4,508 research outputs found

    On a Graph-Based Semantics for UML Class and Object Diagrams

    Get PDF
    In this paper we propose a formal extension of type graphs with notions that are commonplace in the UML and have long proven their worth in that context: namely, inheritance, multiplicity, containment and the like. We believe the absence of a comprehensive and commonly agreed upon formalisation of these notions to be an important and, unfortunately, often ignored omission. Since our eventual aim (shared by many researchers) is to give unambiguous, formal semantics to the UML using the theory of graphs and graph transformation, in this paper we propose a set of definitions to repair this omission. With respect to previous work in this direction, our aim is to arrive at more comprehensive and at the same time simpler definitions.\u

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Engineering Object-Oriented Semantics Using Graph Transformations

    Get PDF
    In this paper we describe the application of the theory of graph transformations to the practise of language design. We have defined the semantics of a small but realistic object-oriented language (called TAAL) by mapping the language constructs to graphs and their operational semantics to graph transformation rules. In the process we establish a mapping between UML models and graphs. TAAL was developed for the purpose of this paper, as an extensive case study in engineering object-oriented language semantics using graph transformation. It incorporates the basic aspects of many commonly used object-oriented programming languages: apart from essential imperative programming constructs, it includes inheritance, object creation and method overriding. The language specification is based on a number of meta-models written in UML. Both the static and dynamic semantics are defined using graph rewriting rules. In the course of the case study, we have built an Eclipse plug-in that automatically transforms arbitrary TAAL programs into graphs, in a graph format readable by another tool. This second tool is called Groove, and it is able to execute graph transformations. By combining both tools we are able to visually simulate the execution of any TAAL program

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principlesā€”just like any other kind of softwareā€”there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects ā€œe-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    Towards a Step Semantics for Story-Driven Modelling

    Full text link
    Graph Transformation (GraTra) provides a formal, declarative means of specifying model transformation. In practice, GraTra rule applications are often programmed via an additional language with which the order of rule applications can be suitably controlled. Story-Driven Modelling (SDM) is a dialect of programmed GraTra, originally developed as part of the Fujaba CASE tool suite. Using an intuitive, UML-inspired visual syntax, SDM provides usual imperative control flow constructs such as sequences, conditionals and loops that are fairly simple, but whose interaction with individual GraTra rules is nonetheless non-trivial. In this paper, we present the first results of our ongoing work towards providing a formal step semantics for SDM, which focuses on the execution of an SDM specification.Comment: In Proceedings GaM 2016, arXiv:1612.0105

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)
    • ā€¦
    corecore