12,085 research outputs found

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology.Comment: Minor update

    Improving transparency and scientific rigor in academic publishing.

    Get PDF
    Progress in basic and clinical research is slowed when researchers fail to provide a complete and accurate report of how a study was designed, executed, and the results analyzed. Publishing rigorous scientific research involves a full description of the methods, materials, procedures, and outcomes. Investigators may fail to provide a complete description of how their study was designed and executed because they may not know how to accurately report the information or the mechanisms are not in place to facilitate transparent reporting. Here, we provide an overview of how authors can write manuscripts in a transparent and thorough manner. We introduce a set of reporting criteria that can be used for publishing, including recommendations on reporting the experimental design and statistical approaches. We also discuss how to accurately visualize the results and provide recommendations for peer reviewers to enhance rigor and transparency. Incorporating transparency practices into research manuscripts will significantly improve the reproducibility of the results by independent laboratories

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology

    Evolution of statistical analysis in empirical software engineering research: Current state and steps forward

    Full text link
    Software engineering research is evolving and papers are increasingly based on empirical data from a multitude of sources, using statistical tests to determine if and to what degree empirical evidence supports their hypotheses. To investigate the practices and trends of statistical analysis in empirical software engineering (ESE), this paper presents a review of a large pool of papers from top-ranked software engineering journals. First, we manually reviewed 161 papers and in the second phase of our method, we conducted a more extensive semi-automatic classification of papers spanning the years 2001--2015 and 5,196 papers. Results from both review steps was used to: i) identify and analyze the predominant practices in ESE (e.g., using t-test or ANOVA), as well as relevant trends in usage of specific statistical methods (e.g., nonparametric tests and effect size measures) and, ii) develop a conceptual model for a statistical analysis workflow with suggestions on how to apply different statistical methods as well as guidelines to avoid pitfalls. Lastly, we confirm existing claims that current ESE practices lack a standard to report practical significance of results. We illustrate how practical significance can be discussed in terms of both the statistical analysis and in the practitioner's context.Comment: journal submission, 34 pages, 8 figure
    corecore