3,158 research outputs found

    iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE.

    Get PDF
    Acinetobacter baumannii has become an urgent clinical threat due to the recent emergence of multi-drug resistant strains. There is thus a significant need to discover new therapeutic targets in this organism. One means for doing so is through the use of high-quality genome-scale reconstructions. Well-curated and accurate genome-scale models (GEMs) of A. baumannii would be useful for improving treatment options. We present an updated and improved genome-scale reconstruction of A. baumannii AYE, named iCN718, that improves and standardizes previous A. baumannii AYE reconstructions. iCN718 has 80% accuracy for predicting gene essentiality data and additionally can predict large-scale phenotypic data with as much as 89% accuracy, a new capability for an A. baumannii reconstruction. We further demonstrate that iCN718 can be used to analyze conserved metabolic functions in the A. baumannii core genome and to build strain-specific GEMs of 74 other A. baumannii strains from genome sequence alone. iCN718 will serve as a resource to integrate and synthesize new experimental data being generated for this urgent threat pathogen

    METABOLIC MODELING AND OMICS-INTEGRATIVE ANALYSIS OF SINGLE AND MULTI-ORGANISM SYSTEMS: DISCOVERY AND REDESIGN

    Get PDF
    Computations and modeling have emerged as indispensable tools that drive the process of understanding, discovery, and redesign of biological systems. With the accelerating pace of genome sequencing and annotation information generation, the development of computational pipelines for the rapid reconstruction of high-quality genome-scale metabolic networks has received significant attention. These models provide a rich tapestry for computational tools to quantitatively assess the metabolic phenotypes for various systems-level studies and to develop engineering interventions at the DNA, RNA, or enzymatic level by careful tuning in the biophysical modeling frameworks. in silico genome-scale metabolic modeling algorithms based on the concept of optimization, along with the incorporation of multi-level omics information, provides a diverse array of toolboxes for new discovery in the metabolism of living organisms (which includes single-cell microbes, plants, animals, and microbial ecosystems) and allows for the reprogramming of metabolism for desired output(s). Throughout my doctoral research, I used genome-scale metabolic models and omics-integrative analysis tools to study how microbes, plants, animal, and microbial ecosystems respond or adapt to diverse environmental cues, and how to leverage the knowledge gleaned from that to answer important biological questions. Each chapter in this dissertation will provide a detailed description of the methodology, results, and conclusions from one specific research project. The research works presented in this dissertation represent important foundational advance in Systems Biology and are crucial for sustainable development in food, pharmaceuticals and bioproduction of the future. Advisor: Rajib Sah

    Multi-omics integration reveals molecular networks and regulators of psoriasis.

    Get PDF
    BackgroundPsoriasis is a complex multi-factorial disease, involving both genetic susceptibilities and environmental triggers. Genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) have been carried out to identify genetic and epigenetic variants that are associated with psoriasis. However, these loci cannot fully explain the disease pathogenesis.MethodsTo achieve a comprehensive mechanistic understanding of psoriasis, we conducted a systems biology study, integrating multi-omics datasets including GWAS, EWAS, tissue-specific transcriptome, expression quantitative trait loci (eQTLs), gene networks, and biological pathways to identify the key genes, processes, and networks that are genetically and epigenetically associated with psoriasis risk.ResultsThis integrative genomics study identified both well-characterized (e.g., the IL17 pathway in both GWAS and EWAS) and novel biological processes (e.g., the branched chain amino acid catabolism process in GWAS and the platelet and coagulation pathway in EWAS) involved in psoriasis. Finally, by utilizing tissue-specific gene regulatory networks, we unraveled the interactions among the psoriasis-associated genes and pathways in a tissue-specific manner and detected potential key regulatory genes in the psoriasis networks.ConclusionsThe integration and convergence of multi-omics signals provide deeper and comprehensive insights into the biological mechanisms associated with psoriasis susceptibility

    Data integration, pathway analysis and mining for systems biology

    Get PDF
    Post-genomic molecular biology embodies high-throughput experimental techniques and hence is a data-rich field. The goal of this thesis is to develop bioinformatics methods to utilise publicly available data in order to produce knowledge and to aid mining of newly generated data. As an example of knowledge or hypothesis generation, consider function prediction of biological molecules. Assignment of protein function is a non-trivial task owing to the fact that the same protein may be involved in different biological processes, depending on the state of the biological system and protein localisation. The function of a gene or a gene product may be provided as a textual description in a gene or protein annotation database. Such textual descriptions lack in providing the contextual meaning of the gene function. Therefore, we need ways to represent the meaning in a formal way. Here we apply data integration approach to provide rich representation that enables context-sensitive mining of biological data in terms of integrated networks and conceptual spaces. Context-sensitive gene function annotation follows naturally from this framework, as a particular application. Next, knowledge that is already publicly available can be used to aid mining of new experimental data. We developed an integrative bioinformatics method that utilises publicly available knowledge of protein-protein interactions, metabolic networks and transcriptional regulatory networks to analyse transcriptomics data and predict altered biological processes. We applied this method to a study of dynamic response of Saccharomyces cerevisiae to oxidative stress. The application of our method revealed dynamically altered biological functions in response to oxidative stress, which were validated by comprehensive in vivo metabolomics experiments. The results provided in this thesis indicate that integration of heterogeneous biological data facilitates advanced mining of the data. The methods can be applied for gaining insight into functions of genes, gene products and other molecules, as well as for offering functional interpretation to transcriptomics and metabolomics experiments

    Transcriptome-based Gene Networks for Systems-level Analysis of Plant Gene Functions

    Get PDF
    Present day genomic technologies are evolving at an unprecedented rate, allowing interrogation of cellular activities with increasing breadth and depth. However, we know very little about how the genome functions and what the identified genes do. The lack of functional annotations of genes greatly limits the post-analytical interpretation of new high throughput genomic datasets. For plant biologists, the problem is much severe. Less than 50% of all the identified genes in the model plant Arabidopsis thaliana, and only about 20% of all genes in the crop model Oryza sativa have some aspects of their functions assigned. Therefore, there is an urgent need to develop innovative methods to predict and expand on the currently available functional annotations of plant genes. With open-access catching the ‘pulse’ of modern day molecular research, an integration of the copious amount of transcriptome datasets allows rapid prediction of gene functions in specific biological contexts, which provide added evidence over traditional homology-based functional inference. The main goal of this dissertation was to develop data analysis strategies and tools broadly applicable in systems biology research. Two user friendly interactive web applications are presented: The Rice Regulatory Network (RRN) captures an abiotic-stress conditioned gene regulatory network designed to facilitate the identification of transcription factor targets during induction of various environmental stresses. The Arabidopsis Seed Active Network (SANe) is a transcriptional regulatory network that encapsulates various aspects of seed formation, including embryogenesis, endosperm development and seed-coat formation. Further, an edge-set enrichment analysis algorithm is proposed that uses network density as a parameter to estimate the gain or loss in correlation of pathways between two conditionally independent coexpression networks

    SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data.</p> <p>Results</p> <p>In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:</p> <p>1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).</p> <p>Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.</p> <p>2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats.</p> <p>Conclusions</p> <p>Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.</p> <p>SNiPlay is available at: <url>http://sniplay.cirad.fr/</url>.</p

    SYSTOMONAS — an integrated database for systems biology analysis of Pseudomonas

    Get PDF
    To provide an integrated bioinformatics platform for a systems biology approach to the biology of pseudomonads in infection and biotechnology the database SYSTOMONAS (SYSTems biology of pseudOMONAS) was established. Besides our own experimental metabolome, proteome and transcriptome data, various additional predictions of cellular processes, such as gene-regulatory networks were stored. Reconstruction of metabolic networks in SYSTOMONAS was achieved via comparative genomics. Broad data integration is realized using SOAP interfaces for the well established databases BRENDA, KEGG and PRODORIC. Several tools for the analysis of stored data and for the visualization of the corresponding results are provided, enabling a quick understanding of metabolic pathways, genomic arrangements or promoter structures of interest. The focus of SYSTOMONAS is on pseudomonads and in particular Pseudomonas aeruginosa, an opportunistic human pathogen. With this database we would like to encourage the Pseudomonas community to elucidate cellular processes of interest using an integrated systems biology strategy. The database is accessible at
    • …
    corecore