14 research outputs found

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Unfolding-Based Process Discovery

    Get PDF
    This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.Comment: This is the unabridged version of a paper with the same title appearead at the proceedings of ATVA 201

    On the Distinction between Truthful, Invisible, False and Unobserved Events An Event Existence Classification Framework and the Impact on Business Process Analytics Related Research Areas

    Get PDF
    In this paper we present an event existence classification framework based on five business criteria. As a result we are able to distinguish thirteen event types distributed over four categories, i.e. truthful, invisible, false and unobserved events. Currently, several of these event types are not commonly dealt with in business process analytics research. Based on the proposed framework we situate the different business process analytics research areas and indicate the potential issues for each field. A real world case will be elaborated to demonstrate the relevance of the event classification framework

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    Efficient Process Model Discovery Using Maximal Pattern Mining

    Get PDF
    In recent years, process mining has become one of the most important and promising areas of research in the field of business process management as it helps businesses understand, analyze, and improve their business processes. In particular, several proposed techniques and algorithms have been proposed to discover and construct process models from workflow execution logs (i.e., event logs). With the existing techniques, mined models can be built based on analyzing the relationship between any two events seen in event logs. Being restricted by that, they can only handle special cases of routing constructs and often produce unsound models that do not cover all of the traces seen in the log. In this paper, we propose a novel technique for process discovery using Maximal Pattern Mining (MPM) where we construct patterns based on the whole sequence of events seen on the traces—ensuring the soundness of the mined models. Our MPM technique can handle loops (of any length), duplicate tasks, non-free choice constructs, and long distance dependencies. Our evaluation shows that it consistently achieves better precision, replay fitness and efficiency than the existing techniques

    Towards a decision-aware declarative process modeling language for knowledge-intensive processes

    Get PDF
    Modeling loosely framed and knowledge-intensive business processes with the currently available process modeling languages is very challenging. Some lack the flexibility to model this type of processes, while others are missing one or more-perspectives needed to add the necessary level of detail to the models. In this paper we have composed a list of requirements that a modeling language should fulfil in order to adequately support the modeling of this type of processes. Based on these requirements, a metamodel for a new modeling language was developed that satisfies them all. The new language, called DeciClare, incorporates parts of several existing modeling languages, integrating them with new solutions to requirements that had not yet been met, Deciclare is a declarative modeling language at its core, and therefore, can inherently deal with the flexibility required to model loosely framed processes. The complementary resource and data perspectives add the capability to reason about, respectively, resources and data values. The latter makes it possible to encapsulate the knowledge that governs the process flow by offering support for decision modeling. The abstract syntax of DeciClare has been implemented in the form of an Ecore model. Based on this implementation, the language-domain appropriateness of the language was validated by domain experts using the arm fracture case as application scenario. (C) 2017 Elsevier Ltd. All rights reserved

    Understanding Declare Models: Strategies, Pitfalls, Empirical Results

    Get PDF
    Declarative approaches to business process modeling are regarded as well suited for highly volatile environments, as they enable a high degree of flexibility. However, problems in understanding and maintaining declarative process models often impede their adoption. Likewise, little research has been conducted into the understanding of declarative process models. This paper takes a first step toward addressing this fundamental question and reports on an empirical investigation consisting of an exploratory study and a follow-up study focusing on the system analysts' sense-making of declarative process models that are specified in Declare. For this purpose, we distributed real-world Declare models to the participating subjects and asked them to describe the illustrated process and to perform a series of sense-making tasks. The results of our studies indicate that two main strategies for reading Declare models exist: either considering the execution order of the activities in the process model, or orienting by the layout of the process model. In addition, the results indicate that single constraints can be handled well by most subjects, while combinations of constraints pose significant challenges. Moreover, the study revealed that aspects that are similar in both imperative and declarative process modeling languages at a graphical level, while having different semantics, cause considerable troubles. This research not only helps guiding the future development of tools for supporting system analysts,but also gives advice on the design of declarative process modeling notations and points out typical pitfalls to teachers and educators of future systems analysts
    corecore