5,081 research outputs found

    Concurrent Design of Embedded Control Software

    Get PDF
    Embedded software design for mechatronic systems is becoming an increasingly time-consuming and error-prone task. In order to cope with the heterogeneity and complexity, a systematic model-driven design approach is needed, where several parts of the system can be designed concurrently. There is however a trade-off between concurrency efficiency and integration efficiency. In this paper, we present a case study on the development of the embedded control software for a real-world mechatronic system in order to evaluate how we can integrate concurrent and largely independent designed embedded system software parts in an efficient way. The case study was executed using our embedded control system design methodology which employs a concurrent systematic model-based design approach that ensures a concurrent design process, while it still allows a fast integration phase by using automatic code synthesis. The result was a predictable concurrently designed embedded software realization with a short integration time

    Virtual Prototyping through Co-simulation of a Cartesian Plotter

    Get PDF
    This paper shows a model-based design trajectory for the development of real-time embedded control software using virtual prototyping. As a test case, a Cartesian plotter is designed. Functional correctness of the plotter software has been ensured by means of co-simulation using a virtual prototype before deploying it on target. Except for the interface implementation, the software that is used in the co-simulation is identical to the software that is compiled to run on the target computing platform. Virtual prototyping is especially important if the real target can damage itself if it is operated outside its safe operation zone or when prototypes are not yet available for testing. The co-simulation of the software against a virtual prototype resulted in a first-time-right deployment on the real target

    Realising the open virtual commissioning of modular automation systems

    Get PDF
    To address the challenges in the automotive industry posed by the need to rapidly manufacture more product variants, and the resultant need for more adaptable production systems, radical changes are now required in the way in which such systems are developed and implemented. In this context, two enabling approaches for achieving more agile manufacturing, namely modular automation systems and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at Loughborough University which aims to provide a modular approach to automation systems design coupled with a virtual engineering toolset for the (re)configuration of such manufacturing automation systems is reported. The problems faced in the virtual commissioning of modular automation systems are outlined. AutomationML - an emerging neutral data format which has potential to address integration problems is discussed. The paper proposes and illustrates a collaborative framework in which AutomationML is adopted for the data exchange and data representation of related models to enable efficient open virtual prototype construction and virtual commissioning of modular automation systems. A case study is provided to show how to create the data model based on AutomationML for describing a modular automation system

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    Mechatronics of a ball screw drive using a N degrees of freedom dynamic model

    Get PDF
    High performance position control in machine tools can only be achieved modelling the dynamic behavior of the mechatronic system composed by the motor, transmission and control during the design stage. In this work, a complex analytical model of a ball screw drive is presented and integrated in a mechatronic model of the actuator to predict the dynamic behaviour and analyze the impact of each component of the transmission. First, a simple 2 degrees of freedom model is presented, and is analysis sets the basis for the development of a more complex model of several degrees of freedom, whose resulting fundamental transfer functions are represented using natural and modal coordinates. The modeling in modal coordinates carries a reduction of the transfer function that reduces computational work. The two models are compared and experimentally validated in time and frequency domain by means of experimental tests carried out on a specifically developed ball screw drive test benchMinisterio de Economía y Competitividad: Project DPI2015-64450-R (MINECO/FEDER, UE) University of the Basque Country (UPV/EHU) under the program UFI 11/29 Departamento de Educación, Política Lingüística y Cultura” of the regional government of the Basque Country (IT949-16

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    Towards a New Framework for Product Development

    Get PDF
    In the mid-1980s, Andreasen and Hein first described their model of Integrated Product Development. Many Danish companies quickly embraced the principles of integrated product development and adapted the model to their specific business and product context. However, there is concern amongst many Danish companies that Integrated Product Development no longer provides a sufficient way of describing industry’s product development activity. More specifically, five of these companies have supported a programme of research activities at the Technical University of Denmark, which seeks to develop a new framework for product development. This paper will describe the research approach being taken, present some initial findings, and outline a vision of a new working approach to product development

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities

    Including design in e-manufacturing

    Get PDF
    This paper reviews major issues in the implementation of e-manufacturing, particularly the design aspects. It will examine recent progress, drawing out particular issues that are being addressed. Use will be made of the work by the author and colleagues to devise rule-based design and Internet-based control of machines to illustrate how these developments affect the integrated e-manufacturing environment. A dynamic Simulink model of the way e-manufacture is affected by overall design delays is used to evaluate general solutions for partial and complete e-based companies. These models show how changing to improved designs reduces WI
    corecore