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Abstract. Business Process Management (BPM) is a central element of today
organizations. Despite over the years its main focus has been the support of pro-
cesses in highly controlled domains, nowadays many domains of interest to the
BPM community are characterized by ever-changing requirements, unpredictable
environments and increasing amounts of data that influence the execution of pro-
cess instances. Under such dynamic conditions, BPM systems must increase their
level of automation to provide the reactivity and flexibility necessary for process
management. On the other hand, the Artificial Intelligence (AI) community has
concentrated its efforts on investigating dynamic domains that involve active con-
trol of computational entities and physical devices (e.g., robots, software agents,
etc.). In this context, Automated Planning, which is one of the oldest areas in AI,
is conceived as a model-based approach to synthesize autonomous behaviours in
automated way from a model. In this paper, we discuss how automated planning
techniques can be leveraged to enable new levels of automation and support for
business processing, and we show some concrete examples of their successful
application to the different stages of the BPM life cycle.

1 Introduction

Business Process Management (BPM) is a central element of today organizations due
to its potential for increase productivity and saving costs. To this aim, BPM research
reports on techniques and tools to support the design, enactment and optimization of
business processes [1]. Despite over the years the main focus of BPM has been the sup-
port of processes in highly controlled domains (e.g., financial and accounting domains),
nowadays BPM research is expanding towards new challenging domains (e.g., health-
care [2], smart manufacturing [3], emergency management [4, 5], etc.), characterized
by ever-changing requirements, unpredictable environments and increasing amounts of
data that influence the execution of process instances [6]. Under such dynamic condi-
tions, BPM is in need of techniques that go beyond hard-coded solutions that put all
the burden on IT professionals, which often lack the needed knowledge to model all
possible contingencies at the outset, or this knowledge can become obsolete as pro-
cess instances are executed and evolve, by making useless their initial effort. Therefore,
there are compelling reasons to introduce intelligent techniques that act autonomously
to provide the reactivity and flexibility necessary for process management [7, 8].

On the other hand, the challenge of building computational entities and physical
devices (e.g., robots, software agents, etc.) capable of autonomous behaviour under
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dynamic conditions is at the center of the Artificial Intelligence (AI) research from its
origins. At the the core of this challenge lies the action selection problem, often referred
as the problem of selecting the action to do next. Traditional hard-coded solutions re-
quire to consider every option available at every instant in time based on the current
context and pre-scripted plans to compute just one next action. Consequently, they are
usually biased and tend to constrain their search in some way. For AI researchers, the
question of action selection is: what is the best way to constrain this search? To answer
this question, the AI community has tackled the action selection problem through two
different approaches [9], one based on learning and the other based on modeling.

In the learning-based approach, the controller that prescribes the action to do next
is learned from the experience. Learning methods, if properly trained on representative
datasets, have the greatest promise and potential, as they are able to discover and even-
tually interpret meaningful patterns for a given task in order to help make more efficient
decisions. For example, learning techniques were recently applied in BPM (see [10]) for
predicting future states or properties of ongoing executions of a business process. How-
ever, a learned solution is usually a “black box”, i.e., there is not a clear understanding
of how and why it has been chosen. Consequently, the ability to explain why a learned
solution has failed and fix a reported quality bug may become a complex task.

Conversely, in the model-based approach the controller in charge of action selection
is derived automatically from a model that expresses the dynamics of the domain of in-
terest, the actions and goal conditions. The key point is that all models are conceived to
be general, i.e., they are not bound to specific domains or problems. The price for gen-
erality is computational: The problem of solving a model is computationally intractable
in the worst case, even for the simplest models [9].

While we acknowledge that both the learning and model-based approaches to action
selection exhibit different merits and limitations, in this paper we focus on a specific
model-based approach called Automated Planning. Automated planning is the branch
of AI that concerns the automated synthesis of autonomous behaviours (in the form of
strategies or action sequences) for specific classes of mathematical models represented
in compact form. In recent years, the automated planning community has developed a
plethora of planning systems (also known as planners) that embed very effective (i.e.,
scale up to large problems) domain-independent heuristics, which has been employed
to solve collections of challenging problems from several Computer Science domains.

In this paper, we discuss how automated planning techniques can be leveraged for
solving real-world problems in BPM that were previously tackled with hard-coded so-
lutions by enabling new levels of automation and support for business processing and
we show some concrete examples of their successful application to the different stages
of the BPM life cycle. Specifically, while in Section 2 we introduce some preliminary
notions on automated planning necessary to understand the rest of the paper, in Section
3 we show how instances of some well-known problems from the BPM literature (such
as process modeling, process adaptation and conformance checking) can be represented
as planning problems for which planners can find a correct solution in a finite amount
of time. Finally, in Section 4 we conclude the paper by providing a critical discussion
about the general applicability of planning techniques in BPM and tracing future work.
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2 Automated Planning

Automated planning addresses the problem of generating autonomous behaviours (i.e.,
plans) from a model that describes how actions work in a domain of interest, what is the
initial state of the world and the goal to be achieved. To this aim, automated planning
operates on explicit representations of states and actions.

The Planning Domain Definition Language (PDDL) [11] is a de-facto standard to
formulate a compact representation of a planning problem PR = 〈I,G,PD〉, where I is
the description of the initial state of the world, G is the desired goal state, and PD is the
planning domain. A planning domain PD is built from a set of propositions describing
the state of the world in which planning takes place (a state is characterized by the set
of propositions that are true) and a set of actions Ω that can be executed in the domain.
An action schema a ∈ Ω is of the form a = 〈Para,Prea,Eff a,Costa〉, where Para is
the list of input parameters for a, Prea defines the preconditions under which a can be
executed, Eff a specifies the effects of a on the state of the world and Costa is the cost
of executing a. Both preconditions and effects are stated in terms of the propositions
in PD, which can be represented through boolean predicates. PDDL includes also the
ability of defining domain objects and of typing the parameters that appear in actions
and predicates. In a state, only actions whose preconditions are fulfilled can be executed.
The values of propositions in PD can change as result of the execution of actions, which,
in turn, lead PD to a new state. A planner that takes in input a planning problem PR
is able to automatically produce a plan P , i.e., a controller that specifies which actions
are required to transform the initial state I into a state satisfying the goal G.

Example 1. Let us consider a well-known domain in AI: the Blocks World. In Fig. 1 it
is shown an instance of this domain where blocks A, B and C are initial arranged on the
table. The goal is to re-arrange the blocks so that C is on A and A is on B.

Fig. 1. A plan that solves a simple planning problem from the Blocks World domain.

The problem can be easily expressed as a planning problem in PDDL. The variables
are the block locations: Blocks can be on the table or on top of another block. Two
predicates can be used to express (respectively) that a block is clear (i.e., with no block
on top) or has another block on top of it. A single planning action move is required
to represent the movement of a clear block on top of another block or on the table.
Fig.1 shows a possible solution to the problem, which consists of first moving A from
the table on top of B (state S1), and then on moving C from the table on top of A
(state S2). Since S2 is a state satisfying the goal G, the solution found is a valid plan.
Furthermore, if we assume that the cost of any move action is equal to 1 (i.e., the cost
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of the plan corresponds to its length), then the plan found is optimal, as it contains the
minimum number of planning actions to solve the problem. ut

There exist several forms of planning models in the AI literature, which result from
the application of some orthogonal dimensions [12]: uncertainty in the initial state (fully
or partially known) and in the actions dynamics (deterministic or not), the type of feed-
back (full, partial or no state feedback) and whether uncertainty is represented by sets
of states or probability distributions. The simplest form of planning where actions are
deterministic, the initial state is known and plans are action sequences computed in ad-
vance is called Classical Planning. For classical planning, according to [9], the general
problem of coming up with a plan is NP-hard, since the number of problem states is ex-
ponential in the number of problem variables. For example, in a arbitrary Blocks World
problem with n blocks, the number of states is exponential in n, since the states include
all the n! possible towers of n blocks plus additional combinations of lower towers.

Despite its complexity, the field of classical planning has experienced spectacular
advances (in terms of scalability) in the last 20 years, leading to a variety of concrete
planners that are able to feasibly compute plans with thousands of actions over huge
search spaces for real-world problems containing hundreds of propositions. Such pro-
gresses have been possible because state-of-the-art classical planners employ powerful
heuristic functions that are automatically derived by the specific problem and allow to
intelligently drive the search towards the goal. In addition, since the classical approach
of solving planning problems can be too restrictive for environments in which infor-
mation completeness can not be guaranteed, it is often possible to solve non-classical
planning problems using classical planners by means of well-defined transformations
[13]. A tutorial introduction to planning algorithms and heuristics can be found in [9].

3 Automated Planning for BPM

The planning paradigm (in particular in its classical setting) provides a valuable set
of theoretical and practical tools to tackle several challenges addressed by the BPM
community and its use may lead to several advantages:

– Planning models are general, in the sense that a planner can be fed with the descrip-
tion of any planning problem in PDDL (as defined in Section 2) without knowing
what the actions and domain stand for, and for any such description it can synthesize
a plan achieving the goal. This means that planners can potentially solve any BPM
problem that can be converted into a planning problem in PDDL.

– Planning models are human-comprehensible, as the PDDL language allows to de-
scribe the planning domain and problem of interest in a high-level terminology, which
is readily accessible and understandable by IT professionals.

– The standardized representation of a planning model in PDDL allows to exploit a
large repertoire of planners and searching algorithms with very limited effort.

– Planning models, if encoded with the classical approach, constitute implicit repre-
sentations of finite state controllers, and can be thus queried by standard verification
techniques, such as Model Checking.
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– BPM environments can invoke planners as external services. Therefore, no expertise
of the internal working of the planners is required to build a plan.

A number of research works exist on the use of planning techniques in the con-
text of BPM, covering the various stages of the process life cycle. For the design-time
phase, existing literature has focused on exploiting planning to automatically generate
candidate process models that are able of achieving some business goals starting from
a complete or an incomplete description of the process domain. Some research works
also exist that use planning to deal with problems for the run-time phase, e.g., to adapt
running processes to cope with anomalous situations. Finally, for the diagnosis phase,
the literature reports some works that use planning to perform conformance checking.

In the following sections we discuss in the detail how the use of planning has con-
tributed to tackle the above research challenges from BPM literature.

3.1 Planning for the Automated Generation of Process Models

Process modeling is the first and most important step in the BPM life cycle, which
intends to provide a high-level specification of a business process that is independent
from implementation and serves as a basis for process automation and verification. Tra-
ditional process models are usually well-structured, i.e., they reflect highly repeatable
and predictable routine work with low flexibility requirements. All possible options
and decisions that can be made during process enactment are statically pre-defined at
design-time and embedded in the control-flow of the process.
Challenge. Current BPM technology is generally based on rigid process models mak-
ing its application difficult in dynamic and possibly evolving domains, where pre-
specifying the entire process model is not always possible. This problem can be miti-
gated through specific approaches to process variability [14], which allow to customize
a base process model by implementing specific variants of the process itself. However,
this activity is time-consuming and error-prone when more flexible processes are to
be modeled, due to their context-dependent nature that make difficult the specification
of all the potential tasks interactions and process variants in advance. The presence of
mechanisms that facilitate the design phase of flexible processes by allowing the auto-
mated generation of their underlying models is highly desirable [7].
Application of Planning. The work [15] presents the basic idea behind the use of plan-
ning techniques for the automated generation of a process model. Process activities can
be represented as planning actions together with their preconditions and effects stating
what contextual data may constrain the process execution or may be affected after an
activity completion. The planning domain is therefore enriched with a set of propo-
sitions that characterize the contextual data describing the process domain. Given an
initial description of the process domain, the target is to automatically obtain a plan
(i.e., a process model and its control-flow) that consists of process activities contextu-
ally selected and ordered in a way to satisfy some business goals.

In the research literature, there are four main approaches that use planning on the
basis of the general schema outlined above. In [16], the authors exploit a planner for
modeling processes in SHAMASH, a knowledge-based system for the design of busi-
ness processes. The planner, which is fed with a semantic representation of the process
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knowledge, produces a parallel plan of activities that is translated into SHAMASH and
presented graphically to the user. The obtained plan proposes the scheduling of parallel
activities that may handle time and resource constraints. Notice that the emphasis here
is on supporting processes for which one has complete knowledge.

The work [17] is based on learning activities as planning operators and feeding
them to a planner that generates the process model. An interesting result concerns the
possibility of producing process models even though the activities may not be accurately
described. In such cases, the authors use a best-effort planner that is always able to
create a plan, even though the plan may be incorrect. By refining the preconditions and
effects of planning actions, the planner will be able to produce several candidate plans,
and after a finite number of refinements, the best candidate plan (i.e., the one with the
lowest number of unsatisfied preconditions) is translated into a process model.

In the SEMPA approach [18], process actions are semantically described by speci-
fying their input/output parameters with respect to an ontology implemented in OWL.
Starting from such a knowledge, planning is used to derive an action state graph (ASG)
consisting of those actions whose execution leads to a given goal from a pre-specified
initial state. Then, a process model represented as an UML activity diagram is extracted
from the ASG by identifying the required control flow for the process. Interestingly, the
planning algorithm implemented in SEMPA provides the ability to build the ASG in
presence of initial state uncertainty and with different conflicting goals.

The works [19, 20] refer to a technique based on partial-order planning algorithms
and declarative specifications of process activities in PDDL for synthesizing a library of
process templates to be enacted in contextual scenarios. The resulting templates guar-
antee that concurrent activities of a process template are effectively independent one
from another (i.e., they cannot affect the same data) and are reusable in a variety of
partially specified contextual environments. A key characteristic of this approach is the
role of contextual data acting as a driver for process templates generation.

3.2 Planning for Process Adaptation

Process Adaptation is the ability of a process to react to exceptional circumstances (that
may or may not be foreseen) and to adapt/modify its structure accordingly [6]. Excep-
tions can be either anticipated or unanticipated. An anticipated exception can be planned
at design-time and incorporated into the process model, i.e., a (human) process designer
can provide an exception handler which is invoked during run-time to cope with the ex-
ception. Conversely, unanticipated exceptions generally refer to situations, unplanned
at design-time, that may emerge at run-time and can be detected by monitoring discrep-
ancies between the real-world processes and their computerized representation.
Challenge. In many dynamic application domains (e.g., emergency management, smart
manufacturing, etc.), the number of possible anticipated exceptions is often too large,
and traditional manual implementation of exception handlers at design-time is not fea-
sible for process designers, who have to anticipate all potential problems and ways to
overcome them in advance. Furthermore, anticipated exceptions cover only partially
relevant situations, as in such scenarios many unanticipated exceptional circumstances
may arise during process execution. The management of processes in dynamic domains
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requires that BPM environments provide real-time monitoring and automated adapta-
tion features during process execution, in order to achieve the overall objectives of the
processes still preserving their structure by minimising any human intervention [7].
Application of Planning. The first work dealing with this research challenge is [21].
It discusses how planning can be interleaved with process execution to suggest com-
pensation procedures or the re-execution of activities if some anticipated failure arises.
The work [22] presents an approach for enabling automated process instance change
in case of activity failures occurring at run-time that lead to a process goal violation.
The approach relies on a partial-order planner for the generation of a new complete
process model that complies with the process goal. The generated model is substituted
at run-time to the original process that included the failed task.

The above works use planning to tackle anticipated exceptions or to completely
redefine the process model when some activity failure arises. However, in dynamic
domains, it would be desirable to adapt a running process by modifying only those parts
of the process that need to be changed/adapted and keeps other parts stable, by avoiding
to revolutionize the work list of activities assigned to the process participants [7].

In this direction, the SmartPM approach and system [23, 24] provides a planning-
based mechanism that requires no predefined handler to build on-the-fly the recov-
ery procedure required to adapt a running process instance. Specifically, adaptation in
SmartPM can be seen as reducing the gap between the expected reality, i.e., the (ideal-
ized) model of reality that reflects the intended outcome of the task execution, and the
physical reality, i.e., the real world with the actual values of conditions and outcomes. A
recovery procedure is needed during process execution if the two realities are different
from each other. A misalignment of the two realities often stems from errors in the tasks
outcomes (e.g., incorrect data values) or is the result of exogenous events coming from
the environment. If the gap between the expected and physical realities is such that the
process instance cannot progress, the SmartPM system invokes an external planner to
build a recovery procedure as a plan, which can thereby resolve exceptions that were
not designed into the original process. Notice that a similar framework to tackle process
adaptation through planning is also adopted in the research works [25, 26, 27].

In SmartPM, the problem of automatically synthesize a recovery procedure is en-
coded as a classical planning problem in PDDL. The planning domain consists of
propositions that characterize the contextual data describing the process domain. Plan-
ning actions are built from a repository of process activities annotated with precondi-
tions and effects expressed over the process domain. Then, the initial state reflects the
physical reality at the time of the failure, while the goal state corresponds to the ex-
pected reality. A classical planner fed with such inputs searches for a plan that may turn
the physical reality into the expected reality by adapting the faulty process instance.

A similar adaptation strategy is applied in [28], which proposes a goal-driven ap-
proach for service-based applications to adapt business processes to run-time context
changes. Process models include service annotations describing how services contribute
to the intended goal. Contextual properties are modeled as state transition systems cap-
turing possible values and possible evolutions in the case of precondition violations or
external events. Process and context changes that prevent goal achievement are man-
aged through an adaptation mechanism based on service composition via planning.
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Finally, the work [29] proposes a runtime mechanism that uses dependency scopes
for identifying critical parts of the processes whose correct execution depends on some
shared variables and intervention processes for solving potential inconsistencies be-
tween data. Intervention processes are automatically synthesised through a planner
based on CSP techniques. While closely related to SmartPM, this work requires specifi-
cation of a (domain-dependent) adaptation policy, based on volatile variables and when
changes to them become relevant.

3.3 Planning for Conformance Checking

Within the discipline of process mining, conformance checking is the problem of veri-
fying whether the observed behavior stored in an event log is compliant with the process
model that encodes how the process is allowed to be executed to ensure that norms and
regulations are not violated. The notion of alignment [30] provides a robust approach
to conformance checking, which makes it possible to exactly pinpoint the deviations
causing nonconformity with a high degree of detail. An alignment between a recorded
process execution (log trace) and a process model is a pairwise matching between activ-
ities recorded in the log (events) and activities allowed by the model (process activities).
Challenge. In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace is not
conforming. It is clear that one is interested in finding the most probable explanation,
i.e., one of the alignments with the least expensive deviations (i.e., optimal alignments),
according to some function assigning costs to deviations. The existing techniques to
compute optimal alignments against procedural [31] and declarative [32] process mod-
els provide ad-hoc implementations of the A* algorithm. The fact is that when process
models and event logs are of considerable size the existing approaches do not scale
efficiently due to their ad-hoc nature and they are unable to accomplish the alignment
task. In the era of Big Data, scalable approaches to process mining are desperately
necessary, as also advocated by the IEEE Task Force in Process Mining [30].
Application of planning. In case of procedural models represented as Petri Nets, the
work [33] proposes an approach and a tool to encode the original algorithm for trace
alignment [31] as a planning problem in PDDL. Specifically, starting from a Petri net
N and an event log L to be aligned, for each log trace σL ∈ L it is built (i) a planning
domain PD, which encodes the propositions needed to capture the structure of N and
to monitor the evolution of its marking, and three classes of planning actions that rep-
resent “alignment” moves: synchronous moves (associated with no cost), model moves
and log moves; and (ii) a planning problem PR, which includes a number of constants
required to properly ground all the domain propositions in PD; in this case, constants
will correspond to the place and transition instances involved in N . Then, the initial
state of PR is defined to capture the exact structure of the specific log trace σL of inter-
est and the initial marking of N , and the goal condition is encoded to represent the fact
that N is in the final marking and σL has been completely analyzed. At this point, for
any trace of the event log, an external planner is invoked to synthesize a plan to reach
the final goal from the initial state, i.e., a sequence of alignment moves (each of which
is a planning action) that establish an optimal alignment between σL and N .
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Relatively close is the work [34] where authors use planners to recover the missing
recording of events in log traces. The concept of missing event recordings is very similar
to model moves in [33]. However, in [34] it is assumed that all executions are compliant
with the model and, hence, every event that is present in the incomplete log trace is
assumed to be correct. In other words, they do not foresee log moves.

In case of declarative process models, where relationships among process activities
are implicitly defined through logical constraints expressed in the well-known LTL-f
(Linear Temporal Logic on finite traces) formalism, the work [35] leverages on plan-
ning techniques to search for optimal alignments. A planning domain is encoded to
capture the structure of the finite state automata (augmented with special transitions for
adding/removing activities to/from a log trace) corresponding to the individual LTL-f
constraints that compose the declarative model. The same can be done for the specific
trace to be aligned, which is represented as a simple automaton that consists of a se-
quence of states. In addition, the definition of specific domain propositions allows to
monitor the evolution of any automaton. At this point, the initial state of the planning
problem is encoded to capture the exact structure of the trace automaton and of every
constraint automaton. This includes the specification of all the existing transitions that
connect two different states of the automata. The current state and the accepting states
of any trace/constraint automaton are identified as well. Then, the goal condition is de-
fined as the conjunction of the accepting states of the trace automaton and of all the
accepting states of the constraint automata. At this point, a planner is invoked with such
inputs to synthesize a plan that establishes an optimal alignment between the declarative
model and the log trace of interest

Notably, both the works [33] and [35] report on results of experiments conducted
with several planners fed with combinations of real-life and synthetic event logs and
processes. The results show that, when process models and event-log traces are of
considerable size, their planning-based approach outperforms the existing approaches
based on ad-hoc implementations of the A* algorithm [31, 32] even by several orders
of magnitude, and they are always able to properly complete the alignment task (while
the existing approaches run often out of memory).

4 Discussion and Conclusion

We are at the beginning of a profound transformation of BPM due to the recent ad-
vances in AI research [8]. In this context, we have shown how Automated Planning
can offer a mature paradigm to introduce autonomous behaviour in BPM for tackling
complex challenges in a theoretically grounded and domain-independent way. If BPM
problems are converted into planning problems, one can seamlessly update to the recent
versions of the best performing automated planners, with evident advantages in term of
versatility and customization. In addition, planning systems employ search algorithms
driven by intelligent heuristics that allow to scale up efficiently to large problems.

On the other hand, although Planning (in particular in its classical setting) embeds
properties desirable for BPM, it imposes some restrictions for addressing more expres-
sive problems, including preferences and non deterministic task effects. Furthermore,
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planning models require that actions are completely specified in term of I/O data el-
ements, preconditions, and effects, and that the execution context can be captured as
part of the planning domain. These aspects can frame the scope of applicability of the
planning paradigm to BPM.

It is worth to mention that Automated Planning contributed to tackle challenges
also from other Computer Science fields, such as Web Service Composition [36, 37]
and Ubiquitous Computing [38]. As a future work, we aim at developing a rigorous
methodology to acquire relevant literature on the use of planning for BPM and derive
an common evaluation framework to systematically review and classify the existing
methods.
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