. This message digest helps the RSU in

verifying the authenticity and the integrity of the messages. Note that the RSU

to which the message is sent may not be within the transmission range of the

vehicle sending a message and hence a routing algorithm is used for routing the

messages to the RSU through intermediate nodes.

• Phase 3: Verification and Dissemination of Messages by RSUs:. When

an RSU receives the messages sent by the vehicles, it verifies the authenticity

and integrity of the messages and forwards the messages to the vehicles in ap-

propriate regions either directly (to vehicles within its transmission range) or

through other RSUs.
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Figure 2.1: Message Forwarding

Figure 2.2: Disseminating Messages Through Neighboring RSUs
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2.3.2 Group key and Symmetric key Establishment

When a vehicle Vi leaves the region covered by an RSU and enters a region covered

by a different RSU, say Rj, it initiates the key establishment process (illustrated

in Figure 2.3). The key establishment process is based on the Diffie-Hellman key

agreement protocol [21]. Vi initiates mutual authentication and key establishment

by sending the message g, p, A, {g, p, A}SKVi
, CVi

. In this message, {A,B, g, p } are

elements of the Diffie-Hellman key agreement protocol: p is a prime number, g is

primitive root mod p, A = ga mod p, a is the secret integer kept by Vi, CVi
is

the certificate of Vi, g, p, A is encrypted with the private key SKVi
of Vi so that the

RSU can authenticate Vi by decrypting it using the public key PKVi
of Vi. Upon

receiving this message, the RSU Rj concatenates the pseudo ID PIDVi
of Vi, the

number B = gb mod p (b kept secret by Rj), the group ID GIDj and the group key

KGj
and encrypts all this with the public key PKVi

of Vi and sends it to Vi along with

its certificate CRj
. Note that A‖B‖Ts are encrypted using RSU’s private key, which

means that only authentic RSU can generate this message, hence a fake RSU attack

is prevented. Finally, Vi sends an acknowledgment for having received B. Thereafter

gab serves as the secret key KVi Rj
between Vi and Rj and KGj

is the group key used by

Rj for encrypting and sending messages to all vehicles in its region. This completes

the mutual authentication and key establishment phase and Rj updates its group

table which contains pseudo IDs, original IDs, certificates, shared secret keys. Note

that we assume that a routing algorithm is used for forwarding messages from Vi to

Rj because Rj may not be within the transmission range of Vi. Note that timestamp

Ts is attached to every message to prevent the replay attack.

2.3.3 Vehicles Sending Messages to RSU for Dissemination

After the key establishment phase between a vehicle Vi and an RSU Rj, Vi can send

messages to Rj securely and without revealing its identity as follows. When Vi wants
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Vi → Rj : g, p, A, {g, p, A‖Ts}SKVi
, CVi

Rj → Vi : {PIDVi
‖B‖GIDj‖KGj

}PKVi
,

{A‖B‖Ts}SKRj
, CRj

Vi → Rj : {B‖Ts}SKVi

Figure 2.3: Key Establishment Process

to send a message M about a sensed event, it computes Mi from M as follows and

sends it to Rj.

Mi = IDRj
, P IDVi

, {M,Ts, Sq}KVi Rj

To compute Mi, the secret key KVi Rj
, established between Vi and Rj is used to

encrypt the message M , the sequence number of the message Sq and the timestamp

Ts; the pseudo ID PIDVi
of Vi is also appended. Note that when Rj receives the

message, it will be able to verify the authenticity of the sender and the integrity of

the message based on the pseudo ID and the secret key used for encryption. However,

since Rj may not be within the transmission range of Vi, the message may have to

be routed through other intermediate nodes using the available routing algorithm.

We must make sure that the destination RSU Rj is able to authenticate all the

intermediate nodes forwarding this message. For that purpose, we adopt the onion

signature scheme [64]. With onion signature, every vehicle forwarding message simply

appends a signature of received message and forwards it towards the destination RSU.

When an intermediate vehicle Vj receives the message Mi FROM Vi, it computes Mj,

by attaching its signature as follows and forwards it to the next hop on the route.

Mj = IDRSU , P IDVj
,Mi, dgtj

where the digital signature dgtj = E

(
H(Mi), KVj RSU

)
is obtained by computing the

hash of the received message Mi and encrypting it using the shared key of Vj and the
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destination RSU. This process is repeated until the message reaches the destination

RSU.

2.3.4 Verification and Dissemination of Messages by RSUs

When an RSU receives a message sent by a vehicle Vi, since it has a shared key with

each vehicle which forwarded the message, it can decrypt the signatures attached

by all nodes on the route one by one and verify the authenticity of each node and

the integrity of the message received. After it verifies the authenticity and integrity

of the message, it disseminates the message to the vehicles in appropriate regions.

Since the RSUs have higher computation power than the OBUs, RSUs can verify

messages more quickly than OBUs. After checking the integrity and authenticity of a

message received from a vehicle, the RSU, say Ri, determines the areas to which the

message needs to be propagated. If it needs to be propagated to only vehicles within

its transmission range, then it computes the digest dgti = E

(
H(M), SKRi

)
of the

message M by encrypting the hash of M . Then it encrypts the message, sequence

number and the digest using the group key KGi
as

Mtype1 = GIDi, {M,Ts, Sq, dgti}KGi

and broadcasts to all vehicles within its transmission range. If the message needs

to be propagated to vehicles that are not within its transmission range, then it com-

putes Mtype2 as

Mtype2 = IDreceiver RSU , IDsender RSU ,

{M,Ts, Sq, h, dgti}PKreceiver RSU

where dgti = E

(
H(M), SKRi

)
and sends the message to the respective neighboring RSUs by setting the number

of hops h (i.e., the number of RSUs, through which the message needs to propagate)
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to the appropriate value. When an RSU receives this message, it decrements the value

of h by 1 and forwards it to its neighbors if h > 1. Based on the nature of the message,

an intermediate RSU can decide whether or not to disseminate the message to the

vehicles within its transmission range. The detailed algorithm is given in Figure 2.4.

2.3.5 Discussion

Under our algorithm, when a vehicle enters a region covered by an RSU (i.e., the area

that lies within the transmission range of the RSU), it initiates key establishment

with the RSU and establishes a symmetric key with the RSU so that it can encrypt

all the messages it needs to send to the RSU while in its region. It also obtains a

pseudo ID and the group ID and group key. The vehicle uses only its pseudo ID in

all communications and hence the anonymity of the vehicle is preserved. The RSU

uses the group key to encrypt messages it sends to the vehicles in its region. So all

messages are encrypted and no intruder can decrypt the messages. Vehicles do not

broadcast messages for disseminating observed phenomena to other vehicles; instead,

they use nearby RSU to disseminate the messages on their behalf. When a vehicle

senses an event and wants to disseminate it to other vehicles in specific regions, it

simply sends it to the nearby RSU (through the intermediate vehicles using available

routing algorithm, if the RSU is not within the vehicle’s transmission range). The

nearby RSU authenticates the vehicle sending the message, checks the integrity of

the message and then disseminates the message to the vehicles in the relevant regions

through other RSUs. When a message sent by a vehicle needs to be traced to the

vehicles sending the message, it can be done with the help of the RSUs because the

RSUs maintain the table binding the pseudo IDs of the vehicles to their real IDs.

A vehicle never broadcasts any message to other vehicles. Dissemination of mes-

sages to other vehicles is the responsibility of the RSUs and hence this approach is

scalable. Messages exchanged are generally small so OBUs can use symmetric key for
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1: When a vehicle Vi wants to send a message M to
2: the nearby RSU,
3: Let Mi = IDRSU , P IDVi

, {M,Ts, Sq}KVi RSU

4: Send Mi to the next hop towards the RSU
5:

6: When a vehicle Vj receives the message Mi from Vi,
7: Let Mj = IDRSU , P IDVj

,Mi, dgtj,
8: where dgtj = E(H(Mi), KVj RSU)
9: Send Mj to the next hop towards the RSU
10:

11: When an RSU with id IDRSUi
receives a message Mk

12: from vehicle Vk,
13: It peels of the onion Mk, and retrieves the message M
14: Sets h based on nature of message
15: Let Mtype1 = GIDi, {M,Ts, Sq, dgti}KGi

,
16: where dgti = E(H(M), SKRi

)
17: Disseminate Mtype1 to all vehicles in the table if needed
18: if h > 0 then
19: h = h− 1
20: Let Mtype2 = IDreceiver RSU , IDRSUi

,
21: {M,Ts, Sq, h, dgti}PKreceiver RSU ,
22: where dgti = E(H(M), SKRSUi

)
23: Forward Mtype2 to relevant neighboring RSUs
24: end if
25:

26: When an RSU with id IDRSUj
receives a message Mtype2

27: from a neighboring RSU with ID IDRSUi
,

28: Decrypt Mtype2 and retrieve M
29: Let Mtype1 = GIDj, {M,Ts, Sq, dgtj}KGj

,
30: where dgtj = E(H(M), SKRSUj

)
31: Disseminate Mtype1 to all vehicles in the table
32: if h > 0 then
33: h = h− 1
34: Let Mtype2 = IDreceiver RSU , IDRSUj

,
35: {M,Ts, Sq, h, dgtj}PKreceiver RSU ,
36: where dgtj = E(H(M), SKRj

)
37: Forward Mtype2 to relevant RSUs
38: end if
39:

40: When a vehicle V receives a message Mtype1 from an RSU ,
41: Decrypts the message Mtype1 using group key
42: and consumes it

Figure 2.4: The Algorithm

43



encryption without incurring much computation overhead and RSUs can use the pub-

lic key of receiving RSUs for encrypting and sending messages to them; however, the

algorithm can be easily modified so that the RSUs use symmetric key for encryption

after establishing a shared symmetric key with the receiving RSUs.

2.4 Comparison with Related Work and Security Analysis

2.4.1 Comparison with Existing Related Works

In this section, we compare our protocol with some existing related works. The

protocol proposed in [63] ensures secure communication of messages. But, it is not

scalable because each vehicle needs to be preloaded with private keys of all other

vehicles and their corresponding anonymous certificates. As the number of vehicles

grows in the network, not only maintaining those security data is difficult, but also

storage issues may occur due to the large number of private keys and certificates that

need to be stored in the limited storage space available in OBUs. In contrast, in our

protocol, vehicles do not need to store other vehicles’ private keys and their certificates

to authenticate messages since RSUs authenticate messages on behalf of vehicles, thus

the storage requirements is very low compared to aforementioned protocol.

Figure 2.5: The Format of a Signed Message in IEEE Standard

When a vehicle sends a message, a certificate and a signature is attached to

the message in order to authenticate the message and ensure the integrity of the

message. Figure 2.5 shows the format of a signed message derived from IEEE 1609.2

Standard [73]; the size of a message is 265 bytes including 39-Bytes of unsigned

message field, 169-Bytes of a certificate, and 57-Bytes of signature.
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Figure 2.6: Storage Usage vs. Traffic Load

Figure 2.6 shows the relationship between the storage usage and traffic load. The

storage usage represents the buffer size required on OBUs for messages waiting to be

authenticated and the traffic load represents the number of messages sent by other

vehicles. Since each signed message is 265 Bytes long, the necessary buffer size for

storing the unauthenticated messages increases under RAISE [89] as the traffic load

increases whereas under our protocol the required buffer size for storing the received

message is constant. RAISE performs better than the PKI based protocol [73] and

group signature protocol [44] in terms of packet loss, packet delay, and communica-

tion overhead because the vehicles can simply authenticate messages once validation

messages are received from the RSU; however, each vehicle has to buffer all mes-

sages received from other vehicles until validation messages arrive. Thus, the vehicles

require more buffer space as message traffic increases. Hence, the required buffer

space is proportional to traffic load. On the other hand, our protocol does not keep

messages in the buffer of OBUs until they are authenticated as RSUs directly send

authenticated messages to vehicles. Thus, under our protocol, buffer required for

storing messages at OBUs does not increase as the traffic load increases.

Under our protocol, messages sent by vehicles do not need to be authenticated

and verified by other vehicles; authentication of messages is done by RSUs which
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have higher computation power as well as lager storage than OBUs in vehicles. Fig-

ures [2.7,2.8,2.9] compare RAISE [89] and our protocol with respect to the number

of retransmissions and the number of original messages sent as the number of ve-

hicles participating varies from 10 to 30 in the network. The number of message

transmissions under our protocol is obtained using the following equation:

T 1
n = (Vn ∗Mn) ∗ 1B + (Mn + 1U), (2.1)

where T 1
n is the number of messages sent, Vn is the number of vehicles in the network,

1B is 1 broadcast and 1U is 1 unicast. And the number of message transmissions for

RAISE is obtained using the following equation:

T 2
n = (Vn ∗Mn) ∗ 2B, (2.2)

where T 2
n is the number of message communication, Vn is the number of vehicles in

the network, and 2B is 2 broadcasts. Under RAISE, every message is stored in each

vehicle until a validation message from the RSU arrives, so vehicles sending a mes-

sage broadcast it once and the RSU broadcasts it again after verifying the message.

However, under our protocol, in order to minimize the communication overhead, ve-

hicles sending a message just unicasts it to the RSU and only the RSU broadcasts the

verified message to the vehicles in relevant areas (through other RSUs, if necessary).

So, under our protocol, the number of message retransmissions is minimized and this

reduction clearly becomes prominent as the number of vehicles sending messages in-

creases.

There are other approaches [31, 62, 81, 85] to address communication and compu-

tational overhead. Hsiao [31], proposed a scheme that addressed excessive signature

verification requests by exploiting sender’s ability to predict its own future beacons

and quickly spreading bogus signatures. Using fast authentication and selective au-
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Figure 2.7: Number of Message Transmissions with 10 Vehicles

thentication, their scheme significantly reduced the consumption of the computational

resources. However, receivers still need to verify messages received from other vehicles

with their limited computation resource. In our scheme, vehicles do not need to verify

all messages received. messages are first verified by a RSU, and then disseminated to

the network, hence communication overhead is much less because vehicles only need

to verify messages received from RSU, not from other vehicles. In [81], an accelerated

secure in-network aggregation strategy is proposed to expedite message verification

and reduce communication overhead. The scheme uses the aggregation structure to

detect potential misbehavior and TESLA-based broadcast authentication scheme to

avoid expensive cryptography. However, the TESLA is not suitable for dynamic and

time critical environment of VANET as delay in verification process is unavoidable

with it. So, receivers need to wait until it receives the key to read the received message

earlier even if it’s very time sensitive message. The situation may get worse if the

sender vehicle and the receiver vehicle are traveling in opposite direction because it

might cause delay of the message delivery or even message lost. In our scheme, when

RSUs send messages to vehicles, they use group key, therefore, once a vehicle obtains

a group key RSU, computation overhead for verification is significantly reduced.
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Figure 2.8: Number of Message transmissions with 20 Vehicles

Wu et al. [85] proposed a message authentication scheme with the aid of RSU;

however, it is assumed that all vehicles maintain a RSU key table where all RSUs’ IDs

and session keys are stored, which makes this scheme not scalable. It is also assumed

that all vehicles are reachable to RSU in one-hop communication, but it would require

dense deployment of RSUs which is unlikely to happen in the near future. In addition,

if a receiver is not within the transmission range of the same RSU, then the receiver

needs to send another message for corresponding RSU’s information to the sender

and then needs to verify the message with a RSU in its region. This causes 4-way

communication and it’s not suitable for high mobility of VANET because the receiver

must stay within its RSU’s region until it receives a requested message from the

sender to verify the message with the RSU. In our scheme, verified messages are

quickly disseminated through neighboring RSUs and vehicles within the transmission

range of other RSUs do not directly send a request to the sender and verify with

another RSU within its transmission range. The message is verified by the first RSU

once and if it’s verified, then the message is immediately disseminated to appropriate

regions. Priay et al. [62] proposed a group authentication protocol to address verifying

a large number of messages and improving message loss ratio. However, this scheme
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Figure 2.9: Number of Message Transmissions with 30 Vehicles

also does not address the situation when messages need to be forwarded to reach a

destination RSU. Also, vehicles outside of transmission range of sender’s RSU and in

another RSUs are not addressed, hence this scheme is not scalable unlike our scheme.

2.4.2 Preventing Propagation of Redundant Messages

In existing algorithms, when a vehicle observes a phenomena, it disseminates the

observed phenomena to all the vehicles in relevant regions. This approach can result

in the propagation of redundant messages; this is because several vehicles may observe

the same phenomena and propagate the same message. However, under our protocol,

observed phenomena are only sent to the RSU for further dissemination. So, RSUs

can determine the redundant messages and suppress the propagation of redundant

messages through other RSUs, if necessary. Moreover, this approach is more efficient

because the RSUs can help in propagating the messages to vehicles far away faster.

2.4.3 Message Integrity

When a node senses an event, it sends a message to the nearby RSU about the event

so that the RSU can forward the message to the respective regions. The message is en-
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crypted with the shared key between the vehicle and the RSU. When an intermediate

vehicle receives the message, it computes the digest of the received message, encrypts

the digest using its shared key with the RSU and forwards it to the next hop towards

the RSU. This allows the RSU receiving the message to verify the authenticity of each

vehicle through which the message traveled as well as the integrity of the message;

the RSU then forwards the message to the vehicles in its region and/or other regions

through other RSUs, as is necessary. Messages broadcasted by the RSUs to vehicles

in their regions are encrypted using the group key. So, the integrity of the messages

as well as the privacy of the vehicles are preserved.

2.4.4 Source Authentication and Privacy

Every vehicle is assigned a pseudo ID and symmetric key by the nearby RSU. Also,

an RSU maintains a table that contains pseudo IDs, original IDs, certificates, shared

secret keys and timestamps of all vehicles within its transmission range. If a message

sent from a pseudo ID can be decrypted by the RSU that receives the message using

the corresponding shared secret key, then the RSU can find the ID associated with

the pseudo ID from its table and authenticate the source. A vehicle never uses its

real ID in any communication and hence the anonymity of the vehicle is preserved.

Also, a new pseudo ID is issued when a a vehicle enters another RSU’s region and

the issued pseudo ID is re-issued frequently if a vehicle stays in a RSU’s region for a

long time to prevent tracking of the vehicle associated with the pseudo ID.

2.4.5 Computation Overhead

Vehicles simply forward messages to an RSU by attaching its signature for verifica-

tion and only the RSU verifies authenticity of the messages. When vehicles receive

messages from an RSU encrypted using the group key, they simply decrypt the mes-

sage and consume the message; this reduces the computation overhead on the OBUs
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because there is no authentication Using public key cryptography involved, unlike

RAISE [89].

2.4.6 Fast Verification and Efficient Dissemination

In our protocol, the authenticity and integrity of the messages are verified by RSUs

that have higher computation power than OBUs. Also, they can communicate with

neighboring RSUs securely via wired or wireless connection. Thus, messages can

be verified and disseminated quickly through other RSUs to vehicles in appropriate

regions. Therefore, fast verification and efficient dissemination are achieved. More-

over, RSUs can suppress duplicate messages sent by vehicles in the same region (i.e.,

messages about the observation of the same event by different vehicles in the same

region).

2.4.7 Man in the Middle Attack

The symmetric key establishment process in our protocol uses the Diffie-Hellman key

agreement protocol. Even though Diffie-Hellman key agreement protocol is vulnerable

to man-in-the-middle attack [67], our protocol does not suffer from this weakness

because of the following reasons: When a vehicle Vi enters the region covered by

an RSU, it encrypts g, p, A and the timestamp Ts using its private key PKVi
. An

intermediate vehicle can carry out the man-in-the-middle attack only if it is also an

authentic vehicle which has a (public, private) key pair already established by the

TA, in which case the RSU can trace the messages to the intruder.

2.4.8 Other Attacks

VANETs are prone to other types of attacks [53] and their consequences may be

detrimental to the users. In this section, we discuss how our protocol prevents such

attacks.
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1. Sybil attack: This is a type of security threat that exists when a malicious node

can present multiple identities at once. In our protocol, each vehicle is assigned

a pseudo ID by an RSU after its certificate is verified and vehicles encrypt

outgoing messages using symmetric key established with the RSU. Hence, a

malicious node cannot use multiple identities at once.

2. Replay attack: In this attack, an attacker keeps a message that was sent

earlier and tries to use the same message later by rebroadcasting it. In order

to prevent the replay attack, every message in our protocol uses a timestamp

to guarantee the freshness of the message. This requires loose synchronization

of the clocks. Given the widespread use of GPS devices, they can be used for

synchronizing clocks.

3. Message fabrication/alteration attack: In this attack, an attacker tries to

modify, delete, or alter existing messages. In our protocol, when a vehicle sends

a message, it attaches its digital signature that is obtained by computing the

hash of the original message and encrypting it with its private key. Since only

the sender can create its signature, an RSU (receiver) can verify the integrity of

the message received using the signature. Hence, fabrication/alteration attack

is prevented. However, if a vehicle is not willing to forward a message sent by

another vehicle, it can deleted the message. Handling nodes that do not coop-

erate has been extensively studied in the context of ad hoc networks. Similar

mechanisms can be used for handling such attacks.

4. Malicious relay nodes: In our protocol, every vehicle forwarding a message

simply appends its signature to the received message and forwards it toward the

destination RSU, vehicles on the route are not able to read or modify received

message. So, malicious nodes cannot modify the message.
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5. Fake RSU attack: An adversary may pretend to be a real RSU in this type

of attack. In our protocol, however, a fake RSU attack is infeasible because a

RSU appends its signature using its private key during symmetric key estab-

lishment process so the receiver knows who actually sent the signed message

by decrypting it using the RSU’s public key. Hence the fake RSU attack is

prevented.

2.5 Summary

In this chapter, we presented an efficient protocol for propagating the phenomena

(such as accidents, road conditions, etc) observed by vehicles in VANETs to vehicles

in appropriate regions so they can use them to make informed decision. Our pro-

tocol utilizes RSUs that have higher computation power than OBUs to disseminate

authenticated messages sent by vehicles within the RSU’s transmission range. Since

multiple vehicles within the transmission range of an RSU can observe the same phe-

nomenon and inform the RSU about it, the RSU can suppress these messages about

the observation of the same phenomenon from disseminating further. Moreover, in

our approach, the RSUs have the ability to verify the authenticity of the sender and

the integrity of the message before disseminating it to the other vehicles. Our ap-

proach preserves the anonymity of the senders while at the same time helps to trace

a message to its sender, when required by the law enforcement agencies.
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Table 2.1: Notations

Notation Description

Ri an RSU

Vi a vehicle

Mi a message sent by Vi

Ts timestamp

Sq Sequence number of a message

h number of hops the message to

be forwarded

Cpi pi’s certificate, where pi is a ve-

hicle or an RSU

IDpi pi’s identity

PIDpi pi’s pseudo identity

SKpi pi’s private key

PKpi pi’s public key

KGi
group key assigned by RSU Ri

to vehicles within its transmis-

sion range

GIDi group identity of the vehicles

within the transmission range

of Ri

KA B shared key between A and B

H() cryptographic one-way hash

function

dgti a message digest obtained by

Vi using H()
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Chapter 3

Secure Incentive-Based Architecture for Vehicular Cloud

Cloud computing has emerged as a viable technology for supporting utility comput-

ing. In the future, vehicles are likely to be equipped with devices that have large

computation and communication power as well as large storage. Such computation

power and storage are often underutilized. People in several areas such as traffic

management, parking management, etc. can benefit from utilizing the unused com-

putation, communication and storage capabilities of the vehicles on the road as well

as from the traffic information collected by the vehicles. In this chapter, we propose

a secure architecture for the vehicular cloud to support the above-mentioned services.

The architecture encourages vehicles to contribute their underutilized resources to

the cloud by issuing tokens which can be used by the vehicles to get services from the

cloud.

3.1 Introduction

In the last few years, automobile manufacturers have been incorporating technologies

in their vehicles that provide safety and entertainment services to their drivers. Such

technologies include on board units (OBUs), global positioning systems (GPSs), com-

putational devices, storage devices, communications devices etc. [37]. In the future,

these devices would facilitate the vehicles collect information about various phenom-

ena such as, road condition, traffic congestion, delays due to accidents, etc. and share
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them with other drivers. Moreover, they would allow the vehicles to perform complex

operations like context management, and data filtering [20,40]. Vehicles in VANETs

could help in collecting such information and sharing them other drivers. For exam-

ple, accident avoidance warnings could quickly notify drivers of conditions that could

cause a collision. Also, in the case of an accident, the scene can be re-constructed by

law-enforcement agencies using the velocity information recorded by each vehicle [4].

In the last decade, cloud computing emerged as an economical solution for cus-

tomers to rent IT infrastructures, platforms or software, instead of investing money

to own and maintain such services. The service providers lend such elastic services to

customers exactly when they need them, and then they charge them based on their

usage. Services provided by the cloud can be broadly divided into three categories:

IasS (Infrastructure as a Service), PasS (Platform as a Service), and SaaS (Software

as a Service). Although the primary features of the cloud are cost saving, on-demand

service, resource pooling, scalability and ease of resources accessing, security and

privacy concerns are the major barriers for customers to use the cloud [2, 14].

In order to fully utilize the resources of vehicles in VANETs, Olariu et al. [55]

proposed the concept of a vehicular cloud, which combines VANET and cloud. A

vehicular cloud is a group of largely autonomous vehicles in VANET that contribute

their computing, sensing, communication, and physical resources to the cloud. Vehi-

cles’ resources and the information exchanged from the vehicles with the cloud can

be used by other vehicles in decision making. Vehicular cloud can facilitate providing

services such as parking management, traffic congestion, avoiding accidents, reducing

environmental pollution etc. to customers in real time at low cost [24].

A vehicular cloud could help in reducing/eliminating propagation of redundant

information in VANETs and use its resources more efficiently. In current studies

on VANETs, multiple vehicles which observe the same phenomena propagate it to

other vehicles which can result in propagation of redundant messages. This results
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in vehicles wasting their resources analyzing the redundant data to find relevant

information. A vehicular cloud allows vehicles to exchange their collected data with

the cloud, where it can be analyzed, verified, organized, stored, and discarded if it

is redundant or irrelevant. Cloud then can send only upto date information to the

drivers upon request. Various other applications can benefit from using a vehicular

cloud. Following a list of sample applications for vehicular cloud:

• Intelligent Parking Management : Millions of vehicles are parked in garages

for hours every day. While they are parked, the underutilized resources of the

vehicles such as computational and storage facilities could be used to perform

tasks coming from the parking management server. Parking management could

encourage the drivers of the vehicles to rent the resources of their vehicles and

compensate them for that. Compensation could take the shape of free parking,

shopping coupons or virtual credits that could be used somewhere else to get a

service. Parking lots found in airports, malls, and large companies are examples

of where we can use this application [1]. A vehicular cloud could also be used

to help finding available parking spots. Drivers and parking management could

cooperate in exchanging information about empty parking spots and update it

to vehicular cloud, so drivers looking for an empty spot could reserve the space

through the vehicular cloud [87].

• Road safety and traffic Management : Vehicles could collect data about

road conditions, traffic, weather etc. and store this data in the cloud. Then,

vehicles can periodically receive information from the cloud regarding road con-

ditions such as, ice on the road, accidents, construction, etc. [26]. Based on this

information, drivers may alter their routes.

• Intelligent Transportation System using Traffic Monitoring: Current

transportation systems use traffic monitoring devices, such as inductive loop
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detectors (ILDs), videos cameras, radars and others, to measure and monitor

the road traffic. A costly ILD (worth around $8,200) is embedded under the

road to measure the road traffic by recording a signal every time a vehicle passes

over it [55]. The failure rate of these ILDs are very high and the maintenance

costs are continuously growing. Hence, a vehicular cloud could be an alternative

and more economical solution to the transportation department for monitoring

the traffic using vehicles participating in the VANET.

• Planned evacuation : Vehicular cloud can also help expedite evacuation dur-

ing disasters like earthquakes, hurricanes and others. Data about disaster could

be collected using vehicles inside that disaster area and transferred to the cloud,

where it could be analyzed, organized and sent back as useful information to

the affected people and the evacuation organizations. Examples of such infor-

mation are locations of open grocery stores, gas stations, shelters and medical

centers [24].

Drivers contribute their vehicles’ resources to the vehicular cloud, and in return,

they are compensated in the form of incentives for participation. It is expected that

vehicles cooperate with the cloud by contributing their resources. However, some vehi-

cles may choose not to contribute to the cloud. Vehicles can be enticed to contribute

their resources to the cloud by rewarding them with incentives. Several incentive

schemes have been proposed in the context of MANETs and VANETs, but none, to

our knowledge, in the context of vehicular cloud. In this chapter, we propose an archi-

tecture for vehicular cloud that uses incentive based scheme to encourage vehicles to

contribute their resources, as well as, the information they collect to the cloud. The

vehicles in return, receive incentives (tokens) for their contribution. The architecture

not only helps in benefiting the drivers of the vehicles, but also the other users who

need this information. Our solution ensures the security of the entities, operations

and messages required to maintain the rewarded incentives. Figure 3.1 illustrates the
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Figure 3.1: Incentive-based Architecture for Vehicular Cloud

architecture proposed in this chapter for vehicular cloud. It mainly consists of two

integrated parts: A VANET part where a group of stationary or moving vehicles form

a cloud and communicate with the conventional cloud through the road side units

(RSUs), the other part is the conventional cloud, which contains many entities that

are needed in this architecture. These entities include the service provider manager,

Token Reward System, Trust Authority, and Revocation Authority. The detailed

functionalities of these entities are explained in the system model in Section 3.3.

The rest of the chapter is organized as follows. Section 3.2 surveys the related

works. Section 3.3 introduces the system model, assumptions, problem statement

and solution objectives. Section 3.4 presents the proposed architecture in detail and

a secure incentive-based scheme for enticing vehicles to participate in the cloud. In

Section 3.5, we present an analysis of our scheme. Finally, we conclude in Section 3.6.

3.2 Related Works

Vehicular cloud has received a lot of attention in the last few years [24,55,72]. Vehicles

could be organized into a cloud where they utilize their unused resources on-demand
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to perform tasks. Drivers contribute the information collected by their vehicles and

resources to the cloud, and they receive incentives in return. Some vehicles may be

non-cooperative by utilizing their resources only for their own purposes. These are

called selfish vehicles (nodes).

Selfish nodes problem has been studied extensively in the context of routing in

MANETs and VANETs. Various incentive mechanisms were proposed in [10, 11, 13,

18, 34, 36, 38, 46, 52, 69, 90] to stimulate contribution of nodes and make them more

cooperative with the others. Butty et al. [11, 13] introduced incentive schemes based

on using a tamper proof hardware inside each node. This hardware is responsible

to maintain and secure virtual credit gained by the node when it participated in

forwarding messages. The sender estimates the rewards based on the number of

intermediate nodes.

The authors of [10,46,52] proposed reputation based schemes where nodes observe

their neighbors’ traffic, record their contribution to the network and isolate nodes

which have poor reputation. The high mobility of nodes makes it unfeasible to observe

neighboring vehicles or even build a distributed reputation system based on this. Li

et al. [36] presented a receipt counting reward scheme which focused on incentive

distribution. Their approach requires every source node to obtain permission from an

authority for every message they forward before they reward the intermediate nodes.

Authors in [18,90] presented a game theory based scheme for manipulating parameters

such as the amount earned, designation of charging subject, etc. to analyze and build

the incentive scheme. While all of these schemes seem beneficial for MANETs and

VANETs, they are not suitable for vehicular cloud because they were designed to

entice nodes to participate in routing messages.

Cloud computing promises to provide reliable and elastic services to customers.

In order to sustain such objectives, it needs a pool of resources and underutilized

resources of vehicles participating in vehicular cloud can be a pool of resources. This
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chapter proposes an incentive-based architecture to encourage the vehicles to partic-

ipate and contribute their resources to the cloud.

3.3 System Model

In this section, we introduce the system model, assumptions, problem statement and

design objectives.

3.3.1 System Model

The vehicular cloud architecture proposed in this chapter, shown in 3.1, consists of

the following entities.

• Service Provider Manager (SPM): The SPM manages all service providers

in the cloud and serves as the representative of service providers so it is respon-

sible for advertising services, making contracts for services, validating proofs of

works done by vehicles, and issuing tokens as incentive for their participation

in the cloud.

• Reward Token System (RTS): The RTS serves as the token bank in the

cloud. It creates an account for each vehicle when the vehicle is registered and

the account is tied to vehicle’s pseudo ID. It assigns tokens to the vehicles when

they contribute their resources.

• Revocation Authority (RA): The RA maintains the revocation list for the

misbehaving vehicles. It also Keeps the records of vehicles whose contribution

was poor.

• Trusted Authority (TA): The TA in the cloud is able to communicate with

RA, RTS and SPM securely. When a vehicle is registered or renewed, it issues

a certificate for the vehicle. And it also manages all private information about
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vehicles including the certificate, which ties vehicle to the its public key, and

(public, private) key pairs. It also helps the SPM in verifying vehicles when

needed. The real identity is not given to the SPM, however, when law enforce-

ment agencies need the real IDs of the vehicles for investigation purposes, it can

reveal the real IDs of the vehicles to them.

• Road Side Units (RSUs): The RSUs are located along the roads and con-

nected by a network so they serve as gateway to the cloud from the VANET.

• On Board Units (OBUs): An OBU is a tamper proof device installed on

the vehicles. And it has computation, communication capabilities and storage.

Also, it is able to check the token balance with the RTS in the cloud.

3.3.2 Assumptions

We assume that the RA maintains the certificate revocation list of misbehaving ve-

hicles and the certificate of misbehaving vehicles are revoked using some revocation

protocols such as the ones discussed in [74,78,79].

We also make the following assumptions.

1. The RTS, TA, and RA are totally trusted and are assumed to be not compro-

mised.

2. When a vehicle is registered, its public/private key pair is assigned and the

public keys of the RTS and the SPM are stored in the OBU installed in the

vehicles.

3. Vehicles can communicate with the cloud through the RSUs and any vehicle

within the transmission range of an RSU can send/receive messages to the

RSU, through other intermediate nodes using some available routing protocol.

4. OBUs on vehicles can check their token balance with the RTS.
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3.3.3 Problem Statement and Solution Objectives

Vehicles are equipped with computational resources and storage facilities, but they

are often underutilized. There are many people and application managers interested

in renting such resources as well as obtaining the information collected by the vehicles.

Since the contribution of the vehicles are optional, some drivers may choose not to

do it. Drivers can be enticed to contribute the resources of their vehicles by offering

incentives. Several incentive schemes have been proposed to entice selfish nodes in

MANETs and VANETs, but they are not suitable for vehicular cloud because they

were designed only for handling selfish nodes in routing. Hence, there is a need of

an incentive-based architecture to reward the drivers of the vehicles for sharing their

resources as well as to help the people who are interested in resources of the vehicles

and information collected by the vehicles.

The proposed scheme addresses the following issues: First, the management issue

where the rules of every entity involved in the system is determined and the flow

of the incentive process is designed, maintained and audited carefully. Second, the

scheme should be flexible to deal the dynamicity of vehicles joining or leaving the

network, which also include the ability to handle the heterogeneity of the entities

and the networks involved, in addition to handling the unpredictable demands of

customers. Third, security is one of the most important issues that needs to be

addressed. This requires maintaining the incentives operations performed inside the

scheme, validating the integrity and authenticity of the messages exchanged between

the entities, and preserving the privacy of the entities participating in the cloud.

In this chapter, we introduce an incentive-based architecture for vehicular cloud

and propose a secure token reward system as an incentive scheme for enticing vehicles

to participate in the cloud by contributing their resources. Our scheme is to achieve

the following objectives. First, Integrity and authenticity of the messages exchanged

between entities in the cloud should be ensured. Second, privacy of vehicles should
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be protected while contributing their resources to the cloud, obtaining services from

the cloud and using the resources in the cloud. Third, Token transaction between the

cloud and the vehicles should be secure and robust against attacks.

3.4 Secure Token Reward System

In this section, we first present the basic idea behind our scheme and then describe

our secure token reward system for vehicular clouds in detail.

3.4.1 Basic Idea Behind Our Scheme

The proposed scheme has the following phases:

• Phase 1: Searching Resources: When a cloud service provider looks for

vehicles for resources, the cloud service provider manager (SPM) broadcasts a

message through the cloud on behalf of the service provider. When an interested

vehicle receives the message and decides to contribute its own resource to the

cloud for the service, it sends a request message for the work to the SPM in

the cloud through the road side units (RSUs). Then, the SPM authenticates

the vehicle (or driver) with the help of the trusted authority (TA) and checks

the previous records stored by the revocation authority (RA) (if there’s any).

If there are more vehicles interested in contributing their resources than what

the service provider needs, the SPM picks vehicles based on their reputation in

the past. Once the vehicle is authenticated, the SPM signs a contract for the

work between the service provider and the vehicle and sends it to the vehicle,

so the vehicle can start the work based on the contract. Here, the vehicles use

their pseudo ID in all communications to protect their privacy.

• Phase 2: Requesting Reward Tokens: After completing an assigned work,

a vehicle sends a message with the proof of the work done to the SPM. This
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message helps the SPM in verifying the completion of the work. After the

completion of the work is verified, the SPM sends a reward token request to the

reward token system (RTS) so it can send tokens to the vehicle as compensation

for the work done. When the reward token request is processed by the RTS,

a transaction number is generated and sent to the SPM and the vehicle as a

confirmation.

• Phase 3: Using Tokens for Cloud Service: In a vehicular cloud, there are

various types of services available through cloud service providers. The cloud

services generally can be purchased with pay-as-you-go, but the reward token

earned by contributing resources into the cloud can also be used as a method of

payment for the could services received. Since vehicles are able to check their

token balance with the on board units (OBUs), they can simply use the cloud

services with tokens for using the services.

Next, we describe our scheme in detail. The notations used in this scheme are listed

in Table 3.1.

3.4.2 Searching Resources

In our scheme, we use hash-based digital signature along with public key encryption

to ensure the integrity and the authenticity of messages. When a message is sent, the

sender attaches the digital signature to the message. The digital signature is made by

encrypting the hash of the message using sender’s private key. Since only the sender

can generate the digital signature, the authenticity of the message is guaranteed. For

integrity, the hash in the digital signature should match with the hash of the message

calculated by the receiver. If they match, the receiver is able to verify the authenticity

and integrity of the message.

When a cloud service provider needs to use the resources of vehicles, the SPM

broadcasts an advertising message M1 (Figure 3.2) through the cloud on behalf of
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Table 3.1: Notations

Notation Description

SPM Service Provider Manager

RTS Reward Token System

R an RSU

V a vehicle

M a message

ts timestamp

Sq sequence number of a message

C certificate

sv cloud service information

sv# cloud service number

tr# transaction number for token reward

proof proof of work done

IDA identity of entity A

PIDA pseudo identity of entity A

SKA private key of entity A

PKA public key of entity A

H() cryptographic one-way hash function

SIGA(M) signature of message M signed by A’s private

key.

E(M,K) encrypting message M with key K

the service provider, where

M1 = IDSPM , sv#, sv, ts, SIGSPM(m1)

where SIGSPM (m1)=E(H(sv#,sv,ts),SKSPM ) (3.1)
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Figure 3.2: Contract Establishment Process

The advertising message M1 includes the service number sv# and cloud service

information sv that contains the ID of the cloud service provider, work type, work

requirement, and reward amount. Also, the SPM attaches its digital signature that

is obtained by computing the hash of the message and encrypting it with its private

key. When an interested vehicle V receives the message M1 and wants to contribute

its resource to the cloud, it computes a work request message M2, where M2 is given

below, by encrypting the service number, certificate and timestamp with the public

key of the SPM. Then it sends the message to the SPM in the cloud through a nearby

RSU after attaching its digital signature. Here, the contract is an agreement between

a vehicle and the service provider for the service and it includes all the details about

the work such as work requirement and payment.

M2 = IDSPM , E((PIDV , sv#, C, ts), PKSPM), SIGV (m2)

where SIGV (m2)=E(H(PIDV ,sv#,C,ts),SKV ) (3.2)

Upon receiving M2, the SPM is able to verify the authenticity of the messages by

checking its certificate C and pseudo ID PIDV received from the TA and decrypt the
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message. Also, the SPM checks if the vehicle has been blacklisted. Here, a pseudo ID

is used for the vehicle to protect its privacy and the TA does not reveal the original

identity of the vehicle to the SPM, however, it can be revealed when necessary such

as a when a dispute for a transaction arises.

After the vehicle is authenticated, the SPM generates message M3 by attaching

the contract for the work and its signature obtained by computing the hash of the

message as follows.

M3 = PIDV , E((IDSPM , contract, ts), PKV ), SIGSPM(m3)

where SIGSPM (m3)=E(H(IDSPM ,contract,ts),SKSPM ) (3.3)

Once the message M3 is delivered to the vehicle, it first sends an acknowledge M4 to

the SPM and then can start the work for the service based on the requirement in the

contract.

M4 = IDSPM , E((PIDV , contract, ts), PKSPM), SIGV (m4)

where SIGV (m4)=E(H(PIDV ,contract,ts),SKV ) (3.4)

3.4.3 Requesting Reward Tokens

After a vehicle finishes an accepted work, it notifies the SPM by sending the message

M5(Figure 3.3) with the proof of work done. Where,

M5 = IDSPM , E((PIDV , sv#, proof, ts), PKSPM), SIGV (m5)

where SIGV (m)=E(H(PIDV ,sv#,proof,ts),SKV ) (3.5)

Here, the proof of the work done varies depending on the type of work done and

it must be verifiable by the SPM. The SPM is able to verify the completion of the
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Figure 3.3: Token Reward Process

work by checking the service number and the proof . Once the work done is verified,

the SPM generates a reward token request message M6, attached with the digital

signature to it, and sends it to the RTS, so the reward tokens can be sent to the

vehicle as a compensation for the work done, where

M6 = IDRTS, E((sv#, P IDV , RT, ts), PKRTS), SIGSPM(m6)

where SIGSPM (m6)=E(H(sv#,P IDV ,RT,ts),SKV ) (3.6)

After the RTS processes the reward token request, it computes the confirmation mes-

sage M7 and M8 with a transaction number for the SPM and the vehicle respectively

as follows

M7 = IDSPM , E((IDRTS, sv#, tr#, ts), PKSPM), SIGRTS(m7)

where SIGRTS(m7)=E(H(IDRTS ,sv#,tr#,ts),SKRTS) (3.7)
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M8 = PIDV , E((IDRTS, sv#, tr#, ts), PKV ), SIGRTS(m8)

where SIGRTS(m8)=E(H(IDRTS ,sv#,tr#,ts),SKRTS) (3.8)

and sends them to the SPM and the vehicle respectively. Note that the service

providers are connected to the SPM so all messages related to a particular service

provider are eventually delivered to it accordingly.

3.4.4 Using Tokens for Cloud Service

In a vehicular cloud, several types of services can be provided by service providers.

For example, Parking lot data managers can provide to vehicles information about

available parking spaces, Transportation system can use the cloud collect traffic in-

formation and divert traffic based on the traffic information as well as optimize traffic

signals, dynamic traffic signals, etc. [84]. Vehicular cloud can help make services read-

ily available for vehicles on roads and at the parking lots and can be purchased with

pay-as-you-go plan. With our token reward system, the tokens obtained in exchange

for sharing their own resources also can be used for the cloud services as a method of

the payment. Since a feature of the balance check is available on the OBU, a vehicle

simply can use the could services with the tokens by sending a message M9 to the

SPM as follows.

M9 = IDSPM , E((PIDV , sv#, RT, ts), PKSPM), SIGV (m9)

where SIGV (m9)=E(H(PIDV ,sv#,RT,ts),SKV ) (3.9)

Once the SPM receives the message from the vehicle, it authenticates the message

and sends a token deduction request to the RTS in the same way as requesting for

rewarding tokens. If the authenticity of the vehicle is verified and a confirmation for

the token deduction is given to the SPM, then it notifies the service provider that
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now the vehicle can use the cloud service.

3.5 Security Analysis

In this section, we evaluate the performance of our proposed scheme in terms of

security and usability and analyze the token reward system.

To entice the vehicles to contribute their resources, an incentive-based scheme

is necessary. Also, dealing with the selfish nodes (i.e., nodes that do not want to

contribute their resources but would want to access the services provided by the cloud)

is a challenge. We proposed a secure incentive-based architecture for vehicular cloud

and a secure incentive-based reward scheme for enticing vehicles to participate and

contribute their resources to the cloud. If a driver agrees to share his/her vehicle’s

resources with the cloud service, then reward tokens are given in return after the

completion of the work based on the contract.

3.5.1 Message Integrity

Messages are sent with a digital signature generated by the sender using cryptographic

one-way hash function. Since the message is discarded upon arrival if the hash of the

message does not match, the message integrity is guaranteed. Hence, integrity of

token information in the message is guaranteed as well.

3.5.2 Source Authentication

The SPM is connected to the TA in the cloud. When a request for authentication is

received, the TA helps the SPM in authenticating the sender.

3.5.3 Privacy Preservation

Every vehicle is assigned a unique pseudo ID by the TA. With the pseudo IDs, all

private information and real identities of vehicles are protected. However, when a
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malicious node is detected, the real ID of the malicious vehicle is revealed by the TA

to the authorities for legal investigation.

3.5.4 Usability

Vehicles earn reward tokens for contributing their resources to the cloud. They can

check the token balance with the OBU and use the earned tokens for a cloud service

later.

3.5.5 Encryption

Since the messages exchanged are generally small, we use public key cryptography for

encrypting messages. Messages are also signed. The scheme can be easily changed

to use symmetric key encryption by using Public key cryptography during the initial

phase of the communication for authentication and exchanging symmetric key.

3.6 Summary

In this chapter, we proposed an architecture for vehicular cloud and presented an

incentive based solution, called secure token reward system, to entice vehicular nodes

for participating and contributing to the cloud. Our scheme is based on the idea that

tokens are given as incentive to the vehicles that contribute their resources for cloud

services. The token reward system located in the cloud ensures secure management

of tokens. Also, the service provider manager is responsible for advertising services,

making contracts, validating proofs of work done, and issuing reward tokens on be-

half of service providers. Therefore, integrity and authenticity of incentive-related

messages are guaranteed and the privacy of vehicles are protected. In addition, to-

kens received for sharing their resources can be used for obtaining services from the

vehicular cloud in the future.
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Chapter 4

Nonnegative Matrix Factorization based Privacy Preservation in

Vehicular Communication

When a vehicle in VANET discovers any events such as car accident, traffic conges-

tion, hazardous road condition, etc., it shares such information with other vehicles.

However, drivers may not be comfortable sending their location information with their

messages because their privacy can be compromised. In this chapter, we present a

Nonnegative Matrix Factorization (NMF) based privacy preservation scheme to per-

turb the source location data without using cryptography while it can still calculate

the location of the event occurred. The proposed scheme utilizes the intrinsic property

of NMF to distort the data for protecting driver’s location privacy. It then clusters

the drivers in accordance with their locations, the relative distances and directions,

as well as the timestamps. By doing so, events’ location can be identified based on

the clusters while driver’s private information is preserved.

4.1 Introduction and Problem Description

Vehicular Ad hoc Networks (VANETs) are likely to be promising technology of the

future because it improves traffic safety and driving comfort. In VANETs, vehicles on

the roads form a self-organized network and they exchange information collected from

the roads about various things such as road condition, traffic congestion, delays, etc.

For example, accident avoidance warnings could quickly notify drivers of conditions
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that could cause a collision. Also, drivers may choose an alternate driving route if they

are notified that there’s traffic congestion or delays ahead. Since such information is

collected and reported by vehicles that sense the scene or events, the vehicles’ current

location and speed should be included in order to provide the accurate and specific

information.

Since communications between vehicle to vehicle or vehicle to road side unit (RSU)

are via wireless radio, it may be possible that malicious entities could track individ-

uals’ location information, gather information and subsequently misuse the gathered

information. Consequently, drivers may not want to share their collected data if their

location privacy is not protected.

There has been studies to address the privacy issues in VANETs. In SLOW [12],

vehicles do not transmit heartbeat messages when their speed is below a pre-defined

threshold, and change pseudonym during each silent period to ensure user location

privacy. In [25], Freudiger et al. proposed a quantitative framework for choosing the

parameters of a pseudonym based privacy system. Liu et al. [45] introduced Traffic-

Aware Multiple Mix Zone Placement for Protecting Location Privacy to quantify

the system’s resilience to privacy attack using multiple mix zones. PCS [49] also

addressed location privacy using pseudonym changing at social spots strategy. PCS

first identifies the social spots where multiple nodes clustered and then develops two

anonymity set analytic models to achieve the location privacy. Lim et al. [40] proposed

a scheme using pseudo ID and cryptography to protect user privacy, however, every

vehicle needs to obtain a pseudo ID and update it frequently. The traditional public

key infrastructure based scheme also addressed the user privacy issue [73]. However,

every vehicle needs to load all public keys of other vehicles in the network and it is not

practical in real world scenario. In this chapter, we introduce a NMF based privacy

preservation scheme that does not use pseudo ID or cryptography to solve the source

location privacy problem.
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Figure 4.1: An Example of Real-world Scenario

4.2 Preliminaries

Non-negative Matrix Factorization has been studied and known as a useful for de-

composition multivariate data. When the data to be analyzed in nonnegative, finding

reduced rank nonnegative factors for appoximating a given nonnegative data matrix

is a viable option as classical tools cannot guarantee to control the nonnegativity. The

nonnegative matrix factorization problem (NMF) in the generic form is following: [5]

NMF Problem: Given a nonnegative matrix A ∈ Rm×n and a positive integer

k < min(m,n), find nonnegative matrices W ∈ Rm×k and H ∈ Rk×n to minimize the

functional

f(W,H) = 1/2‖A−WH‖2F (4.1)

Here, the product WH is called a NMF of A. Note that A is not necessarily equal

to the product WH.

4.3 Ensuring Location Privacy using Nonnegative Matrix Factorization

In most cases, when vehicles report accidents to the RSUs, the drivers may not be

willing to expose their private information, such as their identities, and their loca-
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tions. To report the accident, the witness vehicle only needs to send the message

including the estimated location and the time of the accident. Study shows that ma-

trix factorization techniques are ideal choices for data privacy preservation by their

nature. Amongst them, nonnegative matrix factorization (NMF) [33] is a typical and

popular representative. NMF is a widely used dimension reduction method in many

applications such as clustering [22], text mining [57], data distortion based privacy

preservation [76], privacy preserving recommender systems [82] etc. Thus, we adopt

nonnegative matrix factorization to preserve the user location privacy in vehicular

communications. One example of real world scenarios is described in Figure 4.1.

When an accident or event is sensed by a vehicle, it sends a message including dis-

torted location information to nearby RSU. Note that if a vehicle is outside of the

RSU’s communication range, the message can be delivered to the RSU through inter-

mediate vehicles. Once the message is received by the RSU, the RSU still can verify

the message and use it while ensuring location privacy. The details of our scheme is

explained below.

A conventional NMF is defined as follows [33],

Rm×n ≈ Um×k · V T
n×k (4.2)

The goal is to find a pair of orthogonal nonnegative matrices U and V (i.e., UTU =

I, V TV = I) that minimizes the Frobenius norm (or Euclidean norm) ‖A− UV T‖F .

The corresponding objective function is

minU≥0,V≥0f(A,U, V ) = ‖A− UV T‖2F . (4.3)

In real world scenarios, the drivers’ location data, which is considered as their

private information, can be stored in a numerical matrix, denoted by A. Before a

vehicle sends the message, it has to perturb its location to avoid privacy leakage.
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Figure 4.3: Accident Observed by Multiple Vehicles

Hence, we use NMF to factorize the location matrix and approximate it by taking

the product of the factor matrices, i.e., U and V . Since the update process of NMF

produces errors in each round, the approximated matrix, denoted by Ã, is different

from A. However, by carefully selecting the number of iterations and the dimensions

of the factor matrices, Ã can hold close data utility to A, meaning that the perturbed

location data still contain reasonable information while the exact values are changed.

In the figure 4.3, an accident is observed by multiple vehicles on the road and it is

reported to the nearby RSU. Here, the vehicles send the perturbed location data, but

they are still reasonable information to locate the approximate area of the accident.

Once a driver’s location data has been perturbed, the on board unit(OBU) would

assemble it with other meta data, such as protocol version, message type, event

type, velocity, direction, timestamp, and event detail, shown in Figure 4.2, to build
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a message and send it to RSUs. To identify the events, RSUs need to cluster events

according to the messages. In this case, events are objects, while event type, direction,

timestamp, as well as the perturbed location, are treated as the attributes of the

objects. We suggest using K-Means [50] as the fundamental technique to do this

task. K-Means is a popular and well studied approach that is easy to implement and

is widely used in many domains. As the name of the algorithm indicates, K-Means

needs the definition of “mean” prior to clustering. It minimizes a cost function by

calculating the means of clusters. Though the basic idea of K-Means is simple, it can

effectively and efficiently cluster objects with numerical attributes.

As mentioned above, the messages that are sent to the RSUs contain perturbed

location data. The goal is to obtain accurate event clusters from K-Means and differed

Ã from A.

4.4 Summary

In this chapter, we presented a scheme to preserve user location privacy for vehicular

communication using nonnegative matrix factorization. Our scheme does not require

traditional cryptography to protect privacy.
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Chapter 5

Conclusion and Future Work

VANETs are likely to be deployed in the near future due to the various features they

are likely to enhance the driving comfort of drivers as well as passengers traveling in

the vehicles. Moreover, due to the widespread adoption of cloud computing, vehicles

participating in VANETs are likely to utilize clouds to store information as well as

retrieve information. In this dissertation, we addressed some of the issues related

message dissemination in VANETs; we also presented an architecture for Vehicular

cloud. Next, we summarize the results presented in this dissertation and also discuss

our future work.

5.1 Dissertation Summary

First, we presented an efficient protocol for propagating messages about observed phe-

nomena to other vehicles in relevant areas. Many of the existing protocols broadcast

such messages to other vehicles through other vehicles. This approach doesn’t scale

well. We presented a protocol which has the following features: (i) messages sent are

encrypted and they are sent to nearby RSU, and not broadcasted to other vehicles;

(ii) messages sent are authenticated by the RSUs; (iii) RSUs also help in suppressing

duplicate messages; so redundant propagation of messages about the same phenomena

observed by different vehicles is prevented; (iv) since RSUs (and not vehicles them-

selves) propagate the messages to vehicles in relevant regions, it is more scalable; (v)
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anonymity of the vehicles sending messages is preserved; (vi) it facilitates authori-

ties to trace the messages to their senders when necessary (i.e., such as a malicious

node sending malicious messages); (vii) since RSUs which have more computation

and communication power authenticate and propagate the messages, vehicles’ OBUs

incur less overhead.

Second, we presented an architecture for vehicular cloud and presented an incen-

tive based solution, called secure token reward system, to entice vehicular nodes for

participating in the network. Unlike traditional vehicular networks, nodes’ participa-

tion is crucial in vehicular cloud. Our scheme is based on the idea that an incentive

is given to the drivers/vehicles who contribute their resources for cloud services. The

token reward system is located in the cloud and it ensures the integrity of token trans-

action and efficient management of tokens. In addition, the service provider manager

advertises services on behalf of the service providers, makes contracts with vehicles,

and validates work proofs after vehicles finish the work. In this scheme, message in-

tegrity and authenticity of incentive-related messages are guaranteed and the privacy

of vehicles are also protected. This architecture allows vehicles earn tokens for sharing

resources as well as use earned tokens for obtaining services from the vehicular cloud.

Third, for applications which require the location of the vehicles disseminating

observed phenomena, we presented a efficient scheme to preserve user location privacy

using nonnegative matrix factorization. This scheme does not require traditional

cryptography to protect privacy, so it can save computation involved in encrypting

messages. Instead of encrypting user location information, our scheme can calculate

the location of the event while preserving user privacy. Our scheme utilizes the

intrinsic property of nonnegative matrix to distort the data, hence the driver’s location

privacy is protected during communication.
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5.2 Future Work

In the future, we will continue our research in the following directions. First, although

our approach achieved an efficient way of secure message delivery, it still requires

that every vehicle needs to obtain a shared key and group key whenever it enters the

transmission area of an RSU. In order to reduce its communication overhead for key

change, we will focus on establishing secret keys for multiple RSUs. Second, vehicular

clouds are one of the examples of the hybrid vehicular networks. We will work on

securing communications for such inter-networking environments and finding efficient

routing protocols. Third, as shown in Chapter 4, nonnegative matrix factorization

could be used for protecting user privacy without using traditional cryptographic

methods. Hence, we will analyze and compare its performance in real vehicular

communication in terms of accuracy and computation power requirement. Lastly, we

will work on finding efficient schemes for establishing dependable routes in VANETs.

When a vehicle sends a message to a destination node in VANETs, a VANET routing

protocol should be able to determine the most reliable route in order to deliver the

message without loss. The existing schemes such as least weight path routing based

on the reliability ratings of the road edges [4] find the route whose weight from the

source node to the destination is the lowest. However, the route of lowest weights is

not necessarily the most reliable route. Hence, we will develop an efficient routing

protocol for establishing dependable routes by determining which street edges are

most likely to remain reliable.
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