105,542 research outputs found

    Ancient and historical systems

    Get PDF

    Building Information Modelling [BIM] for energy efficiency in housing refurbishments

    Get PDF
    Building Information modelling offers potential process and delivery improvements throughout the lifecycle of built assets. However, there is limited research in the use of BIM for energy efficiency in housing refurbishments. The UK has over 300,000 solid wall homes with very poor energy efficiency. A BIM based solution for the retrofit of solid wall housing using lean and collaborative improvement techniques will offer a cost effective, comprehensive solution that is less disruptive, reduces waste and increases accuracy, leading to high quality outcomes. The aim of this research is to develop a BIM based protocol supporting development of 'what if' scenarios in housing retrofits for high efficiency thermal improvements, aiming to reduce costs and disruption for users. The paper presents a literature review on the topic and discusses the research method for the research project (S-IMPLER)

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Performance prediction tools for low impact building design

    Get PDF
    IT systems are emerging that may be used to support decisions relating to the design of a built enviroment that has low impact in terms of energy use and environmental emissions. This paper summarises this prospect in relation to four complementary application areas: digital cities, rational planning, virtual design and Internet energy services

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    High temperature control in mediterranean greenhouse production: The constraints and the options

    Get PDF
    In the open field, the environment is a critical determinant of crop yield and produce quality and it affects the geographical distribution of most crop species. In contrast, in protected cultivation, environmental control allows the fulfillment of the actual needs depending on the technological level. The economic optimum, however, depends on the trade-off between the costs of increased greenhouse control and increase in return, dictated by yield quantity, yield quality and production timing. Additional constraints are increasingly applied for achieving environmental targets. However, the diverse facets of greenhouse technology in different areas of the world will necessarily require different approaches to achieve an improved utilization of the available resources. Although advanced technologies to improve resource use efficiency can be developed as a joint effort between different players involved in greenhouse technology, some specific requirements may clearly hinder the development of common “European” resource management models that, conversely should be calibrated for different environments. For instance, the quantification and control of resource fluxes can be better accomplished in a relatively closed and fully automated system, such as those utilized in the glasshouse of Northern-Central Europe, compared to Southern Europe, where different typologies of semi-open/semi-closed greenhouse systems generally co-exist. Based on these considerations, innovations aimed at improving resource use efficiency in greenhouse agriculture should implement these aspects and should reinforce and integrate information obtained from different research areas concerning the greenhouse production. Advancing knowledge on the physiology of high temperature adaptation, for instance, may support the development and validation of models for optimizing the greenhouse system and climate management in the Mediterranean. Overall, a successful approach will see horticulturists, plant physiologists, engineers and economists working together toward the definition of a sustainable greenhouse system
    corecore