124 research outputs found

    What's Behind the Mask: Understanding Masked Graph Modeling for Graph Autoencoders

    Full text link
    The last years have witnessed the emergence of a promising self-supervised learning strategy, referred to as masked autoencoding. However, there is a lack of theoretical understanding of how masking matters on graph autoencoders (GAEs). In this work, we present masked graph autoencoder (MaskGAE), a self-supervised learning framework for graph-structured data. Different from standard GAEs, MaskGAE adopts masked graph modeling (MGM) as a principled pretext task - masking a portion of edges and attempting to reconstruct the missing part with partially visible, unmasked graph structure. To understand whether MGM can help GAEs learn better representations, we provide both theoretical and empirical evidence to comprehensively justify the benefits of this pretext task. Theoretically, we establish close connections between GAEs and contrastive learning, showing that MGM significantly improves the self-supervised learning scheme of GAEs. Empirically, we conduct extensive experiments on a variety of graph benchmarks, demonstrating the superiority of MaskGAE over several state-of-the-arts on both link prediction and node classification tasks.Comment: KDD 2023 research track. Code available at https://github.com/EdisonLeeeee/MaskGA

    Approximations of Shannon Mutual Information for Discrete Variables with Applications to Neural Population Coding

    Full text link
    Although Shannon mutual information has been widely used, its effective calculation is often difficult for many practical problems, including those in neural population coding. Asymptotic formulas based on Fisher information sometimes provide accurate approximations to the mutual information but this approach is restricted to continuous variables because the calculation of Fisher information requires derivatives with respect to the encoded variables. In this paper, we consider information-theoretic bounds and approximations of the mutual information based on Kullback--Leibler divergence and R\'{e}nyi divergence. We propose several information metrics to approximate Shannon mutual information in the context of neural population coding. While our asymptotic formulas all work for discrete variables, one of them has consistent performance and high accuracy regardless of whether the encoded variables are discrete or continuous. We performed numerical simulations and confirmed that our approximation formulas were highly accurate for approximating the mutual information between the stimuli and the responses of a large neural population. These approximation formulas may potentially bring convenience to the applications of information theory to many practical and theoretical problems.Comment: 31 pages, 6 figure

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Dimensionality reduction and unsupervised learning techniques applied to clinical psychiatric and neuroimaging phenotypes

    Get PDF
    Unsupervised learning and other multivariate analysis techniques are increasingly recognized in neuropsychiatric research. Here, finite mixture models and random forests were applied to clinical observations of patients with major depression to detect and validate treatment response subgroups. Further, independent component analysis and agglomerative hierarchical clustering were combined to build a brain parcellation solely on structural covariance information of magnetic resonance brain images. Übersetzte Kurzfassung: Unüberwachtes Lernen und andere multivariate Analyseverfahren werden zunehmend auf neuropsychiatrische Fragestellungen angewendet. Finite mixture Modelle wurden auf klinische Skalen von Patienten mit schwerer Depression appliziert, um Therapieantwortklassen zu bilden und mit Random Forests zu validieren. Unabhängigkeitsanalysen und agglomeratives hierarchisches Clustering wurden kombiniert, um die strukturelle Kovarianz von Magnetresonanz­tomographie-Bildern für eine Hirnparzellierung zu nutzen
    corecore