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Abstract

Thesis Title: Mixed Selectivity via Unsupervised Learning in Neural Networks
Yan Wu

Mixed selectivity characterises neurons that simultaneously respond to different input
stimuli. Neurons with mixed selectivity have been observed in multiple brain regions, and
are hypothesised to play important roles in neural computation. Recently, both experimental
and theoretical work demonstrated the importance of mixed selectivity in context-dependent
decision tasks. This thesis extends existing theoretical work on mixed selectivity, arguing for
a general and statistical role of mixed selectivity in learning complex dependencies of input
stimuli. This role can be motivated from unsupervised learning of generative models, and is
exhibited in increased mutual information between the stimuli and their neural representation.
This argument is supported empirically using simulation of a sequence disambiguation task
that incorporated key aspects of related behaviour experiments. Mixed selectivity neurons
that resembled hippocampal place cells were emerged from models optimised only for
behaviour. To understand these results, as well as to generalise the findings to a wider range
of computations, I provided a formal connection between learning robust models and mixed
selectivity.
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Chapter 1

Introduction

1.1 From neural representation to computation

Despite recent rapid advances in artificial intelligence (AI), the brain remains the only
instantiation of general intelligence. AI has achieved or surpassed human-level performance
in an increasing range of tasks, including chess, video games (Mnih et al., 2015), and more
recently the ancient game of Go (Silver et al., 2016). However, the human brain is much
better at task generalisation, and can learn from far fewer data. Crucially, while AI is often
specialised, only humans can master all these tasks simultaneously. Moreover, compared with
state-of-the-art AI that relies on more than a dozen of graphical processing units (GPUs) and
thousands of watts to perform a single task1, the human brain is incredibly energy efficient
— it weighs no more than a laptop and consumes about the same energy as an incandescent
light2 (Kandel et al., 2000). Understanding the brain, especially how intelligence emerges
from the brain is one of the central questions in science.

One way to understand the brain is to understand how neurons represent. Neural repre-
sentation, usually in the form of recorded neural activities, gives us important evidence on
how an animal or human is solving a task. According to the normative perspective of compu-
tational neuroscience, the brain employs optimal neural representations for the underlying
computations required to solve a task (Dayan and Abbott, 2001). However, it is challenging
to infer the computation from merely observed neural activities. The neural systems are
highly complex and nonlinear, and recordings of neural activities have large variance due to
noise both the in the neural system and in the recording procedure. Abstraction is therefore
a necessary tool to navigate these layers of complexity and focus on the specific level of
investigation. For this purpose, I use David Marr’s three levels (Marr, 1982) to abstract and

1A mini workstation with a stack of GPUs.
2Estimated at about 25 watts.
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analyse neural representation: the computational level formulates the task of interest as a
computational problem, the algorithmic level involves how the computational problem can
be solved based on specific representations, and the implementational level considers the
physical realisation of the system for solving this problem. These levels are closely coupled,
for example in studying neural systems, limits of biological systems provide constraints at
the implementation level which then restrict the algorithms that can be employed to solve the
task’s computation problem.

Interpreting neural representations in relation to task-dependent computations has the
advantage that, instead of studying the phenomena in isolation, experimental observations are
always related to their functional role. The experimental observations of particular interest
in this thesis are neural activities that exhibit mixed selectivity, which have been observed
in a variety of brain areas and computations that involve learning an internal statistical
model of inputs (Fiser et al., 2010; Hinton and Ghahramani, 1997). Following Rigotti
et al. (2013), mixed selectivity neurons are those that are “tuned to mixtures of multiple
task-related aspects”. Mixed selectivity has been shown to support complex decision tasks
by expanding the dimensionality of representations (Rigotti et al., 2013). Notably, neural
representation with elaborated mixed selectivity, such as grid cells, has been found recently
from an end-to-end trained artificial system in navigation tasks (Banino et al., 2018).

Based on these observations, this thesis tries to advance theoretical understanding of
mixed selectivity from the perspective of statistical modelling. I will demonstrate that mixed
selectivity is an emergent property of neural networks trained to model external inputs.
Such “generative models” can be trained with unsupervised learning, which does not require
labelled data and is likely to be employed by the brain, given the large volume of unlabelled
data available from perception. In addition to the expanded dimensionality at the single
neuron level, as demonstrated in previous work (Rigotti et al., 2013), I further show that, at
the population level, mixed selectivity increases the robustness of the neural network. This
argument is supported by numerical simulations on context-dependent spatial prediction
task, where we observed neurons with mixed selectivity for both location and context, and
is justified by analytical results directly connecting learning generative models and mixed
selectivity in more general scenarios.

In summary, this work proposes that mixed selectivity is a consequence of learning the
statistical structure of inputs, which supports robust performance against unstructured noise.
The statistical model can be learned easily with either denoise training, via adding noise
to inputs, or a novel regulariser I developed. As a confirmation of my theory, the recurrent
neural network in our experiments exhibited representation that resembled those recorded in
multiple brain regions, and increased mixed selectivity was observed after training.
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1.2 Mixed selectivity

Of the 100 billion neurons in the brain, their types and connectivities, consequently their
firing patterns, vary vastly. For example, neurons in neocortex have complex spontaneous
activities, hippocampal place cells have sparse and spatially sensitive firing patterns, while
some retinal cells do not fire discrete spikes at all (Kandel et al., 2000).

To understand the computational role of a neural system, one first needs to define the input
and output of this system (Dayan and Abbott, 2001). While the neural activities observed can
be generally interpreted as the outputs of the system, the inputs are usually decided based on
understanding of the system’s function. For example, in studying the visual cortex in parsing
a visual scene, one may consider individual pixels as the atomic input features, while as for
deeper regions such as the hippocampus, more abstract features such as location and other
environmental factors are more useful inputs to consider for studying spatial and navigation
tasks. Practically, in an experiment, it is preferable if such inputs are easily measurable and
controllable.

Once the inputs and outputs of of the system are determined, we can characterise the
selectivity of this system, as how the outputs are sensitive to different inputs. For neurons
as such systems, pure selective neurons are only sensitive to single inputs, while as mixed
selective neurons are sensitive to combinations of different inputs. This intuitive definition of
mixed selectivity is based on, but extended the scope of, the (model-based) mixed selectivity
defined by Rigotti et al. (2013).

Mixed selectivity represents an important type of neural representations in the brain.
Regardless of their exact functional roles, a large number of these neurons, found in different
brain regions, are characterised by their selective firing to multiple input features, which I
generally considered as having mixed selectivity. For the examples used earlier: at the level
of sensory processing, complex cells in primary visual cortex are tuned to both the spatial
orientation and movement direction of visual stimuli (Hubel and Wiesel, 1962); at a higher
level, hippocampal cells use mixed selectivity by activities tuned to both spatial locations
and non-spatial contexts (Wood et al., 2000).

Rigotti et al. (2013) argued that nonlinear mixed selectivity results in high dimensional
neural representations. Neurons with mixed selectivity project originally separated input
stimuli into higher dimensional feature spaces. Such high dimensional feature spaces may
benefit down stream computation. For example, originally linearly non-separable inputs may
become linearly separable features, which is visualised in Figure 1.1. Note that the projection
needs to be nonlinear for this purpose; otherwise, the inputs are only projected to another
hyper-plane without increasing dimensionality. Figure 1.1 b and c compare neurons with
linear and nonlinear mixed selectivity.
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Consequently, in neural systems, mixed selectivity may simplify the decoding task for
down-stream neurons, since multiple task relevant factors, such as both the immediate stimuli
the less immediate context, would already be represented together via mixed selectivity. Con-
sistent with this theoretical argument, experimental evidence suggests that mixed-selectivity
is strongly correlated with task performance, which makes it a promising interface for investi-
gating the underlying computations supporting corresponding behavioural tasks. Rigotti et al.
(2013) show that the degree of nonlinear mixed selectivity in monkey’s PFC were correlated
with the performance of context-dependent decisions. More recently, in a context-dependent
conditioning task, increased errors were observed to be correlated with reduced encoding
of context in the amygdala (Saez et al., 2015). In this experiment, neurons in the amygdala
encoded both the identity of conditional stimuli and contexts, which exhibiting mixed se-
lectivity. Therefore, it suggested a correlation between decreased performance and reduced
mixed selectivity.

1.3 Sequence Disambiguation: a Testbed for Mixed Selec-
tivity

In this thesis, I mainly investigate mixed selectivity via experiments on sequence learning. A
variety of everyday activities, including language understanding and navigation, are examples
of sequence learning. In particular, disambiguation of distinct sequences with overlapping
parts (A-B-C-D vs. E-B-C-F) is involved in tasks ranging from finding the location of a
parked car to appropriately chaining actions to prepare a breakfast.

This task is well suited as a test-bed for mixed selectivity, since different types of
information are required simultaneously for disambiguating different sequences. For example,
to predict the next element in a sequence that partially overlaps with another, both the current
element that specifies the location within the sequence and the contextual information that
uniquely identifies a sequence are required at the same time. Compared with another widely
used sequence memory task (e.g., Rigotti et al., 2013), more neural data are available on
behavioural experiments involving sequence learning, which I will review below.

1.3.1 Task

A classical sequence learning task that requires sequence disambiguation is the T-maze
alternation task (Figure 1.2, Wood et al., 2000). In this task, a rat randomly started from
either the left or right arm of a T-maze and moved down to the bottom of the maze. After
moving along the central arm to the T-junction, the decision point, it needed to turn left
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or right, depending on where it entered the central arm: if it entered from the right arm,
it needed to turn left (left-turn trial), and vice versa (right-turn trial). A trial ended at the
upper-left or upper-right corner of the T-maze. To reinforce this behaviour, cued reward
was delivered when the rat correctly completed the trial. Rats were able to learn this task
over repeated training sessions (Wood et al., 2000). The challenge of this task was at the
decision point, where the decision of which arm to proceed had to be made using contextual
information (left or right turn trial), which was determined before the rat entered the central
arm.

1.3.2 Behavioural Experiments

Experiments in both humans and other animals have found that multiple brain regions,
including the hippocampus, the parahippocampal area, and frontal cortical areas, may support
disambiguation in sequence learning. For example, Wood et al. (2000) observed that, in the
T-maze alternation task described in section 1.3.1, approximately 2

3 of hippocampal cells
with receptive fields on the shared central arm fired selectively, depending on whether the rat
was in a left-turn or right-turn trial (figure 1.3). Thus, these cells exhibited mixed selectivity
to both location and context, and were named “splitter cells” by Wood et al. (2000), as if they
“split” left-turn and right-turn trials.

In another experiment, the rats were trained to run on a running wheel between left-turn
and right-turn trials in a figure-eight maze as shown in figure 1.4 (Pastalkova et al., 2008). In
this case, the wheel corresponded to the decision point in the original T-maze experiment
(Figure 1.2), after which the rats needed to decide which arm to follow. By requiring the
rats to run on the wheel, where their locations stayed the same, location information and the
motor command of running were dissociated at the decision point. Nevertheless, internally
generated hippocampal neural activities during wheel-running were selective to both the time
spent on the wheel and the future choice of left-turn or right-turn (Figure 1.4). Importantly,
such selectivity to trial types was highly correlated with task performance, and was only
observed in correct trials.

In another T-maze based experiment, the choice was conditioned on an odour cue
(Fujisawa et al., 2008). Instead of alternating between the left and right arm of the maze,
an odour cue was presented at the beginning of a trial, specifying which arm was rewarded
(Figure 1.5, a). This context information needed to be maintained along the central arm to
the T-junction before the rat actually turned to one of the two arms. Consistent with this
computational demand, medial prefrontal cortex (mPFC) neurons in layer 2/3 and layer
5 were found to respond to both locations and odour cues (Figure 1.5). More recently,
Harvey et al. (2009) tested a similar perceptual decision task based on visual cues (Figure
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1.6). Equipped with a fully controlled virtual reality environment and calcium imaging, they
observed neurons in posterior parietal cortex (PPC) whose activities formed choice specific
sequences during the task.

In addition to spatial tasks, hippocampal cells have also been found to fire differentially
for odours shared between different sequences (Ginther et al., 2011). More recently, increased
activity in the hippocampus, parahippocampal cortex and orbitofrontal cortex were observed,
on both rats and humans, during spatial disambiguation tasks in virtual reality (Brown et al.,
2010; Harvey et al., 2009). In addition, the prefrontal cortex (PFC) was likely to play a
role in sequence learning and disambiguation as indicated by electrophysiological as well
as imaging data (Baeg et al., 2003; Euston et al., 2007; Fuster, 2001; Harvey et al., 2012;
Huettel et al., 2002). In conclusion, neural representations in a variety of brain regions have
been found to exhibit mixed selectivity during sequence disambiguation tasks.

1.3.3 Computational Models

How does the brain solve sequence learning tasks in these experiments? Theories and
computational models suggest this is achieved by encoding context together with sequences
of stimuli (e.g., locations). However, the exact mechanisms employed by the brain remains
unclear. Here I review existing computational models focusing on sequence disambiguation.
Although there are experimental data available in various cortical regions (section 1.3.2), most
of the models were focused on the hippocampus, which has dense recurrent connections (in
area CA3) and sparse firing that make it a suitable candidate for sequence coding (Eichenbaum
and Cohen, 2001). Nevertheless, the computational principles of these models as well as the
one I will present in this thesis, are not restricted to the hippocampus. This section reviews
these historically important models at length. Although these algorithms are not immediately
related to the model I am going to present, they provide important insights into sequence
disambiguation at different levels.

Temporal Context Model (TCM)

To solve the sequence disambiguation task at the computational level, Howard and Kahana
(2002) presented a minimalist model of context learning. It is a linear recurrent neural
network that encodes context through time as continuously changing inputs. Importantly, it
suggests sequences themselves can be used to encode the context for disambiguation, which
is conceptually the same as more complex non-linear recurrent neural networks (Chapter 3).
The temporal context model (TCM) is based on distributed representation of items as vectors
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in a high-dimensional space. It provides a principled explanation of recency and contiguity
effects in recall.

Assume the feature vector fi is a function of external input at time i, and ti is the context
at time i. The connection matrix MMM = ∑i fi · ti

⊺, as the outer-product of f and t, represents
the association between f and t. The input provided by a context t j is defined as fIN ≡MMM t j.
The TCM is based on the observation that, when f’s form a set of orthogonal basis 3, the
similarity between contexts at i and j, measured by their inner-product t⊺i · t j, is equivalent to
an activation based on the input defined as ai ≡ fIN⊺ · fi. This suggests that the distributed
features f encode contextual information, and such contextual information can be read-out
easily using these features alone.

Howard and Kahana (2002) further propose that the encoded context can be made to
evolve smoothly in time by an autoregressive process ti = ρ ti−1 + tIN

i , where tIN is the input
at time i that changes the context, and 0 ⩽ ρ ⩽ 1 determines how fast the context drifts.
While tIN can be anything that changes with time, the TCM uses a retrieved context to drive
context drift, such that the retrieved context is more correlated with recent items. This input
is defined as tIN

i = β ·MMMi fi, where β is another free parameter controlling the strength of the
retrieved context. Therefore, the TCM has a recurrent structure, by which input features also
serve as temporal context though the transform MMM. While the TCM’s simple and elegant way
of modelling temporal context is inspiring, the computational power is constrained by the
linear model, which may be problematic for complex tasks. For example, as a restriction of
its linearity, it is unclear how the required orthogonal features can be generated efficiently
for realistically changing input stimuli. It is also unclear how the TCM can disambiguate
sequences depending on non-smooth and non-autoregressive context, as in the tasks I study
here (section 1.3.1).

Models with Local Context Neurons

For neural network models, one way to represent context is to specify a population of neurons
with pure selectivity for context. One of the first computational models based on such “local
context neurons” was described by Levy (1996), and more biologically plausible models
with detailed biophysical features were subsequently developed in Wallenstein and Hasselmo
(1997) and Sohal and Hasselmo (1998). Since this thesis focuses on the computational
mechanism rather than biologically plausible implementations, I will only review the work
of Levy (1996) in more detail here.

3 Howard and Kahana (2002) allow identical f’s, but here I assume all f’s are different to simplify the
analysis.
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Levy (1996) presented a minimal biologically plausible model of hippocampal CA3 that
could solve various sequence learning tasks. It is a recurrent neural network trained on a local
Hebbian learning rule. The external inputs x driving the network are sparse binary patterns
postulated to come from the enthorinal cortex and the dentate gyrus. Importantly, only a
fraction of the neurons y directly receive external input, while as other neurons, analogous to
hidden neurons in modern neural networks, may develop into local context neurons through
learning. The outputs z of each neuron feeds-back as input into y through sparse recurrent
connections (with connectivities from 5% to 20%) that are randomly initialised.

More formally, this model operates according to

y j =
∑i wi j ci j zi(t−1)

∑i wi j ci j zi(t−1)+KI ∑i xi(t)+KR ∑i zi(t−1)
(1.1)

z j(t) =

1 if y j(t)⩾ θ or if x j(t) = 1

0 otherwise
(1.2)

where KI is the strength of feed-forward inhibition, KR is the feedback inhibition scale
constant, ci j ∈ {0,1} governs the (sparse) connectivity between neuron i and j, and wi j is the
excitatory weight between neuron i and j. The output from the previous step t−1 feeds-back
via the recurrent connections (w and KR). There are 512 excitatory neurons and 1 inhibitory
neuron, implicitly modelled as the recurrent inhibition term. The local synaptic learning rule
is

wi j(t)← wi j(t−1)+ εz j(t)
[
zi(t−1)−wi j(t−1)

]
(1.3)

where ε is the learning rate.

Levy (1996) demonstrated that this model was able to learn a series of sequential tasks.
In tasks requiring disambiguation, local context neurons that were selective to segments of
sequences emerged after learning. This model relied on highly processed inputs in the form
of sparse binary patterns. The inhibition parameters KI and KR had to be tuned manually,
and the stability of the learning process was unclear, as the Hebbian learning rule was not
derived from any specific objective function. Although it has been a pioneer of biologically
plausible models that learn to solve a large range of sequential tasks, it is questionable how
this model can scale-up for more realistic tasks without specifically tailored input/output
structures, as well as the heuristic learning rule. Moreover, its localist approach precluded
mixed selectivity for context.



1.3 Sequence Disambiguation: a Testbed for Mixed Selectivity 9

Hasselmo and Eichenbaum (2005)

In a more comprehensive model, in which physiological properties of the whole hippocampal
formation (including both the hippocampus and the entorhinal cortex) were considered,
Hasselmo and Eichenbaum (2005) used different neural populations to model sequence
association and context coding. In their model, the recurrent connections in entorhinal cortex
layer III (EC III) encode the associations between consecutive time steps, while entorhinal
cortex layer II (EC II) provides persistent and slowly changing temporal context similar to the
more abstract TCM (Howard and Kahana, 2002). More specifically, the recurrent connections
in EC III are modified by the correlation between the current and previous behavioural states
(bc and bc−1) through

∆WEC III = bc bc−1
⊺ (1.4)

The activities of neurons in EC III evolve through time according to the equation

aEC III(t) = bc +η
T/t WEC III ReLU(aEC III(t−1)−ψ) (1.5)

where the ReLU activation function is defined as ReLU(x) = max(0,x), and ψ is a threshold.
η is a positive constant smaller than 1 and 0 ⩽ t ⩽ T is the time step within a theta cycle,
so ηT/t represent the rhythmic activity of EC III neurons. The sustained activities in EC II
represent temporal context through

ac,EC II = bc +µ
c−s ac−1,EC II (1.6)

where 0 < µ < 1 is a constant, and s < c denotes the time step of a previous state. Expanding
this recursive equation reveals that ac,EC II = ∑

c
s=1 µc−s bs. In other words, EC II activity

represents the temporal context as a sum of the previous c behavioural states discounted
by µc−s. The retrieved sequences from EC III (equation 1.5, possibly with ambiguity)
and the temporal context from EC II are then combined in CA1 through CA3 to provide
disambiguated sequences.

The simulation of splitter cells in a grid environment are illustrated in Figure 1.7. Al-
though this model is based on observations across various regions of the hippocampal
formation, the functional roles of these regions are less justified from a computational per-
spectives. For example, it is unclear why forward association and context coding need to be
separated anatomically, and why the relatively simple role of synthesizing sequences and
context needs both CA3 and CA1. From a model selection point of view, it is necessary to
justify this additional structural complexity (MacKay, 2003). Additionally, this separation of
functional roles into different areas is incompatible with in vivo firing patterns of hippocampal
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and entorhinal cells that employ sparse distributed population codes (Smith and Mizumori,
2006).

Zilli and Hasselmo (2008)

In their models motivated by goal-directed behaviours, Zilli and Hasselmo (2008) assumed
that contextual information was imported from other parts of the brain or memory systems.
The model provided an explicit connection between reinforcement learning (RL) and memory
systems, which has also seen in machine learning literature such as Blundell et al. (2016).
Theory of RL (Sutton and Barto, 1998) is a framework for studying goal-directed behaviours.
In a typical RL setting that assumes Markov decision processes (MDP), the optimal actions
at time t, a∗t , is only based on the current state st . This set-up is difficult to account for animal
behaviours replying on past experience, without the extra complexity from assuming partial
observability (as in partially observable Markov decision processes). For instance, MDP fails
when the current state consist only of sensory input ssensory that is ambiguous and cannot
provide adequate information to support optimal actions.

Zilli and Hasselmo (2008) addressed this issue by augmenting the state with an episodic
memory system and a working memory system, such that the state at time t became a tuple
st = ⟨ssensory,sepisodic,sworking⟩. sepisodic passively holds the most recent n sensory inputs.
When these n sensory inputs are still not enough to disambiguate the current state — for
example, when the sensory input that differentiate two otherwise overlapping sequences
appeared before the previous n time step — an actively maintained sworking, which may
buffer any previous input, comes to help. Although such augmented states are capable of
disambiguating any sequences in theory, storing all the n previous sensory inputs may be
inefficient. In addition, it is unclear what is the best strategy to buffer the sensory input in
sworking. Zilli and Hasselmo (2008) demonstrated that this model could solve all except one
of the sequential disambiguation tasks they simulated.

Rajan, Harvey and Tank (2016)

From a different perspective, Rajan et al. (2016) showed that recurrent neural networks
directly trained to reproduce the observed neural representations could support context-
dependent sequential decision tasks. They studied what kind of neural network structure
gives rise to the sequential activity patterns observed in a variety of behavioural tasks. In
particular, they consider the data collected from the sequential decision making task in
Harvey et al. (2012), which I reviewed in the last section (see also figure 1.6). They proposed
a measure bVar to compare different activity patterns. It measures the stereotypy of the
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activity as the percentage of variance that can be explained by a moving template. The formal
definition of bVar will be introduced in section 4.3, which I will use to analyse the simulated
activities from my model. Rajan et al. (2016) showed that neither highly structured nor fully
random neural networks could explain the PPC data from Harvey et al. (2012) — the former
was too stereotypy (too high bVar) while the latter was too disordered (too low bVar). On the
other hand, between these two extremes, they demonstrated that a recurrent neural network
trained from randomly initialised weights could explain the data (showing similar bVar to
that found experimentally, Figure 1.8).

In the notation of Rajan et al. (2016), the activation of each neuron xi is determined by

τ
dxi

dt
=−xi +

N

∑
j=1

Ji j φ(x j)+hi (1.7)

where J is the recurrent connection matrix and φ(x) = 1
1+e−(x−θ) is the sigmoid nonlinearity

with bias (threshold) θ . The external input into each neuron hi is the same series of Gaussian
random noise that repeated from trial to trial, simulating sensory stimuli. The matrix J was
trained by the FORCE algorithm (Sussillo and Abbott, 2009), so the activity xi directly
regressed neural activities extracted from the calcium imaging recorded in Harvey et al.
(2012). Importantly, they showed that only a small portion (about 10%) of the recurrent
connection weights needed to be modified to reproduce activities similar to data. They
further demonstrated the computational function of this biologically plausible representation
by computing the selectivity index during the delayed decision period as in Harvey et al.
(2012), showing such patterns could support simulated sequential decision making involving
disambiguation (Figure 1.8).

This work was the first to show a concrete connection between neural networks trained
from random initialisation and in vivo recorded data during sequence learning tasks. Never-
theless, since the biologically plausible representation from this model was obtained from
regressing neural data, it was less clear whether such representation, although sufficient, was
also necessary, and could spontaneously emerge from behavioural tasks.

In summary, all these models include mechanisms that are either manually designed
or explicitly trained to imitate observed representations, leaving open the question of what
representation of context is most appropriate for sequence learning and disambiguation.
On the other hand, results from experiments under different settings unanimously revealed
representations with highly mixed selectivity (section 1.3.2), which are at odds with many of
the models based on hand-crafted features that do not exhibit mixed selectivity.

It is worth mentioning that natural language processing (NLP), which involves parsing
complex sequences of symbols, also addresses the challenge of sequence disambiguation.
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NLP has been one of the most active research areas in machine learning, and a large number
of exciting results using neural networks have been reported recently (Bahdanau et al., 2014;
Mikolov et al., 2010; Sutskever et al., 2014). However, the challenge of sequence disam-
biguation is compounded by several other issues in natural language processing. Therefore,
I skip this part of the literature from this review, and concentrate on models specifically
dealing with sequence disambiguation and neural representations.

1.4 Structure of this thesis

Chapter 2 reviews artificial neural networks, with an emphasis on their connections with
probabilistic generative models, which leads to a novel interpretation of denoising training
as introducing a smooth prior as a constrained Gaussian mixture model. It explains how
assumptions and statistical properties of such models affect the neural representations de-
veloped during learning. A class of neural networks called autoencoders can be interpreted
as generative models, under which their representations are naturally explained as latent
variables in these models.

Chapter 3 then extends the probabilistic interpretation to recurrent neural networks
(RNNs), after reviewing common training methods for RNNs. Due to the additional com-
plexities involved in RNNs, more technical analysis of RNNs and sequence learning are
presented separately in Appendix A.

In chapter 4, I present an experiment using recurrent neural networks (RNNs) for a
sequence learning task. This task requires disambiguating overlapping sequences of locations,
which requires the neural population to represent both the locations within sequences and
contexts distinguishing different sequences (at even overlapping locations) simultaneously.
However, it remains an open question whether the location and contextual information shall
be mixed at single neuron level, resulting in neurons with mixed selectivity. To answer
this question, I trained RNNs for one-step sequence prediction. The trained RNNs were
competent in both predicting and recalling sequences. In addition, they spontaneously
developed biologically plausible neural representations showing mixed selectivity. I then
explain this performance from the perspective of dynamical systems.

Chapter 5 further discusses mixed selectivity. There I propose a new information theoret-
ical measure of mixed selectivity and compare it with existing measure of mixed selectivity
from Rigotti et al. (2013). I try to argue from both theoretical and simulation analysis that the
measure of mixed selectivity proposed here is more relevant for understanding the connection
between neural representation and task performance.
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Chapter 6 concludes the analysis with the main theoretical result of this thesis — training
a robust generative model implicitly increases mixed selectivity. This suggests that the
emergence of mixed selectivity after training the model for sequence disambiguation, as
well as the observed correlation between mixed selectivity and performance, were not
coincidences. Instead, mixed selectivity is a consequence of learning robust generative
models. The wider implications of this work are discussed in Chapter 7.
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Fig. 1.1 Low and high-dimensional neural representations, and mixed selectivity (reproduced
from Rigotti et al., 2013). (a) Contour plots of the responses (spikes per second) of four
hypothetical neurons to two continuous stimuli (a and b). Neurons 1, 2 were pure selectivity
neurons, selective to individual stimuli (a and b, respectively). Neuron 3 is a linear mixed
selectivity neuron. Neuron 4 is a nonlinear mixed selectivity neuron. The green circles
indicate the responses to three sensory stimuli parametrised by different a, b combinations.
(b) The responses of the pure and linear mixed selectivity neurons from a in the space of
activity patterns elicited by the three stimuli indicated by the green circles in a. (c) As in
b, with the third neuron being the nonlinear mixed selectivity Neuron 4 in a. This higher
dimensionality has an important role when the activity is read out by linear classifiers. For
example, in b it is impossible for any linear classifier to respond to the darker central circle
and not to one of the other two. But it is possible in c, for instance for a linear classifier
corresponding to an appropriately positioned horizontal plane.



1.4 Structure of this thesis 15

Fig. 1.2 The T-maze alternation task adapted from Wood et al. (2000). A rat randomly started
from either one of the two side-arms. At the decision point (the T-shaped junction), the rat
needed to turn left if it entered from the right arm (left-turn trial, blue line); it needed to
turn right if it entered from the left arm (right-turn trial, red line). In animal experiments,
this behaviour was reinforced by rewarding at the end of correct trials. Here the rewards are
omitted for simplicity, thus the task is interpreted as unsupervised sequence learning.
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Fig. 1.3 Examples of splitter cells that were active while the rat traversed the central stem
of the T-maze (reproduced from Wood et al., 2000, task is illustrated in Figure 1.2). These
cells fired almost exclusively during either left-turn or right-turn trials. In each example,
the paths taken by the animals on the central stem are plotted in the left panel (light grey,
left-turn trial; dark grey, right-turn trial). In the middle and right panels, the locations of the
rat when individual spikes occurred in hippocampal CA1 place cells are indicated separately
for left-turn trials (purple dots) and right-turn trials (orange dots). (a) A cell that fired almost
exclusively on left-turn trials as the rat traversed later sectors of the stem. (b) A cell that fired
almost exclusively on right-turn trials as the rat traversed early sectors of the stem. (c) A cell
that fired almost exclusively on right-turn trials as the rat traversed later sectors of the stem.
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Fig. 1.4 Cell-assembly activities in the wheel predicted the future choice of the rat in the
maze (reproduced from Pastalkova et al., 2008). (a) Illustration of the experimental scheme.
The rats were trained to alternate between the left and right arm of the maze to receive
reward (water) after correct trials. Before making the decision, the rats were running in
the same direction in a wheel. Left: colour-coded spikes (dots) of simultaneously recorded
hippocampal CA1 pyramidal neurons. The rat was required to run in the wheel facing to the
left during the delay between the runs in the maze. Right: percent of neurons firing >0.2 Hz
within each pixel. The highest percentage of neurons was active when rats were running in
the wheel. (b) Normalised firing rate profiles of neurons during wheel running and in the
stem of the maze, ordered by the latency of their peak firing rates during trials (each line is a
single cell; cells are combined from all sessions). White line shows the time gap between the
end of wheel running and the initiation of maze stem traversal.
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Fig. 1.5 Behaviour- and position-selective firing activity of PFC single neurons (reproduced
from Fujisawa et al., 2008). (a) Illustration of odour-based matching-to-sample task. An
odor cue (chocolate or cheese) is presented following a nose-poke in a start box (position 0).
Cheese or chocolate odour signals the availability of cheese or chocolate reward in the left or
right goal area (position 1), respectively. Travel trajectories were linearised and represented
parametrically as a continuous, one-dimensional line for each trial (blue and red lines). Firing
patterns of neurons recorded simultaneously in either layer 2/3 (b) or layer 5 (c) in two rats.
Each row represents the position-dependent firing rate of a single neuron (normalized relative
to its peak firing rate). Neurons were ordered by the location of their peak firing rates relative
to the rat’s position in the maze.
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Fig. 1.6 Imaging PPC neuronal activity during the T-maze task (reproduced from Harvey
et al., 2012). (a) Diagram of the two trial types of the virtual T-maze that differed only in the
cue period and the reward location. Patterns in the diagram reflect the patterns present on
the virtual maze walls. (b) Normalised mean ∆F/F traces for all the choice-specific, task-
modulated cells (one cell per row) imaged in a single mouse and divided by left-preferring
and right-preferring cells. Traces were normalised to the peak of each cell’s mean ∆F/F
trace on preferred trials and sorted by the peak time.
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Fig. 1.7 Simulation of a hippocampal “splitter cell” (B1) that was sensitive to both location
and context (trial type). In contrast, the “non-splitter cell” (B2) was not selective to the
context (reproduced from Hasselmo and Eichenbaum, 2005). The two white boxes in panels
from A1 / A2, as well as the black boxes in panels from B1 / B2, represent walls separating
the environment into one middle and two side lanes. A1 / A2 Behavioural context showing
two trial types (L, R, C, S represent different stages in the simulated environment). B1. A
splitter cell representing the location just to the right of the choice point will fire as part of
sequences retrieved in the stem after the virtual rat performs a right turn response (left side),
but will not fire after a left turn response (right side). Gray scale represents rates of spikes
(darker for higher) fired by simulated cells when the virtual rat is in particular locations. B2.
A non-splitter cell representing the choice point will fire after visiting either arm.
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Fig. 1.8 Simulation of PPC neural representations (reproduced from Rajan et al., 2016). The
sparsely connected recurrent neural network was trained to imitate the neural representation
recorded by Harvey et al. (2012). The outputs of the 569-neuron network with p = 16%
plastic synapses, sorted and normalized by the peak of the output of each neuron, showed a
match with the data (Figure 1.6). For this network, pVar = 85%.





Chapter 2

Neural networks: a probabilistic view

This chapter introduces artificial neural networks, with an emphasise on the probabilistic
interpretation of these computational models. In addition to dealing with uncertainty, this
view provides useful tools for understanding the behaviours of neural networks, which
enables us to recast training a broad range of neural network models as building statistical
models of data. This chapter ends with introducing a regulariser for a practical approximation
of training generative models with Gaussian mixture model prior. This regulariser provides a
steppingstone for latter chapters that further extend the analysis of neural networks using
information theory.

2.1 Neural networks

Artificial neural networks abstract neural circuits in the brain into interconnected simple
computational units. These computational units usually have monotonic nonlinear activation
functions, so that they can be combined to approximate complex functions (Minsky and
Papert, 1969). The outputs from these computational units can be interpreted as firing rates
of neurons, so we simply call these computational units “neurons” in the following text.
From this view, the output of a neuron as a function of the external input variable is a model
of the tuning curve of a real neuron. Similarly, the connections between these units are
analogous to synapses. Rudimentary though such models are, artificial neural networks are
able to develop biologically plausible neural representations, including those with mixed
selectivity; as expressive computational models, they are able to solve challenging tasks
including sequence learning in the face of ambiguity (section 3.1). Neural networks have
achieved state-of-the-art performance in a number of real-world challenging tasks (LeCun
et al., 2015; Schmidhuber, 2015).
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Neural networks may develop representations resembling those in the brain, after being
optimised for computational or behavioural task performance. For example, firing patterns
similar to those from the primary visual cortex emerged after training on natural images
(Cadena et al., 2019; Glorot et al., 2011; Olshausen and Field, 1996). When trained for
solving motor control tasks, neurons with tuning curves similar to those in motor cortex
were observed (Sussillo et al., 2015). More recently, representations similar to hippocampal
place cells and enthorinal grid cells were observed after training neural networks on spatial
navigation tasks (Banino et al., 2018).

Even in more abstract tasks where clear corresponding neural representations have yet to
be observed experimentally, the representations developed in neural network models exhibit
mixed selectivity. For example, since the early years of connectionism, neural representations
that emerged during simple semantic learning showed mixed selectivity by correlating
concepts with closely related semantic meanings (Rumelhart et al., 1987, 1986). In the more
complex task of language learning, neurons selective to context dependent semantic units at
different levels (e.g., sentence, phases) were found in recurrent neural networks (Karpathy
et al., 2015).

2.2 Generative models

Generative models, as the name suggests, can generate samples similar to the observed data
x ∈ X , which intuitively suggests these models understand the dataset X (Hinton, 2007).
More formally, a generative model learns the distribution of data X (defined by its probabilis-
tic density function p∗(x)), either explicitly or implicitly (Mohamed and Lakshminarayanan,
2016), by minimising a discrepancy measure between the data distribution p∗(x) and the
model distribution pθ (x) — a density estimation problem. Here I focus on parametric
models that explicitly model such probability density functions, and use KL-divergence as
the probability distance measure.

In this case, training a generative model involves adjusting its parameters θ , so that
the observed data is likely to have been generated from the model, which can be formally
expressed as increasing the likelihood of the model given data (MacKay, 2003). This is a
general task that can be a stepping stone for many other tasks, which makes it an ideal a
priori candidate of neural computation from synaptic to cognitive levels (Berkes et al., 2011;
Griffiths et al., 2010; Pfister et al., 2010; Tenenbaum et al., 2011; Tootoonian and Lengyel,
2014).

Learning a generative model provides a principled way for learning representations. In
particular, I will look at generative models with latent variables, which explicitly model
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Fig. 2.1 The directed graphical model illustration of generative models discussed in this
section. To generate data x, we first sample r from the prior distribution of the from pθ (r),
then sample x from the conditional distribution pθ (x|r).

unobserved factors behind observed data. A generative model with latent variables is
illustrated in figure 2.1 (left). While the variable x represents observable data, the latent
variable r models hidden factors assumed to generate these data. This directed graphical
model can be interpreted as latent variable representing the observed data x via the conditional
distribution pθ (x|r), where θ is the parameter vector. To sample data from this model, we
first sample the latent variable from the prior pθ (r), then the observable data from pθ (x|r).

Inference is the inverse of generation, which computes the latent variables r given
observation x. This process is of particular interest for studying neural representation: we
can treat a neural system as an inference model (also called recognition model, Dayan et al.
(1995); Hinton et al. (1995)), so that neural activities r, as output of this model, represent the
hidden factors of its inputs x. Therefore, the latent variables r can be interpreted as the neural
representation of input x. Under this statistical framework, we can further study the mutual
information between inputs and their neural representation, which quantifies the information
passed from inputs to outputs of the inference model.

This statistical structure makes the latent variable interpretable. For example, r could be
the location of the animal underlying its noisy sensory input x, or the category of a hand-
written digit when x is an image of the hand-written digit. In addition to their explanatory
ability, generative models naturally support unsupervised learning. While labelled data are
usually scarce for both artificial and biological agents, unsupervised learning can efficiently
utilise unlabelled data. As a result, unsupervised learning has been hypothesised to play a
crucial role in neural computation (e.g. Barlow, 1989; Bell and Sejnowski, 1995; Hinton
et al., 1995).

Formally, it has been shown that learning a feed-forward generative model leads to
increased mutual information between the model representations and data (Barber and
Agakov, 2004). I will extend this infomax argument to RNNs and sequence learning in
section 6.1. The information gained in this process has been demonstrated to facilitate
tasks such as pattern recognition (Hinton, 2007). Perhaps for the same reason, generation is
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well-known to be an indispensable part of education. For instance, in the practice of solfeggio
in music education, singing (generating correct sound) is an pathway to discriminating
and recognising complicated musical sound, which provides the foundation for further
instrumental training. Therefore, although this thesis only focuses on the computation of
generation, the results are relevant for a wider range of tasks.

The examples I shall use throughout this thesis, prediction and recall of temporal se-
quences, are relevant in many aspects of life. Learning language, music, navigation and
planning are all closely related to such sequence learning. In particular, several decades
of experiments on sequence learning, across different species and brain regions, provide
abundant high quality data waiting for more thorough theoretical investigation. Appendix A
shows that sequence learning can be formulated as a generation task.

2.3 Understanding artificial neural networks as generative
models

Pioneered by connectionists, there has been a long history of using artificial neural networks
(ANNs) to understand neural systems in the brain (Mante et al., 2013; Marr, 1991; Olshausen
and Field, 1996; Rumelhart et al., 1987). Most of these studies treat neural networks as
black-boxes when optimising them for the performance on certain tasks (Sussillo and Barak,
2013). The resulting neural representations from these neural networks are then compared
with recorded neural data. This approach has its advantages and disadvantages, ironically,
for the same reason. On one hand, since the objective of certain task performance does not
specify any criterion on representations per se, this approach justifies that the spontaneously
emerged representations are computationally optimal for the task. On the other hand, this
black-box approach poses the challenge of understanding why such representations are
optimal. This thesis aims to go beyond such back-box method, starting from a normative
understanding of ANNs.

One way is to understand ANNs is to interpret them as dynamical systems. As recent
introduced in their paper with title “Opening the Black Box”, Sussillo and Barak (2013)
presented a framework for understanding emerging representations in recurrent ANNs (or
simply RNNs) from a dynamical systems perspective. This method is most helpful when the
intrinsic dynamics of the system are mostly autonomous. I will review this approach in more
detail in Section 4.4, where it is employed to analyse the recall dynamics of my sequence
learning model. However, this approach does not generalise well to systems with persistent
external input, and is less useful for understanding feed-forward neural networks.
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An alternative and more general way of understanding neural networks comes from a
statistical point of view (e.g., Barlow, 1989; Bell and Sejnowski, 1995; Field, 1994; Hinton,
1989; Lewicki and Sejnowski, 2000; Olshausen and Field, 1996). The majority of this thesis
is devoted to understanding the emergent neural representations, by interpreting the ANNs as
generative models. The most basic ANNs are simply deterministic functions parametrised
by the weights and biases, which can be seen as analogous of neural networks in the brain
(Rumelhart et al., 1987). However, when stochasticity is introduced either explicitly or
implicitly, by for example added noise, ANNs can be interpreted as probabilistic models
(Gal and Ghahramani, 2015; Hinton and Ghahramani, 1997; MacKay, 1992; Neal, 1996;
Teh et al., 2004; Vincent et al., 2008a). This view has enabled interpretation of stochastic
ANNs as generative models (Roweis and Ghahramani, 1999; Vincent, 2011), which is further
explored in this thesis. Based on recent development in stochastic variational inference (Gal
and Ghahramani, 2015; Kingma et al., 2015; Rezende and Mohamed, 2015), I interpret the
neural activities as representing a posterior distribution given external stimuli. With this
probabilistic interpretation, correspondences can be established between recorded neural
activities and the latent variables in models.

2.4 Inference and learning

This section introduces the variational approach as a general framework for inference in
generative models (Hoffman et al., 2013; Wainwright and Jordan, 2008). The computational
cost of inference across different samples can be amortised via a parametrised inference
model, allowing efficient inference for high dimensional data. This inference model is also
called a recognition model when implemented by a neural network (Dayan et al., 1995;
Hinton et al., 1995; Hinton and Zemel, 1994; Kingma and Welling, 2014; Rezende et al.,
2014a). From the perspective of neural coding, we can interpret the inference model as an
encoder, which transform input into a code. I will discuss the encoding/decoding perspective
in more detail in the next section.

As the inverse of generation, inference computes the posterior distribution pθ (r|x) given
an observation x (figure 2.1). In our previous examples, the posterior distribution describes
the probability that the animal in certain location, given the noisy sensory input, or the
probabilities of categories (the digits) given a hand-written digit in the form of an image. In
principle, inference is straightforward using Bayes’ rule

pθ (r|x) =
pθ (x|r)pθ (r)

pθ (x)
(2.1)
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However, computing the marginal probability pθ (x), as the normalising constant, requires
integrating or summing over all possible configurations of the representation r′

pθ (x) =
∫

pθ

(
x|r′
)

pθ

(
r′
)

dr′ (2.2)

This operation is generally intractable. If r′ is continuous, the integral in equation 2.2 is not
analytically tractable except in a few cases such as linear Gaussian models. If the of r′ is
discrete, equation 2.2 requires summation over states exponential in the dimensionality of r′.

Despite its intractability, pθ (x) is an important quantity. It is the likelihood function of
the generative model when we consider pθ (x) as a function of the parameters θ (fixing x).
A commonly used objective for training a generative model is the log-likelihood given all the
data XXX = x1,x2, . . . ,xN :

θ ← argmax
θ

ln pθ (X) (2.3)

because a high likelihood indicates the observed data are likely to be generated from this
model. Taking the assumption that data points are identically and independently distributed
(iid) 1 , this objective is equivalent to the expectation:

ln pθ (XXX) =
N

∑
n=1

ln pθ (xn)

∝ ⟨ln pθ (x)⟩p∗(x)

(2.4)

where p∗(x) is the (unknown) distribution of the data. For brevity, we may omit the averaging
over the data in the following text. Since computing pθ (x) is usually intractable, it is
infeasible to directly use equation 2.3 for learning. We now turn to an alternative objective
for maximising the log-likelihood ln pθ (X), which involves approximating the intractable
posterior distribution pθ (r|x).

2.4.1 Variational inference and the EM algorithm

When exact inference is intractable, the alternative is approximate inference. The variational
approach provides a general approximate inference method by formulating inference as an op-
timisation problem. For any distribution qφ (r|x) over the representation that is parameterised

1This assumption is not always true, in particular for sequential data. Derivation for sequential data and
recurrent neural networks can be found in Appendix A.
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by φ 2 , we have

ln pθ (x) =
∫

qφ (r|x) ln
pθ (x,r)
pθ (r|x)

dr

=
∫

qφ (r|x) ln
pθ (x,r)
qφ (r|x)

dr︸ ︷︷ ︸
L

+DKL
[
qφ (r|x)∥pθ (r|x)

] (2.5)

whereL is a variational lower-bound of the log-likelihood. This lower-bound is tight when the
KL-divergence in equation 2.5 vanishes, that is, when qφ (r|x) = pθ (r|x). The equivalence
is possible only in a few cases when the posterior pθ (r|x) can be computed exactly.

More generally, qφ (r|x) becomes closer to the posterior pθ (r|x) when the KL-divergence
DKL

[
qφ (r|x)∥pθ (r|x)

]
is minimised. Although directly optimising this KL-divergence is

difficult since it contains the intractable posterior, we can minimise it via maximising the
lower-bound L with respect to φ — changing φ does not affect the log-likelihood pθ (x), so
DKL

[
qφ (r|x)∥pθ (r|x)

]
decreases as L increases.

On the other hand, this lower-bound also provides an alternative objective for training the
model: maximising L with respect to θ increases the log-likelihood ln pθ (x), assuming the
lower bound is already tight after updating φ . This alternating optimisation procedure can
be summarised as the Expectation - Maximisation (EM) algorithm (Dempster et al., 1977),
which performs coordinate descent over the lower-bound L:

E-step Maximising L with respect to φ to improve the approximate posterior qφ (r|x):

φ ← argmax
φ

L (2.6)

M-step Maximising L with respect to θ to improve the log-likelihood pθ (x):

θ ← argmax
θ

L (2.7)

As a brief summary, following the convention, I refer to qφ (r|x) the variational distribu-
tion, and the model parametrised by φ the inference model (Hinton et al., 1995), in contrast
to the generative model parametrised by θ . In practice, it is unnecessary to have separated
E- and M-steps, since θ and φ can be optimised jointly. However, the EM interpretation

2In its original formulation, mean-field variational inference uses variational calculus to optimise form-free
the factorial distribution q(z) (Wainwright and Jordan, 2008). Further, the conditioning on x is not necessary
here. However, when qφ (r|x) is implemented in neural network as a inference model, this form of conditional
distribution explicitly reflects the fact that the inference model takes x as input.
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gives insights into the different roles played by the generative and inference model. As an
alternative objective to the log-likelihood ln pθ (x), L is also called the evidence lower bound
objective (ELBO, Wainwright and Jordan, 2008).

Training generative models using the lower-bound L is efficient. The inference model
amortises the otherwise high computation cost from inference. Since once it is trained,
sampling from qφ (r|x) simply involves running through the parametrised inference model.
As a result, the variational lower-bound can be approximated efficiently using Monte-Carlo
methods. 3 For a large family of continuous distributions qφ (r|x), stochastic backpropagation
(Rezende et al., 2014a) or the equivalent re-parametrisation trick (Kingma and Welling, 2014)
provides an unbiased and minimal variance estimator of the gradient of L.

2.4.2 The variational lower-bound

Before we dive into the details of specific models, this section discusses a few important
properties of the lower-bound L, which provide high-level intuitions on the representation r
that emerges from optimising this lower-bound. The lower-bound can be decomposed in two
different ways, as noted in equation 2.8 and 2.9:

L= ⟨ln pθ (x|r)⟩qφ (r|x)−DKL
[
qφ (r|x)∥pθ (r)

]
(2.8)

L= ⟨ln pθ (x,r)⟩qφ (r|x)+Hφ [r|x] (2.9)

Maximum likelihood

We first look at equation 2.8 from the perspective of learning a generative model. The first
term can be interpreted as a reconstruction error measured as the likelihood of an inferred
r given the corresponding input x, and the second term as a regulariser that penalises the
digression of qφ (r|x) from the prior of the generative model pθ (r). These two terms suggest
a trade-off in optimising the inference model, which is shared by the underlying true posterior
distribution: the approximate posterior qφ (r|x) must balance between both explaining the
data via ⟨ln pθ (x|r)⟩qφ (r|x) and being consistent with the prior pθ (r).

This perspective suggests learning the inference the prior pθ (r) term is problematic, since
the inference model may over-fit to the data without the regularisation from the prior. This
problem presents when one trying to formulate “vanilla” autoencoder models as generative
models (section 2.5). As I will show in section 2.6, this problem can be solved either
explicitly by regularising (including directly using the KL-divergence as a regulariser as in

3In mean-field variational inference, the lower-bound may be analytically tractable if all the conditional
distributions are in the exponential family.
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equation 2.8) or implicitly via denoising training, where a prior is implicitly specified in the
denoising process (section 3.3).

Minimum description length

The minimum description length perspective elegantly shows the connection between learning
a generative model and data compression. The negative of L written in the decomposition of
equation 2.8 can be interpreted as the description length (Graves, 2011; Hinton and Zemel,
1994; Hinton and van Camp, 1993; Rissanen, 1978):

−L=D =
〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)
−⟨ln pθ (x|r)⟩qφ (x|r)qφ (r) (2.10)

I add the averaging over data distribution p∗(x) for clarity, and changed the factorisation of
the joint distribution qφ (x,r) by defining

qφ (r|x) p∗(x) = qφ (x,r) = qφ (x|r)qφ (r) (2.11)

We can set up the a communication scenario by assuming a message x is mapped to the
code r by an encoder qφ (r|x) (the inference model), and the code r is then transmitted to the
receiver through a noiseless channel. The receiver uses a decoder pθ (x|r) (the generative
model) to reconstruct x from r. We further assume that the receiver has its prior distribution
of the code pθ (r), possibly from its previous experience4. Now we consider the problem:
how much information5 is needed to transmit x faithfully to the receiver? Under our previous
assumptions, the information to transmit has two parts, corresponding to the two terms in
equation 2.10:

1. The nats required to specify the code given the receiver’s knowledge of pθ (r). This is
the complexity cost. It is desirable to have a less complex code, but a code with zero
complexity can not transmit any information unknown to the receiver.

2. The extra nats to specify x, in addition to the code r. This is the reconstruction cost.
When this cost is zero, the code r conveys all the information about x, so no extra nats
are needed.

These two parts correspond exactly to the two terms in equation 2.10. According to Shannon’s
source coding theorem (Shannon, 1948), assuming that x comes from the encoder distribution

4Of course, this prior may not be the same as the marginal distribution from the encoder’s view, qφ (r).
5Information is measured in nats, since natural log is used throughout this thesis.
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qφ (x|r), −⟨ln pθ (x|r)⟩qφ (x|r) is a lower bound of expected nats to transmit x under the
decoder distribution pθ (x|r). This is shown by Gibbs’ inequality:

−⟨ln pθ (x|r)⟩qφ (x|r) ⩽−
〈
lnqφ (x|r)

〉
qφ (x|r)

= Hφ [x|r]
(2.12)

where Hφ [x|r] is the conditional entropy as the minimal nats needed to transmit x from the
encoder distribution. The second term, DKL

[
qφ (r|x)∥pθ (r)

]
, is better interpreted here as the

relative entropy or information gain, which is the amount of information needed to describe
qφ (r|x) when pθ (r) is known.

Helmholtz free energy

Alternatively, the decomposition in equation 2.9 has the form of the (negative) Helmholtz
free energy F as a measure of thermodynamic potential. This form is more often associated
with the EM algorithm when the posterior can be computed analytically (Dempster et al.,
1977; Roweis and Ghahramani, 1999).

F = ⟨E(x,r)⟩qφ (r|x)+Hφ [r|x] (2.13)

where E(x,r) = ln pθ (x,r) is the energy of the configuration (x,r). Since the entropy
Hφ [r|x] does not depend on θ , the M-step only needs to maximise ⟨ln pθ (x,r)⟩qφ (r|x). In
addition, this physical interpretation gives important intuitions into the learning problem. For
example, since the Helmholtz free energy is minimised at equilibrium, it is thus justified to
minimise the Helmholtz free energy for target configurations.

2.5 Autoencoders

Now I introduce an important class of models, autoencoders, which I use to connects
generative models with neural representations. In later chapters of this thesis, autoencoders
will be employed to analyse neural systems. An autoencoder (also called auto-associative
network in earlier literature) maps inputs into codes using an encoder, and reconstructs
input data from these codes using a decoder. Considering these codes as latent variables,
autoencoders are closely related to generative models, and in particular the variational method
discussed above. This section reviews classical generative models from the perspective of
autoencoders.
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More formally, the encoder and decoders are functions parametrised by φ and θ respec-
tively (equations 2.14 and 2.15). I use the same Greek letters for the inference and generative
model as in the previous section to highlight their correspondences. The objective of training
an autoencoder is to make the reconstruction x̂ as close to x as possible. To avoid trivial
solutions, such as an identity map, a bottleneck is usually used to constraint the representation
r (Bengio et al., 2012). This bottleneck may be implied in a low dimensional r or more
explicitly as constraints on mutual information (Alemi et al., 2016; Tishby et al., 2000). As
will be discussed later, a KL-divergence bottleneck appears when we explicitly consider an
autoencoders as a generative model (i.e., a variational autoencoder, VAE).

r = gφ (x) (2.14)

x̂ = fθ (r) (2.15)

Here we only consider continuous data x, so squared error is used 6 and the cost function for
training is

C = 1
2
∥x− x̂∥2

=
1
2

∥∥x− fθ (gφ (x))
∥∥2

(2.16)

To capture the discrepancy between x and its reconstruction x̂, we introduce a noise model
εεε ∼N

(
0,σ2

f I
)

. Consequently, equation 2.14 and 2.15 can be formulated as distributions

qφ (r|x) = δ (r−gφ (x)) (2.17)

pθ (x|r) =N
(
x; fθ (r),σ2

f I
)

(2.18)

A Dirac delta function is introduced in equation 2.17 as a result of the deterministic mapping
gφ . This choice constrains the approximate posterior distribution qφ (r|x) to be a degenerate
distribution as a point-mass, which ignores any multi-modality and uncertainty. Due to
the mode-seeking behaviour of variational inference (Bishop, 2006), qφ (r|x) is likely to
end-up at a mode of the posterior distribution as a result of optimising the usually non-convex
variational lower-bound. Since the delta distribution ignores uncertainty, training with it
may result in over-fitting in training, exhibited as for example “running-away” weights.
Despite this constrain, the delta distribution is widely used in combination with non-convex
optimisation problems for its simplicity (MacKay, 1996; Olshausen and Field, 1996).

6For discrete data, cross-entropy error can be used instead (Bishop, 2006).
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x

r

x

r

Fig. 2.2 The directed graphical model illustration of an autoencoder. The encoder (right)
is the function gφ (x)→ r parametrised by φ (equation 2.14), which maps an input x to its
representation r. The decoder (right) is the function fθ (r)→ x̂ parametrised by θ (equation
2.15), which maps a representation r back to a reconstruction of the input x̂.

Autoencoders are closely related to generative models. The conditional distribution
pθ (x|r) of the decoder, as specified in equation 2.18, is ready to be interpreted as the
generative model distribution as in figure 2.1, which generates samples in the data space
given a representation r. The conditional distribution qφ (r|x) of the encoder (equation 2.17),
on the other hand, corresponds to the inference model distribution. However, compared with a
fully-specified generative model, the prior distribution pθ (r) is missing in the formulation of
“vanilla” autoencoders. Without this term, we cannot compute the variational lower-bound in
equation 2.8. As mentioned in the previous section, training this model by merely minimising
the likelihood term ⟨ln pθ (x|r)⟩qφ (r|x) (note that ln pθ (x|r) ∝ −∥x− fθ (r)∥2) may lead to
over fit, as the regulariser, the KL-divergence DKL

[
qφ (r|x)∥pθ (r)

]
depending on the prior

pθ (r), is missing from the autoencoder’s objective. In VAEs (Kingma and Welling, 2014;
Rezende et al., 2014a), priors are explicitly introduced to constrain the re-parametrised
posterior distributions. Section 2.6 will provide alternative solutions with implicit priors
from regularisers.

Autoencoders are useful in many different areas. For example, they are used for data
illustration and compression, as inputs for classifiers, or as input in another autoencoder
as a way of pre-training deep neural networks (Bengio, 2009; Bengio et al., 2007; Hinton
et al., 2006). They are also of particular interest for neuroscientists, mainly because of the
representations emerging from unsupervised learning. In particular, the representations from
autoencoders were observed to exhibit neuron-like firing patterns (e.g., Bergstra and Bengio,
2009; Vincent et al., 2008b).

To understand why such representations emerge, it is helpful to consider the connections
between autoencoders and other simpler statistical models. For this purpose, I review a
number of simple statistical models, including Gaussian mixture models (GMM), factor
analysis (FA), and independent component analysis (ICA), in the light of their corresponding
neural network implementations. As we shall see, these models can be seen as constrained
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versions of more general autoencoders. All these models can be trained by optimising the
variational lower bound L (equation 2.8), either by jointly optimising all parameters or in
alternating steps using the EM algorithm (section 2.4.1). Therefore, I will skip the learning
algorithm for individual models, and focus on their different statistical assumptions. The
following review closely follows Roweis and Ghahramani (1999), with emphasis on the
learned representations.

2.5.1 Gaussian mixture models

A Gaussian mixture model (GMM) can be written as

pθ (x) =
K

∑
i=1

πiN (x; µµµ i,ΣΣΣi) (2.19)

where K is the number of Gaussian distribution components in the mixture. Each Gaussian dis-
tribution has its own parameters, mean µµµ i and covariance ΣΣΣi. πi is the mixing coefficients for
the i’th component, with the constraint that ∑

K
i=1 πi = 1. We use θ =

{
πππ,{µµµ i}K

i=1,{ΣΣΣi}K
i=1
}

to summarise the parameters.

To interpret the GMM as a generative model in figure 2.1, we introduce a categorical
(1-in-K) latent variable r to indicate the component being selected. Only one element of r
can be 1, and all other K−1 elements are zeros.

pθ (r) = Categorical(r) =
K

∏
i=1

π
ri
i (2.20)

pθ (x|r) =
K

∏
i=1
N (x; µµµ i,ΣΣΣi)

ri (2.21)

The above two equations give the same marginal distribution of x as in equation 2.19. To
generate data, we first sample the component i with ri = 1 from the categorical distribution

∏
K
i=1 π

ri
i , then sample x from the i’th Gaussian distribution N (x; µµµ i,ΣΣΣi).

Given a data point, the posterior distribution pθ (r|x) indicates the probability that x
comes from each of the components. Inference for GMM is tractable and can be obtained
directly using Bayes’ rule (equation 2.1):

p(ri = 1|x) = πiN (x; µµµ i,ΣΣΣi)

∑
K
j=1 π jN

(
x; µµµ j,ΣΣΣ j

) (2.22)
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To implement a GMM as an autoencoder, binary hidden neurons are used to represent
the 1-in-K code, so neuron rk has the probability of πk being turned ‘on’. The generative
weights from a hidden neuron convey the mean of a mixture. More specifically, wi j = µi( j),
where µi( j) is the j’th element of µµµ i. The mean of the selected Gaussian is thus computed
by the product of the generative weight matrix and the vector of hidden neuron activations,
µµµ =WWW⊺ ·r. However, the covariance structure of x (equation 2.21) cannot be easily computed
by neural networks. For simplicity, we constrain all the covariance to have the same spherical
shape, so ΣΣΣ j = σ2

f III, ∀ j, which is the same as the noise model we assumed in equation 2.18.
As discussed above, this assumption gives the log-likelihood function ln pθ (x|r) in the form
proportional to the negative of the reconstruction error (equation 2.16).

To derive the inference model that implements inference, we expand the posterior (equa-
tion 2.22)

p(ri = 1|x) =
πi · |ΣΣΣiii|−

1
2 exp

{
−1

2x⊺ΣΣΣ
−1
i x+µµµ

⊺
i ΣΣΣ
−1
i x− 1

2 µµµ
⊺
i ΣΣΣ
−1
i µµµ i

}
∑

K
j=1 π j ·

∣∣ΣΣΣ j
∣∣− 1

2 exp
{
−1

2x⊺ΣΣΣ
−1
j x+µµµ

⊺
j ΣΣΣ
−1
j x− 1

2 µµµ
⊺
j ΣΣΣ
−1
j µµµ j

} (2.23)

The presence of 2nd order terms (−1
2x⊺Σ

−1
j x) suggests the inference model generally needs

to be nonlinear, even when the generative model is linear. Under our spherical Gaussian
assumption, the posterior can be simplified to

p(ri = 1|x) =
exp
{

V⊺
i x+bi

}
∑

K
j=1 exp

{
V⊺

j x+bi

} (2.24)

where vi = µµµ
⊺
i ΣΣΣ
−1
i the columns of the recognition weights and bi =−1

2 µµµ
⊺
i ΣΣΣ
−1
i µµµ i are elements

of the bias. Here the non-linearity has the form of a softmax function.

In summary, under the assumption that all the Gaussian components have the same
covariance matrix σ2

f I, the GMM is equivalent to an autoencoder with gφ and fθ with the
following format:

r = gφ (x)∼ Categorical(softmax(V⊺x+b)) (2.25)

x̂ = fθ (r) = W⊺ r (2.26)

where the decoder outputs the posterior mean of the full generative model. The GMM
presents an example of extremely localist representations (Hinton and Ghahramani, 1997) —
only one neuron in the hidden layer can be activated at a time via sampling the categorical
distribution. This is a result of the nonlinear operation of sampling the categorical variable r.



2.5 Autoencoders 37

By contrast, as we shall see next, extremely distributed neural representations result from
models without any nonlinear operation.

2.5.2 Factor analysis

Factor analysis is a class of linear Gaussian models. Principal component analysis (PCA) and
probabilistic PCA can be seen as special cases of factor analysis with additional constraints
(Roweis and Ghahramani, 1999). Assuming the data has zero mean7, factor analysis can be
described as a generative model (figure 2.1):

pθ (r) =N (r;0,I) (2.27)

pθ (x|r) =N (x;Wr,ΣΣΣ) (2.28)

where the covariance matrix ΣΣΣ is constrained to be diagonal. We can use a spherical Gaussian
as the prior pθ (r) without loss of generality, since its covariance can be assimilated into the
matrix W. It is important to restrict the structure of the noise covariance matrix ΣΣΣ (more
restrictions are imposed on PCA and probabilistic PCA). Otherwise, one could obtain a trivial
solution with W = 0 and explain all the covariance from the data using the noise covariance ΣΣΣ.
The matrix W is known as the factor loading matrix, and the diagonal elements of ΣΣΣ (i.e., the
variance along each coordinate) are called uniqueness, since these are the variances unique
along each coordinate — all the covariances are captured by W. Similar to GMMs, linear
Gaussian models are analytically tractable. We have the marginal and posterior distributions:

pθ (x) =N (x;0,M) (2.29)

pθ (r|x) =N
(
r;W⊺M−1x, I−W⊺M−1WWW

)
(2.30)

where M = WW⊺+ΣΣΣ.
Linear Gaussian models have the problem of unidentifiability. To see this, notice that

any rotation matrix R applied to r, resulting in r′ = Rr, would be cancelled in the marginal
distribution of x, since the covariance matrix of the marginal distribution M′ = WRR⊺W⊺+

ΣΣΣ = WW⊺+ΣΣΣ = M does not change. Because of this rotational invariance, it is impossible
to identify the exact coordinate of the latent variable. In fact, unidentifiability stems from
the fact that Gaussian models only capture up to second order information. As a result, even
though FA assumes independence in r, when higher-order structures are present, FA can
only decorrelate the representation, while higher order statistics may be unchanged (Field,

7I assume zero mean to simplify notations. Another parameter for the mean can be added without this
assumption.
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1994). Models using non-Gaussian priors, such as ICA (reviewed next), can be used to
reduce dependencies in higher order statistics (section 2.5.3).

To implement FA as an autoencoder, W is readily the generative weight matrix. The
posterior mean is a linear function of input x (equation 2.30), so we have the recognition
weights V = W⊺M−1. As in GMMs, we assume the noise covariance matrix to be σ2

f I for
simplicity. Again, this simplified covariance gives rise to a log-likelihood term ln pθ (x|r) that
is proportional to the negative squared reconstruction error. Such a spherical Gaussian noise
distribution is actually the assumption used by probabilistic PCA (Roweis, 1998; Tipping
and Bishop, 1999).

In general, the posterior covariance matrix is not sparse, as a result of conditional
dependencies (explaining away). However, it is easy to show that the posterior covariance
matrix I−W⊺MMM−1w becomes diagonal when the columns of W are orthogonal to each other.
This orthogonality condition is generally not true, but it is always possible to orthogonalise
a full rank matrix W by an invertible matrix P (e.g., from the Gram-Schmidt process). To
maintain the same likelihood pθ (x), we simply need to multiply the prior of r by P−1. Indeed,
an orthogonal basis is imposed as a constraint in PCA, in which the columns of w are the
principal components — eigenvectors of the data covariance matrix. PCA also takes the limit
ΣΣΣ→ 0, where the posterior covariance matrix I−W⊺M−1w→ I−W⊺(WW⊺)−1W⊺ = 0
collapses to zero. Further, when w is an orthogonal matrix we can thus tie the generative and
recognition weights V = W⊺ to reduce the number of parameters, as has been used in the
pre-training of deep neural networks (Bengio et al., 2007).

In summary, FA, or more precisely probabilistic PCA under our assumption of spherical
Gaussian noise model, is equivalent to an autoencoder with the following format:

r = gφ (x) =VVV x (2.31)

x̂ = fθ (r) = wr (2.32)

In this form, as in the autoencoder for GMM, the decoder only outputs the posterior mean
of the full generative model. As discussed above, we can tie the weights using V =WWW⊺ to
reduce the number of parameters and force enforce the PCA solution.

Compared with GMMs, there are only linear operations in both the generative model and
recognition model. In the special case of PCA, learning is equivalent to finding eigenvectors
of the data covariance matrix. In fact, regardless of the nonlinearity in the encoder function,
an autoencoder with a linear decoder is similar to PCA (up to the rotation of basis W) (Baldi
and Hornik, 1989; Bourlard and Kamp, 1988). However, nonlinear auto-association is not
exactly equivalent to PCA, since the non-linearity allows solutions with multiple local optima
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(Japkowicz et al., 2000). Compared with the extremely localist representations from mixture
of Gaussians, the representations from factor analysis are highly distributed — activities of
hidden neurons form a Gaussian cloud.

2.5.3 Independent component analysis

Independent component analysis (ICA) solves the identifiability problem using non-Gaussian
priors that are not invariant to rotation. In addition, it results in sparsely distributed represen-
tations that lie between the extremely localist representations from the mixtures of Gaussians
and the highly distributed representations from factor analysis. Such representations have
been used to explain sensory coding across different brain regions (Bell and Sejnowski, 1997;
Field, 1994; Lewicki, 2002; Olshausen and Field, 1996). To continue with our theme of prob-
abilistic generative models, I first introduce ICA through a maximum-likelihood approach
(Roweis and Ghahramani, 1999). We then look at the infomax (information maximisation)
approach which reveals information-theoretical aspects of the neural tuning curves we found
in trained models (Bell and Sejnowski, 1995). For simplicity, here I only consider linear
ICA.

Maximum-likelihood ICA

As in previous models, we have the generative model (figure 2.1):

pθ (r) =
K

∏
k=1

pθ (rk) (2.33)

pθ (x|r) =N (x;WWW r,ΣΣΣ) (2.34)

where the conditional distribution (equation 2.34) has the same form as in factor analysis
(equation 2.28). To simplify the following derivations, we assume the diagonal noise
covariance matrix ΣΣΣ = σ2 I, as used by probabilistic PCA. It is straightforward to extend our
derivation to more general diagonal covariance matrices. In principle, the factorial prior can
be any non-Gaussian distribution. To obtain sparse activity patterns, we generally use super-
Gaussian distributions (distributions with high kurtosis), such as the Laplace distribution,
pθ (rk) =

1
2b exp

(
− |rk|

b

)
. However, after introducing the non-Gaussian prior, the posterior

distribution pθ (r|x) is no longer analytically tractable.

An alternative interpretation of ICA still assumes a Gaussian prior, which is then transform
to a non-Gaussian following a non-linear mapping. This view explains why ICA yields
representations between Gaussian mixture models and factor analysis — the nonlinearity
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is usually not as extreme as the 1-in-K operation (sampling) in Gaussian mixture models,
but is also different from the purely linear factor analysis models. ICA is equivalent to an
autoencoder with similar a structure as that for FA, except a non-linearity is required in
the encoder, as a result of the non-Gaussian prior pθ (r). Since the posterior pθ (r|x) is
intractable, it is not possible to have a closed-form inference model as for the GMM or FA.

Infomax ICA

The ICA was actually proposed with the alternative objective of maximising the entropy of the
representation Hφ [r] (Bell and Sejnowski, 1995). This leads to independent representations,
because

Hφ [r]⩽
K

∑
k=1

Hφ [rk] (2.35)

where the equality holds when rk are independent, and the bound tightens when the depen-
dencies between rk decrease. Maximising the entropy Hφ [r] can be achieved by maximising
the mutual information Iφ [r;x], since

Hφ [r] = Iφ [r;x]+Hφ [r|x] (2.36)

and the conditional entropy Hφ [r|x] is a constant (though diverges to −∞) when the approxi-
mate posterior qφ (r|x) is a delta distribution. This objective is desirable for neural networks,
since Barber and Agakov (2004) showed that Iφ [r;x] is maximised from minimising recon-
struction errors in an autoencoder setting (see also section 6.1).

As shown later in this thesis (section 4.5), infomax ICA reveals an intriguing feature of
the representation in sequence learning. The infomax approach provides important links
to neural data, as it provides a form of optimality that can be used to make experimentally
testable predictions of tuning curves. Assuming yk is the direct input into hidden neuron k,
such that the tuning curve is the monotonic function mapping f (yk)→ rk to firing rates. f (·)
transforms the distribution of input p(yk) according to:

p(rk) =
p(yk)

|∂ f (yk)/∂yk|
(2.37)

With limited activity range rk, the continuous distribution with maximum entropy is the
uniform distribution. Therefore, the tuning curve f (yk) that results in the maximum entropy
Hφ [rk] is the cumulative distribution function (CDF) of p(yk),

f (yk) =
∫ yk

−∞

p(t)dt (2.38)
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which transforms yk into uniformly distributed outputs (Laughlin, 2001). A simple way to
test the infomax hypothesis is thus to examine whether the tuning curves in a neural network
match the shape of the CDF designated by equation 2.38. This is indeed the case as we will
see in section 4.5.

2.6 The implicit prior

At the end of this chapter, we consider the prior pθ (r) that is used in the bottleneck for
autoencoders. Recall that the prior is a necessary component of a generative model; it is
involved in computing the variational lower-bound (equation 2.8), as a tractable objective
for training the generative model. To begin with, in the limit of qφ (r|x)→ δ (r− gφ (x))
becomes a delta distribution, the lower-bound (equation 2.9) becomes

L= ⟨ln pθ (x|r)+ ln pθ (r)⟩qφ (r|x)+Hφ [r|x]

= ⟨ln pθ (x|r)⟩qφ (r|x)+ ⟨ln pθ (r)⟩qφ (r|x)︸ ︷︷ ︸
J

+c (2.39)

From equation 2.8, the last two terms together form the (negative) KL-divergence−DKL
[
qφ (r|x)∥pθ (r)

]
,

while the first term is the (negative) reconstruction error. c = Hφ [r|x] is a constant that
diverges to −∞ as a result of the deterministic inference model. c vanishes when taking
gradients with respect to parameters, so minimising the KL-divergence DKL

[
qφ (r|x)∥pθ (r)

]
is simplified to maximising J = ⟨ln pθ (r)⟩qφ (r|x), which functions as a regulariser added to
the log-likelihood ⟨ln pθ (x|r)⟩qφ (r|x). Therefore, the optimal r that maximises the variational
lower bound can be interpreted as the maximum a priori (MAP) solution.

For all the different priors I am going to consider next, I will focus on the term J =

⟨ln pθ (r)⟩qφ (r|x) p∗(x), which is the only term in equation 2.8 that depends on the prior (here I
reintroduced the averaging over p∗(x) explicitly in our notation). From the perspective of
hierarchical modelling, we can treat r (provided by qφ (r|x)) as inputs into the prior model
pθ (r). Therefore, J can be seen as the log-likelihood of the prior model.

2.6.1 Uniform priors

When the generative prior is a uniform distribution, or pθ (r) = u where u is a constant, the
term J becomes a constant:

J = ⟨ln pθ (r)⟩qφ (r|x) p∗(x) = lnu (2.40)
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Therefore, maximising the likelihood, or simply minimising the squared cost (equation
2.16), is equivalent to maximising the variational lower bound when the generative model
has a uniform prior. However, the uniform prior can be unsuitable, since it assigns equal
probabilities to all r.

For example, when a population of 100 neurons are used to represent the location of an
animal in a 2-dimensional space, the underlying dimensionality of r is usually much closer
to 2 than 100. It is thus inappropriate to assume equal probability everywhere in the possibly
very high dimensional space of representations. Even though, mathematically, uniformly
distributed representations can be transformed by the generative model into arbitrary desired
distributions, it is a waste of valuable (communication) resources to employ such a code.

2.6.2 Single Gaussian priors

We next consider a more informative but still very simple prior, a spherical Gaussian distribu-
tion pθ (r) =N

(
r; µr,σ

2
r I
)
. Now J has the form:

J = ⟨ln pθ (r)⟩qφ (r|x) p∗(x) = c+
〈

1
2σ2

r

∫
qφ (r|x)∥r−µr∥2 dr

〉
p∗(x)

= c+
1

2σ2
r

〈∥∥gφ (x)−µr
∥∥2
〉

p∗(x)

(2.41)

where c comes from the normalising constant. Linear Gaussian models, including Factor
Analysis which I discussed in section 2.5.2, use this form of prior. In addition to the linear
ICA view presented earlier, ICA can also be seen as a Gaussian priors model with non-linear
transform. Although this formulation still has the non-identifiability problem that associated
Gaussian distribution, it inspired recent advances including flow-based neural generative
models (Dinh et al., 2014). Due to its convenient form, it is also the default choice of prior
for more recent models such as VAEs (Kingma and Welling, 2014; Rezende et al., 2014b).

Using the fact that qφ (r|x) is a delta function, equation 2.41 reveals that this Gaussian
prior is equivalent to an L2 regulariser on the activity r = gφ (x) around the mean µr, which
restricts the magnitude of r. Without loss of generality, we can fix the mean as µr = 0,
since the bias term in the recognition model gφ (x) can cancel other values of µr. This
objective is easy to optimise through backpropagation. However, the assumption that r is a
Gaussian distribution may be too restrictive, as it cannot capture complex structures such as
multi-modality. In practice, I found no improvement of generalisation by training with this
regularisation term.
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2.6.3 New View: Approximate Gaussian Mixture priors

This section presents a novel contribution of this thesis: I show that a simple contractive
regulariser (Rifai et al., 2011) can approximate the (negative log-) likelihood of the generative
model corresponding to a an autoencoder using a GMM prior (section 2.5.1). This connection
suggests a practical and efficient way to use a GMM prior in the variational lower-bound L
without explicit fitting the GMM. This approach combines the flexibility of GMM priors
and the computational efficiency from a simple differentiable regulariser. This result will be
further exploited to interpret denoising training as implicitly imposing a GMM prior (section
3.3).

Unlike the uniform prior and single Gaussian prior we have seen so far, the GMM as
prior model also need to be optimised in maximising J, as a part of maximising L. Here
maximising J with respect to its parameters (which we include in θ ) is mechanistically
similar to maximising the likelihood of the generative model as in section 2.4, which can be
done by maximising its own lower bound LJ (with subscript J) as in section 2.5.1. Therefore,
we can similarly use the EM algorithm to maximise J. For the rest of this section, the terms
EJ and MJ steps will refer to the steps of this inner EM procedure optimising J, which itself
is embedded in an outer loop that optimises the lower bound of the full model (equation
2.39). Note we only use this “inner” EM algorithm to motivate the following derivation; in
practice, this procedure will be simplified as we approximate the GMM prior.

More formally, the derivation in this section will show that J in equation 2.39 can be
efficiently approximated by the regulariser:

J ≈ λRM = λ

〈∥∥∥∥∂gφ (x)
∂x

∥∥∥∥2

F

〉
p∗(x)

(2.42)

where λ is a constant controlling the strength of the regularisation, and the Frobenius norm
of a matrix A is defined as:

∥A∥F =
√

∑
i j
|Ai j|2 (2.43)

First, I introduce the constrained GMM as the prior model is defined as:

pθ (r) =
1
K

K

∑
k=1
N
(
r; µµµk,σ

2 I
)

(2.44)

It has uniform mixing coefficients 1
K and tied variance σ2 for all K components. As we

will see, parameters of this GMM, including K and µµµk will be cancelled or absorbed into
the regularisation weight λ . Here I consider a sequential update process for the GMM’s
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parameters, and use subscript n to index the total N samples when necessary. Note that several
approximations are used in the following derivation. The quality of these approximations is
analysed at the end of this section.

Now I analyse fitting the GMM prior model from the perspective of the (inner-loop) EM
algorithm. As a generic optimisation algorithm, the EM operation here can be seen as a part
of end-to-end model optimisation (e.g., section 3.2), performing coordinate descent/ascent
over parameters of this prior model. Recall that here we take as inputs the representations
{rn}N

n=1, which are projections of data {xn}N
n=1 by gφ (·). As in the derivation of the original

variational lower-bound (Section 2.4.2), J can also be decomposed as:

J =
〈
⟨ln pθ (r,v)⟩q(v|r)−H [q(v|r)]+DKL [q(v|r)∥pθ (v|r)]

〉
qφ (r|x) p∗(x)

(2.45)

where I introduce a new hierarchical latent variable v indicating the assignment of mixture
components. Its distribution is given by the categorical distribution q(v|r).

In the inner EJ-step, we minimise the KL-divergence to zero by setting q(v|x) = pθ (v|r).
This is equivalent to computing the responsibility γnk for the n’th data point n and the k’th
mixture component, as introduced in Section 2.5.1:

γnk =
N
(
rn; µµµk,σ

2 I
)

∑
K
k=1 N (rn; µµµk;σ2 I)

(2.46)

This soft assignment of responsibility can be approximated by hard assignment:

γnk ≈

1, for k = argmin∥µµµk− rn∥2
2

0,otherwise
(2.47)

This approximation is accurate when σ2 → 0 — which as we shall discuss more later,
determines the quality of other parts of the approximation as well. However, the KL-
divergence DKL [q(v|r)∥pθ (v|r)] is no longer 0 with this approximation, we therefore have

J ⩾ LJ =
〈
⟨ln pθ (r,v)⟩q(v|r)−H [q(v|r)]

〉
qφ (r|x) p∗(x)

=
〈
⟨ln pθ (r,v)⟩q(v|r)

〉
qφ (r|x) p∗(x)

+ constant
(2.48)

Using the index of component k obtained in the above EJ-step, the MJ-step then updates
the parameters of the generative model θ — here the parameters of the GMM prior — by
maximising the lower bound LJ . Since the entropy term is unrelated to the prior, it is ignored
as a constant in the M-step, so we only need to maximise ⟨ln pθ (r,v)⟩qφ (r|x) p∗(x)q(v|r). As in
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Data: N data points {rn}N
n=1

1 Run the K-means algorithm with {rn}N
n=1 to obtain the means {µµµk}K

k=1 and
assignments γnk equation 2.47;

2 Compute the variance σ2 = 1
N D ∑

N
n=1 γnk ∑

D
d=1 (rn(d)−µk(d))

2 ;
3 Evaluate the average likelihood 1

N ∑
N
n=1 ln 1

K ∑
K
k=1 N

(
rn; µµµk,σ

2) ;

Algorithm 1: Fitting a constrained Gaussian Mixture Model as the Prior model for r.

Section 2.5.1, this involves computing the means:

µµµk =
1

Nk

Nk

∑
n=1

γnk rn (2.49)

where

Nk =
N

∑
n=1

γnk (2.50)

is the number of samples belonging to the k’th component. When using the hard assignment,
this procedure is equivalent to the K-means clustering algorithm, which assigns a data point
to its nearest centroids µµµk. For this reason, K-means is known as a special case of GMM
fitted by maximum likelihood (Bishop, 2006). When converged, this algorithm produces the
K centroids µµµk. We can further compute the maximum likelihood estimator of the scalar
covariance as:

σ
2 =

1
N D

N

∑
n=1

γnk

D

∑
d=1

(rn(d)−µk(d))
2 (2.51)

Recall that D is r’s dimensionality. This procedure is summarised in Algorithm 1.

Once the fitting of the GMM prior model finished, we can optimise the lower-bound
of the full model L in equation 2.10 using J’s’ lower-bound LJ in equation 2.48. We now
analyse this term:

⟨ln pθ (rn,v)⟩q(vn|rn)
= ln

K

∑
k=1

γnkN
(
rn; µµµk,σ

2)= lnN
(
rnk; µµµk,σ

2) (2.52)

The last equality dropped the summation by introducing the index k for r, so that rnk = gφ (xnk)

is assigned to component k in the EJ-step. Ignoring additive constant terms, which will
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disappear when taking derivatives, we can expand equation 2.52 as:

lnN
(
rnk; µµµk,σ

2)=−∥rnk−µµµk∥
2

σ2 + . . .

≈−
∥∥gφ (xnk)−gφ (xµµµk

)
∥∥2

σ2 + . . .

≈− 1
σ2 ·

[
g′φ (xµµµk

)(xnk−xµµµk
)
]T
·
[
g′φ (xµµµk

)(xnk−xµµµk
)
]
+ . . .

=− 1
σ2 · (xnk−xµµµk

)T
[
g′φ (xµµµk

)T ·g′φ (xµµµk
)
]
(xnk−xµµµk

)+ . . .

(2.53)

In the second line, we assumes that there exist the image xµµµk
= g−1

φ
(µµµk). This is a reasonable

assumption for our model, since a decoder fθ is jointly trained with gφ to enforce the mapping
for being invertible. Training an autoencoder to approximate bijection has also been used in
models including generative moment matching networks (Li et al., 2015). The third line uses
the second-order Taylor series approximation around xµµµk

:

gφ (xnk)≈ gφ (xµk)+g′φ (xµµµk
)(xnk−xµµµk

) (2.54)

Since rn is close to µµµk as long as the GMM model is well-fitted (which we assume for now),
under mild smoothness assumption of gφ , xnk is also close to xµµµk

. Therefore, the error of this
approximation is low when gφ is approximately linear in the vicinity of xµµµk

. This error can
be reduced when the number of components K is large, so that each component of the GMM
prior only needs to cover a small neighbourhood region around µµµk.

In the outer-loop M-step, we maximise the expectation of equation 2.53 over samples
xn. Note that once the E-step is done, g′

φ
(xµµµk) is treated as a constant, since µµµk, and

thus xµµµk
, is fixed in the subsequent M-step. As a result, we regard the symmetric matrix[

g′
φ
(xµµµk)

T ·g′
φ
(xµµµk)

]
as a constant matrix, and (xnk − xµµµk) as a random variable. This

expectation can then be simplified using the equality:〈
xT Ax

〉
= Tr(AC)+mT Am (2.55)

for symmetric matrix A, and random variable x with first moment m and second central
moment C . The second term can be dropped, since from equation 2.54:

〈
(xnk−xµµµk

)
〉
≈ 1

g′
φ
(xµµµk

)

〈
gφ (xnk)−gφ (xµk)

〉
=

1
g′

φ
(xµµµk

)
⟨rnk−µµµk⟩ = 0 (2.56)
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because µµµk = gφ (xµk) is the mean of rnk by our definition. We further assume that xnk

corresponding to one cluster of rnk are decorrelated (i.e., a mild conditional independence
assumption given the component k), so that (xnk− xµµµk

) has diagonal covariance matrix
C = σ2

x I. This assumption means that correlations in xnk are all explained by the correlations
between centroids xµk . This scenario is more likely when the number of mixture component
is large, so the centroids encodes most information including covariance. For non-delta
qφ (r|x), the noise independent of x may additionally weakens the correlation. As a result,
according to the previous two equations:

〈
lnN

(
rnk; µµµk,σ

2)〉
pk(xnk)

≈−σ2
x

σ2 ·Tr
(

g′φ (xµµµk
)T ·g′φ (xµµµk

)
)

=−σ2
x

σ2 ·
∥∥∥g′φ (xµµµk

)
∥∥∥2

F

(2.57)

where pk indicates the distribution of the neighbour images for the k’th mixture component.
The last line uses the Frobenius norm identity ∥A∥2

F = Tr
(
AAT).

Following the same vicinity assumption from taking the Taylor expansion (equation
2.54), we can assume g′

φ
(xnk)≈ g′

φ
(xµµµk

). This looks like a strong assumption; however, the
regulariser itself directly encourages the smoothness of gφ (·), so that g′

φ
(xnk)≈ g′

φ
(xµµµk

) for
xnk ≈ xµµµk

. In other words, training with the contractive regulariser justifies this assumption.
Therefore,

〈
lnN

(
rnk; µµµk,σ

2)〉
pk(xnk)

≈−σ2
x

σ2 ·
∥∥∥g′φ (xnk)

∥∥∥2

F
(2.58)

Since no term in equation 2.58 depends on the particular cluster k, the same formula can be
applied to other clusters, resulting in the regulariser as in equation 2.42, after removing the
negative sign and taking expectation over all xn:

σ2
x

σ2 ·

〈∥∥∥∥∂gφ (x)
∂x

∥∥∥∥2

F

〉
p∗(x)

= λ ·

〈∥∥∥∥∂gφ (x)
∂x

∥∥∥∥2

F

〉
p∗(x)

= λRM (2.59)

Therefore, the above derivation shows that the lower-bound of J under a GMM prior
can be approximated by a contractive regulariser. The form of equation 2.59 suggests this
regulariser penalises the magnitude of the Jacobian ∂gφ (x)

∂x , thus encouraging gφ (x) to be
smooth. From the perspective of probabilistic modelling, GMM is consistent with this
interpretation. In a GMM, data close together are clustered together. For smoothly varying
input x, such clustering can be achieved by mapping nearby x’s’ to nearby output gφ (x)’s,
hence the smoothness of gφ . This interpretation of smoothness regulariser is also consistent
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Fig. 2.3 The regularisation loss and the value of J (prior NNL) during training. A recurrent
network was trained for sequence learning (Chapter 3) using the regulariser in equation 2.59.
The regularisation loss is shown by the blue dashed line. During training, after every 10 steps,
GMM prior models with different numbers of components K were fitted to the representation
r. The NLL is scaled by a factor of 1

300 so the scales are comparable with the regularisation
loss.

with the motivation from Rifai et al. (2011), who proposed the contractive regulariser to
explicitly facilitate invariance of the representation.

Analysis of the Approximation

Two main approximations are used in deriving equation 2.54 and 2.58; both of them rely
on local linear approximations of the encoding function gφ or its derivative. Therefore, the
approximation is more accurate when the neighbouring region around each mixture mean
is small, which can be realised by increasing the number of mixture component K, so the
space of r is clustered into a larger number of smaller regions. Although K does not appear
in equation 2.59, larger K generally results in smaller σ2

x , since the variance within each
component will be smaller for smaller regions. On the other hand, for a fixed σ2

x the strength
of regularisation is inversely proportional to the variance of mixture components σ2. In the
limit of σ2→ ∞, the regulariser vanishes since the prior with infinite variance provides no
constraint.
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In practice, the two variance parameters σ2
x and σ2 are merged into a single parameter λ

that directly controls the strength of regularisation. In the extreme case of K = N, the same
as the number of data points, σ2

x → 0 and the regulariser again vanishes when every r has its
own cluster. In another extreme of K = 1, r are strongly regularised to a single mode. This
case is equivalent to the single Gaussian prior discussed in section 2.6.2. Instead of choosing
K, the regulariser in equation 2.59 allows us to smoothly changing the regularisation weight
λ .

To verify the analysis, I measured the value of J during training in figure 2.3. The RNN
model used to test sequence learning (Chapter 3) is trained with the regulariser instead of
adding noise to match the set-up in this section. After each 10 training steps, GMM with
different number of mixture components K is fitted to r using Algorithm 1. As predicted by
the analysis, when the number of mixture components K increase, the GMM achieved better
likelihood and more closely tracked the regularisation loss.

Conclusion

This chapter reviews artificial neural networks from the perspective of probabilistic modelling.
A particular focus is autoencoders and their connections with generative models. They
provides statistical tools to analyse neural representations resembling those observed in the
brain. A number of classical statistical models are reviewed, in connection with neural
networks, to provide intuition into how the representations are affected by their underlying
statistical assumptions. Appendix A further extends results from this chapter to recurrent
neural networks.

Towards the end of this chapter, I presented a novel contribution of this thesis, showing
that the contractive regulariser RM (equation 2.42, Rifai et al., 2011) can approximate a
constrained GMM prior in training neural generative models. This prior provides more
flexibility compared with simpler priors, such as uniform and single Gaussian priors; this
regulariser allows efficient training without explicitly fitting the GMM model. A potential
problem of this implicit prior is that it is impossible to sample from it, as the exact parametric
form (including parameters such as K, µµµ i and ΣΣΣi) is not known. Despite this, it provides
the necessary regularisation to train the inference model, which produces the representation
(Dayan et al., 1995; Hinton et al., 1995). In the next chapter, I will show that this regulariser
can be minimised implicitly when training with additive noise (section 3.3).





Chapter 3

Recurrent neural networks

This chapter discusses recurrent neural networks (RNNs), the main computational model
used in this thesis for sequence learning. After an introduction of the basics, I will focus
on practical issues including regularisation techniques and denoise training. Towards the
end, I will come back to the topic generative models as introduced in the previous chapter; I
will show that the contractive regulariser (section 2.6.3) connects denoising training with the
generative model view of neural networks including RNNs.

3.1 RNNs: a brief introduction

A recurrent neural network (RNN) is a type of neural network characterised by its recurrent
connections. A layer of nonlinear neurons, sitting between input and output, is usually
required for expressive computation and rich representations (Minsky and Papert, 1969).
Figure 3.1 illustrates an RNN with one such hidden layer; it is perhaps the simplest possible
structure to support representations with rich temporal dynamics. Given the input xt at each
time step t, this RNN can be formally described by:

yt = Win ·xt +Wrec · rt−1 (3.1)

rt = s(yt) (3.2)

zt = Wout · rt (3.3)

where Win, Wout and Wrec are input, output and recurrent weight matrices. xt , yt and rt are
vectors representing the input, internal states and activities of the RNN’s hidden neurons. zt is
the linear read-out from the RNN. s(·) is a nonlinear activation function applied element-wise.
Equation 3.1 to 3.3 can be interpreted as the first order Euler integration of a continuous
dynamical system (section 4.4.1).
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Fig. 3.1 A recurrent neural network (RNN, a) and the illustration of an RNN unrolled in time
(b). (a) Green, blue and red show the input (xt), hidden layer (yt and rt) and output layer (zt)
respectively. Neurons in the hidden layer are interconnected by recurrent connections. (b) At
each time step t, the activity of the hidden neurons (neural representation) rt is a function
of both the current input xt and the previous activity rt−1. As a result, the activity rt may
preserve information about the history of inputs, which can represent the context. However,
since information from input generally decays exponentially through time, only information
relevant to the task tends to be preserved through training.

Although the exact form of the nonlinear activation function does not affect the following
derivation, rectified linear units (ReLU) with the threshold activation function

s(y) =

y if y ⩾ 0

0 otherwise
(3.4)

are used throughout this thesis. Compared with the similarly widely used “tanh” nonlinearity,
ReLU better approximates the firing rate function of biological neurons because of its non-
negative output and non-saturation property (Priebe and Ferster, 2005). Moreover, neural
networks using ReLUs have better performance in various tasks, because they suffer less
from the problem of diminishing gradients (Glorot et al., 2011; Nair and Hinton, 2010). The
effects of using ReLUs with denoising training are discussed in section 3.3.

Other more sophisticated forms of RNNs include the long-short term memory (LSTM,
Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRUs, Chung et al., 2014).
These models have additional variables and gating mechanisms dedicated to represent and
maintain the states of neurons, so that information from previous inputs can be more easily
preserved compared with the simple RNN. As a result, these structurally more complex mod-
els are in fact much easier to train, especially for tasks requiring long temporal dependencies.
However, the extent to which such an architecture is necessary is still unclear (Le et al.,
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2015). Moreover, the extra structures introduced in these models complicate analysis, as the
responsibilities of the additional variables are further blurred by interactions of various gates.
In contrast, the vanilla RNN only have one set of hidden variables, which are responsible for
both retaining temporal context and decoding outputs. Therefore, this thesis mainly focuses
on the RNN as depicted in Figure 3.1 for its simplicity1.

The ability of RNNs to learn complex temporal structure from data has first been sys-
tematically discussed in semantic learning by Elman (1990), who elegantly reasoned that
contextual information embedded in a sequence can be learned from the sequence itself (as
the title of his seminar paper suggested: Finding Structure in Time). Since then, RNNs have
been exploited for more challenging temporal tasks, such as language and speech processing
(Bahdanau et al., 2015; Graves et al., 2013; Maas and Le, 2012). This property of RNNs
can be seen by unrolling an RNN through time (Figure 3.1): the activity rt , therefore the
output zt , at each time step depends on inputs from all previous steps through activities rt−1,
rt−2 ... r1. Therefore, in principle, the RNN is capable of capturing arbitrarily long ranges of
temporal dependencies in data. More specifically, this capability places dual responsibility
on the representation rt : in addition to providing the code from which the output is decoded,
it functions as a memory of previous inputs. It is therefore interesting to analyse how such
representation supports learning temporal structure (which we approach in later chapters via
the mixed selectivity they exhibit).

In addition to their favourable computational properties, RNNs have been used as models
of the cortex, due to the ubiquitous recurrent connections presented across various cortical
regions, including the prefrontal cortex (PFC) and the hippocampus. For example, the
recurrent neural networks in the PFC have been found to support crucial computation
in context-dependent decision making (Mante et al., 2013; Sussillo et al., 2015). The
dense recurrent connections in the hippocampus, in particular the CA3 region, may be
crucial in memory and navigation, through their potential role in pattern separation, pattern
completion, and temporal association (Bush et al., 2010; Hasselmo and Eichenbaum, 2005;
Káli and Dayan, 2000; Lengyel and Dayan, 2007; Marr, 1971; Monaco and Levy, 2003).
In particular, the role of RNNs in associative memory has been studied since the beginning
of computational neuroscience (Festa et al., 2014; Hopfield, 1982; Lengyel and Dayan,
2005; Savin et al., 2013). More generally, recurrent neural networks may support rich and
balanced neural dynamics that underline various functions (Ostojic, 2014; van Vreeswijk and
Sompolinsky, 1996), such as sparse coding (Shriki et al., 2000), optimal control (Hennequin
et al., 2014b) and probabilistic sampling (Hennequin et al., 2014a).

1Our basic results have been reproduced using LSTM, although details are not reported here.
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In this thesis, I explore the role of RNNs in sequence learning. Compared with the other
temporal domain tasks as reviewed above, the sequence learning task here requires learning
relatively long temporal dependency (section 1.3.1). While this task can be easily solve with
modern training techniques, I will analysed the neural representation from these RNNs and
its implications for similar representations in the brain. Given the rich history of connecting
RNNs with neural processes, I aim to uncover potential computational principles in neural
systems.

3.2 Training RNNs

RNNs are powerful parametric models that are capable of modelling complicated temporal
structures — however, their computational power relies on properly adjusting a possibly
very large number of parameters. Since there is no closed-form solution for such complex
nonlinear systems, iterative and gradient-based training procedures are usually used to adjust
RNNs’ parameters. Gradient descent in practice is challenging, due to the presence of long
plateaus in the surface of the error function (Dauphin et al., 2014) and easily vanishing
or exploding gradients (Pascanu et al., 2012). This section briefly introduces an efficient
training procedure and essential additional techniques required for successful training. A
probabilistic interpretation of this procedure for feed-forward neural networks has been
presented in chapter 2, which is extended for RNNs in Appendix A.

3.2.1 Gradient descent with backpropagation

The purpose of training is to minimise a cost C as a function of the RNN’s output zt and
the corresponding target z∗t (for simplicity, we ignore the expectation over different training
sequences):

C = 1
T

T

∑
t=1
E (zt ,z∗t ) (3.5)

where E is an error function measuring the discrepancy between the model’s output zt and its
target z∗t . The squared error

E (zt ,z∗t ) =
1
2
∥zt− z∗t ∥

2 (3.6)

is often used for continuous outputs from a linear output layer, as in the simulations presented
in this thesis. The derivative of the error function with respect to a parameter w j has the
form:

∂E (zt ,z∗t )
∂w j

=

(
∂zt

∂w j

)⊺

· (zt− z∗t ) (3.7)
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The difference (zt − z∗t ) can be computed locally at the output layer. The derivative ∂zt
∂w j

can be computed by applying the chain-rule, which is implemented in neural networks
as the backpropagation algorithm (Rumelhart et al., 1986; Werbos, 1990). The simplest
implementation of gradient descent incrementally updates parameters w in each iteration by

w← w−α · ∂C
∂w

(3.8)

where α is the step size of updating. In theory, under some mild condition of diminishing
step sizes through iterations, C will converge to its local minimum upon repeatedly applying
the update rule in equation 3.8 (Robbins and Monro, 1951).

3.2.2 Techniques and tricks in training

The naïve implementation of equation 3.8 works poorly for problems at any practical scale,
in part because the highly non-convex error surface is overloaded with saddle points and
long plateaus (Dauphin et al., 2014). Moreover, the presentation of long-term dependencies
makes RNNs prone to the problem of vanishing or exploding gradients (Pascanu et al., 2012).
As a result, additional care must be taken in training RNNs. This section reviews several
techniques and tricks that can be used to improve the training of RNNs.

Hessian-Free optimisation (HF) (Martens, 2010; Martens and Sutskever, 2011) is a
second-order method that computes a positive semi-definite approximation of the Hessian
via modified backpropagation through time (Pearlmutter, 1994; Schraudolph, 2002). HF
solves the problem of vanishing and exploding gradient by normalising the gradients using
second-order information, as in other quasi-Newton methods. In addition, it effectively
avoids directly handling the tricky saddle points in error surfaces by forcing a positive semi-
definite approximation of the Hessian, the Gauss-Newton matrix. However, HF is difficult to
implement, and it often turns out to be less efficient than simple stochastic gradient descent
(SGD) combined with careful initialisation and scheduling of training (Sutskever et al., 2013),
which we shall introduce next.

Proper initialisation of parameters is the prerequisite of successfully training a neural
network. Intuitively, appropriate initialisation brings the parameters close to good local
optima, while avoiding regions of the error surface with malicious geometry, such as very
long plateaus and narrow troughs. For RNNs in particular, good initialisation sets up the
network in a favourable dynamical regime. A widely used method involves normalising
the magnitude of input weights into each neuron to 1 (Sutskever et al., 2013). For square
recurrent connection matrices with Gaussian random weights, this results in eigenvalues
roughly uniformly distributed within the unit circle, which provides stable and rich dynamics
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(Sompolinsky et al., 1988). Another technique I found particularly helpful is to initialise the
diagonal of the recurrent weight matrix as the identity matrix multiplied by a number less
than but close to 1, so that initially the hidden neurons are close to perfect integrators (Le
et al., 2015). This technique alone reduced the number of iterations required by an order of
magnitude in my experiments.

Given a properly initialised RNN, as discussed above, SGD worked well with a combina-
tion of large momentum, gradient clipping (Bengio, 2009) and denoising training (see below).
SGD generally achieved the same performance as RNNs trained using HF and converged
faster. Therefore, all the results reported in this thesis are from RNNs trained with SGD.

3.3 Regularisation and Denoising training

3.3.1 Denoising training: an overview

After initialisation, regularisation is often essential for training models with large numbers of
parameters. This practice is usually interpreted as avoid over-fitting and improve generalisa-
tion. For over-parametrised and expressive models like neural networks, regularisation is
usually necessary. It seems obvious that regularisation is crucial in the sequence learning
tasks examined here, where the dataset size is relatively small (section 4.1). However, this
issue is in fact more general since neural networks are typically over-parametrisation in
practice.

For example, in our setting, the ratio of parameters vs. data size is 100×100(recurrent weights)×
0.1(connectivity)+2×2×100(input / output weights) : 30(steps)×2(trials)×2(dimensions)=
1400 : 120 < 12 : 1. Settings where this ratio is much higher (e.g., 1000 : 1) has been consid-
ered in recent papers on over-parametrised neural networks Allen-Zhu et al. (2018); Arora
et al. (2019); Li and Liang (2018); Zhang et al. (2016). Most of these works focus on the
implicit regularisation from optimising such models using stochastic gradient descent (SGD).

One technique I found particularly useful is implicit regularisation via denoising training
(Bishop, 1995; Vincent et al., 2008b, 2010), which I later distil into the same contractive
regulariser as equation 2.42 (section 3.3). Denoising training adds zero mean noise ξt to the
input xt

x̃t ← xt +ξξξ t (3.9)

and then using the noisy copies x̃t in training. This simple technique significantly improves
the robustness of RNNs in my experiments. To avoid bias from few noise samples, many
noise samples throughout training are necessary. Note that adding noise to targets z∗t is
unnecessary (Bishop, 1995). This can be seen by noticing that, when taking derivatives
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of the cost function, the noise added to z∗t is averaged out in equation 3.7. In a biological
system, noise is ubiquitous (Faisal et al., 2008) — it may come from, for example, imperfect
perception of the external world or imperfect communication between internal neural systems.
I therefore added Gaussian noise to both input and output in my experiment to more faithfully
reflect this fact. Other popular regularisation techniques, such as drop-out (Hinton, 2014a),
are not clearly beneficial in my experimental setting, probably due to the relatively small
model size.

It is important to understand why denoising training can improve training. Expanding
the dataset with noisy copies incurs non-trivial computational cost in both the process of
adding noise and the increased variance during training; from a practical perspective, it is
worth investigating whether similar effects can be achieved more efficiently without such
overheads. For theorists, understanding denoising training may provide insights into the
robustness of neural systems, which face noise at almost all levels. Therefore, I propose an
closed-form approximation of denoising training. This approximate form can be used as a
regulariser in combination with the original loss function, whereby noisy copies of data are
no longer required. In experiments, I found nearly identical results as denoising training were
achieved with this regulariser. In addition, the analytical form of this regulariser allows us to
more directly characterise the effects of de-noising training on neural representations. An
interpretation from the perspective of probabilistic generative models is presented in section
2.6.3 and Appendix A.4.

3.3.2 Denoising as a Tikhonov regulariser

For feed-forward neural networks, Bishop (1995) showed that instead of corrupting input data
with noise, denoising training can be approximated by adding a Tikhonov regulariser to the
original cost function. Following the a similar procedure, I extend the Tikhonov regulariser
to the representation r instead of the final output z, which results in the contractive regulariser
(Rifai et al., 2011) that I derived in section 2.6.3 from the perspective of approximating a
GMM prior. Regularising the representation has the advantage that the same regulariser
can be used for different output activations (e.g., linear, Bernoulli, or softmax functions).
In addition, while Bishop (1995) derived the Tikhonov regulariser for feed-forward neural
networks, I extend the derivation for RNNs.

Following equation 3.9, to account for the temporal dependencies of an RNN, the RNN’s
representation given noisy input is denoted as r̃t

(
{xk +ξξξ k}tk=1

)
or r̃t for short, a function

of inputs and additive noise until time t, {xk}tk=1 and {ξξξ k}tk=1 respectively. Similarly, rt is
the shorthand for rt

(
{xk}tk=1

)
without additive noise. The i’th element of r̃t has the second
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order Taylor expansion at ri
t ,

r̃i
t = ri

t +
t

∑
k=1

ξξξ k
⊺ ∂ri

t
∂xk

+
t

∑
k=1

1
2

ξξξ k
⊺∂ 2ri

t

∂x2
k

ξξξ k +
t

∑
k=1
O
(

ξξξ
3
k

)
(3.10)

where ∂ri
t

∂xk
is the i’th column of the Jacobian matrix ∂rt

∂xk
, and ∂ 2ri

t
∂x2

k
is the Hessian for ri

t .

The objective of denoising training is bringing r̃t close to the noiseless representation rt ,
so that the representation becomes invariant to input noise. This objective can be achieved by
minimising the following denoising cost D, which quantifies the discrepancy between r̃t and
rt as a result of the added noise:

D =
1

2T

T

∑
t=1
∥r̃t− rt∥2
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2T
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These terms can be further simplified by considering the expectation over the distribution of
the noise ξk. Utilising the two moments of the added noise,

⟨ξξξ k⟩p(ξξξ k)
= 0 (3.12)〈

ξξξ kξξξ k
⊺〉

p(ξξξ k)
= η

2I (3.13)

The expectation then becomes〈
K

∑
i=1

(
t

∑
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t
∂xk

+
t

∑
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)2〉
p({ξξξ k}tk=1)

= η
2

t
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k=1

∥∥∥∥ ∂rt

∂xk

∥∥∥∥2

F
(3.14)

where σ2
ξ

is the variance of the additive noise.

Therefore, denoising can be approximated by adding the Tikhonov regulariser T to the
original cost C:

T =
T

∑
t=1

t

∑
k=1

∥∥∥∥ ∂rt

∂xk

∥∥∥∥2

F
(3.15)
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The noise variance σ2
ξ

can be merged with the weighting of D which will be discussed later.
This approximation is accurate when the magnitude of noise is small, so the higher order
terms in the Taylor expansion (equation 3.10) can be ignored (Bishop, 1995).

At this point, we recovered the contractive regulariser derived in section 2.6.3 (equation
2.42) by ignoring the time index t for autoencoders, and substituting r = gφ (x). Therefore, I
have derived the regulariser from the two different perspectives:

1. Approximating a constrained GMM prior in generative models;

2. Approximating denoising training.

This correspondence will be discussed further. In this section, I follow Bishop (1995) to call
T (equation 3.15) a “Tikhonov regulariser” to emphasise its derivation. In the following
text, I shall return to the name “contractive regulariser” which more closely matches the
mathematical form and better characterises its computation.

Applying the chain rule, we obtain the output at time t depending on the input at time k
through

∂rt

∂xk
= DDDt ◦

(
t−1

∏
s=k

WWW s

)
·Win (3.16)

where DDDt is an M×M matrix such that all its columns are s′ (yt), the derivatives of the
activation functions of all hidden neurons at time t, and ◦ represents the Hadamard (element-
wise) product. WWW s = Wrec ◦DDD⊺

s represents the effective projection through the recurrent
connections.

From equation 3.16, the penalty from T would be small if DDDt were sparse (with many
zero elements). For the ReLUs we use (equation 3.4), sparse DDDt corresponds to sparse
activity, as the zero activation and zero derivative of a ReLU coincide. A close examination
of T gives us intuition into how this works. From equation 3.16, minimising the magnitude
of T encourages large elements of

(
∏

t−1
s=k Ws

)
·Win to align with small (zero for ReLU)

elements of Dt . This means an arbitrary and unstructured input, which is likely to be noise,
should diminish after passing through the input weights Win and the effective recurrent
weights Ws for t− k times. Since both Dt and Ws may change in each step, this denoising
procedure is dynamical. The flexibility of this dynamical process allows the RNN to find
configurations that balance well the trade-off between the original objective (equation 4.1)
and the regulariser.



60 Recurrent neural networks

3.3.3 An approximate Tikhonov regulariser for RNNs

Unlike the contractive regulariser for feed-forward neural networks (when T = 1), equation
3.16 and its derivatives are difficult to compute — due to the cumulative temporal depen-
dencies, evaluating T requires O(T 2) computation. Therefore, T is not ideal to be used
directly as a regulariser for training RNNs, and we need to seek a regulariser that is cheaper
to compute but yields similar performance.

Based on the dynamical perspective developed above, I approximate the effect of equation
3.15 by removing the output matrix Wout, the state-dependent derivatives DDDs, and higher-order
dependencies in the product ∏

t−1
s=k WWW s. As discussed previously, removing the higher-order

terms of WWW s and DDDs essentially encourage the RNN to filter out noise from inputs in no more
than than t− k steps. Although this sacrifices part of the flexibility, it significantly simplifies
the computation from O(T 2) to O ((t− k)T ). Importantly, with DDDt remains, the regulariser
can still adapt to the dynamics. In my experiment, I used the second-order approximated
Tikhonov regulariser by fixing t− k = 1:

T2 =
T

∑
t=1
∥BBB∥2

F (3.17)

B = η1 DDDt Win +η2 DDDt Wrec Win (3.18)

where two separate coefficients η1 and η2 are introduced for the first and second order terms
respectively for extra flexibility. Note that at least two terms are required to include the
recurrent connections, i.e. the temporal dynamics of the RNN. This second order regulariser
encourages the noise to be filtered out in just one step.

Using grid search, I found the optimal values for these hyper-parameters to be η1 =

0.02 and η2 = 0.01, which are close to the initial guess based on the analytical forms —
the larger value for η1 possibly compensated for the higher order terms that were lost in
the approximation. It is straightforward to include higher order terms, corresponding to
increasing t− k and allowing more steps before the input noise vanishes, which may be
helpful in other tasks. Note that the derivation of the denoising regulariser did not assume
any specific task, and so we expect it to generalise to a broad range of tasks of practical
interests. This is a direction for future investigation.

Further, as the main purpose of deriving the regulariser T is to help us understand the
denoising training procedure, I still used denoising training for all the results in the main
thesis to simulate the noisy environment animals face 2 (Faisal et al., 2008). To verify its

2It is also the case that the efficiency gained from using the regulariser is negligible in the simple task we
use.
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effect in training, Appendix C presents main results from the thesis reproduced using the
contractive regulariser (equation 3.18) instead of denoising training.

3.3.4 Probabilistic interpretation

A probabilistic view of the denoising process arrives by noticing that the regulariser RM

(equation 2.42) that approximates training with GMM prior (section 2.6.3) is identical to the
Tikhonov regularizer T derived in this chapter for denoising (equation 3.15). This isometry
suggests robustness to input noise can be interpreted as having a GMM prior in generative
models. Intuitively, this is because GMM is insensitive to small perturbations that do not
change the cluster (mixture component) assignment.

In addition, the same regulariser derived from different perspectives establishes a novel
connection between denoising training and properly training generative models. It indicates
that simply training with noise would provide the constraint on the approximating posterior,
which is involved in computing the variational lower-bound in maximising the model’s
likelihood (section 2.6).

3.3.5 Related work

RM (equation 2.42) has the exact form of the contractive regulariser (Rifai et al., 2011), which
has been proposed from the motivation of explicitly controlling the variance of features. With
the extra temporal dependent structure, T2 can be seen as a generalisation of the contractive
regulariser for RNNs, which encourages input invariant representations through time in the
hidden layer. Rifai et al. (2011) show that, with this regulariser, the resulting contractive
autoencoders (CAE) are able to extract meaningful features that yield good performance
in classification for a broad range of data. They explained the performance in terms of
local space contraction, which is consistent with our probabilistic interpretation of Gaussian
mixtures priors, since each of the mixture components can be seen as a local contraction
around its (implicit) mean.

More recently, Sussillo et al. (2015) independently proposed a regulariser that is essential
for reproducing experimentally observed naturalistic solutions and biologically plausible
tunings in RNN models for motor control tasks. This regulariser is a special case of T2 by
setting η1 = 0, thus retaining only the second-order term.

Previous work have explored the connections between autoencoders and generative mod-
els. For example, Vincent (2011) discovered the connection between training denoising
autoencoders and matching the score of energy based (undirected) models (Hyvärinen, 2006).
More recently, Bengio et al. (2013) justified the generative model implicitly learned from
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training a denoising autoencoder using arbitrarily corrupted data, and extended previous
Markov Chain Monte-Carlo method for contrastive autoencoders (Rifai et al., 2012), propos-
ing a general method to sample from these generative models. In this chapter, I further
draw the connection between denoising autoencoders and directed graphical models, so the
developed neural representation can be more easily characterised as a latent variable with
statistical properties inherited from the prior.

Even though training with noise-corrupted data has been well-known to promote the
performance of autoencoders as well as other neural network models, we explained the
effects of noise in the context of variational inference in minimising the KL-divergence
DKL

[
qφ (r|x)∥pθ (r)

]
in the lower bound L. Compared with recently proposed variational

autoencoders using stochastic backpropagation (Rezende et al., 2014a) or the equivalent
re-parametrisation trick (Kingma and Welling, 2014), we show that a generative model can
be trained without introducing any new model component (e.g., re-parametrised distributions,
explicit priors). Given the ubiquity of noise in biological system, this simple method suggests
a potential direction towards the statistical modelling employed by the brain. The next chapter
shows further evidence supporting this hypothesis — a causal relationship between denoising
/contractive autoencoders and the mixed-selectivity widely observed across different brain
regions.

Conclusion

This chapter introduces recurrent neural networks, which I will use from the next chapter
for the sequence learning task. From the practical problem of training neural networks, I
dived into more theoretical aspects of commonly used tricks, such as regularisation denoising
training. Somewhat surprisingly, by analytically approximating denoising training, I derived
the same regulariser as the contrastive regulariser derived in the previous chapter, where it was
used to approximate training generative models with a GMM prior. This generative model
perspective justifies that denoising training is a principled way of capturing the statistical
structure of data, which shall manifest later in this thesis in the form of mixed selectivity
(Chapter 5). The technique used in this chapter mainly follows Bishop (1995). I extended
his original Tikhonov regulariser on representations and for RNNs. The resulting regulariser
generalises a few regularisers that previously have been shown to produce biologically
plausible representations.



Chapter 4

RNNs performing sequence
disambiguation

This chapter presents the RNN trained on the T-maze sequence learning task. As introduced
in section 1.3.1, solving this task involves sequence disambiguation, and the vast amount
of available neural data provides references for analysing representations developed in my
simulation. I demonstrate that RNNs trained for sequence prediction exhibit place cell-like
firing patterns. It was the first time such biologically plausible patterns were observed from
RNNs trained only for performance (first reported in my COSYNE talk in 2015, in Salt
Lake City). I further analyse statistical properties of such firing patterns, quantifying its
similarity with neural representations observed in the brain, and show that such patterns
support line-attractor dynamics that solve the task.

4.1 Training

The T-maze alternation task (section 1.3.1) can be formulated as a sequence prediction
problem, which requires sequence disambiguation. Given the ability of RNNs to represent
input history as context (section 3.1) and their structural similarity to cortical circuits, here
an RNN (Figure 3.1) is employed solve this problem. At each time step, the position of a
simulated rat, a two-dimensional coordinate, was fed as input into the RNN; the RNN then
output a coordinate as the predicted position at the next time step.

Here I use the coordinate instead of the pixels from first person’s view (e.g., Banino
et al., 2018), and train the model for one-step prediction (as a form of maximum likelihood
learning) instead of reinforcement learning (RL, Sutton and Barto, 1998) for the following
reasons:
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1. This thesis focuses on computational principles of neural representation, so I choose
this simple setting to avoid unnecessary or confounding influence from other com-
ponents. We can assume these coordinates come from other areas of the brain (e.g.,
visual cortex) that are less relevant to the main analysis here.

2. This minimal model is much easier to train compared with full-scale models that
take raw-pixel inputs or those perform RL. Processing pixel inputs would require
training powerful neural encoder and decoder, and RL generally has high variance.
The model presented in this thesis can be trained locally on a CPU within a minute,
allowing investigating the computational principles in sequence learning with much
lower computational cost.

Importantly, the using coordinates as inputs still preserves the main computational problem
this thesis investigates — the ambiguity from parts of the sequences. Therefore, although it
is useful to study how the entire system interact with environment in an end-to-end fashion,
here we can study the core computational principles with a more manageable computational
budget.

More specifically, the input positions as coordinates were sampled uniformly along
constant speed trajectories in left-turn or right-turn trials (figure 1.2). To simulate the effect
of non-perfect perception of the spatial location, a significant amount of noise (with a standard
deviation of 0.1, equivalent to 5 cm in the scale here, as shown in Figure 4.1) was added to
the sampled position, which resulted in denoising training (section 3.3).

Besides added noise, the major challenge of this prediction problem was at the decision
point, where prediction required integrating contextual information before the central arm —
the input positions on the central arm were identically distributed for both types of trials, so
they could not help disambiguation. In other words, external input alone was not sufficient
to successfully disambiguate the two types of trials; the context, which exhibited temporal
dependencies across about 10 time steps — the length of the central arm — needed to be
represented by the RNN internally.

Formally, this task can be described using the notation of equations 3.1 - 3.3 and 3.5.
At step t, the target z∗t is the next (noisy) position x̃t+1. For clarity, I write the output z̃t

in equation 3.3 as x̂t+1, to explicitly express it as a prediction of x̃t+1. The cost function
(equation 3.5) then becomes the squared prediction error

C = 1
2T

T

∑
t=1
∥x̂t+1− x̃t+1∥2 (4.1)
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From equation 3.1 - 3.3, x̂t+1 is a function of the current position xt and the hidden neurons’
activity rt . Therefore, the context has to be represented by the activity rt . Unlike previous
approaches that rely on heuristically designed context-sensitive neurons (Hasselmo and
Eichenbaum, 2005; Howard and Kahana, 2002; Levy, 1996; Sohal and Hasselmo, 1998;
Wallenstein and Hasselmo, 1997; Zilli and Hasselmo, 2008), I do not directly specify how the
population activities rt should encode contextual information. Instead, the representations rt

are optimised for task performance via minimising this squared prediction error.

Adapting the terminology of behavioural experiments (Wood et al., 2000), we call a
sequence of noisy samples along the trajectory {x̃t}T

t=1 a trial. Within the same type (left-
turn or right-turn), trials differed only by different samples of the additive noise ξξξ t . The
underlying noiseless positions xt , which were evenly sampled along the trajectories, were the
same (Figure 4.1, c). Consequently, between different types of trials, the underlying positions
along the central arm were identical. I train the input, output and recurrent connection
weights to minimise the next-step prediction error. The exact parameters and other details of
training are summarised in Appendix C.

4.2 Performance

Although the RNN was only trained for on one-step prediction (estimating the next location
x̂t+1 at each step t), I also tested it on a more challenging recall task. While (the noisy version
of) the current position was fed into the RNN at each step for prediction, in recall, such
external input was only supplied at the initial step; the outputs of the RNN were then fed-back
as inputs in all subsequent steps, so that the RNN needed to recall the entire sequences given
only the cue from initial step. This generalisation is ecologically relevant: one-step prediction
is easy to learn, but prediction over multiple steps — to the extreme of recalling the entire
experience — is often required in planning (Kaelbling et al., 1998; Pfeiffer and Foster, 2013;
van Seijen and Sutton, 2015). However, this generalisation brings new challenges: it is
reasonable to anticipate that prediction errors might accumulate in the recall process, which
is essentially a chain of consecutive one-step predictions.

After training, the performance of an RNN in prediction and recall tasks is illustrated
in Figure 4.1. During prediction (Figure 4.1, a), the variance of outputs (lines) along the
maze was significantly smaller than the variance of the noisy inputs (dots), which shows
that the RNN achieved both prediction and denoising. Figure 4.2 (a) shows that outputs
had larger errors at the beginning (near the dots), which then quickly converged close to
the true positions after only a few steps. Figure 4.2 (a) also shows that the step right before
entering the central arm and the last step on the central arm had larger errors — since both of
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a b c

20 cm

Fig. 4.1 Illustrative examples of a trained RNN performing prediction (a) and recall (b). Dots
show the noisy coordinates of positions as inputs into the RNN; lines connect output from
the RNN. Blue and red indicate left-turn and right-turn trials respectively. While external
inputs were supplied all the way along the trajectories during prediction, only initial cues
were given to the RNN for recall. Ten trials for each type are illustrated. The actual locations
of the simulated rat traversed are plotted as dots in c (see also the task illustrated in Figure
1.2).

these steps were immediately before the turns, prediction errors from these steps were more
difficult to correct using backpropagated information from the next steps. Nevertheless, the
errors dropped after these steps.

To further exemplify performance, Figure 4.2 (b) shows the means and standard deviations
of errors computed from 100 trials. As a control, we plotted the error computed from a
trivial solution which simply copied inputs as predictions. This quantitative result shows
that the RNN performed much better than the control in prediction (while no such trivial
solution exists for recall). In the more challenging task of recall (Figure 4.1, b), only an initial
(noisy) input (shown as a dot) at the beginning of each trial was supplied as a cue. Somewhat
surprisingly, although the RNN was continuously performing one-step prediction by feeding
back its output to its input at each step, the prediction errors did not accumulate along the
trajectories. In fact, the errors during recall were slightly lower than in prediction. We
hypothesize that this is because the outputs that fed-back into the RNN were less noisy than
the inputs during prediction. In section 4.4, we will explain this result from the perspective
of dynamical systems. A probabilistic explanation based on generative models is presented
in Chapter 2 and Appendix A.

4.3 Neural representations

The task performance we described in the last section concerns only the input to output
mapping of the RNN. To look “under the hood”, we plot the activities of hidden neurons, rt ,
during the prediction task in figure 4.3 (right). These activities represented a topographical
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Fig. 4.2 (a) The root mean squared error (RMSE) at each step averaged over 100 trials and
10 RNNs for prediction (solid line) and recall (dotted line). During recall, the prediction
errors did not accumulate through time. The two vertical dashed lines show the first and last
step on the central arm. (b) Performance of the RNN in prediction and recall, compared with
a control that simply copies input as prediction. Bars show averages from 100 trials each
from 10 RNNs, error bars indicate standard errors. Consistent with panel a, the errors in
recall were slightly lower than during prediction, possibly because the outputs that fed back
into the RNN were less noisy than the noisy inputs during prediction.

code of the environment: neurons had developed uni-modal tuning coding for locations
that tiled the entire T-maze. Moreover, the activities were sparse, as a neuron only fired
on short segments along trajectories. Despite the topographical code being sparse, it was
nevertheless distributed — a neuron never fired at only a single location. This representation
of space lies in the category of coarse codes, as a trade-off between the extremely localist
representations, where one neuron only represents a particular location, and the completely
distributed representations, where a topographic mapping can not be established (Hinton,
1986). This trade-off has been examined in the light of probabilistic generative models in
section 2.5. Such sparsely distributed codes have been argued to play a central role in neural
computation, because they exhibit a balance between efficiency and robustness (Hinton, 1986,
2014b; Hinton and Ghahramani, 1997; Rumelhart et al., 1987). Similar sparse and distributed
representations exhibiting mixed selectivity have been observed in various cortical areas
(Baeg et al., 2003; Fujisawa et al., 2008; Huettel et al., 2002), including the hippocampus,
when rats performed the same T-maze alternation task (Wood et al., 2000, see figure 1.3 to
1.6).

Rather than occurring incidentally, the sparsely distributed representations were a result
of learning, which can be seen from comparing the firing patterns before and after training
(Figure 4.3), as well as through their statistics (Figure 4.4). In contrast to the patterns in
Figure 4.3 (b), the representation before training (Figure 4.3 a) were not sparse and there was
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Fig. 4.3 Neural responses before (a) and after (b) training. Each row represents a neuron and
each column represents a location. Two vertical white lines show the beginning and end of
the shared central arm. Colour codes the firing rates of the 100 neurons, sorted by locations
of maximum activity and normalised between 0 and 1 for each neuron (see also Figure 1.3 to
1.6).

hardly any topographical structure, since the firing of neurons did not reflect the structure of
the space. To further confirm this observation, we measured sparseness1 of the codes by the
activity ratio (Olshausen and Field, 2004; Rolls and Tovee, 1995; Vinje and Gallant, 2000),
which is defined as

ai =

( 1
T ∑

T
t=1 ri

t
)2

1
T ∑

T
t=1
(
ri
t
)2 (4.2)

As shown in figure 4.4 (a), the distribution of activity ratio shifted towards 0 after learning,
indicating a significant increase of sparseness. To measure the stereotypy of the tuning curves,
I used the measure of bVar proposed by Rajan et al. (2016), which quantifies the variability
of a population’s activities that can be explained by shifting a template. To compute bVar,
the template is first obtained by averaging across all neurons their tuning curves r̄t aligned
according to their maximum firing rates:

rtemplate
t =

1
N

N

∑
i=1

r̄i
t−ti (4.3)

1More precisely, we measured the life time sparseness of individual neurons.
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where ti indicates the location (time) of maximum firing for neuron i averaged across trials.
bVar for the population is then computed as the variability explained by shifting the template:

bVar = 1−
∑

N
i=1 ∑

T
t=1

(
r̄i
t− rtemplate

t−ti

)2

∑
N
i=1 ∑

T
t=1
(
r̄i
t− 1

N ∑
N
i=1 r̄i

t
)2 (4.4)

In addition, to further quantify the typicality of individual neurons, I adapt the bVar from
Rajan et al. (2016) to indicate the variability of individual neurons explained by the template
as

bVari = 1−
∑

T
t=1

(
r̄i
t− rtemplate

t−ti

)2

∑
T
t=1

(
r̄i
t− 1

N ∑
N
j=1 r̄ j

t

)2 (4.5)

By definition, both bVar and bVari are normalised quantities between 0 and 1. Figure 4.4
(b) shows bVar increased at both individual neuron level and population level (from 0.37 to
0.47), confirming that the firing patterns of neurons became more stereotypical after training.

Since the challenge of the T-maze alternation task is mainly at the decision point at
the end of the central arm, I analysed the neural activities more closely on the central arm.
Figure 4.5 shows 6 exemplar neurons that fired significantly on the central arm. These
neurons resembled the splitter cells reported by Wood et al. (2000) (Figure 1.3), as they fired
differently on different types of trials, although the RNN received identical inputs at locations
along the central arm. Therefore, the trial-type dependent firing of these splitter cells could
be used to provide contextual information, disambiguating the left-turn or right-turn trials at
the decision point. We thus conclude that the sparse and distributed neural representations
developed during learning the one-step prediction task support sequence disambiguation, by
encoding context as well as the location of the animal via mixed selectivity.

Why did this biologically plausible type of representations emerge in our model? A full
answer will only be provided towards the end of this thesis. Nevertheless, in this section, I
confirmed that several aspects of these representations were a result of learning, and such
representations emerged when the RNN performed competently in the tasks, as shown in
our simulations. This can be seen as an initial step towards linking such a sparse distributed
representation with mixed selectivity and the task performance for which the RNN was
optimised. More formal links will be established using probabilistic generative models
(chapter 2) and information theory (chapter 6).
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Fig. 4.4 Changes of activity ratio (a) and stereotypy (b) over training. The activity ratio
measures lifetime sparseness for individual neurons, and bVar quantifies the variability of
tuning curves explained by a template. At the population level, bVar increased from 0.37 to
0.47. Black and blue indicate the histograms before and after training respectively.
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Fig. 4.5 Six example splitter cells. Spikes are shown as coloured dots at the locations of firing.
Yellow and purple indicate left-turn and right-turn trials respectively, following the same
convention as in Wood et al. (2000). The spikes were sampled with probabilities proportional
to the activities (firing rates) rt . For visualisation purposes, Gaussian noise with standard
deviation of 2.5 cm was added when plotting spikes to avoid overlap. All these 6 cells fired
differently at the central arm depending on the type of the trial.

4.4 Neural dynamics

After examining the firing pattern of neurons, this section takes a more global view of how
such representation functions together as a dynamical system. By treating the activities of
hidden neurons in an RNN as the state-space of a dynamical system, I analyse the RNN using
techniques based on local linearisation, where the behaviour of the system is characterised
by its local Jacobian. Towards the end of this section, I will present an intriguing view of the
developed tuning curves after taking into consideration the temporal dynamics.

4.4.1 The RNN as a dynamical system

To start our quest for understanding the RNN, especially the representations that developed
with improved task performance, I analyse the RNN as a dynamical system. This is particu-
larly convenient during the recall task — with the absence of external input (except the initial
cue), the dynamics are self-sustained and the performance is completely determined by these
dynamics.



72 RNNs performing sequence disambiguation

The RNN described by equations 3.1 and 3.2 can be generalised by introducing a step
size ∆t and a temporal constant τ:

τ · ∆yt

∆t
=−yt−1 +Win ·xt +Wrec · s(yt−1) (4.6)

yt = yt−1 +∆yt (4.7)

When τ

∆t = 1, the above equations become equivalent to equations 3.1 and 3.2. Equation 4.6
and 4.7 are a discrete-time (first-order Euler) integration of the continuous system:

τ · ẏ =−y+Win ·x+Wrec · s(y) (4.8)

This discrete approximation is accurate when y changes slowly in each step, which I will
discuss more in later sections. When this RNN is used for recall, for which we plug-in
x = Wout · s(y), its state is purely determined by y as

τ · ẏ =−y+WWW · s(y) (4.9)

where we use the shorthand WWW = WinWout +Wrec.

Before the more detailed analysis, it is helpful to develop some intuition by viewing this
dynamical system in a low-dimensional space. I used principal component analysis (PCA) to
reduce the dimensionality of y collected over 20 trials (split for left- and right- turn trials). As
an embedding method2, the projection given by PCA tries to preserve the Euclidean distance
between points in the space of y. The projected trajectories of y from the same RNN shown
in figure 4.1 is illustrated in figure 4.6 (viewed from 3 different angles).

From figure 4.6, we see that the trajectories lie on a highly restricted and structured
manifold inside the space of all possible firing configurations. Trajectories of the same trial
type (blue or red) are clustered together in the state space, while trajectories of different types
(blue vs. red) are well separated. In particular, the trajectories along the shared central arm
(solid lines) are well separated in the state space, despite the RNN receiving noisy samples
of identical positions as inputs during training. Therefore, consistent with the evidence from
splitter cells (Figure 4.5), the central arm was indeed represented differently by the hidden
neurons, indicating disambiguation at the decision point.

2A probabilistic view of PCA is reviewed in section 2.5, under the context of autoencoders.
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Fig. 4.6 Temporal evolution of hidden neuron states y. The trajectories of yt in 10 trials are
projected along the first 3 principal components computed from neural activities. (For this, yt
at different time steps were treated as independent data points when computing the principal
components. 77.3% of variance in the activities was preserved through this projection). The
3 plots are the same trajectories viewed from 3 different angles. Following the colour code
used in figure 4.1, blue and red indicate left-turn and right-turn trials respectively. Dotted
lines indicates the segment before entering the central arm, and dashed lines shows the
segment after the central arm. Black dots are the numerically found slow points along the
trajectories (see section 4.4.2 for explanation).
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4.4.2 Slow point analysis

Analysis of non-linear dynamical system has traditionally been focusing on stationary points,
where linearisation of non-linear dynamics captures the behaviour of the system locally.
However, the requirement of stationary points may be over restrictive, limiting region of
state-space on which linearisation can be applied. Here, following Sussillo and Barak
(2013), I analyse the RNN through a less restricted class of points, called slow points, where
techniques based on local linearisation provides useful insights in understanding the albeit
non-linear RNN.

For a dynamical system defined as

ẏ = F(y) (4.10)

it has the Taylor expansion at yc

ẏ = F(yc +δy) = F(yc)+
∂F(yc)

∂yc
δy+

1
2

δy⊺
∂ 2F(yc)

∂y2
c

δy+ · · · (4.11)

By linearisation, we ignore all except the linear term in the Taylor expansion. A fixed point
y0, such that F(y0) = 0, is an obvious candidate for linearisation, since the constant term
already vanishes. Sussillo and Barak (2013) demonstrate that other less restricted y∗ may
still be good candidates for linearisation, as long as∥∥∥∥∂F(y∗)

∂y∗
δy
∥∥∥∥> ∥F(y∗)∥ (4.12)∥∥∥∥∂F(y∗)

∂y∗
δy
∥∥∥∥> ∥∥∥∥1

2
δy⊺

∂ 2F(y∗)
∂y∗2

δy
∥∥∥∥ (4.13)

i.e., when the linear term dominates. In practice, rather than testing the exact conditions
described by equation 4.12 and 4.13, we simply look for the slow points y∗ where F(y∗) is
small (Sussillo and Barak, 2013).

These slow points can be found by minimising an auxiliary function

q(y) =
1
2
∥F(y)∥2 (4.14)

with respect to y. During minimisation, gradient-based optimisation methods are used to find
stationary points (or locations close to them) of q(y) that satisfy

∂q(y0)

∂y0
=

∂F(y0)

∂y0
ẏ0 = 0 (4.15)
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which implies one of the two possibilities:

1. ẏ0 = 0: y0 is a fixed point, thus a global minimum of q(y).

2. ẏ0 ̸= 0, but ∂F(y0)
∂y0

ẏ0 = 0: either ∂F(y0)
∂y0

= 0 or ẏ0 is a linear combination of the zero

eigenvectors of ∂F(y0)
∂y0

. In this case, y0 is a local minimum.

Therefore, we need to check whether a stationary point y0 of q(y0) qualifies as a slow point
by comparing it with a threshold value (Sussillo and Barak, 2013). The exact value of this
threshold value is problem and model dependent; in my experiment, the value of 2 resulted
in the slow points densely concentrated near the recall trajectories. Initialised from 100
randomly chosen points in the state space near the recall trajectories, I found the 84 slow
points shown by the black dots in Figure 4.6 which were close to the trajectories. To verify
that points along the trajectories indeed had low speed, as the strings of slow points indicate,
I tested how the speeds changed if these slow points were pushed away from the actual
trajectories. This is simulated by perturbing the system at the slow points with Gaussian
noise and computing speeds at these perturbed points using equation 4.14. The averaged
speed as a function of the perturbing noise level is shown in figure 4.7. The upwards curve
shows that the speed of the system increased as the states were perturbed away from the slow
points.

We can thus linearise the (continuous) dynamical system at these slow points, and analyse
the behaviours near them from their corresponding eigen-spectra. Figure 4.8 (red dots) shows
the eigenvalues at four of the randomly chosen slow points plotted in the complex plane.
In these graphs, each point represents the eigenvalue for an eigenvector. The directions
whose eigenvalues have negative real parts are stable. We can see that most, but not all, of
the directions along these eigenvectors were stable. As controls, the eigen-spectra for the
same states before training (Figure 4.8, blue dots) and in a randomly initialised RNN with
Gaussian random recurrent weights (random RNN) 3 (Figure 4.8, green dots) are also plotted
in the same panels. The eigenvalues obtained from the random RNN are concentrated near
(-1, 0) in the complex plane, resulting in a few meta-stable directions whose eigenvalues have
real-parts close to 0. Note that, when the recurrent connection matrix was initialised close to
identity (Le et al., 2015), a significant portion of directions at these state, either before or
after training, were already meta-stable or near unstable (Figure 4.8).

Such features of individual slow points are confirmed in the histograms from all the
84 slow points shown in Figure 4.9 (a), where we can see a concentration of eigenvalues’
real parts at both −1, corresponding to immediately vanishing of input, and around 0,

3In this random RNN, weights are scaled according to, for example, Martens and Sutskever (2011), instead
of setting the connection matrix close identity as in Le et al. (2015).
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Fig. 4.7 Averaged speed of points near the recall trajectories as a function of perturbing noise
level. Points away from the recall trajectories generally have higher speed. Lines and error
bars shows the means and standard deviations computed from 30 RNNs.

indicating meta-stable states for the pre- (blue) and post-training (red) RNNs. However, the
concentration of eigen values near 0 disappeared for the random RNN (Figure 4.9, a, green).
Figure 4.9 (b and c) further show the histograms for the spectral abscissa and the proportions
of unstable directions at all the 84 slow points. Therefore, the strings of these slow points
formed quasi- line attractors — they were not exact attractors, as some of the directions at
these points were not stable. Indeed, these few unstable directions guaranteed the system at
these states did not stop, but proceeded along the trajectories specified by these line attractors,
which the recall dynamics required (Ganguli et al., 2008; Sussillo, 2014).

Despite the popular hypothesis that neural systems use attractors for computations, it has
been know in machine learning that stable attractors are unsuitable for learning systems since
they necessarily exhibit the vanishing gradient problem (Bengio et al., 1994; Jozefowicz
et al., 2015). Consistent with this argument against stable attractors, the recall trajectories
faithfully followed quasi-line attractors. Moreover, slight digression caused by noise could be
corrected by the stable attractor-like dynamics, which explains the RNN’s robustness against
input noise. In addition, my analysis justifies initialising the recurrent connection matrix
near identity (Le et al., 2015). This technique is helpful because it yields a large number
of meta-stable directions in the state-space, which is desirable for learning the quasi-line
attractor dynamics.



4.4 Neural dynamics 77

-1.5 -1 -0.5 0 0.5
real

-1

-0.5

0

0.5

1

im
ag

in
ar
y

-1.5 -1 -0.5 0 0.5
real

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1
rand
pre
post

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

im
ag

in
ar
y

Fig. 4.8 Eigenvalues of 4 randomly chosen slow points. Blue and red represent the eigenvalues
before and after training at the same states (slow points for the trained RNN). For comparison,
green dots show the eigenvalues from an RNN with Gaussian random recurrent connections
the same states. Note there are in total 100 dots in each plot for the 100 dimensions of the
state space, but over half of these eigenvalues overlap at (−1,0), corresponding to immediate
vanishing of inputs along these directions. Therefore, most directions at these slow points
were stable, as the real parts of most eigenvalues were negative.
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Fig. 4.9 Histograms for the real part of all eigenvalues around slow points (a), spectral
abscissa (b), and the proportion of unstable directions (c) at all 84 slow points. Colour codes
different RNNs as in Figure 4.8.

4.5 Adaptive tuning curves

To conclude this chapter, we present another, slightly unusual view of the dynamics of the
RNN — we show how the tuning curves as functions of feed-forward inputs adapted during
the task. Although the ReLU’s threshold nonlinearity as a function of the total input is fixed
(i.e., rt as a function of yt , equation 3.2), one can consider the recurrent connections and
inputs through these recurrent connections as a mechanism to modulate the tuning of the
hidden layer neurons to their feed-forward inputs. To view these dynamically adapting tuning
curves, we plot the activities of each hidden neuron (rt) as a function of its feed-forward
input (Win ·xt) in Figure 4.10. I set a firing threshold of 0.1, and only analyse neurons whose
firing crossed this threshold for over 20 times steps. In the end I obtained 85 neurons out of
the population of 100 neurons that satisfy this criterion for plotting tuning curves.
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Fig. 4.10 After training, the activities of 6 representative hidden neurons are plotted against
the feed forward inputs into these neurons (black dots). Superimposed are the cumulative
distribution functions of the feed-forward inputs (red lines), scaled and shifted to fit the
activities. Each black dot represents the activity of a neurons at a time step. Data are collected
in 10 trials.
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These adaptive tuning curves fit surprisingly well the CDF of the feed-forward inputs
(Figure 4.10). It is known that a tuning curve with the shape of input CDF maximises the
entropy of output neural responses with bounded activity range (see section 2.5.3). This
is because the CDF transforms the input distribution into an uniform output distribution,
which has the maximum entropy when the range of firing rates is bounded. Therefore, these
adaptive tuning curves may maximise the entropy of individual neural responses.

To verify that the matching of tuning curves and their CDFs was not coincident, I shuffled
the pairs of tuning curves and corresponding input CDFs, and compare the histogram of
correlation coefficients before and after the shuffling, both before and after training (Figure
4.11). The clear decrease of correlation coefficients after shuffling suggests the matching
illustrated in Figure 4.10 was not a trivial phenomenon. Figure 4.12 further illustrated the
change of correlation coefficients for each neuron. Out of the the 85 neurons I analysed,
55 of them (64.7%) increased the correlation coefficient after training. This shift towards
higher correlation coefficient after training suggests training at least partly accounted for this
phenomenon.

In summary, analysis of neural responses show that the activities of neurons in RNNs
dynamically adapted to input statistics. When the recurrent connections were considered as a
part of the neurons adaptive mechanism, individual neurons’ tuning curves seemed to match
their input CDFs. The connection between this phenomenon and information maximisation
is first explored in ICA literature. More recently, it has been noted by, for example Dinh et al.
(2016), that denoising training of neural networks is related to ICA by encouraging the model
to explain observations using independent additive noise. However, the exact contribution of
independence in such models is obscured by their non-linearity, and better explanation of
this phenomenon awaits future investigation.

Conclusion

This section presents the main experiments in this thesis, where RNNs were trained to solve
the T-maze alternating task, formulated as sequence prediction. The RNN successfully solved
the prediction task and could generalised to more challenging recall task. Moreover, analysis
of the firing patterns of the trained RNN shows its similarity to representations observed
in the brain both qualitatively and quantitatively. To understand the RNN’s performance,
I analysed its dynamics using a recently proposed technique based on a generalisation of
fixed points, called slow points. Linearisation around these slow-points reveals the quasi-line
attractor dynamics underlying the RNN’s robust performance.
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Fig. 4.11 Histograms of the correlation coefficients between the tuning curves and their
corresponding input CDFs for actual (red) and shuffled (blue) tuning curves, before (left)
and after (right) training.
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Fig. 4.12 The change of the correlation coefficients for each neuron after training. The
correlation coefficients had increased for 55 out of the 85 neurons (64.7%) analysed.

In addition, I presented a novel perspective of inspecting tuning curves from neural
networks. Tuning curves have been important features for studying neural computation
(Dayan and Abbott, 2001). Although it is more straight forward to interpret the activation
function, such as ReLU or sigmoid function as the analogues of tuning curves, here I show
an alternative: when taking into consideration the influence from all neighbouring neurons
and connections, the combined tuning curves may exhibit previously unseen connections
with known computational principles. This is a direction for future investigation.





Chapter 5

Mixed selectivity

This chapter formally discusses the concept of mixed selectivity, which presents a new per-
spective for analysing both biological and synthetic neural data. As discussed in section 1.2,
in practice mixed selectivity depends on well-defined features suitable for an experiment. In a
biological experiment, these features are both relevant to the brain region under investigation
and are well controlled. In a machine learning experiment, these features are either directly
used as input or are indirectly presented but are known to affect the task performance. For
example, in the T-maze experiment (e.g., section 1.3.1) examined in this thesis, the current as
well as previous locations (context) are essential for solving the task, so they are considered
as features.

Once the features are defined, this chapter starts with examining the existing measure of
mixed selectivity from Rigotti et al. (2013). A new measure of mixture selectivity is then
proposed based on information theory. The two measures of mixed selectivity are analysed
both theoretically and experimentally. My analysis suggests that, although both measures
reflect the degree neurons representing different features, the newly proposed mixing index
has more favourable theoretical properties and better correlates with model behaviour.

5.1 Measuring Mixed Selectivity

Rigotti et al. (2013) proposed mixed-selectivity as an important property of cortical neurons.
It is particularly relevant to neural computation, because of its strong correlation with the
performance on behavioural tasks. Neurons that are tuned to multiple task-related features
have been observed in multiple areas, such as the prefrontal cortex (Baeg et al., 2003;
Fujisawa et al., 2008; Huettel et al., 2002; Mante et al., 2013; Rigotti et al., 2013), the
hippocampus (Agster et al., 2002; Brown et al., 2010; Ginther et al., 2011; Markus et al.,
1995; Pastalkova et al., 2008; Wood et al., 2000), and the posterior parietal cortex (PPC,
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Harvey et al., 2012). Specifically, in sequence learning, mixed selectivity can be used
to encode contextual information, and thus to disambiguate sequences with overlapping
segments (Fujisawa et al., 2008; Ginther et al., 2011; Harvey et al., 2012; Pastalkova et al.,
2008; Wood et al., 2000). Although the same information can be carried in pure-selectivity
representations, this chapter argues that mixed selectivity is more robust to noise.

Despite the important computational role of mixed selectivity in various neural systems
(Section 1.2), measuring mixed selectivity is non-trivial. In particular, the mixed selectivity
index proposed by Rigotti et al. (2013) is limited by the requirement of model-fitting. As a
result, it cannot be easily generalised to tasks with continuous stimuli, where enumerating
the nonlinear combinations of stimuli is impossible and discretising to sufficient accuracy
can be computationally infeasible. Moreover, the mixed selectivity index does not take into
account variance around tuning curves given the same stimuli, i.e., noise variance, despite its
significant effects on neural coding (Averbeck et al., 2006). In this chapter, I first analyse the
mixed selectivity index (Rigotti et al., 2013), then propose a new measure of mixed selectivity,
mixing index. It is motivated by information theory, and does not rely on model-fitting (i.e.,
model-free).

I compare these two different measures of mixed selectivity through simulation on both
synthetic population coding examples and the RNNs trained on the T-maze alternation task
used in section 4.1, showing that the new mixing index is superior to the mixed selectivity
index proposed by Rigotti et al. (2013) in being more predictive of behavioural performance.
Further, our mixing index is mathematically more convenient; I will show that training of a
robust generative model (Chapter 2) simultaneously maximises a lower-bound of the mixing
index.

5.2 Measure of mixed selectivity based on model fitting

I first review the definition of mixed selectivity index proposed by Rigotti et al. (2013),
which I will refer to as ζ . To be consistent with the rest of the thesis, the notations and
formulations are different from the original paper. We discretise continuous stimuli when
necessary to employ the model-fitting procedure originally developed for discrete stimuli by
Rigotti et al. (2013), despite the fact that, as we shall see, this would result in exponentially
many parameters to fit.

A neuron’s response r is assumed to be a function of M stimuli {xi}M
i=1

1. Stimulus xi

may take one of Ki discrete values, which is encoded in a column vector using an 1-in-Ki

(one-hot) coding, so that xi( j) = 1 means that the j’th value at stimulus i is presented (all

1A stimulus can be any task relevant variable, such as trial type, context or cue.
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other Ki−1 elements of xi are zeros). We decompose the neural response r into two parts, a
linear component and a non-linear component 2:

r = rlinear + rnon-linear (5.1)

The linear component is a linear combination of all the M stimuli:

rlinear = βββ 0 +
M

∑
i=1

βββ
i
linear

⊺
·xi (5.2)

where βββ 0 is a bias, βββ
i
linear is a column vector with Ki elements as the linear coefficients for

stimulus i. Conversely, the non-linear component is defined as

rnon-linear =
K1

∑
j1=1

K2

∑
j2=1
· · ·

KM

∑
jM=1

βββ
j1, j2,..., jM
non-linear ·

M

∏
i=1

xi( ji) (5.3)

where all possible combinations of the M stimuli are enumerated. Therefore, ∏
M
i=1 Ki

additional parameters are required as the coefficients for all the combinations of stimuli.

Both equation 5.2 and 5.3 are linear in the parameters, so finding the parameters is simply
a linear regression problem, which can be solved analytically using, for example, the normal
equation. However, since there as many parameters βnon-linear as the number of trial types
(all possible trial types are enumerated in equation 5.3), we can always over-fit βnon-linear

with trial-averaged firing rates. As a result, the linear component (equation 5.2) has to be
fitted first, and equation 5.3 is subsequently used to fit the residuals (Rigotti et al., 2013). The
order of fitting is important, and the two components cannot be fitted jointly. This process
can be problematic, as the linear component may over fit the data. Unlike coordinate descent
where individually fitted coefficients are iteratively improved, the possibly over-fitted linear
coefficients are never revisited, so they cannot be corrected.

Based on the fitted models, the mixed selectivity index 3 measures the difference between
variances explained by the linear and nonlinear components, σ2

linear and σ2
nonlinear respectively:

ζ =
σ2

nonlinear−σ2
linear

σ2
nonlinear +σ2

linear
(5.4)

2In the original paper of Rigotti et al. (2013), these two components are somewhat confusingly called linear
and non-linear mixed selectivity components, as if r always had mixed selectivity.

3We use this term in accordance with Rigotti et al. (2013). However, it is perhaps more appropriately termed
as nonlinear mixed selectivity index, to emphasise the removal of the linear term.
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Here r are trial-averaged firing rates, the non-linear model can perfectly fit the residual, so
σ2

nonlinear +σ2
linear would be the total variance of r.

However, this measure of mixed selectivity is insensitive to noise variance across different
trials. To see this, assume r were neural activities from individual trials, instead of those
average across trials that are actually used in computing mixed selectivity index. In this case,
the same linear model can still fit the data. As a result, the same σ2

nonlinear and σ2
linear, thus the

same ζ are obtained despite using data from individual trials. In other words, the variance
from noise across trials is always ignored in this formula, even if additional activity data
from individual trials were provided. As a result, we would obtain the same ζ regardless of
the amount of noise presented across trials. This behaviour is at odds with the fact that noise
variance may significantly affect decoding (Averbeck et al., 2006). To solve this problem, we
need a different way to measure mixed selectivity.

5.3 Mixing index: an information theoretic measure

To address the problem of the mixed selectivity index proposed by Rigotti et al. (2013), I
propose a different measure, which I call mixing index and denote it by κ . It is free from
model-fitting and takes noise variability into consideration. We start with a representation of
two independent scalar variables x1 and x2. The independence assumption is based on the
fact that mixed selectivity is only relevant when the inputs are independent. Otherwise, the
representation r will always be selective to both x1 and x2 because of the correlation between
the inputs themselves. Before presenting the formal definition of our mixing index κ , we
review the motivations behind the proposal of the mixed selectivity index ζ .

Mixed selectivity is motivated from the information encoded by neurons (Fusi et al.,
2016; Rigotti et al., 2013). As noted by Fusi et al. (2016), which we quote below, mixed
selectivity generally means the tuning of a neuron is context dependent:

The neurons behave the same way in the same context, but their selectivity
is highly context-dependent. As a consequence, the activity of any individual
mixed selectivity neuron doesn’t mean anything by itself. Only in the context of
other neurons it is possible to disambiguate the information encoded by mixed
selectivity neurons.

Consequently, the information that is encoded in a context-dependent way can only be
decoded when the context as well as the firing of a neuron is given. This idea can be
formally expressed using conditional mutual information: while the mutual information
I [r;x1] expresses the amount of information about x1 that can be decoded from r alone,
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the conditional mutual information I [r;x1|c] expresses the information about x1 that can be
decoded from r when the context c is available. Note that the context may come from other
neurons, and utilising context information from other neurons is consistent with the view
that ensembles of neurons, instead of individual neurons, are the functional units in neural
computation (Yuste, 2015).

From this view, it is natural to use the the difference I [r;x1|c]− I [r;x1] as a measure of
mixed selectivity of r. Since the context c can be interpreted as another independent stimulus,
which we denote by x2, the mixed selectivity of r as a representation of x = {x1,x2} can be
defined as

κ (r,x) = I [r;x1|x2]− I [r;x1] (5.5)

Here κ is also equivalent to the negative of interaction information (McGill, 1954), which is
defined as I [x;y;z] = I [x;y]− I [x;y|z] to quantify the interaction between random variables x,
y and z. Generally speaking, the interaction information I [x;y;z] can be positive, negative or
zero. Intuitively, positive interaction information indicates that the third variable z facilitates
the correlation between x and y, while negative interaction information indicates that z
inhibits the correlation between x and y. It can thus be zero when the correlation between
x and y is unaffected by z. For example, when the context (z) shifts neural activity (x) in
an orthogonal direction to that shifted by location (y), despite that the neuron population is
selective to the context, the difference between the conditional mutual information I [x;y|z]
and the marginal I [x;y] is zero. However, as will be discussed in the rest of this chapter,
under the assumed graphical model in Figure 5.1, κ is always non-negative. In particular,
the situation of κ = 0 is generally not true given conditionally dependency (equation 5.13),
which is violated in the above example.

To understand κ , first note that equation 5.5 is symmetric, which can be shown using the
conditional mutual information equality

I [r;x1|x2] = I [r;x1,x2]− I [r;x2] (5.6)

so that
κ (r,x) = I [r;x1,x2]− I [r;x1]− I [r;x2] (5.7)

It is straightforward to prove that the symmetry also applies in the general case of N stimuli
x = {x1,x2, . . . ,xN} as

κ (r,x) = I
[
r;xn|x\n

]
− I [r;xn]

= I [r;x1,x2, . . . ,xN ]−
N

∑
n=1

I [r;xn]
(5.8)
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r

x1 x2

Fig. 5.1 The directed graphical model illustration of the dependencies between the stimuli
x = {x1,x2} and the neural response r. The arrows indicate that the response is affected by
the two external stimuli. Although x1 and x2 are marginally independent from each other,
they generally become conditionally dependent (a.k.a. explaining away) given the response
r, such that p(x1|r)p(x2|r) ̸= p(x1,x2|r), unless one of them is independent of r (i.e., when
one of the arrows is absent).

where x\n indicates all inputs except xn, which can be interpreted as the context for decoding
x1, as in the case of two stimuli. From the symmetry, it follows that the specific choice of xn

does not matter for the value of κ . Using the symmetric form of κ , we now have a formal
definition of this measure of mixed selectivity:

Definition 1. The mixed selectivity of a representation r of independent input variables
x = {x1,x2} is measured by the mixing index

κ (r,x) = I [r;x1,x2]− I [r;x1]− I [r;x2] (5.9)

Equation 5.9 has an intuitive interpretation: the mixed selectivity is the additional amount
of information r conveys about x1 and x2 together, compared with what r conveys about x1

and x2 alone.
This measure has several favourable properties. First, κ (r,x) is symmetric as we have

already discussed. It is also non-negative. When x1 and x2 are independent, conditional
mutual information obeys the inequality I [r;x2|x1]− I [r;x2] ⩾ 0. Therefore, knowing the
equality of equation 5.6,

κ (r,x)⩾ I [r;x1,x2]− I [r;x1]− I [r;x2|x1] = 0 (5.10)

As a proper measure, κ (r,x) = 0 correctly reflects the lack of mixed selectivity. First,
κ (r,x) = 0 if r is independent of x1 or x2. Assuming r is independent of x2,

I [r;x1,x2] = H [r]−H [r|x1,x2]

= H [r]−H [r|x1]

= I [r;x1]

(5.11)
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Using this equality and the mutual information I [r;x2] = 0,

κ (r,x) = I [r;x1,x2]− I [r;x1]−0

= 0
(5.12)

Further, κ (r,x) = 0 only if r does not depend on either x1 or x2. This can be seen from an
alternative form

κ (r,x) = H [x1|r]+H [x2|r]−H [x1,x2|r] (5.13)

Thus, κ (r,x)= 0 indicates H [x1|r]+H [x2|r]−H [x1,x2|r] = 0, or p(x1|r)p(x2|r)= p(x1,x2|r),
the conditional independence of x1 and x2 given r. Because of the statistical structure between
the stimuli and response, as illustrated in Figure 5.1, conditional independence is possible
only when r is independent of at least one of x1 and x2. Otherwise, in the language of ?, one
of the stimuli always “explain away” another in this case. Therefore, the κ (r,x) = 0 if and
only if r has no mixed selectivity.

The definition and properties of κ in definition 1 can be extended to the general multi-
variable case:

Definition 2. The mixed selectivity of a representation r of independent input variables
x = {x1,x2, . . . ,xN} is measured with the mixing index

κ (r,x) = I [r;x1,x2, . . . ,xN ]−
N

∑
n=1

I [r;xn] (5.14)

The above properties for two-variable mixed selectivity can be proved for the general
case using induction.

Compared with the mixed selectivity index ζ , it is clear that κ does not involve model
fitting. While ζ relies on model-fitting to assess how the neural response r is influenced
by input stimuli x, κ captures the dependencies using mutual information. In addition, it is
easy to show that mutual information decreases with increased noise variance. Therefore,
our definition of κ automatically accounts for the noise variance of r. However, like other
methods requiring estimation of entropy or mutual information, estimating κ in practice,
especially for high-dimensional neural data, can be difficult (Golomb et al., 1997; Paninski,
2003; Strong et al., 1998). At the end, note that κ is formally similar to synergy , which is
defined in a “reverse” direction and used to quantify the dependency between different neural
responses in decoding the same external stimulus (Latham, 2005).
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5.4 Examples of extreme representations

To illustrate the difference between the measures ζ and κ , this section introduces 4 extreme
representations (figure 5.2). In contrast to the biologically plausible neural representation
we reported in section 4.3, these 4 representations are extreme cases in terms of their mixed
selectivity and the regularity of firing patterns.

To be consistent with the T-maze task I use throughout this thesis, the external stimuli
that a population of neurons need to encode are location (a continuous variable) and context
(a binary variable). The spectrum of possible representations have different degrees of mixed
selectivity and regularity (Figure 5.2). At one end of the selectivity axis, neurons without
mixed selectivity are tuned to either context or location, but never to both (pure selectivity
neurons). As illustrated in figure 5.2 a and c, these neurons can be categorised as “context
neurons” or “location neurons” according to their selectivity. In contrast, neurons with highly
mixed selectivity are tuned to both context and position, which results in neurons in figure
5.2 b and d. Importantly, the mixed selectivity for neurons in b and d are nonlinear (Rigotti
et al., 2013), as switching context does not simply change the average level of activities.

Along the axis of tuning curve regularity, there are extremely regular and extremely
irregular neurons. The neural tuning curves in figure 5.2 a and b are shifted versions of one
another; the shifting is required to tile the entire space of relevant stimuli (locations). In
contrast, tuning curves in figure 5.2 c and d are almost entirely random and are very different
from each other (Note the context-invariant in c).

None of the four examples in Figure 5.2 resembles the biologically plausible neural
representation in our RNN (Figure 4.3) or in experimental data (Figures 1.3 to 1.5) — they
are in a middle ground, as a blend of these extreme cases. Along the axis of mixing degrees,
few neurons distinguish the context and locations as clearly as Figure 5.2 a. For example,
the splitter cells (Figure 4.5) fired differently in different contexts, but they still fired in both
contexts. Some neurons (those at the top of Figure 4.3) responded little to both of the stimuli.
Along the axis of regularity, the neurons in the RNN were mostly heterogeneous but were
visibly stereotypical. They remained silent during a large portion of the trials (thus the high
life-time sparsity).

How are these two measures of mixed selectivity related across the 4 extreme represen-
tations? By their definitions, ζ ranges from -1 to 1, while κ ranges from 0 to 1. We plot ζ

against κ in a scatter plot for these 4 special neural representations 4 in Figure 5.3, along with
the tuning curves from trained RNNs. Dots are widely scattered in the plot, which indicates
that there is no simple one-to-one mapping between these two measures. Nevertheless, a

4Here we consider tuning curves only, without considering the variability around them, which will be treated
later.
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Fig. 5.2 Four illustrative neural representations that are extreme cases in terms of their
degrees of mixed selectivity and the regularities of tuning. In these four plots, the left and
right panel indicate two different contexts respectively, and the horizontal axis within each
panel indicates location. Each row in these panels identifies a neuron, and the colour codes
activity. Therefore, the pattern on each row shows the tuning curve of a neuron. Along the
axis of regularity, neurons in a and b have highly regular tunings, while neurons in c and
d have highly irregular tunings. Along the axis of degrees of mixing, neurons in a and c
have pure selectivity, so these neurons can be categorised as “context neurons” or “location
neurons”. In contrast, neurons in b and d have highly (nonlinear) mixed selectivity, which
are tuned to both context and location.
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Fig. 5.3 Comparison of mixed selectivity measures. Each dot represents the value of ζ

and κ for one neuron. Dots with different colours correspond to different representations:
cyan for the pure and regular representation (figure 5.2, a); blue for the mixed and regular
representation (figure 5.2, b); black for the pure and irregular representation (figure 5.2,
c); green for the mixed and irregular representation (figure 5.2, d); finally, red for the
representation of the trained RNN. Both measures coincide at their lowest value (lower-left
corner), indicating no mixed selectivity, and they are roughly positively correlated. The
asterisks illustrate the means of the corresponding colour coded representation. All points
within the blue, cyan, and black populations overlaps completely, showing a consensus for
the absence of mixed selectivity.

rough positive correlation can be observed from the scatter plot. In particular, the lowest
values for both measures (−1 for ζ , 0 for κ) mostly coincide, indicating no mixed selectivity.
Overall, dots are more widely distributed along ζ .

5.5 Mixed selectivity under noise

So far, the analysis of the extreme representations is based on tuning curves averaged over
multiple trials, ignoring the variance of tuning curves. Next, I empirically compared how
noise around tuning curves (i.e. noise variance) affects different mixed selectivity measures.
Since the representations with pure selectivity (Figure 5.2, a and c) always have their mixed
selectivity measured at κ = 0 or ζ = −1, this section focuses only on the representations
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Fig. 5.4 Mixed selectivity measured by κ decreased as the noise variance increased. The blue
line shows κ averaged over all neurons with the mixed and regular representation (Figure
5.2, b). The red line shows the averaged κ for mixed and irregular representation (Figure 5.2,
d). The yellow line and error bars show the means and standard deviations of the averaged
κ computed from 10 trained RNNs. All the tuning curves were normalised to the range
between 0 and 1, and additive noise around the tuning curves were simulated as independent
Gaussian noise across different locations, contexts, and trials.

with mixed selectivity (Figure 5.2, b and d, as well as representations from trained RNNs).
As discussed in section 5.2, ζ is defined on tuning curves, which are invariant to the noise
considered here. Therefore, this section only presents how κ for representations with mixed
selectivity changes with noise.

Noise around tuning curves was simulated by adding independent Gaussian noise at each
location and context of the tuning curves that are shown in Figure 5.2 (b and d); different
samples of noise were used for simulating different trials. Although this independence
assumption is unrealistic for the noise in RNNs, for a consistent comparison, I also added the
same independent Gaussian noise to tuning curves obtained from RNNs (e.g., Figure 4.3).
Only neurons that fired on the central arm were considered, since location and context inputs
were correlated elsewhere. For example, locations on the upper-left arm always correspond to
left-turn trials; vice versa for the lower arms. On the other hand, locations on the central arm
may correspond to both left-turn and right-turn trials. All the tuning curves were normalised
to the range between 0 and 1.

Figure 5.4 shows how κ for the two illustrative representations (blue and red lines)
and the representations from 10 trained RNNs (yellow lines) change when the standard
deviations of the added Gaussian noise increased from 0 to 0.3. Recall that ζ is computed
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using trial-averaged firing, thus is insensitive to the noise across trials. However, the mutual
information-based κ , for all the representations, were decreased as the noise level increased.
This is consistent with our intuition — mutual information between the sender and receiver
generally decreases as noise in the communication channel increases. Although all the mutual
information terms in κ decrease with added noise, the joint mutual information is usually
more sensitive to noise, due to possibly more delicate covariance structure. As a result, κ

generally decreases with noise. It is also clear that the asymptote of infinite noise would lead
to κ → 0 since there is no mixed selectivity (or selectivity of any kind) when the system
is overwhelmed by noise. The differences between the exact effects of noise on different
representations need further investigation.

5.6 Mixed selectivity and performance

Despite the differences between these two measures we have shown so far, the significance
of mixed selectivity mostly lies in its strong correlation with behavioural performance.
Therefore, the final evaluation of ζ and κ should be based on how strongly these measures
are correlated with performance. For this purpose, I re-visit the T-maze alternation task, and
examine this correlation by analysing: 1. how the two measures of mixed selectivity change
after training; 2. in a trained model, how selectively removing units based on their different
mixed selectivity measures affect the performance.

In both analyses, I focus on neurons that fired on the central arm after training, which
contains less than half of the total neurons (48 out of 100). I focused on the central arm
because, as the most challenging part of the task, contextual information that came from
mixed selectivity at the decision point was crucial for task performance. I first compute the
mixed selectivity of all these neurons before and after training using both ζ and κ . Figure 5.5
illustrates this in both scatter plots and histograms. Despite their different motivation and
different value ranges, both ζ and κ consistently reflected the increase of mixed selectivity
after training.

To better differentiate the two measures, I then ranked these neurons according to their
mixed selectivity assessed by both measures, and evaluated them through the following two
“virtual lesion” experiments:

1. We lesion the neurons with the most mixed selectivity, measured by ζ or κ respectively.
If these neurons were important, the performance should deteriorate significantly.
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Fig. 5.5 Mixed selectivity measured by both ζ and κ , for neurons fired on the central arm.
The scatter plot (top) and histograms shows that overall the mixed selectivity of neurons
increased after training in both measures.
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2. Conversely, we lesion the neurons with the least mixed selectivity, measured by ζ or
κ respectively. If these neurons were unimportant, performance should remain at a
similar level.

In each case, the lesion was implemented by setting the read-out weights from the cor-
responding neurons to 0, and re-training all other output weights. Such lesion might be
tested experimentally using optogenetics (Deisseroth, 2011). Since we used linear decoding
for the read-out, the optimal output weights were simply obtained analytically from the
normal equation. The results of lesioning different fractions of neurons are reported in figure
5.6. Generally, prediction performance deteriorated (RMSE increased) with the increasing
fraction of lesioned neurons. However, κ was better correlated with decoding performance
than ζ — the red solid line being above the red dash line suggests that neurons with higher κ

contributed more to performance. In contrast, ζ seemed to be anti-correlated with decoding
performance. In fact, judging from the prediction performance, lesioning neurons with
high ζ (blue solid line) could be hardly distinguished from random lesion (black solid line).
Therefore, we conclude that the mixing index κ better correlates with performance than the
mixed selectivity index ζ .

Conclusion

This chapter proposes a new measure of mixed selectivity, the mixing index κ . κ is a non-
negative quantity that uses tools from information theory to quantify the interaction between
input features and their neural representation. It is positive if and only if the representation
depends on multiple input features. In addition to its favourable theoretical properties,
experiments showed that κ better correlated with the performance in one-step prediction in
terms of RMSE. Of course, since κ is a task-independent quantity, one should not expect it to
be the quantity most correlated with task performance. To find the neurons contribute most
to the prediction task, it is necessary directly measure the correlation between individual
neuron’s activities and task-dependent variables, such as the RMSE. The next chapter will
dive deeper into the components of κ , showing its connection with generative models and
denoising training. This leads to the conclusion that κ measures the information from x
being robustly represented in r.
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Chapter 6

Information theory

This chapter unifies topics discussed in previous chapters. I will show that generative models,
denoising training, and mixed selectivity are closely coupled in training. A study of these
couplings suggests that mixed selectivity is a signature of robust representation of input
features. To learn such representation requires constraining the representation for robustness,
in addition to reconstructing inputs, which parallels the balance of prior and likelihood terms
in training generative models. Despite this dual-requirement, a simple and principled way to
obtain mixed selectivity is denoising training, as in training a denoising autoencoder.

6.1 Information maximisation

Barber and Agakov (2004) shows that minimising the reconstruction error 2.16 in an autoen-
coder maximises the mutual information Iφ [r;x] via maximising a variational lower-bound.
Here we reproduce their result and prove it with our notation for completeness.

As a reminder from previous chapters, we use x for external input, r for neural repre-
sentation as the latent variable. As in Chapter 2, pθ (x|r) and qφ (r|x) are the parametrised
distributions for the generative and inference models respectively. p∗(x) is the data distribu-
tion.

Theorem 1. The expectation of log-likelihood ⟨ln pθ (x|r)⟩qφ (r|x)p∗(x) is related to the mutual
information via

Iφ [r;x]⩾ H [x]+ ⟨ln pθ (x|r)⟩qφ (r|x)p∗(x) (6.1)

so that maximising this term, or equivalently minimising the negative reconstruction error
(equation 2.16) maximises the mutual information Iφ [r;x].

Proof. Note that the mutual information Iφ [r;x] is a property of the recognition model
(parametrised by φ , or encoder), rather than the generative model (parametrised by θ , the
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decoder). The mutual information can be expressed as

Iφ [r;x] = H [x]−Hφ [x|r]
= H [x]+

〈
lnqφ (x|r)

〉
qφ (r|x)p∗(x)

⩾ H [x]+ ⟨ln pθ (x|r)⟩qφ (r|x)p∗(x)

(6.2)

the joint distribution qφ (r,x) is factorised of as in equation 2.11. qφ (x|r) is the likelihood
of the recognition model. The difference between the last two lines is a KL-divergence
describing the discrepancy between the intractable likelihood of the recognition model
qφ (x|r) and the generative distribution

Iφ [r;x]−H [x]−⟨ln pθ (x|r)⟩qφ (r|x)p∗(x) =
〈
DKL

[
qφ (x|r)∥pθ (x|r)

]〉
p∗(x) (6.3)

which shall decrease as the recognition model better matches the generative model.

This theorem shows that maximising ⟨ln pθ (x|r)⟩qφ (r|x)p∗(x), the first term in the varia-
tional lower-bound L (equation 2.8) maximises a lower-bound of the joint mutual information
Iφ [r;x]. This mutual information is the first term in the definition of the mixing index κ (r,x).
The other term ∑

N
n=1 Iφ [r;xn], as I will show later, comes from the robustness. The Intuitively,

training an autoencoder only requires the representation r to be sufficiently informative to
represent data x. Exactly how the information of x is represented, robust or not, is less a
concern. It is training a robust autoencoder that demands mixed-selectivity — a way to
represent faithfully even with the presentation of significant input or perceptual noise.

6.2 Training robust autoencoders

As a reminder, constraining the representation from an autoencoder, in addition to recon-
structing input x, can be motivated from two different perspectives:

1. From a generative model view, the KL-divergence DKL [pθ (x|r)∥pθ (r)] in a part of
the the variational lower bound L (equation 2.8), which is required for maximising the
likelihood of the model.

2. From the perspective of generalisation, we require the representation to be invari-
ant to noise from the inputs, for which purely empirical error minimisation (of the
reconstruction error) is not sufficient.

We have explored the connection between denoising training and generative models in
section 2.6.3 and section 3.3. This section instead focuses on mixed-selectivity. Together,
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these results suggests that properly constraining the representation r also encourages high
mixed-selectivity.

At a high level, why does mixed selectivity support robust performance? Generally
speaking, data are structured but noise are not (or at least less) structured. The structure
of data is usually captured in the joint distribution across multiple dimensions, such as the
long range dependencies found in natural images (Field, 1994). Such statistical structure is
represented in r via maximising the mutual information Iφ [r;x] by minimising reconstruction
error (Theorem 1).

In contrast, perceptual noise is usually local, which may come from individual sensors or
transmitters. Therefore, an intuitive direction to learn robust representations is to make such
representations depend more on the joint density p∗(x), but less on the marginal densities
{p∗(xn)}N

n=1. To formalise this intuition in information theory, one seeks to increase the joint
mutual information Iφ [r;x] while decrease the marginal mutual information ∑

N
n=1 Iφ [r;xn].

These two objectives exactly corresponds to the two terms in our definition of the mixing
index (equation 5.14). Consistent with this intuition, the following theorem 2 shows denoising
training minimises an upper-bound of ∑

N
n=1 Iφ [r;xn].

Theorem 2. Under the assumption that an efficient decoder of x from r is available, the

contractive regulariser
∥∥∥ ∂r

∂x

∥∥∥2

F
(as in equation 2.42 and equation 3.15) approximates an

upper bound of the mutual information ∑
N
n=1 Iφ [r;xn].

Proof. We relax the delta distribution qφ (r|x) (from the deterministic recognition model)
using a Gaussian with very small variance σ2

r and mean r(x) = gφ (x):

qφ (r̂|x) = c · exp

(
−∥r̂− r(x)∥2

2σ2
r

)
(6.4)

where I use r̂ as the random variable to distinguish it from the mean of this random variable
r. c is a normalising constant. This relaxation is exact in the limit of σr → 0. I use the
short-hand ξξξ k = r̂k− rk. In the following derivation, I use the result from Brunel and Nadal
(1998) to connect mutual information Iφ [r̂;xn] with the Fisher information

J (xn) =

〈(
d

dxn
ln pφ (r̂|xn)

)2
〉

p(ξξξ )

(6.5)

which involves a derivative form that will be useful later. Here I outline the derivation from
Brunel and Nadal (1998).
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In their original derivation, Brunel and Nadal (1998) takes the assumption that when
the neural population r̂ is sufficiently large, an efficient estimator of xn exists and can be
approximated by a maximum-likelihood decoder d(r̂). Here we assume that the generative
model fθ (r) provides such a decoder. Under the assumption that fθ (r) is an efficient estimator
of xn, the variance of the estimator achieves the Cramér-Rao bound, which is the inverse
Fisher information 1

J (xn)
. Applying central limit theorem, we can characterise the estimator

as a Gaussian distribution

p(xn|r̂) =N
(

xn;xµ ,
1

J (xn)

)
(6.6)

whose mean xµ is unimportant here. This Gaussian distribution gives the conditional entropy

H [xn|r̂] =
∫

p(xn)
1
2

ln
(

2πe
J (xn)

)
dxn (6.7)

which further gives the mutual information via Iφ [r̂;xn] = H [xn]−H [xn|r̂]. Summing-up all
the N elements of x, we therefore have

N

∑
n=1

Iφ [r;xn]≈
N

∑
n=1

Iφ [r̂;xn]

=
N

∑
n=1

{
H [xn]−

∫
p(xn)

1
2

ln
(

2πe
J (xn)

)
dxn

}
=

N

∑
n=1

H [xn]−
N
2

ln(2πe)+
1
2

N

∑
n=1

∫
p∗(x) lnJ (xn)dx

⩽
N

∑
n=1

H [xn]−
N
2

ln(2πe)+
1
2

∫
p∗(x) ln

N

∑
n=1
J (xn)dx

(6.8)

The last line comes from Jensen’s inequality. Since ln(·) is a monotonic function, minimising
this upper bound of ∑

N
n=1J (xn) minimises ∑

N
n=1 Iφ [r;xn].

Using the Gaussian assumption (equation 6.4), the Fisher information becomes

J (xn) =

〈(
d

dxn
ln pφ (r̂|xn)

)2
〉

p(ξξξ )

=

〈(
K

∑
k=1

ξk

σr
· ∂ rk

∂xn

)2〉
p(ξξξ )

=
K

∑
k=1

(
∂ rk

∂xn

)2

(6.9)
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Change Generative models Autoencoders Information theory
⇑ L −

∥∥x̃− fθ (gφ (x̃))
∥∥2

κ (r,x)
⇑ ⟨ln pθ (x|r)⟩qφ (r|x) −

∥∥x− fθ (gφ (x))
∥∥2 Iφ [r;x]

⇓ DKL
[
qφ (r|x)∥pθ (r)

]
RM or T ∑

N
n=1 Iφ [r;xn]

Table 6.1 The effects of training robust autoencoders. “Change” shows the expected direction
of change after training. x̃ are noise-corrupted data x. Notice that using x̃ and x as targets are
equivalent when the added noise has zero mean. Within each column, the item in the first
row can be decomposed as the item in the second row minus the item in the third row. This
decomposition is exact for generative models and for the information theoretic quantities, and
is an approximation for autoencoders. The autoencoder loss is used in training and Figure 5.5
confirms the increase of κ after training.

before training after training
reconstruction loss 479.043 13.961
regularisation loss 1.947 0.519

Table 6.2 Change of losses after training.

where we used the expectations ⟨ξξξ k⟩p(ξξξ ) = 0 and
〈

ξξξ
2
k

〉
p(ξξξ )

= σ2
r I. Again, from equation

6.9 I recovered exactly the contractive regulariser of Rifai et al. (2011) (see also section
3.3).

From section 2.6.3 and section 3.3, we know that denoising training at the same time
minimising the KL-divergence DKL

[
qφ (r|x)∥pθ (r)

]
between the approximate posterior and

a Gaussian mixture model prior pθ (r). Note that that simply optimising the KL-divergence
term DKL

[
qφ (r|x)∥pθ (r)

]
alone actually minimises an upper bound of Iφ [r;x], thus having

the opposite effect in information maximisation. This is because minimising this KL-
divergence moves r closer to the prior, which has no information about the input x. This is
shown more formally in Appendix B. Therefore, denoising training provides a robustness
constraint in minimising an upper bound of ∑

N
n=1 Iφ [r;xn], in addition to approximating

training with the constrained GMM prior, which minimises an upper bound of Iφ [r;x].

Overall, denoising training provides a computationally simple, yet theoretically grounded
way to train autoencoders as generative models. In the end, we summarise the results from
different perspectives in table 6.1. Similar results can be extended to an RNN by unrolling
the RNN and compute the corresponding xt and rt in the order specified by their time indexes.
See Appendix A for more detailed derivations.
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Fig. 6.1 Mixing index decomposed as the joint mutual information (left) and the sum of
marginal mutual information (middle). The right panel shows these quantities together with κ

(averaged across neurons) across training steps. Both mutual information quantities decreased
after training. However, their difference, which defines the mixing index κ , increased as
suggested by the theory (figure 5.5 and the right panel here).

6.3 Experiments

Recall that figure 5.5 (right) has shown the change of κ after training. To further illustrate
the components in κ during and after training, the changes of terms in the “Information
theory” column are plotted as histograms in figure 6.1, together with the all these components
averaged over neurons during training. It might be surprise at first that the mutual information
(both I [r;x] and ∑

N
n=1 I [r;xn]) actually decreased after training, since one may expect training

to increase this mutual information. However, recall we discussed in the previous section
that denoising training, as well as minimising the KL-divergence DKL

[
qφ (r|x)∥pθ (r)

]
,

may reduce the mutual information (see also Appendix B). Intuitively, a large amount of
information in x, which were sequences of locations (including the context distinguishing
left-turn or right-turn trials) in the simulation, are actually not useful for the task of one-step
prediction. On the other hand, denoising training requires the neurons to only robustly
represent the location and context useful for predicting the next location. As a compromise
of these two objectives, we observed overall decreased mutual information, for losing the
less useful information, but increase in κ , for retaining the robustly represented information
essential for the task.

In addition, table 6.2 shows the changes of reconstruction error and regularisation loss
from the same RNN, corresponding to the (negative of the) second row and third row under
the “Autoencoders” column. Notably, the regularisation loss (T ) decreased even when
this model was obtained from denoising training, without explicitly using the regulariser.
These empirical results thus verified our theory connecting mixed selectivity with mutual
information, generative model, and denoising training. Similar results for RNNs trained
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directly using the denoising regulariser (section 3.3) are shown in figure C.2 and C.3 and
table C.2.

Conclusion

This chapter uses information theory to reveal the deep connections between mixed selec-
tivity, generative models, and denoising training. Denoising training efficiently provides
a robustness constraint on the representation, in addition to approximating training with a
GMM prior in supporting training a generative model. While the derivation in this chapter
relies on different bounds, the empirical results verified that denoising training indeed led to
increased mixed selectivity of neural representation. In this process, the joint mutual informa-
tion Iφ [r;x] was maximised to preserve information about the structure (joint distribution) of
data, while the marginal mutual information ∑

N
n=1 Iφ [r;xn] was minimised for the robustness

of the model against unstructured noise at individual stimuli.





Chapter 7

Discussion

This thesis establishes a concrete theoretical link between the widely observed neural repre-
sentations with mixed selectivity and denoising training of neural networks. This connection
gives such neural representations a statistical explanation. The generative model perspective
and denoising training approach are unified under information theory to formally justify
mixed selectivity as a signature of robust representations. In support of recent experiments
and analyses showing a strong correlation between mixed selectivity and performance (Rig-
otti et al., 2013; Saez et al., 2015), the results in this thesis explain this correlation as a
manifestation of robust encoding of input features implemented by neural networks.

7.1 Mixed selectivity is ubiquitous

Neurons with mixed selectivity can be found in different areas, exhibiting various forms
(Baeg et al., 2003; Ginther et al., 2011; Harvey et al., 2012; Hubel and Wiesel, 1962; Rigotti
et al., 2013). These include the context dependent hippocampal neurons (Wood et al., 2000),
which we analysed in detail. Despite their vastly different tuning curves, these neural
responses exhibited non-linear combinations of multiple stimuli that were relevant to task
performance. Since their unique tuning curves were visibly regular, these cells are relatively
easy to identify among the large number of cortical neurons that often present more chaotic
activities (Sompolinsky et al., 1988). Moreover, some of these mixed selectivity neurons are
regular and stereotypical enough that they were bestowed with names such as “place cells”
and “splitter cells”.

Neurons with mixed selectivity are also found in computational models, either as an emer-
gent property or by construction. Following the convention of the pioneering connectionists,
I call the characteristic neural responses are termed “neural representations”, and the input
patterns to which such neurons respond most strongly are called “features” (Bengio et al.,
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2012; Hinton, 2014b; Rumelhart et al., 1987, 1986). Such input patterns are in the form of
combinations of inputs of lower level features. The presentation of such combined features
can be interpreted as mixed selectivity. Therefore, in most neural network models based
on learning, including the RNNs presented in this thesis, mixed selectivity is an emergent
property arising spontaneously from training to solve certain tasks (Bengio et al., 2012;
Hinton, 1984; Olshausen and Field, 1996; Rumelhart et al., 1987; Sussillo, 2014).

In parallel to the recently discovered strong correlation between mixed selectivity and
performance, it is well known in the machine learning community that the emergence
of “interesting” representations is correlated with good performance. Feature learning or
representation learning have being increasingly popularity in machine learning, because
learning good features has been regarded as an intermediate step for solving other challenging
tasks (Bengio et al., 2012; Hinton, 2014b). Higher level features, corresponding to neurons
with more complex mixed selectivity, are hypothesised to capture more abstract aspects of
data, which can be used for high level cognitive tasks for both the brain and computers. In
support of this hypothesis, neurons tuned to increasingly abstract features have been found
in both hierarchical neural network models and the hierarchically organised cortical visual
stream (Yamins and Dicarlo, 2016; Yamins et al., 2014).

Alternatively, instead of relying on learning, mixed selectivity may be explicitly incorpo-
rated into models. This approach is not explored in this thesis. It is perhaps better known
in cognitive science and computational linguistics as "variable binding" (Anderson, 2013;
Eliasmith and Anderson, 2004; Smolensky, 1990), by which multiple variables, possibly
representing different stimuli, are explicitly combined via operations such as inner-product,
convolution or more complicated nonlinear mappings. Such manually created features are
especially helpful when they are known to benefit tasks a priori, and have been used as input
into some of the state-of-the-art neural network models (Eliasmith et al., 2012; Silver et al.,
2014).

7.2 Why mixed selectivity is useful

The computational benefit of mixed selectivity is explained using the expansion of dimension-
ality by Rigotti et al. (2013). Nonlinear mixed selectivity has the same effect as projecting
input into a high dimensional feature space, where nonlinear combinations of input can
be read-out from a linear decoder, in a way similar to the kernel methods that have been
popularised by support vector machines (Burges, 1998) and Gaussian Processes (Rasmussen
and Williams, 2006). As has been explored in the area of random features (Rahimi and Recht,
2008), random projections combined with nonlinear neurons is able to generate nonlinear
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mixed selectivity and expanded dimensionality (Barak et al., 2013; Fusi et al., 2016). How-
ever, dimensionality expansion needs to trade-off generalisation, especially in the presence
of noise. Extra dimensions may be introduced as an artefact of noise, when the true signal
usually lies in a low dimensional sub-space or manifold. For example, principal component
analysis (PCA, see also section 2.5.2) finds the subspace that preserves the most variance of
data (Hotelling, 1933). In this case, dimensions with small variances, which may be a result
of noise, can be discarded. In more complex settings, nonlinear dimensionality reduction
techniques based on non-Euclidean metrics can be used to learn low-dimensional manifold
(Roweis and Saul, 2008; Seung, 1997; Tenenbaum et al., 2000; Vincent et al., 2008b). To sum
up, the trade-off is that the dimensionality needs to be high enough to allow linear read-out
of specific input configuration, and low enough to allow generalisation over similar inputs.

In section 4.4.1, we explained the benefit of mixed selectivity from its contributions
to the dynamics of the RNN. In the sequence learning example (section 4.1), the neural
representation with mixed selectivity emerged as a solution for the T-maze alternation task
which requires both denoising and sequence disambiguation. The biologically plausible
representation in our model emerged from optimising the RNN for task performance, without
any objectives regarding the representation itself. This is different from recent work of
Rajan et al. (2016), which trained an RNN explicitly to fit the experimentally recorded
neural representations. The analysis in section 4.4.2 further showed mixed selectivity
neurons (“splitter cells”) contributed to the formation of (quasi-)line attractors, in which the
overlapping parts of sequences were actually separated in the RNN’s state-space. We thus
provided a normative explanation of context-dependent neural representations observed in
various cortical areas, which support optimal performance for sequence learning.

A large part of this thesis has been dedicated to justify mixed selectivity from a statistical
perspective, which applies to a wider range of problems compared with those amenable to
dynamical systems analysis. Viewing a neural system as a probabilistic generative model,
its neural representation functions as the latent variable which describes unobserved factors
that affect the observed data. Neural representations, when regarded as latent variables,
reflect statistical assumptions about the data. These are ultimately constrained by the neural
system’s biological properties, which may be experimentally testable. Importantly, mixed
selectivity can be investigated using an information-theoretic measure (section 5.3). This
measure is consistent with the idea of context-based coding (Rigotti et al., 2013). Moreover,
this measure enabled us to establish a theoretical link between neural generative models and
mixed selectivity based on mutual information between stimuli and neural representations.
In this front, the main contributions of this thesis are:

1. Deriving the implicit GMM priors approximated by denoising training (section 2.6)
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2. showing that a lower bound for mixed selectivity (measured by the mixing index) is
maximised in denoising training (section 6.2).

7.3 Regularisers for training neural networks

Another contribution of this thesis is in developing the denoising regulariser that achieved
nearly the same performance in our sequence learning task as denoising training, without
using any noise (section 3.3, see also the results from regularised training in Appendix C). It
has the potential as an efficient and low-variance alternative of the popular denoising training.
However, at this moment, the advantage of this regulariser in more general setting is unclear,
given the limited empirical evaluation in this thesis. Overall, regularisers play an important
role in this thesis. They bridge the gaps between mixed selectivity, generative models, and
the hitherto largely heuristic denoising training.

More generally, regularisers provides a pathway for understanding existing heuristics.
Training complex parametric models such as neural networks usually requires various tricks.
As seen in this thesis as well as other related work, regularisers can help us understand
ad-hoc tricks by providing a potential link to more principled methods. Regularisers bridge
them by formalising or approximating algorithmically described heuristics as a mathematical
expression of a cost term. Such a distilled form is more amenable to further theoretical
interpretation. Several existing heuristics, such as “drop-out” Hinton (2014a), have been
better understood (and often consequently improved) in this way. As new heuristics and tricks
almost always come with novel and innovative architectures such as Generative Adversarial
Nets (Goodfellow et al., 2014), novel regularisers are always likely to be useful.
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Appendix A

Derivations for recurrent neural
networks

This appendix extends Chapters 2, 3 and 6, showing that the generative model interpretation
of autoencoders (section 2.5) and the results on mixed selectivity (section 6.2) apply to
recurrent neural networks trained for prediction as well. I consider temporal structure in the
data by extending each data point as a sequence with T steps, such that x = x1:T .

As a reminder, a simple recurrent neural network (RNN) is described by the following
equations

yt = Winxt +Wrec · rt−1 (A.1)

rt = s(yt) (A.2)

zt = Wout · rt (A.3)

where Win, Wout and Wrec are input, output and recurrent weights, and s() is a nonlinear
activation function. The bias at each layer is omitted for brevity. When used for one-step
prediction zt = x̂t+1, this RNN can be described using the notations of autoencoders (equation
2.14 and 2.15) as

rt = gφ (xt ,rt−1) = s(Win ·xt +Wrec · rt−1) (A.4)

x̂t+1 = fθ (rt) = Wout · rt (A.5)

where the parameters of the recurrent neural network are summarised as θ = {Wout,σout} for
the generative model parameters and φ = {Win,Wrec} for the recognition model parameters.
Assuming a spherical Gaussian noise model at the output, (xt+1− x̂t+1)∼N

(
0,σ2

f I
)

, this
autoencoder has a log-likelihood proportional to the negative squared prediction error plus a
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constant c

ln pθ (xt+1|rt) = ln pθ (zt = xt+1|rt)

∝−∥xt+1− x̂t+1∥2 + c
(A.6)

While this chapter only proves in the case of one-step prediction, the extension to more
general k-step prediction is straightforward.

A.1 Recurrent variational auto-encoders

This section proves that a variational lower-bound of the log-likelihood (equation A.9)
exists and it is optimised by minimising the one-step prediction error. Using the generative
and recognition model defined above, we have the following recognition and generative
distribution:

qφ (rt |x1:t) = δ (rt−gφ (xt ,rt−1)) (A.7)

pθ (xt+1|rt) =N
(
xt+1; fθ (rt),σ

2
f I
)

(A.8)

While pθ (xt+1|rt) is a spherical Gaussian distribution because of the output noise model,
qφ (rt |x1:t) is a delta distribution given the deterministic inference model. The graphical
illustrations of the generative and inference model is shown in figure A.1. As in feed-forward
autoencoders, the prior of the generative model is unspecified in the RNN (section 2.6).

xt xt+1· · ·

rt−1 rt· · ·

xt−1 xt· · ·

rt−1 rt· · ·

Fig. A.1 Directed graphical models of the generative model (left) and inference model (right).

Using these notations, we can write the likelihood of the generative model given a whole
sequence as

ln pθ (x1:T ) = ln px(x1)+
T−1

∑
t=1

ln pθ (xt+1|x1:t) (A.9)
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Using the decomposition in equation A.9 and ignoring the constant p∗(x), the log-likelihood
of the model can be written as:

ln pθ (x2:T |x1) =
T−1

∑
t=1

ln pθ (xt+1|x1:t)

=
T−1

∑
t=1

∫
qφ (rt |x1:t) ln

pθ (xt+1,rt |x1:t)

pθ (rt |xt+1,1:t)
drt

=
T−1

∑
t=1

∫
qφ (rt |x1:t) ln

pθ (xt+1|rt)

pθ (rt |xt+1)
drt

=
T−1

∑
t=1

∫
qφ (rt |x1:t) ln

pθ (xt+1|rt)

qφ (rt |x1:t)
drt︸ ︷︷ ︸

Lt

+DKL
[
qφ (rt |x1:t)∥pθ (rt |xt+1)

]
(A.10)

where pθ (xt+1,rt |x1:t) = pθ (xt+1,rt) and pθ (rt |xt+1,1:t) = pθ (rt |xt+1) since different steps
in the generative model are independent (figure A.1). The KL-divergence suggests that the
inference model uses history of inputs to match the posterior pθ (rt |xt+1). Therefore, although
the generative model assumes independence between time steps, contextual information
(here as history of inputs) can still be encoded in the representation rt through the inference
model. The first term, a variational lower-bound, can be further decomposed as

Lt =
∫

qφ (rt |x1:t) ln
pθ (xt+1|rt)

qφ (rt |x1:t)
drt

=
∫

qφ (rt |x1:t) ln
pθ (xt+1|rt)p(rt)

qφ (rt |x1:t)
drt

=
∫

qφ (rt |x1:t) ln pθ (xt+1|rt)drt−DKL
[
qφ (rt |x1:t)∥pθ (rt)

]
(A.11)

The first term in the above equation is proportional to the negative reconstruction error, and
is minimised when optimising the prediction error (equation A.6). However, the second
term, another KL-divergence is not minimised in this process, although this is required in
maximising the lower-bound.

A.2 Discussions and related works

Other recent works treating recurrent neural networks as probabilistic generative models
with explicit latent variables include stochastic recurrent networks (STORNs) (Chung et al.,
2015) and variational RNNs(VRNN) (Bayer and Osendorfer, 2014). Both of them also
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use amortised inference models to approximate the otherwise intractable posteriors. In
general, they are more expressive models that required more complicated structures, while
our approach provides a probabilistic explanation of RNNs without any additional structural
complexity.

The most important conceptual difference from our approach is that both STORNs and
VRNNs introduce additional latent variables separated from the network states, while we
consider the states rt themselves functions as latent variables (i.e., representations). Between
STORNs and VRNNs, the major difference is that STORNs assume independent latent
variables across steps (Bayer and Osendorfer, 2014) and the latent variables in VRNNs
depend on all previous states (Chung et al., 2015). Separating the network states causing
the observed data and network states governing the dynamics allows more flexibility, as
demonstrated by their models’ performance on challenging real-world tasks. On the other
hand, our model is easier to analyse, and, more importantly, answers how the experimentally
observed neural representations may benefit computation in a minimalist setting.

Unlike in feed-forward neural networks, where assigning the roles of priors and posteriors
are unambiguous, these roles can be interpreted differently in RNNs. This can be seen from
possibly different factorisations of the generative models. In Chung et al. (2015), the latent
variables explicitly depend on the previous network states. Under this factorisation, the
generative and recognition model need to be implemented separately. On the other hand,
under our simplifying assumption of independent latent variables A.1, the same inference
model also functions as a generative model when generating sequences. Although this
dual-role of the inference model may sounds odd, it is formally justified in equation A.10 and
A.11, where the approximate posterior distribution qφ (rt |x1:t) is optimised to approximate
both the posterior pθ (xt+1|rt) and the prior pθ (rt).

Note that although we assumed independence of the priors rt , this prior can be highly
structured. As shown in section 2.6.3, the denoising training process adaptively supports
such structured priors. However, the sequential order of observation is not imposed by this
generative model — they are at least statistically exchangeable (Aldous, 1985). It is not
uncommon to generate data from non-sequential distributions using a sequential model, such
as the Chinese Restaurant Process (Aldous, 1985).

A.3 Information maximisation

Similar to section 6.1, we need to show that, as a part of optimising the lower bound objective
Lt , minimising the reconstruction error ∥xt+1− x̂t+1∥2 or, equivalently, maximising the
likelihood ⟨pθ (xt+1|rt)⟩qφ (rt |x1:t)

maximises the marginal mutual information Iφ [rt ;x1:t+1].



A.3 Information maximisation 129

As an intermediate step, we first derive the lemma as an extension of information
maximisation from Barber and Agakov (2004).

Lemma 1. Maximising ⟨ln pθ (xt+1|rt)⟩qφ (rt |x1:t)p(x1:t)
maximises a lower-bound of the mutual

information Iφ [rt ;xt+1|x1:t ]

Proof.

Iφ [rt ;xt+1|x1:t ] = H [xt+1|x1:t ]−Hφ [xt+1|rt ,x1:t ]

= H [xt+1|x1:t ]+
〈
lnqφ (xt+1|rt ,x1:t)

〉
qφ (rt |x1:t)p(x1:t)

⩾ H [xt+1|x1:t ]+ ⟨ln pθ (xt+1|rt)⟩qφ (rt |x1:t)p(x1:t)

(A.12)

The difference is

Iφ [rt ;xt+1|x1:t ]−H [xt+1|x1:t ]−⟨ln pθ (xt+1|rt)⟩qφ (rt |x1:t)p(x1:t)

=
〈
DKL

[
qφ (xt+1|rt ,x1:t)∥pθ (xt+1|rt)

]〉
p(x1:t)

(A.13)

Notice qφ (xt+1|rt ,x1:t) is an (intractable) posterior of the recognition model.

Theorem 3. Minimising ⟨ln pθ (xt+1|rt)⟩qφ (rt |x1:t)p(x1:t)
maximises a lower-bound of the mu-

tual information Iφ [rt ;x1:t+1].

Proof. Using the property of conditional mutual information, we have the following decom-
position

Iφ [xt+1;rt ,x1:t ] = Iφ [rt ;xt+1|x1:t ]+
t

∑
k=1

I [xt+1;xk] (A.14)

From the definition of mutual information,

Iφ [rt ;x1:t+1]− Iφ [xt+1;rt ,x1:t ] =

〈
ln

qφ (rt ,x1:t)

qφ (rt)p(x1:t+1)

〉
qφ (rt ,x1:t)

−
〈

ln
qφ (rt ,x1:t)

p(xt+1)qφ (rt ,x1:t)

〉
qφ (rt ,x1:t)

= Hφ [rt ]+H [x1:t+1]−H [xt+1]−Hφ [r,x1:t ]

= H [x1:t |xt+1]−Hφ [x1:t |rt ]

(A.15)
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Therefore, combining the above equations,

Iφ [rt ;x1:t+1] = Iφ [xt+1;rt ,x1:t ]+H [x1:t |xt+1]−Hφ [x1:t |rt ]

= Iφ [rt ;xt+1|x1:t ]+
t

∑
k=1

I [xt+1;xk]+H [x1:t |xt+1]−Hφ [x1:t |rt ]

⩾ Iφ [rt ;xt+1|x1:t ]+
t

∑
k=1

I [xt+1;xk]+H [x1:t |xt+1]−H [x1:t ]

= Iφ [rt ;xt+1|x1:t ]+ c

(A.16)

where c=∑
t
k=1 I [xt+1;xk]−I [xt+1;x1:t ] is a constant that depends only on the data. Applying

Lemma 1 finishes the proof.

Parallel to our analysis of feed-forward autoencoders, section B.3 shows that the above
effect of maximising Iφ [rt ;x1:t+1] can be cancel by minimising the KL-divergence term
DKL

[
qφ (rt |x1:t)∥pθ (rt)

]
. Therefore, merely training for one-step prediction is not enough

to increase mixed selectivity, which additionally requires training for robust prediction.

A.4 Training RNNs for robust prediction

Following the same derivation in section 3.3, we have the contractive regulariser for RNNs:

R=
T

∑
t=1

t

∑
k=1

∥∥∥∥ ∂rt

∂xk

∥∥∥∥2

F
(A.17)

Notice that rt can be written as a function of x1:t by recursively apply equation A.4:

rt(x1:t) = gφ (xt ,gφ (xt−1,gφ φ(· · ·))) (A.18)

Therefore, the same derivation in theorem 2 in section 6.2 can be used here to show that

minimising the contractive regulariserRt = ∑
t
k=1

∥∥∥ ∂rt
∂xk

∥∥∥2

F
minimises the mutual information

∑
t
k=1 Iφ [rt ;xk]. In practice, this can be approximated by simply training with noise-corrupted

data (section 3.3). Similarly, the discussion in section 2.6 can be used to show that denois-
ing training in RNN decreases the KL-divergence DKL

[
qφ (rt |x1:t)∥pθ (rt)

]
by implicitly

imposing a GMM prior on the generative model.
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A.5 Mixed selectivity

Finally, we extend our definition of mixing index, as a measure of mixed selectivity (definition
2) to RNNs on sequential data as

κ (rt ,x1:t+1) = Iφ [rt ;x1:t+1]−
t+1

∑
k=1

Iφ [rt+1;xk] (A.19)

Theorem 3 shows denoising training maximises a lower bound of the first term. Section
A.4 extends theorem 2 in section 6.2, showing that denoising training as the same time
minimises an upper bound of Iφ [rt ;xk] for k < t +1. Therefore, the overall effect of training
on prediction error tends to increase κ (rt ,x1:t+1), the mixed selectivity on the history of
inputs (although one term, −Iφ [rt ;xt+1], in the definition of mixing index is left). Within
each time step, theorem 2 in section 6.2 still applies, so the mixed selectivity on different
input dimensions also tends to increase. To end this chapter, we adapt table 6.1 in chapter 6
for RNNs in table A.1.

Change Generative models Autoencoders Information theory
⇑ Lt −

∥∥x̃t+1− fθ (gφ (x̃1:t))
∥∥2

κ (rt ,x1:t+1)

⇑ ⟨ln pθ (xt+1|rt)⟩qφ (rt |x1:t)
−
∥∥xt+1− fθ (gφ (x1:t))

∥∥2 Iφ [rt ;x1:t+1]

⇓ DKL
[
qφ (rt |x1:t)∥pθ (rt)

]
R or T ∑

N
k=1 Iφ [rt ;xk]

Table A.1 The effects of training RNNs for robust prediction. “Change” shows the expected
change after training. x̃t are noise-corrupted data xt . Notice that using x̃t and xt as targets
are equivalent when the added noise has zero mean. Within each column, the item in the
first row can be decomposed as the item in the second row minus the item in the third row,
except that the term −Iφ [rt ;xt+1] has been left in the last column. This decomposition is
exact for generative models and in the notion of information theory, and is approximated for
autoencoders.





Appendix B

KL-divergence and mutual information

B.1 Information minimisation

This section show that that simply training an autoencoder as a generative model does not
increase mixed-selectivity, since the effect of training the two terms in the variational lower
bound (equation 2.8) may cancel each other. As we have seen in chapter 4, to maximise
the variational lower bound, we need to both minimise a reconstruction error and minimise
the KL-divergence

〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)

. This KL-divergence is related to mutual
information by the following theorem:

Theorem 4. The KL-divergence
〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)

is an upper-bound of the mu-
tual information Iφ [r;x].

Proof. Using the definition of KL-divergence,

〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)

=
∫

px(x)
{∫

qφ (r|x) lnqφ (r|x)dr−
∫

qφ (r|x) ln pθ (r)dr
}

dx

=−Hφ [r|x]−
∫

qφ (r|x) ln pθ (r)dr

⩾−Hφ [r|x]−
∫

qφ (r) lnqφ (r)dr

= Iφ [r;x]
(B.1)

while the difference〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)
− Iφ [r;x] = DKL

[
qφ (r)∥pθ (r)

]
(B.2)
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is the KL-divergence between the marginal distribution of the representations and the prior.

This result is intuitive in that since the prior pθ (r) does not depend on any input x,
matching the prior naturally decrease the information r has about x.

To study the effect of jointly training both terms in equation 2.8 in optimising L, we
re-arrange the results from theorem 1 and theorem 4:

⟨ln pθ (x|r)⟩qφ (r|x)px(x) = Iφ [r;x]−H [x]−
〈
DKL

[
qφ (x|r)∥pθ (x|r)

]〉
px(x)

(B.3)

−
〈
DKL

[
qφ (r|x)∥pθ (r)

]〉
px(x)

=−Iφ [r;x]−DKL
[
qφ (r)∥pθ (r)

]
(B.4)

Comparing the above two equations, we can see that, through training, both KL-divergences
decrease, while their effects on Iφ [r;x] may cancel each other (H [x] is a constant). When L
reaches its (possibly local) maximum, Iφ [r;x] reaches a level where both

〈
DKL

[
qφ (x|r)∥pθ (x|r)

]〉
px(x)

and DKL
[
qφ (r)∥pθ (r)

]
reach their minima.

B.2 Noise approximation of the marginal mutual informa-
tion

The effects on the mutual information between r and the joint distribution of x can be seen
from a multi-dimensional variant of the derivation in theorem 2 in section 6.2:

I [r;x]≈ I [r̂;x]

= H [x]−
∫

px(x)
1
2

ln
(

2πe
det(J (x))

)
dx

(B.5)

where J (x) is the Fisher information matrix:

J (x)i, j =

〈
∂ ln pφ (r̂|x)

∂xi
·

∂ ln pφ (r̂|x)
∂x j

〉
ξ ,p∗(x)

(B.6)
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which can be computed using the Gaussian approximation (equation 6.4)

∂ ln pφ (r̂|x)
∂xi

= ∑
k

ξk

σr
· ∂ rk

∂xi
(B.7)

∂ ln pφ (r̂|x)
∂xi

·
∂ ln pφ (r̂|x)

∂x j
= ∑

k,l

ξkξl

σ2
r
· ∂ rk

∂xi

∂ rl

∂x j
(B.8)〈

∂ ln pφ (r̂|x)
∂xi

·
∂ ln pφ (r̂|x)

∂x j

〉
ξ

= ∑
k

∂ rk

∂xi

∂ rk

∂x j
(B.9)

From the corollary of Jacobi’s formula, we have the trace identity:

Tr(J (x)) = lndet
(

eJ (x)
)

= lndet

(
∞

∑
k=0

1
k!

(J (x))k

)
⩾ lndet(J (x))

(B.10)

where eJ (x) is matrix exponential of the fisher information matrix. The inequality uses
Minkowski determinant theorem and the fact that the determinants of positive semi-definite
matrices ((J (x))k) are non-negative.

From equation B.9, the trace Tr(J (x)) has exactly the same form of the contractive
regulariser (Bishop, 1995):

Tr(J (x)) =

〈
∑
k,i

(
∂ rk

∂xi

)2
〉

p∗(x)

(B.11)

Therefore, combining equation B.5 and equation B.10, we conclude that minimising the
contractive regulariser is equivalent to minimising the Tr(J (x)), thus minimising an upper-
bound of the mutual information I [r;x]. From Bishop (1995), this can be approximated by
training with noise-corrupted data.

B.3 Information minimisation for RNN

Theorem 5. The KL-divergence
〈
DKL

[
qφ (rt |x1:t)∥pθ (rt)

]〉
p(x1:t)

is an upper-bound of the
sum of mutual information ∑

t
k=1 Iφ [rt ;xk].
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Proof. Using the definition of KL-divergence,

〈
DKL

[
qφ (rt |x1:t)∥pθ (rt)

]〉
p(x1:t)

=
∫

p(x1:t)

{∫
qφ (rt |x1:t) lnqφ (rt |x1:t)dr−

∫
qφ (rt |x1:t) ln pθ (rt)drt

}
dx1:t

=−Hφ [rt |x1:t ]−
∫

qφ (rt) ln pθ (rt)drt

⩾−Hφ [rt |x1:t ]−
∫

qφ (rt) lnqφ (rt)drt

= Iφ [rt ;x1:t ]

(B.12)



Appendix C

Details of training and Regularised
Model

The parameters used in the experiments are summarised in table C.1. Most parameters,
except those directly related to training samples are the same for both denoising training
(denoising) and training with regulariser (regularisation, see section 3.3).

Performance in the sequence learning task was not sensitive to moderate changes of most
parameters (see also Appendix D). The connectivity (the percentage of non-zero recurrent
connections) was set to 10% to reflect the sparse recurrent connection in the brain. Due to
the small volume of data set, mini-batch was not necessary, and single batches containing all
training examples were used. In denoising training, the training batch included 200 difference
noisy samples of the trajectories. Although denoising training is usually implemented by
adding different noise samples in different training iterations under large data set, this setting
traded training time with (negligible amount of) memory. On the other hand, only 1 noiseless
trajectory was used when employing the denoising regulariser I developed. Gradients were
computed using the whole batch. The 2-norm of gradients were clipped to 2 when they
were larger than 2 to avoid exploding gradients. A large momentum of 0.95 was used in
combination with a weight decay rate of 1−10−3. The learning rate was initialised as 0.1,
before decreased linearly to 0.01 in the first 200 iterations, then continued with the same
value of 0.01.

The performance and neural representation of an RNN trained using the regulariser
are illustrated in figure C.1, which can be compared with the same results obtained from
denoising training reported in Chapter 3. After training, the changes of training losses are
shown in table C.2, and the changes in mixing index κ as well as its mutual information
terms are illustrated in figure C.2 and C.3. See Chapter 6 for details of their implication in
the main theoretical result developed in this thesis (see also table A.1).
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Fig. C.1 Illustration of performance and neural representation from an RNN trained using
regulariser and a single instance of noiseless trajectory. Prediction and recall were still tested
using input with the same noise level (0.1 or 5 cm) as in the main thesis. (a) and (b) illustrate
the performance in prediction and recall respectively (see also Figure 4.1). (c) shows the
neural representation during prediction (see also FIgure 4.3). (d) shows the state space
trajectories of the RNN during recall projected to the first two principal components (see also
Figure 4.6).

Parameter
value

denoising regularisation
Number of input /output neurons 2

Number of hidden neurons 100
Connectivity 10%

Gradient norm (clipped) 2
Momentum 0.95

Initial learning rate (first 200 steps) 0.1
Learning rate 0.01

Weight decay rate 1−1×10−3

Iterations of gradient descent 1000 1500
Number of trials per batch 200 1

Standard deviation of additive noise 0.1 (5 cm) 0
η1 0 0.02
η2 0 0.01
Table C.1 Training parameters
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Fig. C.2 Mixed selectivity measured by both ζ and κ , for neurons fired on the central arm.
The scatter plot (top) and histograms shows that overall the mixed selectivity of neurons
increased after training in both measures.

before training after training
reconstruction loss 887.933 22.983
regularisation loss 1.697 0.002

Table C.2 Change of Losses
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Fig. C.3 Mixing index decomposed as the joint mutual information and the sum of marginal
mutual information. Both quantities decreased after training. However, their difference,
which defines the mixing index κ , increased as suggested by the theory (figure C.2).





Appendix D

Tests of robustness

The results reported in this thesis were build on the competent performance of RNNs on the
T-maze alternation task (Figure 1.2). To test whether such performance is robust and, how
the performance depends on the particular settings (section 3.2 and Appendix C), here I test
the performance of RNNs on a number of different configurations of both the model and the
task.

D.1 Variants of the T-maze alternation task

This section looks at whether the same RNNs are competent in variants of the T-maze
alternation task as well. First, I assess whether the RNNs trained under only a certain noise
level are robust to noise at various other levels. Such generalisation is necessary for animals
in changing environments. For this, I test the RNNs training in Chapter 3 with inputs at
different noise levels. Figure D.1 shows that the RMSEs only grew approximately linearly
when the testing noise level is higher than that in training.

Next, I altered the way steps on the trajectories are sampled. The first variant changes
the total number of steps sampled along the same trajectories. The steps are still evenly
but more densely sampled (with less space between two steps), so the sequence length
increases. Figure D.2 (a) shows the RMSE indeed increased as the sequences became
longer — although prediction is little affected, recall was significantly worse with longer
sequences. Recall requires memorising the entire sequences, which became harder with
longer sequences, while prediction can use mechanisms require relatively fewer memory,
such as filtering. Interestingly, the performance also decreases when the number of steps
were too few (< 15). This is because consecutive steps became less correlated and less
information could be accumulated along the trails. However, the phenomenon observed in
Figure D.2 (a) gives rise to the questions of whether there exists an optimal sequence length
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Fig. D.1 The same RNNs’ performance at different noise levels. 10 RNNs are trained under
input noise with the standard deviation of 5cm (dashed horizontal line). They are tested
under input noise with standard deviations up to 15cm. For all the figures in this appendix,
blue and red colour codes prediction and recall tasks respectively. Numbers were computed
using 100 testing trials on each of the 10 RNNs.

and how can RNNs deal with very long sequences. These questions will be the topics for
future investigation, and I expect hierarchical representations can be used to maintain the
actually length of sequences processed by the brain at a manageable scale.

The second way to modify the steps keeps the same number of steps but changes the
spaces between steps. the steps are no longer evenly sampled, corresponding to the more
realistic assumption of traversing the T-maze with non-constant speed. This is realised by
sample the step sizes s (i.e., speeds) from a first order auto-regressive (AR1) process:

st = c+ϕ · st−1 +σε · εt (D.1)

where εt is a white noise process sampled from a standard normal distribution. I set the
parameters c, ϕ and σε so that st has a mean µs the same as the (constant) speed of the
original task, and standard deviations σs varying between 0 (corresponding to constant speed)
and 0.5µ . This can be done using the relationships µs =

c
1−ϕ

and σ2
s = σε

1−ϕ2 . Sequences
with a higher σs is, by construction, less predictable. Figure D.2 (b, solid lines) shows the
RMSE of both prediction and recall indeed scaled with this standard deviation. However,
when the error was measured as between the output location and the nearest location on
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Fig. D.2 RNNs’ performance when the steps along the trajectories were sampled differently.
(a) shows the RMSEs of prediction and recall when the trajectories were sampled evenly but
with different total number of steps, which varied the lengths of the sequences. (b) shows the
RMSEs when keeping the number of steps the same (30), but allowed variances of step size
measured by their standard deviations. Numbers were computed using 100 testing trials on
each of the 10 RNNs.

the maze — which is fairer since the exact step sizes are unpredictable by definition — the
RMSEs stayed almost the same despite the increased σs (dashed lines).

Finally, I tested more dramatic variants of the T-maze task. To characterise the essential
structure of the T-maze alternation task, we can notice that, in the task presented in Chapter
2 (Figure 4.1), the central arm alone occupies one dimension in the 2-dimensional space, and
the incoming and out-going arms always lay in different sides of the other dimension. We
can thus generalise the task with additional dimensions while keeping the essential structure.
For example, by allowing the third dimension (perpendicular to this paper), the task can be
generalised by allowing the incoming and outgoing arms to rotate into this third dimension,
as long as they do not end in the same side of any dimension for the same trial; as a result, 4,
instead of 2 sequences can be squeezed into this 3-dimensional space (the incoming arm can
be in any of the 4 quadrant, in the 2 dimensional space without the central arm, and each of
the outgoing arms simply needs to avoid the same quadrant). Generally, in an N-dimensional
space, there are (N−1)×2 valid sequences that can be obtained from such rotation. Figure
D.3 (a) shows the performance of prediction and recall in a 5-dimensional space as a function
of the number of sequences (all other parameters were the same, except additional input and
output units to allow the extra dimensions). The RMSEs only scaled slowly with increased
number of sequences, which suggests the RNNs captures the structure of the task, which
changed little despite the increase of dimensions and number of sequences.

As a control, I tested the performance of RNNs for completely random sequences in the
same 5-dimensional space. Each step in these sequences were sampled completely randomly
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Fig. D.3 RNNs’ performance on a high-dimensional T-maze task and random sequence
learning. (a) shows the performance on a generalised T-maze in a 5-dimensional space. In
contrast, (b) shows the results from learning unstructured random sequences. Numbers were
computed using 100 testing trials on each of the 10 RNNs.

and independently from a standard normal distribution, so there was no structure at all.
For the number of sequences I tested (up to 10), the overlapping between sequences was
small. Figure D.3 (b) shows that, unlike learning the structured (a), testing errors increased
dramatically, especially for recall, for random sequences — the amount of information to be
stored in the RNNs was much larger for these unstructured sequences.

D.2 RNN configurations

In addition to changing the task settings, as discussed in the previous section, I also tested
the dependencies of task performance on configurations of the RNNs. This section focuses
on two parameters that are of particular interests for both neuroscientists and engineers: the
connectivity (the percentage of inter-neuron connections in the hidden layer), and the number
of hidden neurons. In the brain, both of these parameters are physically constrained in a
neural population. In particular, the all-to-all connection scheme that is usually assumed in
computational models is implausible in even the most densely connected CA3 region of the
hippocampus. In practise, dense recurrent connections bring extra communication burden in
distributed implementations.

Figure D.4 (a) shows the performance as a function of connectivity. The performance of
recall was severely damaged when the connectivity was below 5%. For the sequence learning
task we tested, merely about 7% of connectivity, slightly below the 10% level I used in the
main thesis, was enough to support a competent level of performance. Interestingly, the
performance started to decrease when the connectivity went beyond 40%, implying the RNNs
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Fig. D.4 Performance of prediction and recall as a function of connectivity (the percentage
of recurrent connections between hidden neurons) and the number of hidden neurons. The
vertical dashed lines indicate the settings used in the main thesis. Numbers were computed
using 100 testing trials on each of the 10 RNNs.

were under-fitted with the extra parameters while keeping the same training iterations. This
result suggests an appropriate level of connectivity may strike a balance between capacity
and training time. On the other hand, Figure D.4 (b) shows the performance as a function
of the number of hidden neurons, while keeping the connectivity at 10%. Again, we can
see the capacity of the RNNs were largely determined by the number of hidden neurons,
and the performance of recall, which requires storing information about full sequences,
rapidly deteriorated when the number of hidden neurons shrunk below sufficient. However,
unlike extra connectivity, extra hidden neurons did not introduce the problem of under-fitting,
despite the increase of parameter number.

D.3 Conclusion

In conclusion, the performance of RNNs reported in the main thesis (Chapter 3) was robust
when varying a number of task or model related parameters. The RNN was able to discover
the underlying structure of the task despite changes of low-level features such as the speed
and the dimensionality. This ability of abstraction is helpful for adaptive behaviours in
ever-changing environments. In addition, I presented a intriguing phenomenon when testing
changing the connectivity and number of hidden neurons. While both modifications change
the number of parameters, increasing the number of hidden neurons did not introduce under-
fitting as increasing the connectivity — this might be why the brain have so many neurons
but relatively sparse recurrent connections.
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