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Towards Understanding Sparse Filtering: A Theoretical
Perspective

Fabio Massimo Zennaroa,∗, Ke Chena

aSchool of Computer Science, The University of Manchester, Manchester, M13 9PL, UK

Abstract

In this paper we present a theoretical analysis to understand sparse filtering,

a recent and effective algorithm for unsupervised learning. The aim of this

research is not to show whether or how well sparse filtering works, but to un-

derstand why and when sparse filtering does work. We provide a thorough

theoretical analysis of sparse filtering and its properties, and further offer an

experimental validation of the main outcomes of our theoretical analysis. We

show that sparse filtering works by explicitly maximizing the entropy of the

learned representations through the maximization of the proxy of sparsity, and

by implicitly preserving mutual information between original and learned repre-

sentations through the constraint of preserving a structure of the data. Specifi-

cally, we show that the sparse filtering algorithm implemented using an absolute-

value non-linearity determines the preservation of a data structure defined by

relations of neighborhoodness under the cosine distance. Furthermore, we em-

pirically validate our theoretical results with artificial and real data sets, and

we apply our theoretical understanding to explain the success of sparse filtering

on real-world problems. Our work provides a strong theoretical basis for under-

standing sparse filtering: it highlights assumptions and conditions for success

behind this feature distribution learning algorithm, and provides insights for

developing new feature distribution learning algorithms.
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1. Introduction

Unsupervised learning deals with the problem of modeling data, stated as the

problem of learning a transformation which maps data in a given representation

onto a new representation. Contrasted with supervised learning, where we are

provided labels and we learn a relationship between the data and the labels,

unsupervised learning does not rely on any provided external semantics in the

form of labels. In order to learn, unsupervised learning relies on the specifi-

cation of assumptions and constraints that express our very understanding of

the problem of modeling the data; for example, if we judge that a useful rep-

resentation of the data would be provided by grouping together data instances

according to a specific metric, then we may rely on distance-based clustering

algorithms to generate one-hot representations of the data.

Often, the tacit aim of unsupervised learning is to generate representations

of the data that may simplify the further problem of learning meaningful re-

lationships through supervised learning. Coates et al. (2011) clearly showed

that very simple unsupervised learning algorithms (such as k-means clustering),

when properly tuned, can generate representations of the data that allow even

basic classifiers, such as a linear support vector machine, to achieve state-of-

the-art performances.

One common assumption hard-wired in several unsupervised learning algo-

rithms is sparsity (for a review on the use of sparsity in representation learning

see Bengio et al., 2013). Sparse representation learning aims at finding a map-

ping that produces new representations where few of the components are active

while all of the others are reduced to zero. The adoption of sparsity relies both

on biological analogies and on theoretical justifications (for discussion on the
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justification of sparsity see, for instance, Földiák & Young, 1995; Olshausen &

Field, 1997; Ganguli & Sompolinsky, 2012; Bengio et al., 2013). Several state-

of-the-art algorithms have been developed or have been adapted to learn sparse

representations (for a recent survey of these algorithms, see Zhang et al., 2015).

1.1. Sparse Filtering and Related Work

In 2011, Ngiam et al. (2011) proposed a novel unsupervised learning frame-

work for generating sparse representations. Most of the successful unsupervised

algorithms may be described as data distribution learning algorithms that try

to learn new representations which better model the underlying probability dis-

tribution that generated the data. In contrast, they proposed the possibility of

developing feature distribution learning algorithms that try to learn a new rep-

resentations having desirable properties, without the need of taking into account

the problem of modeling the distribution of the data.

Consistently with the feature distribution learning framework, they defined

an algorithm named sparse filtering, which ignores the problem of learning the

data distribution and instead focuses only on optimizing the sparsity of the

learned representations. Sparse filtering proved to be an excellent algorithm for

unsupervised learning: it is extremely simple to tune since it has only a single

hyper-parameter to select; it scales very well with the dimension of the input;

it is easy to implement; and, more importantly, it was shown to achieve state-

of-the-art performance on image recognition and phone classification (Ngiam

et al., 2011; Goodfellow et al., 2013; Romaszko, 2013). Thanks to its success

and to the simplicity of implementing and integrating the algorithm in already

existing machine learning systems, sparse filtering was adopted in many real-

world applications (see, for instance, the works of Dong et al., 2014; Raja et al.,

2015; Lei et al., 2015; Ryman et al., 2016).

Some studies have also provided sparse filtering with some biological support.

Bruce et al. (2016) analyzed different biologically-grounded principles for rep-

resentation learning of images, using sparse filtering as a starting point for the

definition of new learning algorithms. Interestingly, Kozlov & Gentner (2016)

3



used sparse filtering to model the receptive fields of high-level auditory neurons

in the European starling, providing further support to the general hypothesis

that sparsity and normalization are general principles of neural computation

(Carandini & Heeger, 2012).

1.2. Problem Statement

So far, sparse filtering has been successfully applied to many scenarios, and

its usefulness repeatedly confirmed (see, for instance, its application in Dong

et al., 2014; Raja et al., 2015; Han et al., 2016; Liu et al., 2016). In general,

however, a clear theoretical explanation of the algorithm is still lacking. Ngiam

et al. (2011) drew connections between sparse filtering, divisive normalization,

independent component analysis, and sparse coding, while Lederer & Guadar-

rama (2014) provided a deeper analysis of the normalization steps inside the

sparse filtering algorithm. However, the reasons why and on what conditions

sparse filtering works are left unexplored. In this paper, we aim at understand-

ing from a theoretical perspective why and when sparse filtering works. It is

worth clarifying that our work does not concern itself with showing whether or

how well well sparse filtering works, as there have been abundant evidence in

literature on its successes in different real applications.

We begin by arguing that any unsupervised learning algorithm, in order to

work properly, has to deal with the problem of preserving information conveyed

by the probability distribution of the data. Given that feature distribution

learning ignores the problem of learning the data distribution itself, a natural

question arises: how is the information conveyed by the data distribution pre-

served in feature distribution learning and, specifically, in sparse filtering?

The actual success of sparse filtering suggests that the algorithm is indeed

able to preserve relevant information conveyed in the distribution of the data.

However, no explanation for this behavior has been given. We suggest that

information may be preserved through the preservation of the structure of the
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data. To understand how this may be, we study the properties of the transfor-

mations within the algorithm and pose the following question: is there any sort

of data structure that is preserved by the processing in sparse filtering?

Through a theoretical analysis we show that sparse filtering implemented

using an absolute-value non-linearity does indeed retain information through

the preservation of the data structure defined by the relations of neighborhood-

ness under the cosine distance. Relying on this, we investigate whether our

theoretical results can be used to explain the success or the failure of sparse

filtering in real applications. In particular we consider the following questions:

can the success of sparse filtering be explained in terms of the type of structure

preserved? Can the failure of alternative forms of sparse filtering using differ-

ent non-linearities be explained counterfactually on the grounds of information

preservation? Is it possible to identify scenarios in which sparse filtering is likely

to be helpful and other scenarios in which it is likely not to be useful?

1.3. Contributions

We summarize the contributions made in this study as follows:

• We provide a theoretical analysis to understand why and when sparse

filtering works. We show that the standard sparse filtering algorithm im-

plemented with an absolute-value non-linearity implicitly works under the

assumption of an intrinsic radial structure of the data. This assumption

naturally makes the algorithm more suitable for certain data sets.

• We empirically validate our main theoretical findings, both on artificial

data and real-world data sets.

• We provide useful insights for developing new feature distribution learning

algorithms based on our theoretical understanding.

1.4. Organization

The rest of this paper is organized as follows. We first review the concepts

and ideas forming the foundations of our work (Section 2). Next, we provide a
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formal theoretical analysis of the sparse filtering algorithm based on a rigorous

conceptualization of feature distribution learning (Section 3). The theoretical

results inform the following experimental simulations (Section 4). We then dis-

cuss the results we collected, in relation to sparse filtering, in particular, and to

feature distribution learning, in general (Section 5). Finally, we draw conclu-

sions by summarizing our contributions and highlighting future developments

(Section 6).

To facilitate our presentation, Table 1 summarizes the notation system used

in this manuscript.

2. Foundations

In this section we review basic concepts underlying our study. We provide

a rigorous description of unsupervised learning, we present its formalization in

information-theoretic terms, we formalize the property of sparsity, and, finally,

we bring all these concepts together in the definition of the sparse filtering

algorithm.

2.1. Unsupervised Learning

Let X = {X(i) ∈ RO}Ni=1 be a set of N samples or data points represented as

vectors in an O-dimensional space. We will refer to the given representation of a

sample X(i) in the space RO as the original representation of the sample X(i) and

to RO as the original space. From an algebraic point of view, we can formalize

the data set as a matrix X of dimensions (O×N); from a probabilistic point of

view, we can model the data points X(i) as i.i.d. samples from a multivariate

random variable X = (X1, X2, . . . , XO) with pdf p (X).

Unsupervised learning discovers a transformation f : RO → RL mapping

the set X from an O-dimensional space to the set Z = {Z(i) ∈ RL}Ni=1 in an

L-dimensional space. We will refer to the transformed representation Z(i) in

the space RL as the learned representation of the sample X(i) and to RL as

the learned space. Again, from an algebraic point of view, we can formalize the
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N Number of samples.

O Original dimensionality of the samples.

L Learned dimensionality of the samples.

X Matrix of original representations with domain RO×N .

X Data set or collection of data.

X(i) i-th sample from X; vector of shape (O× 1) with domain RO, 1 ≤ i ≤ N .

Xj j-th feature from X; vector of shape (1×N) with domain RN , 1 ≤ j ≤ O.

X
(i)
j j-th feature of the i-th sample from X; scalar with domain R.

X Multivariate random variable (random vector) modeling the original data

X(i).

p(X) Probability density function of the original representations.

p
(
X(i)

)
Probability of the outcome X(i) when sampling from p(X).

p
(
X(i)

)
is the shorthand for the more rigorous notation p

(
X = X(i)

)
.

Z Matrix of learned representations with domain RL×N .

F/F̃/F̂ Matrix of intermediate representations with domain RL×N .

Y Vector of labels associated with the data with domain R1×N .

W Matrix of weights with domain domain RL×O.

Table 1: Notation.
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transformed data set as a matrix Z of dimensions (L×N); from a probabilistic

point of view, we can model the data points Z(i) as i.i.d. samples from a

multivariate random variable Z = (Z1, Z2, . . . , ZL) with pdf p (Z).

Unsupervised learning is often used for learning better representations for en-

suing supervised tasks. Suppose that we are given a set Y = {Y(i) ∈ R}Ni=1 of N

labels, such that the ith label in Y is associated to the ith sample in X. From an

algebraic point of view, we can formalize the labels as a vector Y of dimensions

(1×N); from a probabilistic point of view, we can model the labels Y(i) as i.i.d.

samples from a random variable Y with pdf p (Y ). Let us now consider the

new data set (X,Y) =
{(

X(i),Y(i)
)
∈ RO × R

}N
i=1

. In this scenario, the aim

of unsupervised learning is to learn from X(i) representations Z(i) such that

modeling the relationship g′ : Z(i) 7→ Y(i) or the distribution P (Y |Z) is eas-

ier than modeling the relationship g′′ : X(i) 7→ Y(i) or the distribution P (Y |X).

Clustering. A specific form of unsupervised learning is clustering.

Hard clustering discovers a transformation f : RO → RL mapping the orig-

inal samples X(i) onto one-hot representations Z(i), where the single non-null

component of Z(i) encodes the assignment of the original sample to a cluster.

Soft clustering discovers a transformation f : RO → RL mapping the origi-

nal samples X(i) onto representations Z(i), where the value of each component

of Z(i) encodes the degree of membership of the original sample to each clus-

ter. Soft clustering algorithms may be used for learning representations Z(i)

that simplify the problem of modeling the relationship g′ : Z(i) 7→ Y(i); in

this case, the soft clustering algorithm is normally grounded in the following

assumptions. (i) Samples are taken to be first generated by a stochastic pro-

cess with pdf p (X∗); the samples are corrupted by various forms of noise; the

noisy samples that we receive as original representations X(i) follow a noisy pdf

p(X); the noiseless distribution underlying the data is referred to as true pdf

p (X∗). (ii) Noiseless samples generated by the true pdf p (X∗) are taken to

have a stronger correlation to the labels Y(i) than the original samples X(i).

(iii) The true pdf p (X∗) may be approximated through a mixture model. (iv)
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Relationships of neighborhoodness under a chosen metric in the original space

RO allows us to recover the true pdf p (X∗). Based on these assumptions, soft

clustering algorithms instantiate a set of C clusters (each one describing one

component of the mixture model) and group into clusters nearby data points.

Two data points X(1) and X(2) falling in the same clusters are represented by

the same exemplar X̄, assuming that such an exemplar contains all the relevant

information carried by X(1) and X(2), and that the information contained in

the difference between X(1) or X(2) and the exemplar X̄ amounts to noise. If

the assumptions are correct, a soft clustering algorithm will learn new represen-

tations Z(i) whose pdf p(Z) is closer to the true pdf p (X∗) than the original

pdf p(X); therefore, it will be easier to learn g′ : Z(i) 7→ Y (i) or p(Y |Z) than

learning g′′ : X(i) 7→ Y(i) or p(Y |X).

Distribution Learning. Another form of unsupervised learning is distri-

bution learning.

Data distribution learning is a generic term for algorithms that aim at esti-

mating the true pdf p (X∗) from the available data. Examples of data distribu-

tion learning algorithms include (Ngiam et al., 2011): denoising auto-encoders

(DAE) (Vincent et al., 2008), restricted Boltzmann machines (RBM) (Hinton

et al., 2006), and independent component analysis (ICA) (Bell & Sejnowski,

1997). In the context of learning for supervised tasks, if we learn a pdf p(Z)

that well approximates the true pdf p (X∗), we can reasonably expect that the

ensuing learning of p(Y |Z) will be simplified (Bengio et al., 2013).

Feature distribution learning, in contrast, denotes algorithms aimed at learn-

ing a pdf p (Z) which has a set of desirable properties. It overlooks the problem

of estimating the true distribution p (X∗) and focuses instead on shaping the

learned pdf p (Z) according to chosen criteria. The most representative algo-

rithm of this family is sparse filtering (SF) (Ngiam et al., 2011). In the context

of learning for supervised tasks, learning a pdf p(Z) with specific properties

is meaningful if we know a priori that certain properties (such as sparsity or

smoothness) will be useful for supervised learning.
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2.2. Information-Theoretic Aspects of Unsupervised Learning

Relying on conceptual tools from information theory, Vincent et al. (2010)

argued that an unsupervised learning algorithm can generate good representa-

tions by satisfying two requirements: (i) retaining information about the input,

and (ii) applying constraints that lead to the extraction of useful information

from noise.

In more general terms, we may state that a good unsupervised representation

may be obtained by satisfying the two following information-theoretic require-

ments: (i) maximizing the mutual information between input and output (in-

fomax principle, Linsker, 1989), and (ii) maximizing a measure of information

of the output (informativeness principle1).

As such, in order to generate good representations, an unsupervised learning

algorithm has to somehow negotiate the trade-off between the infomax principle

and the informativeness principle:

max
p(Z)∈P

D [p(X,Z) ‖ p(X)p(Z)]︸ ︷︷ ︸
infomax

principle

+ D [p(Z) ‖ q(Z)]︸ ︷︷ ︸
informativeness

principle

. (1)

where D [·] is a measure of distance or divergence between pdfs, such as

the Kullback-Leibler divergence (MacKay, 2003), q is an entropy-maximizing

pdf, and P is the space of all the pdfs defined on the space of the learned

representations Z.

Maximizing the infomax principle may be expressed as the maximization

of the mutual information I [X;Z], or, equivalently, as the maximization of

the relative entropy between p(X,Z) and p(X)p(Z). Maximizing the infor-

mativeness may be expressed as the minimization of the entropy H [Z] or the

maximization of the relative entropy between the learned pdf p (Z) and the

entropy-maximizing pdf q.

1We named this principle informativeness principle for lack of a better term.
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Unfortunately, the objective defined in Equation 1 is bound to remain mainly

theoretical, as information-theoretic quantities are extremely hard to estimate

in practice. Therefore we need to rely on approximations or heuristics to make

these quantities tractable.

2.3. Sparsity

Given a generic vector v in an N -dimensional space, v is sparse if a small

number of components of the vector accounts for most of the energy of the

vector (Hurley & Rickard, 2009). Practically, the vector v is sparse if n � N

components of the vector v are active (that is, have a value different from zero)

while the remaining N − n components are inactive (that is, have the value

zero). A vector v is k-sparse if exactly k components are active. By analogy,

we may define sparsity for matrices (with reference to their components) and

for random variables (with reference to their realizations).

Several measures of sparsity have been proposed in the literature (for a

review of different measures of sparsity and their properties, see Hurley &

Rickard, 2009). A common family of measures of sparsity is the `p-norm fam-

ily: `p(v) = p

√∑N
i=1 |vi|

p. The most intuitive measure is the `0-norm which

computes the number of non-zero components of a vector; however, this mea-

sure is practically inadequate, as in concrete implementations the components

of a vector are rarely reduced perfectly to zero. The simplest relaxation of the

`0-norm is the `1-norm, which is often referred to as activation in the sparse

filtering literature. The negative form of the `1-norm works as an efficient proxy

for measuring the `0-norm (Elad, 2010). Given a representation Z(i), `1
(
Z(i)

)
or activation

(
Z(i)

)
quantifies the sparsity of Z(i). Minimizing the activation of

the learned representation Z(i) will maximize the `0-norm and the sparsity of

Z(i).

2.4. Sparse Filtering

Sparse filtering is the most representative example of feature distribution

learning algorithms (Ngiam et al., 2011). Its aim is learning a pdf p(Z) which
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maximizes the sparsity of the learned representations Z(i).

Enforcement of sparsity in sparse filtering. Sparse learned representa-

tions Z(i) are achieved by enforcing three constraints on the matrix of learned

representations Z:

• Population sparsity : each sample Z(i), is required to be sparse, that is,

described only by a few features. The sparsity of a sample Z(i) is computed

as its activation: `1
(
Z(i)

)
=
∑L
j=1

∣∣∣Z(i)
j

∣∣∣.
• Lifetime sparsity : each feature Zj , is required to be sparse, that is, to

describe only a few samples. Lifetime sparsity is often referred to as

selectivity (Goh et al., 2012). The sparsity of a feature Zj is computed as

its activation: `1 (Zj) =
∑N
i=1

∣∣∣Z(i)
j

∣∣∣.
• High dispersal : all the features are required to have approximately the

same activation. The dispersal of the features is computed as the vari-

ance of the activation across all the features: V ar [activation (Zj)] =

E
[
`1 (Zj)

2
]
−E [`1 (Zj)]

2. Lower variance corresponds to higher dispersal.

The enforcement of these three properties translates into learning non-degenerate

sparse representation.

Sparse filtering algorithm. Sparse filtering is implemented as a simple

algorithm in six steps (refer to Figure 1 for an illustration of the transformations

on a two-dimensional data set):

A0. Initialization of the weights: the weight matrix W ∈ RL×O is initialized

sampling each component from a normal distribution N (0, 1).

A1. Linear projection of the original data: fA1(X) = WX. The weight matrix

W can be interpreted as a dictionary (Denil & de Freitas, 2012) or as a

filter bank (Dong et al., 2015), where each row is a codeword or a filter

applied to each sample. Refer to Figure 1(a) and 1(b) for an illustration

of this transformation.
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A2. Non-linear transformation: F = fA2 (WX), where fA2(·) : R → R is

an element-wise non-linear function. Although this non-linear function

can, in principle, be arbitrarily chosen, all the implementations known to

the authors used an element-wise absolute-value function f(x) = |x|. For

practical reasons, this non-linearity is implemented as a soft absolute-value

f(x) =
√
x2 + ε, where ε is a small negligible value (for instance, ε = 10−8).

Refer to Figure 1(b) and 1(c) for an illustration of this transformation.

A3. `2-normalization along the features (or along the rows): F̃ = fA3 (F) = F
(i)
j√∑N

i=1

(
F

(i)
j

)2

. In this step, each feature is normalized so that its

squared activation is one, that is,
∑N
i=1

(
F̃

(i)
j

)2

= 1. Refer to Figure

1(c) and 1(d) for an illustration of this transformation.

A4. `2-normalization along the samples (or along the columns): Z = F̂ =

fA4

(
F̃
)

=

 F̃
(i)
j√∑L

j=1

(
F̃

(i)
j

)2

. In this step, each sample is normalized so

that its squared activation is one, that is,
∑L
j=1

(
F̂

(i)
j

)2

= 1. Refer to

Figure 1(d) and 1(e) for an illustration of this transformation.

A5. `1-minimization: min
F̂∈RL×N

∑
ij F̂

(i)
j . This minimization is the objective of

sparse filtering; by minimizing the overall activation of the matrix F̂, we

maximize the sparsity of the learned representations. Notice that, when

learning, this objective is optimized by back-propagation with respect to

the only learnable parameter W, so that the actual objective function of

sparse filtering can be defined as argmin
W∈RL×O

∑
ij F̂

(i)
j .

After learning, new data X′ is processed through step A1 to A4, such that

Z′ = fA1:A4 (X′) = fA4

(
fA3

(
fA2

(
WX′

)))
.

As explained by Ngiam et al. (2011), the combination of the `1-minimization

with the two `2-normalizations guarantees the learning of a representation with

the properties of population sparsity, lifetime sparsity, and high dispersal.
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Figure 1: Illustration of sparse filtering.

Sparse filtering is applied to a random set of data X constituted by the matrix X containing

five samples (N = 5) in two dimensions (O = 2). Each point is generated by sampling its

coordinates from a uniform distribution Unif (−5, 5). Sparse filtering is used to learn a new

representation of the data in two dimensions (L = 2). This figure shows the transformations

determined by the sparse filtering algorithm at iteration 0, after the weight matrix W has

been randomly initialized and before any training.

(a) Original representation of the data X in R2. (b) Linear projection of the data onto the

intermediate representation WX. (c) Non-linear projection of WX using an absolute-value

function onto the intermediate representation F. (d) `2-normalization of the data F along the

features, yielding the intermediate representation F̃. (e) `2-normalization of the data F̃ along

the samples, yielding the final learned representation F̂ = Z.

Notice that the colors and the markers of the data points X(i) do not have any meanings. A

random color and marker have been assigned to each point in order to allow the tracking of

the location of the points through the different transformations applied by sparse filtering.
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3. Theoretical Analysis of Sparse Filtering

In order to better understand sparse filtering we first re-formulate and ex-

plain this algorithm in terms of information-theoretic concepts. Relying on this

improved understanding, we will then move on to a formal analysis of the sparse

filtering algorithm.

In particular, Section 3.1 presents our thesis stating that sparse filtering must

satisfy the informativeness and the infomax principle. Section 3.2 shows how

sparse filtering satisfies the informativeness principle, while Section 3.3 intro-

duces the hypothesis that sparse filtering satisfies the infomax principle through

the preservation of structure of the data. The hypothesis on the preservation

of structure is then analyzed in details in the following sections: Section 3.4

rules out the simplest hypothesis that sparse filtering preserves a structure ex-

plained by the Euclidean metric; Section 3.5 proves that sparse filtering preserve

collinearity; Section 3.6 proves that collinear points are mapped onto identical

representation; similarly, Section 3.7 proves that points having the same moduli

are mapped onto identical representations; and, finally, Section 3.8 puts together

these results to conclude that sparse filtering preserves relations of cosine neigh-

borhoodness. Section 3.9 and Section 3.10 delve deeper in the dynamics of

sparse filtering providing a geometric interpretation of the algorithm in terms

of basis of the learned space and filters in the original space. Section 3.11 and

Section 3.12 investigate the limits of the sparse filtering algorithm, by evaluating

more closely the role of the absolute-value non-linearity in the preservation of

structure and by deriving a probabilistic bound on the preservation of Euclidean

structure. Finally, Section 3.13 draws together all the results by discussing the

use of sparse filtering as a representation learning algorithm.

3.1. Information-Theoretic Aspects of Sparse Filtering

With reference to the information-theoretic description of unsupervised learn-

ing presented in Section 2.2, the aim of sparse filtering seems to be a pure op-

timization of the informativeness principle. Indeed, sparse filtering algorithm
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explicitly maximizes a property of the learned distribution (related to the in-

formativeness principle), but it makes no reference to the problem of preserving

information in the original distribution (related to the infomax principle); its

loss function seems to be concerned only with the second term in Equation 1

and to disregard the first term.

However, based on our information-theoretic understanding of unsupervised

learning we argue that, actually, sparse filtering must, in some way, take into

account the infomax principle. In the following, we demonstrate the following

thesis:

Sparse filtering does satisfy the informativeness principle through

the maximization of the proxy of sparsity and it satisfies the infomax

principle through the constraint of preservation of the structure of

cosine neighborhoodness of the data.

3.2. Informativeness Principle in Sparse Filtering

Showing that sparse filtering satisfies the informativeness principle is straight-

forward. Since the explicit the minimization of the entropyH[Z] is computation-

ally hard, the sparse filtering algorithm adopts the standard proxy of sparsity.

Increasing the sparsity of the representations Z(i) concentrates the mass of the

pdf p(Z) around zero; as the pdf p(Z) gets closer to a Dirac delta function, its

entropy is H[Z] is minimized (Principe, 2010; Hurley & Rickard, 2009). Using

the formalism of Pastor et al. (2015):

−`1 (Z) ↑ ≡ H [Z] ↓,

that is, as the sparsity, measured by the negative `1-norm of the learned repre-

sentations Z(i) increases, so the entropy of the pdf p(Z) decreases.

3.3. Infomax Principle in Sparse Filtering

Showing that sparse filtering satisfies the informativeness principle is more

challenging. By definition, as a feature distribution learning algorithm, sparse
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filtering does not address the problem of modeling the data distribution. How-

ever, by virtue of the fact that sparse filtering works and its learned representa-

tions Z(i) allow the achievement of state-of-the-art performance when learning

p (Y |Z), it must be that the algorithm preserves information contained in the

original representations X(i). If it were not so, sparse filtering could simply

solve its optimization problem by mapping the original data matrix X onto a

pre-computed sparse representation matrix Z̄, containing a constant 1-sparse

learned representation Z̄(1), with a minimal computational complexity of O(1).

The matrix Z̄ would have maximal sparsity, and the associated pdf p(Z) would

be a Dirac delta function centered on Z̄(1) with minimal entropy. However, if

we were to use Z̄ to perform further supervised learning with respect to a vec-

tor of label Y, the pre-computed learned representations Z(i) = Z̄(1) would be

useless as they would provide no information about the labels because of the

independence between the pre-computed representations and the given labels:

p(Y |Z) = p(Y ).

Since sparse filtering does not try to explicitly model the distribution of

the original data we hypothesize that it must implicitly preserve information

about the pdf p(X) through the proxy of the preservation of data structure.

The geometric structure of the data in the original space RO constitutes a set

of realizations of the random variable X through which we can estimate the

pdf p(X). Preserving relationships of neighborhoodness (under a given metric)

allows us to preserve information conveyed by the pdf p(X): regions of high

density and low density in the domain of p(X) can be maintained by preserving

relationships of neighborhoodness in the domain of p(Z). Thus, preservation

of the geometric structure under a chosen metric may act as a proxy for the

maximization of mutual information I[X;Z].

3.4. Non-preservation of Euclidean Distance

The preservation of absolute or relative distances under the Euclidean metric

is the most common way to preserve the structure of the data. However, it can

be easily ruled out that sparse filtering preserves this type of structure.
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Proposition 1. Let
{
X(i) ∈ RO

}N
i=1

be a set of points in the original space RO.

Then, the transformations from A1 to A4 do not preserve the structure of the

data described by the Euclidean metric.

Proof Sketch. This proposition is proved by counterexample showing that

there is at least a case for which the transformations from A1 to A4 do not pre-

serve the Euclidean distance. The full proof is available in appendix Appendix

A.1. �

3.5. Preservation of Collinearity

Having ascertained that sparse filtering can not preserve the data structure

defined by the Euclidean metric, we investigate other properties of the algorithm

that may lead us to discover the preservation of alternative data structures. A

first relevant observation is that sparse filtering preserves collinearity of point

lying on the same line passing through the origin of the space RO.

Theorem 1. Let X(1),X(2) ∈ RO be collinear points in the original space RO.

Then, the outputs of transformations from A1 to A4, that is fA1:A4

(
X(1)

)
,

fA1:A4

(
X(2)

)
∈ RL, are collinear.

Before proving this theorem, we present a set of auxiliary lemmas. The

proofs of these lemmas are elementary and they can be found in Appendices

Appendix A.2-Appendix A.5.

Lemma 1. Let us consider u,v ∈ RO, two generic collinear vectors, and let

f : RO → RL be a linear transformation defined as f(u) = Wu, where W is

the matrix associated with the linear transformation. Then, f (u) , f(v) ∈ RL

are also collinear.

Lemma 2. Let us consider u,v ∈ RL, two generic collinear vectors, and let

f : RL → RL be the element-wise absolute-value function f(u) = |u| = [|uj |].

Then f (u) , f(v) ∈ RL are also collinear.
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Lemma 3. Let us consider u,v ∈ RL, two collinear vectors whose components

are all strictly positive2, and let f : RL → RL be the `2-normalization along the

features. Then f (u) , f(v) ∈ RL are also collinear.

Lemma 4. Let us consider u ∈ RL, a vector whose components are all strictly

positive 3, and let f : RL → RL be the `2-normalization along the samples. Then

f (u) ∈ RL have the same angular coordinates as u.

Using these lemmas, we can prove Theorem 1.

Proof of Theorem 1. To prove that the transformations from A1 to A4

preserve collinearity it is necessary to prove that all transformations preserve

collinearity.

Concerning transformation A1, by Lemma 1, linear transformations preserve

collinearity. Concerning transformation A2, by Lemma 2, absolute-value func-

tion preserves collinearity; indeed, it rigidly folds all the orthants on the first

one. Concerning transformation A3, by Lemma 3, normalization along the fea-

tures preserves collinearity; indeed, it acts simply as a rescaling of the axes.

Concerning transformation A4, by Lemma 4, normalization along the samples

preserves angular distances in general, and, therefore, collinearity.

Since all the transformations from A1 to A4 preserve collinearity, the overall

transformation fA1:A4(·) preserves collinearity. �

3.6. Homo-representation of Collinear Points

An immediate consequence of the previous result is the following theorem

which states that all the collinear points in the original representation space are

mapped to an identical representation. This result is significant as it gives us a

2Notice that we can safely make the assumption of strict positivity in sparse filtering since

u and v are the output of an absolute-value function implemented as f(x) =
√
x2 + ε.

3Notice that we can safely make the assumption of strict positivity in sparse filtering since

u is the output of the normalization along the feature which preserves the positivity.
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first understanding of the principle and the type of metric that sparse filtering

uses to map original samples X(i) onto their representations Z(i).

Theorem 2. Let X(1) ∈ RO be a point in the original space RO. Then there is

a set of infinite points X(i) ∈ RO such that fA1:A4

(
X(1)

)
= fA1:A4

(
X(i)

)
. The

set of the points collinear with X(1) is included in this set.

Proof. Let us consider a point X(1) and a generic collinear point X(2) =

kX(1), k 6= 0. Let us apply the transformation fA1:A4 to the points X(1) and

X(2):

fA1

(
X(1)

)
= WX(1) fA1

(
X(2)

)
= kWX(1)

fA2

(
WX(1)

)
=
∣∣WX(1)

∣∣ fA2

(
kWX(1)

)
= k

∣∣WX(1)
∣∣

fA3

(∣∣WX(1)
∣∣) = c ◦

∣∣WX(1)
∣∣ fA3

(
k
∣∣WX(1)

∣∣) = k
(
c ◦
∣∣WX(1)

∣∣)
fA4

(
c ◦
∣∣WX(1)

∣∣) =
c◦|WX(1)|
`2(X(1))

fA4

(
k
(
c ◦
∣∣WX(1)

∣∣)) =
k(c◦|WX(1)|)
`2(X(2))

where c is a vector of normalizing constants and ◦ is the element-wise product

(as in Lemma 3). Now, since `2
(
X(2)

)
= k`2

(
X(1)

)
, it follows:

k
(
c ◦
∣∣WX(1)

∣∣)
`2
(
X(2)

) =
k
(
c ◦
∣∣WX(1)

∣∣)
k`2

(
X(1)

) = fA4

(
c ◦
∣∣∣WX(1)

∣∣∣) .
Thus, X(1) and any collinear point X(2) are mapped onto the same representa-

tion fA1:A4

(
X(1)

)
. �

3.7. Homo-representation of Points with Same Moduli

A further analysis of sparse filtering reveals that not only collinear points

are mapped to the same representation, but also points in the learned repre-

sentation space having the same moduli (that is, the same absolute value for

their components) are mapped to identical representations. Again, this result is

relevant since it sheds light on the type of structure preserved by sparse filtering.

Theorem 3. Let F(1) ∈ RL be a point in the codomain of the linear map defined

by the matrix W. It holds that for F(1) strictly in the first orthant, there are at

least 2L points F(i) ∈ RL such that fA2:A4

(
F(1)

)
= fA2:A4

(
F(i)

)
.
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Proof. By definition, F
(1)
j > 0, ∀j, 1 ≤ j ≤ L. It follows that fA2(F(1)) =

F(1), as the application of the absolute-value maps F(1) to itself.

However, all the vectors F(i) such that F
(i)
j = ±F

(1)
j are mapped to F(1) by

the absolute-value fA2(·). By combinatorial analysis, there are 2L possible ways

of picking the values of F(i), thus defining 2L points in RL that are mapped to

the same value F(1). Since all the points F(i) are mapped to the same point F(1)

at the end of step A2, the application of the remaining deterministic functions

will map them to the same representation, fA2:A4

(
F(1)

)
= fA2:A4

(
F(i)

)
. �

3.8. Preservation of Cosine Neighborhoodness

In Theorem 2 we have shown that sparse filtering maps points having the

same angles to the same representation. However, this property is not sufficient

to preserve any complex structure. Here we further prove that sparse filtering

maps points having a small cosine distance in the original space onto point

having small Euclidean distance in the representation space.

Theorem 4. Let X(1),X(2) ∈ RO be two original data samples and let Z(1),Z(2) ∈

RL be their representations computed by sparse filtering. If the cosine distance

between the original samples is arbitrarily small DC

[
X(1),X(2)

]
< δ, for δ > 0,

then the Euclidean distance between the computed representations is arbitrarily

small DE

[
Z(1),Z(2)

]
< ε, for ε > 0, and ε = L ·

(
k+|√2δ−δ2|
`2(F̃(2))

− 1

`2(F̃(1))

)
, where

k is a constant accounting for partial collinearity and `2
(
F̃(i)

)
is the `2-norm

of the representations computed by sparse filtering after step A3. In the limit,

it holds that limδ→0 ε = 0.

Proof Sketch. We provide here a synthetic sketch of the proof; the full

proof is available in appendix Appendix A.6.

We prove this theorem with the following approach: at each step of sparse

filtering, (i) we consider the displacement between the representation of the two

points X(1) and X(2); (ii) we upper bound the displacement.

Before sparse filtering the displacement vector X̄ between X(1) and X(2) is:
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X̄ = (k − 1)X(1) + B (2)

where k ∈ R, k 6= 0, is a constant accounting for partial collinearity and B is a

bias vector. Knowing that the cosine distance between the samples is bounded

by DC

[
X(1),X(2)

]
< δ, the displacement can be upper bounded component-

wise as:

X̄j ≤ X
(1)
j

(
k − 1 +

√
2δ − δ2

)
. (3)

After steps A1 and A2, the new displacement is:

F̄l = (k − 1) F
(1)
l ± |WB|l , (4)

whose upper bound is:

F̄l ≤
(
k − 1 +

∣∣∣√2δ − δ2
∣∣∣)
∣∣∣∣∣∣
O∑
j=1

W(l)X
(1)
j

∣∣∣∣∣∣ . (5)

After the normalization along the rows in step A3, the displacement is re-

duced to:
¯̃
Fl = (k − 1) F̃

(1)
l +

|WB|l
cl

, (6)

where {cl}Ll=1, c ∈ R are constant accounting for feature-dependent sums across

the N samples. Consequently the new upper bound is simply:

¯̃
Fl ≤

1

cl
F̄l (7)

Finally, after step A4, the new displacement is:

Z̄l =

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1

Z
(1)
l +

|WB|l
cl`2

(
F̃(2)

) , (8)

which can be upper bounded as:

Z̄l ≤

∣∣∣∑O
j=1 W

(j)
l X

(1)
j

∣∣∣
cl

k +
∣∣√2δ − δ2

∣∣
`2

(
F̃(2)

) − 1

`2

(
F̃(1)

)
 . (9)
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Therefore, the overall Euclidean distance between the representations Z(1) and

Z(2) can be bounded by:

DE

[
Z(1),Z(2)

]
≤ L ·

k +
∣∣√2δ − δ2

∣∣
`2

(
F̃(2)

) − 1

`2

(
F̃(1)

)
 . (10)

Thus ε = L ·
(
k+|√2δ−δ2|
`2(F̃(2))

− 1

`2(F̃(1))

)
. �

Sparse filtering can then preserve cosine neighborhoodness by mapping points

that have similar angular coordinates to representations that are close to each

other under an Euclidean metric. However points that have large cosine dis-

tance in the original space will not necessarily be far in the representation space;

this is a consequence of the fact that transformation in sparse filtering preserve

collinearity and cosine neighborhoodness, but not cosine metric in general.

3.9. Basis and Basis Pursuit

Let us now consider the space of the learned representations RL. This space

is spanned by the canonical set of orthonormal basis vectors {ei}Li=1, where

e1 =
[

1 0 . . . 0
]
, e2 =

[
0 1 . . . 0

]
, . . ., eL =

[
0 0 . . . 1

]
.

Let Z be the set of vectors
{
Z(i)

}N
i=1

produced by the sparse filtering algo-

rithm through the steps A1 to A4. If we now consider the optimization in step

A5, it is easy to prove that the optimal set Z that minimizes the `1-norm is

given by a multi-set4 of the orthonormal basis vectors of RL.

Proposition 2. Let
{
Z(i)

}N
i=1

be a set of normal vectors in RL. Then
{
Z(i)

}N
i=1

is an optimal set of vectors with respect to the `1-norm optimization problem

min
Z∈RL×N

∑N
i=1

∑L
j=1 Z

(i)
j if and only if this set

{
Z(i)

}N
i=1

is a multi-set of the

orthonormal basis vectors of RL.

Proof Sketch. This proposition is proved geometrically, following the proof

given by (Bishop, 2007) to show that the solutions to regularized least-squares

4We now explicitly refer to Z as a multi-set because the optimal Z may contain repeated

orthonormal basis vectors of RL in case N > L.
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optimization problems are sparse. The full proof is available in appendix Ap-

pendix A.7. �

Thus, the optimal solution for the sparse filtering algorithm is to map a set

of original representations X(i) ∈ RO onto the orthonormal basis vectors of RL,

as the basis vectors {ei}Li=1 have a minimal `1-norm in RL under the constraint

of sparse filtering.

Ideally, through gradient descent, sparse filtering progressively pushes all

the learned representations Z(i) ∈ RL towards the orthonormal basis vectors

of RL. However, in general, notice that sparse filtering is not guaranteed to

find an optimal solution and it may settle into a local minimum, where the

original representations X(i) are mapped onto k-sparse (k > 1) representations

in RL. The quality of the solution depends on the original data set X, on the

dimensionality of the learned space L, and on the random initialization of the

weight matrix W.

Understanding the dynamics of sparse filtering in terms of basis and pursuit

of basis naturally prompts a comparison with other sparse learning techniques

used in signal processing and machine learning. Basis pursuit (Chen et al.,

2001) defines a similar `1-minimization problem, but it considers only a con-

straint given by a linear transformation, while sparse filtering transforms the

data through non-linear transformations. Matching pursuit (Mallat & Zhang,

1993) aims at learning a sparse representation; differently from sparse filtering

which operates on all the data in parallel, matching pursuit works by finding a

linear decomposition in an iterative way by selecting one basis vector at each it-

eration. Dictionary learning algorithms, such as themethod of optimal directions

(Engan et al., 1999) or k-Singular Value Decomposition (Aharon et al., 2006),

try to learn a dictionary and a sparse representation at the same time; however,

they typically alternate between updating the dictionary and the sparse rep-

resentation, while sparse filtering explicitly optimizes only the sparsity of the

learned representation.
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3.10. Representation Filters

The idea of orthonormal basis and pursuit of this basis allows us to introduce

a last conceptual tool that gives us a better insight into the dynamics of sparse

filtering.

From Theorem 2 we learned that sparse filtering identifies sets of collinear

points in the original space to be mapped onto basis vectors; from Theorem 3

we can deduce that there must a symmetric structure around lines of collinear

points; from Theorem 4 we learned that cosine neighborhoodness is translated

into Euclidean neighborhoodness. Putting together these results, we can infer

that sparse filtering defines precise maps in the original representation space RO

in the form of representation filters:

Definition (Representation Filter). A representation filter Rej is a

function Rej : RO → R≥0 such that, for any point X(i) ∈ RO, Rej
(
X(i)

)
=

DE

(
ej ,Z

(i)
)
, where Z(i) ∈ RL is the learned representation of X(i) and DE (·, ·)

is the Euclidean distance.

A representation filters Rej maps points in the original representation space

RO to their Euclidean distance from the basis vector ej . Plotting a representa-

tion filter Rej in RO defines a region of space having a hyper-conical shape, such

that all the points on the line of its height are mapped onto the basis vector ej ,

and all the points in the neighborhood defined by its volume are mapped into

the neighborhood of the basis vector ej . Moreover, given a point X(i) ∈ RO, we

say that the representation filter Rej
X(i) is centered on X(i) if Rej

X(i)

(
X(i)

)
= 0,

that is, the point X(i) lies on the line of the height of the representation cone

defined by Rej
X(i) .

The optimization process of sparse filtering can be interpreted as the search

for an optimal location of the representation filters: hyper-conical representation

filter are rotated in a continuous way in the original representation space during

learning, until their placement provides an optimal solution in terms of sparsity

of the learned representations. Inspecting the representation filters can provide

a way to assess the progress of learning in sparse filtering.
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3.11. Non-preservation of Cosine Neighborhoodness in Alternative Implementa-

tions of Sparse Filtering

The choice of the absolute-value non-linearity in step A2 of sparse filtering

is crucial for guaranteeing the preservation of cosine neighborhoodness. Ngiam

et al. (2011) suggest that this non-linearity may be substituted by other non-

linear functions; for instance, standard non-linear functions from the neural

networks literature, such as the sigmoid non-linearity or the rectified linear unit

(ReLU), may be used. Despite this possibility, all the implementations of sparse

filtering so far have relied on the absolute-value non-linearity. An unpublished

technical report by Thaler5 states that sparse filtering with alternative non-

linearities (ReLU and quadratic non-linearity) does not perform as well as the

absolute-value non-linearity, but does not clarify the reasons of this failure. For

plain empirical reasons, the absolute-value has always been recommended as the

best non-linearity for sparse filtering.

One theoretical reason for the limited success of alternative implementa-

tions of sparse filtering is the fact that other non-linearities can not provide

strong guarantees on preservation of relevant data structures. If we replace

the absolute-value non-linearity with another non-linearity, such as sigmoid or

ReLU function, we lose the property of preservation of structure guaranteed by

standard sparse filtering, as it is proved by the following two propositions.

Proposition 3. Let us consider the sparse filtering algorithm implemented us-

ing a sigmoid non-linearity σ(x) = 1
1+e−x . Let

{
X(i) ∈ RO

}N
i=1

be a set of

points in the original space RO. Then, the transformations A1, A2*, A3 and

A4, where A2* is the sigmoid non-linearity, do not preserve the structure of the

data described neither by the Euclidean metric nor by the cosine metric.

Proof Sketch. This proposition is proved by counterexample. The full

proof is available in appendix Appendix A.8. �

5https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/

forums/t/4717/1st-place-entry
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Proposition 4. Let us consider the sparse filtering algorithm implemented us-

ing a soft ReLU non-linearity ReLU(x) = max (ε, x), where ε is a small negligi-

ble value (for instance, ε = 10−8). Let
{
X(i) ∈ RO

}N
i=1

be a set of points in the

original space RO. Then, the transformations A1, A2*, A3 and A4, where A2*

is the ReLU non-linearity, do not preserve the structure of the data described

neither by the Euclidean metric nor by the cosine metric.

Proof Sketch. This proposition is proved by counterexample. The full

proof is available in appendix Appendix A.9. �

The non-preservation of the Euclidean metric is not surprising and it is

due to the fact that the normalization in step A4 does not preserve Euclidean

distances. The non-preservation of cosine distances, collinearity or cosine neigh-

borhoodness is instead due to the sigmoid and ReLU non-linearities in step A2,

since these non-linearities do not determine a folding of the space in the same

way of the absolute-value function.

Despite this result, it may still be possible to implement sparse filtering with

alternative non-linearities in order to preserve other types of structures. It is

important that the preservation properties of alternative non-linearities agree

with the structure preserved by the other steps of sparse filtering (A1, A3, A4).

From a theoretical perspective, the absolute-value non-linearity is a good choice

for the sparse filtering algorithm, in that it preserves the common property

of collinearity which is also preserved by all the other steps of the algorithm,

therefore guaranteeing the preservation of the overall structure defined by cosine

neighborhoodness.

3.12. Bounds on Probability of Preserving Euclidean Neighborhoodness

Interestingly, despite the fact that sparse filtering can not guarantee the

preservation of the Euclidean metric, it is still possible to determine probabilis-

tic bounds on the preservation of the Euclidean neighborhoodness under very

simplified assumptions on the dimensionality of the original space RO and the

region of space within which the samples X(i) may be drawn.
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Theorem 5. Let X(1) ∈ RO be a point in the original space RO and let Rek
X(1)

be a representation filter centered on X(1), that is, Rek
X(1)

(
X(1)

)
= 0. Let us

now consider a point X(2) ∈ RO within the same representation cone, that is, a

point such that Rek
X(1)

(
X(2)

)
≤ ε for an arbitrarily small ε ∈ R, ε > 0.

Let us assume that: (i) points X(i) ∈ RO distribute in a limited region

of space bounded by a hyper-sphere of radius M ; and, (ii) points X(i) ∈ RO

distribute uniformly in this limited region of space.

Then, given that Rek
X(1)

(
X(2)

)
≤ ε, it follows:

Oδ(
M
m

)O−1
·

Γ
(
O+1

2

)
Γ
(
O+2

2

) ≤ P (DE

[
Z(1),Z(2)

]
≤ δ
)
≤ Oδ

m
·

Γ
(
O+1

2

)
Γ
(
O+2

2

) ,
where δ ∈ R, δ > 0 defines the neighborhood of X(1), m is the distance of X(1)

from the origin, and Γ(·) is the gamma function.

Proof Sketch. This proposition is proved geometrically, evaluating the

limit of the ratio between the volume of a representation filter and the neigh-

borhood of the a point when the dimensionality tends to infinity. The full proof

is available in appendix Appendix A.10. �

Notice that this proof is based on two simplified assumptions. First, the

region of the original space in which a point X(i) can fall is limited; this as-

sumption is reasonable because, practically, the range of any feature is always

bounded within a certain interval. Second, a point X(i) has a uniform probabil-

ity of falling anywhere within the area defined by the representation filter Rek
X(1) ;

this is clearly a simplified assumption because the pdf of the data p(X) may have

a very irregular distribution within the area defined by the representation filter

Rek
X(1) ; however, assuming a uniform distribution, which is a distribution that

maximizes our uncertainty, seems a reasonable choice. If these two assumptions

are accepted, approximate bounds can be computed to evaluate the probability

that sparse filtering will preserve relationship of Euclidean neighborhoodness.

3.13. Sparse Filtering for Representation Learning

Given the above results, we may now interpret sparse filtering as a soft

clustering algorithm for representation learning.
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Indeed, we may state that sparse filtering implicitly makes all the assump-

tions made by traditional soft clustering algorithms (see Section 2.1): (i) it aims

at discovering less noisy representations Z(i) whose pdf p(Z) may automatically

be closer to the true stochastic generating process with pdf p (X∗); (ii) it ex-

pects the true pdf p (X∗) to have a stronger correlation to the labels Y(i); (iii) it

models the true pdf p (X∗) with a mixture model whose components are related

to the basis vectors {ej}Lj=1; and, (iv) it relies on the cosine metric to evaluate

relationships of neighborhoodness in the original space RO. From this perspec-

tive, we can interpret the dimensionality of the learned space as the number of

clusters for soft clustering, the basis vectors as the cluster centroids in a space

described by the cosine metric, the pursuit of the basis as the sequential process

of update of the location of the centroids, and the learned representations Z(i)

as the (stochastic) degree of membership of the original data samples X(i) to

each cluster.

Given this interpretation, we can align and meaningfully compare sparse fil-

tering with other soft clustering algorithms for representation learning that use

different metrics. The choice of an appropriate metric is critical for a distance-

based clustering algorithm (Xing et al., 2003), and it expresses our understand-

ing on which spatial directions encode relevant changes (Simard et al., 1998).

It is natural then to compare sparse filtering with other standard algorithms

which adopt the Euclidean metric to explain the data. Preserving the rela-

tionships of neighborhoodness under the Euclidean metric means preserving the

information conveyed by the pdf p(X) in the representation space defined by

the Cartesian product of the random variables X1, X2, . . . , XO, while preserving

the relationships of neighborhoodness under the cosine metric means preserving

information conveyed by the pdf p(X) in the representation space defined by

the projection into polar (or hyper-spherical) coordinates of the random vari-

ables X1, X2, . . . , XO. Choosing one metric instead of the other depends on our

expectation whether the structure of the data with respect to a set of labels

p(Y |X) is better explained by an Euclidean structure or by a radial structure.

29



4. Empirical Validation

Based on the theoretical analysis provided in the previous section, we con-

duct a set of simulations aimed at verifying our theoretical results empirically.

In order to make our results visualizable and easily understandable, we first

conduct simple simulations in low dimensions; experiments in higher dimen-

sions generalize our results but they do not add anything conceptually new to

our conclusions. We further validate our theoretical findings with a number of

benchmark data sets pertaining to real-world applications.

4.1. Properties of Sparse Filtering

First, we run simulations on elaborately designed toy data sets in order to

validate our basic understanding of sparse filtering. These simulations aim at

verifying: (i) the property of homo-representation of collinear points (see Section

3.6); (ii) the usefulness of representation filters (see Section 3.10); and, (iii) the

dynamics of pursuit of basis (see Section 3.9).

We generate a random set of data X of three samples (N = 3) in two-

dimensional space (O = 2). Each point is generated using spherical coordinates:

the radial distance ρ is sampled from a uniform distribution Unif (−5, 5); the

angular coordinate θ is set to π
3 for the first two points and sampled from a

uniform distribution Unif (0, π) for the third point. A sparse filtering module

is trained on this data set in order to learn a new representation of the data

in two dimensions (L = 2). After training, we create a dense mesh of points

X′ in the original representation space RO; we project each point X′ to its

representation Z′ in the learned representation space RL, and we compute the

distance from each basis vector ej in RL. The plot of each representation cone

is then shown as a two-dimensional contour plot in the original space RO.

Figure 2 shows the state of sparse filtering before training. From the plots

2(b) and 2(d) we can immediately verify the property of homo-representation

of collinear points; indeed, in the learned space RL the collinear points occupy

the same location and their matrix representation is the same. From the plots
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2(e) and 2(f) we can verify the existence of representation filters in the original

space RO and appreciate how points in the original space are mapped onto basis

vectors of the learned space. Notice that, at this point, after the random ini-

tialization of the weight matrix W, the quality of the representations generated

by the untrained sparse filtering module is far from satisfactory.

Figure 3 shows the state of sparse filtering at the end of training. From

the plots 3(b) and 3(d) we can see that the trained sparse filtering module has

found an optimal solution that maps all the points to basis vectors; as expected,

the collinear points are mapped to the same basis vector, while the third point

is mapped to the remaining basis vector. From the plots 3(e) and 3(f) we can

validate our intuition about the pursuit of basis; indeed, training corresponded

to a rotation of the representation filters in order to center them on the available

samples.

4.2. Preservation of Cosine Neighborhoodness

Next, we run more simulations on other toy data sets in order to validate

the properties of data structure preservation in sparse filtering. These simu-

lations aim at verifying: (i) that sparse filtering preserves a structure defined

by cosine neighborhoodness (see Section 3.8); and, (ii) that the absolute-value

non-linearity is crucial in preserving structure and substituting it with other

non-linearities negates this property (see Section 3.11).

We generated a random set of data X of nine samples (N = 9) in two-

dimensional space (O = 2). Each point is generated by randomly sampling

its spherical coordinates. The first three points have a radial distance ρ ∼

Unif (−2, 0) and an angular coordinate θ ∼ Unif
(
π
9 − η,

π
9 + η

)
; the following

three points have a radial distance ρ ∼ Unif (0, 3) and an angular coordi-

nate θ ∼ Unif
(

2π
9 − η,

2π
9 + η

)
; the last three points have a radial distance

ρ ∼ Unif (2, 4) and an angular coordinate θ ∼ Unif
(

4π
9 − η,

4π
9 + η

)
. The pa-

rameter η is meant to represent a form of noise and its value is set to η = π
45 .

In this way, we generate three clusters of points, such that the cosine distances

among the points belonging to the same cluster are small, while the cosine
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Figure 2: Experimental validation of the properties of sparse filtering (homo-representation

of collinear points, representation filters).

Data is generated as explained in the text (the blue circle dots represent collinear points).

(a) Data in the original representation space RO; (b) data in the learned representation space

RL; (c) matrix plot of the original data X; (d) matrix plot of the learned representations Z;

(e) plot of first representation filter showing distances from the basis vector e1 = [0, 1]T ; (f)

plot of the second representation filter showing distances from the basis vector e2 = [1, 0]T .
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Figure 3: Experimental validation of the properties of sparse filtering (pursuit of basis).

Data is generated as explained in the text. The meaning of the subplots is the same as in

Figure 2.
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distances among points belonging to different clusters are large. Three im-

plementations of sparse filtering with different non-linearities (absolute-value,

sigmoid, and ReLU6) are used to learn a new representation of the data in two

dimensions (L = 2).

Figure 4 shows the state of the modules of the three implementations of

sparse filtering at the end of the training. From the plots 4(a)-4(c) we can imme-

diately verify that sparse filtering with an absolute-value non-linearity preserves

cosine neighborhoodness. The plots of representation filters show that points

with similar angular coordinates fall within the same representation filter. The

matrix plot shows that points with similar angular coordinates are projected

onto very similar representations; in other words, points that originally had a

small cosine distance are projected onto almost identical representations. On

the other hand, from plots 4(d)-4(i) we can easily see that sparse filtering with

an alternative non-linearity does not preserve cosine neighborhoodness. The

plots of representation filters show that the sigmoid and the ReLU non-linearity

do not induce representation cones, but, instead define large regions of the orig-

inal space to be mapped onto a basis vector; several points are thus indistinctly

mapped onto a basis vector. The matrix plots show that the representations

computed by these alternative sparse filtering modules are not related to the

original cosine distances anymore; points originally belonging to the same clus-

ter are mapped to opposite representations, and, vice versa, points originally

belonging to different clusters are mapped to identical representations.

4.3. Sparse Filtering for Representation Learning

In the following set of simulations, we compare sparse filtering against an-

other unsupervised algorithm in order to show under which conditions sparse

filtering is a good choice for processing data. These simulations aim at verifying

6ReLU has been implemented in a soft version, like the absolute-value: softReLU(x) =x if x > 0

ε otherwise
for ε = 10−8
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Figure 4: Experimental validation of the preservation of cosine neighborhoodness.

Data is generated as explained in the text (first set of points as blue circle dots, second set

of points cyan diamond dots, third set of points as green square dots). (a, d, g) Plot of the

first representation filter showing distances from the basis vector e1 = [0, 1]T , respectively for

the sparse filtering with absolute-value, sigmoid, and ReLU non-linearity; (b, e, h) plot of the

second representation filter showing distances from the basis vector e2 = [1, 0]T , respectively

for the sparse filtering with absolute-value, sigmoid, and ReLU non-linearity; (c, f, i) matrix

plot of the learned representations Z, respectively for the sparse filtering with absolute-value,

sigmoid, and ReLU non-linearity.
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the following intuitive implication: if the structure of the data with respect to

a specific set of labels p(Y |X) is better explained by the cosine metric, then

sparse filtering is likely to be a good option for unsupervised learning.

In our comparison, we measure sparse filtering against the soft k-means al-

gorithm (MacKay, 2003). We choose this algorithm for the following reason:

(i) like sparse filtering, the soft k-means algorithm is a soft clustering algorithm

producing sparse representations; (ii) the algorithm is based on the Euclidean

metric, thus providing a different interpretation of the data from sparse filter-

ing; and, (iii) k-means is a well-known and easy-to-interpret algorithm (even

if, analogous results may be obtained with other algorithms, such as Gaussian

mixture models or sparse auto-encoders).

To validate our hypothesis, we generate two data sets, XEuclid and Xcosine.

The data set XEuclid contains data where p(Y |X) is explained by the Eu-

clidean metric. It is composed of nine samples (N = 9) in two dimensions

(O = 2) sampled from three multivariate normal distribution. The first three

points are sampled from N

 1

1

 ,
 .05 0

0 .05

; the second three points

are sampled from N

 2

−1

 ,
 .05 0

0 .05

; the last three points are sam-

pled from N

 −1

−1

 ,
 .05 0

0 .05

. The data set Xcosine contains data

where p(Y |X) is explained by the cosine metric. The data is generated follow-

ing the same protocol used in the simulation in Section 4.2. Sparse filtering is

used to learn a new representation of the data in three dimensions (L = 3).

From Figure 5, we can see that our understanding of sparse filtering is cor-

rect: if p(Y |X) is better explained by the cosine metric, then sparse filtering

produces a good representation; otherwise, if p(Y |X) is better explained by the

Euclidean metric, then it is reasonable to opt for a different unsupervised learn-

ing algorithm, such as soft k-means. In the case of the data set with Euclidean

structure, plot 5(b) shows that sparse filtering is not able to preserve the iden-

tity of the generating clusters, and indeed it maps samples from the first and

36



Figure 5: Representation data with Euclidean and cosine data structure.

Data is generated as explained in the text (first set of points as blue circle dots, second set

of points cyan diamond dots, third set of points as green square dots). (a, d) Samples in

the original space; (b, e) matrix plot of the representations learned by sparse filtering; (c, f)

matrix plot of the representations learned by soft k-means.
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the third clusters onto the same representation (because of their collinearity);

instead, plot 5(c) shows that soft k-means algorithm maps points from different

clusters to different representations. In contrast, in the case of the data set with

cosine structure, plot 5(e) shows that sparse filtering preserves the identity of

the generating clusters, while plot 5(f) shows that the soft k-means algorithm is

unable to map samples from different clusters onto consistent representations.

4.4. Sparse Filtering on Real Data Sets

In this last set of simulations we apply our discoveries about sparse filtering

to real-world data sets to further verify our results. Once again, these experi-

ments aim at validating the connection between the radial structure of the data

and the success of sparse filtering. In the first simulation, we extend the result

that we proved in Section 4.3 for toy data sets to real data sets; that is, we verify

the direct implication: if the structure of the data with respect to a specific set

of labels p(Y |X) is better explained by the cosine metric, then sparse filtering is

likely to be a good option for unsupervised learning. In the second simulation,

we validate, instead, the reverse implication: if sparse filtering happens to be

a good option for unsupervised learning, then the structure of the data with

respect to a specific set of labels p(Y |X) is likely to be better explained by the

cosine metric.

When dealing with real data sets, it is very challenging to assess the struc-

ture of the data. With few samples in low dimensions and with the simplified

assumption that all the data belonging to a given class are generated by a single

highly localized cluster, a simple visualization or a computation of distances is

enough to understand which metric is underlying the data. However, when we

consider real data sets, we have to deal with a large number of samples in high

dimensions, and with the fact that samples belonging to the same class may be

generated by different clusters spread throughout the space. In order to explore

high-dimensional data in the original space before any normalization, we decided

to rely on the k-nearest neighbors algorithm (KNN). We implemented two ver-

sions of KNN, one selecting k neighbors according to the Euclidean distance and
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one selecting k neighbors according to the cosine distance7. If p(Y |X) is better

explained by the Euclidean distance, we expect KNN with the Euclidean met-

ric to provide better results; alternatively, if p(Y |X) is better explained by the

cosine distance, we expect KNN with the cosine metric to provide better results.

Berlin Emotional data set. The Berlin Emotional (EMODB) data set is

a well-known audio data set in the emotion recognition community (Burkhardt

et al., 2005); it contains recordings of ten German actors expressing seven dif-

ferent types of emotions. We opted for this data set to validate the direct

implication between data structure and effectiveness of sparse filtering for the

following reasons. (i) Samples in EMODB naturally lend themselves to alterna-

tive labellings; the same data may be used both for speaker recognition (using

subject labels) and for emotion recognition (using emotional labels). (ii) The

same set of Mel-frequency cepstrum (Childers et al., 1977) coefficient (MFCC)

features may reasonably be used both for speaker recognition and for emotion

recognition (Wu et al., 2010; Schuller et al., 2011). Thus, the same features we

can be used to explore the data under different labeling.

We first explore the structure of the data with respect to the two different la-

beling systems in order to evaluate whether the Euclidean distance or the cosine

distance better explains the structure of the data. We run the KNN algorithm

with different values of neighbors (k = {2, 3, 5, 7, 10, 15, 20, 25, 50, 75, 100}); for

each configuration of KNN, fifty simulations are executed; in each simulation

the data set is randomly partitioned into a training data set (900 samples) and

a test data set (311 samples); KNN is then trained and tested using one of the

two available metrics.

7The KNN using cosine distance has been implemented relying on the “trick” that the

cosine distance between vectors u,v is the same as the Euclidean metric on the `2-normalized

vectors. Therefore, we perform an `2-normalization of each data sample and then we run

KNN with Euclidean distance, re-using off-the-shelf KNN code optimized for the Euclidean

metric.
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Figure 6: Analysis of the data structure and the classification of the EMODB data set with

respect to emotion labels.

Classification is performed as explained in the text. (a) Exploration of the data via KNN

with Euclidean metric (green continuous line) and with cosine metric (blue dashed line); (b)

Classification using a linear SVM after processing with a GMM algorithm (green line) and

with sparse filtering (blue line). The plot shows the average accuracy and the standard error

of SVM (over fifty simulations).

After this analysis, we use both an Euclidean-based unsupervised learn-

ing algorithm, Gaussian mixture model (Bishop, 2007), and a cosine-based

unsupervised learning algorithm, sparse filtering, to project the data into an

L-dimensional space. We opted for the Gaussian mixture of models (GMM)

algorithm because it is based on the Euclidean metric and yields better perfor-

mance than the soft k-means algorithm. After processing the data, we then run

a simple linear SVM classifier on the processed data and we analyze how our

observations on the structure of the data relate with the actual classification

performance. We consider several values of dimensionality (L = {2, 3, ..., 40});

for each configuration, fifty simulations are executed; as before, in each simula-

tion the data set is randomly partitioned into a training data set (900 samples)

and in a test data set (311 samples).
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Figure 7: Analysis of the data structure and the classification of the EMODB data set with

respect to subject labels.

The meaning of the subplots is the same as in Figure 6.

Figure 6(a) shows that the structure of EMODB data with respect to emo-

tional labels is better explained by the Euclidean distance. This result is fur-

ther confirmed by the classification with the linear SVM module in Figure 6(b).

Classification using the GMM-processed data with low learned dimensional-

ity (L ≤ 15) returns an accuracy that is significantly better than using sparse

filtering-processed data (Wilcoxon signed-rank test, p-value P = 5·10−85); how-

ever, in higher dimensions the classification with sparse filtering-processed data

approaches and overtakes the accuracy obtained using GMM-processed data. In

general, in low dimensions, the Euclidean structure assumed by GMM explains

the data better; in high dimensions, sparse filtering provides good results (most

likely thanks to the property of sparsity), but the gap between the accuracy

provided by the two representations remains limited. On the other hand, Fig-

ure 7(a) shows that the structure of EMODB data with respect to the speaker

identity labels is better explained by the cosine distance. This result is fur-

ther confirmed by the classification with the linear SVM module in Figure 7(b).
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Classification using the sparse filtering-processed data returns, for all learned di-

mensionality, an accuracy that is significantly better than GMM-processed data

(Wilcoxon signed-rank test, p-value P = 4 · 10−307). The assumption of the co-

sine metric allows sparse filtering to explain the data much better, as is evident

from the large gap between the accuracy provided by the two representations.

These results confirm a connection between the radial structure of the data

with respect to a set of labels and the usefulness of sparse filtering.

Kaggle Black Box Learning Challenge data set. The Kaggle Black

Box Learning Challenge (KBBLC) data set is a visual data set made up of

obfuscated images of house numbers; the original images are taken from the

well-known Street View House Numbers (SVHN) data set (Netzer et al., 2011).

Each sample in the KBBLC data set contains a single obfuscated digit and it

is accompanied by a label specifying the value of the digit. We opted to vali-

date the reverse implication between data structure and effectiveness of sparse

filtering on this data set for the following reasons. (i) Sparse filtering provided

state-of-the-art performance in the competitive KBBLC contest, thus showing

that sparse filtering was a particularly suitable choice for this data set. (ii)

The KBBLC data set is available with labels. During the challenge the authors

provided obfuscated data without labels; however, after the challenge they re-

vealed the original source of the data8 and they released the code they used

for obfuscation9. Thanks to this information, we were able to retrieve a large

amount of data and obfuscate it, and thus recreate the original conditions of

the challenge. However, differently from the challenge, we retain the labels in

order to explore the structure of the data. (iii) During the challenge, the orig-

inal samples from the data sets were processed without undergoing operations

of windowing or convolution. Since sparse filtering was directly applied to the

8http://ufldl.stanford.edu/housenumbers/
9https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/

forums/t/5167/the-data
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samples, we can analyze the structure of the samples straightforwardly. This

condition is not always true. If we consider other image data sets on which

sparse filtering provided good results, such as CIFAR-10 (Krizhevsky & Hinton,

2009) or STL-10 (Coates et al., 2011), sparse filtering was not applied to the

original samples but to random patches extracted from the images; in this case,

we should not analyze the data structure of the original samples, but the data

structure of the patches. However, patches are not labeled, which hinders our

ability to carry out an analysis of the data structure.

In exploring the structure of the data (with respect to the digit labels), we

aim at evaluating whether the Euclidean distance or the cosine distance better

explains p(Y |X). We run the KNN with the same settings as in the previous

experiment. In each simulation a random subset of 10000 samples from the data

set was selected and then partitioned into a training data set (9000 samples)

and a test data set (1000 samples). KNN was then trained and tested using one

of the two available metrics.

Figure 8 confirms our intuition. For all the different values of k we consid-

ered, the cosine distance proved to be a better metric to explain the structure

of the data in the Kaggle Black Box Learning Challenge. This provides an ex-

planation why sparse filtering proved so useful with the KBBLC data, when

compared to other standard unsupervised learning algorithms, especially those

based on the Euclidean metric. This result agrees with the fact that the Eu-

clidean metric is not a suitable metric for measuring distances among samples

of digits represented in the pixel space (Simard et al., 1998).

5. Discussion

Our theoretical and empirical analysis showed that the standard sparse fil-

tering algorithm implemented with an absolute-value non-linearity preserves the

data structure explained by the cosine neighborhoodness In our experiments, we

have shown that, when the relevant structure of the data has a radial structure,

then sparse filtering may be expected to perform significantly better than the
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Figure 8: Analysis of the data structure of the Kaggle Black Box Learning Challenge data

set.

The KNN with Euclidean metric (green continuous line) and with cosine metric (blue dashed

line) has been used to explore the structure of the data. The plot shows the average accuracy

and the standard error of KNN (over five simulations).
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standard Euclidean-based alternatives. Indeed, sparse filtering may be seen as

an algorithm approximately transforming cosine distances in the original space

into Euclidean distances in the representation space.

It is normally assumed that the data points X(i) are best explained as sam-

ples from a multivariate random variable X = (X1, X2, . . . , XO), where each

random variable Xj describes a component X
(i)
j . However, given the data points

X(i), it is possible to assume that the generating process is better described by

a multivariate random variable X
′

=
(
X
′

1, X
′

2, . . . , X
′

O−1

)
, where each random

variable describes an angular coordinate θj of X
(i)
j . Sparse filtering tries to

preserve the information about the O − 1 angular coordinates θi, discarding

the information about the radial coordinate ρ. If p(Y |X) is better explained in

terms of radial coordinates, then sparse filtering is a very reasonable choice for

unsupervised representation learning.

Our study allow us to conclude that our original thesis is correct: sparse

filtering satisfies both the informativeness principle and the infomax principle.

In particular, the informativeness principle is satisfied through the adoption of

the proxy of sparsity, as shown in section 3.2. The infomax principle is satisfied

through the preservation of a precise structure underlying the data, that is, the

radial structure of the data. Mutual information between the original represen-

tations X(i) and the learned representations Z(i) is retained when the structure

of the data is explained by the cosine metric, that is, in an ideal case, when all the

information is carried by the angular coordinates of the data, as demonstrated in

section 3.8. Indeed, the mutual information between the original and the learned

representations can be formally expressed as: I [X,Z] = H [X]−H [X|Z]. Given

that the entropy of the distribution of the data p(X) is fixed, the only way

to maximize the mutual information is by minimizing the conditional entropy

H [X|Z]. Since the representation Z preserve all the information about the

angular coordinates of the original data, the uncertainty about X given Z is

minimized if the structure of the data has indeed a radial structure.
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Following this reasoning, we suggested an interpretation of sparse filtering

as an unsupervised soft clustering algorithm based on the cosine metric. This

perspective allowed us to contrast the results of sparse filtering with other stan-

dard algorithms for clustering based on the Euclidean metric and conclude that

sparse filtering does not provide a better processing of the data in absolute

terms, but instead it offers an alternative interpretation of the data based on a

different metric.

While in our experiments, we were aware a priori of the metric underlying

synthetic data sets, in a real-world setting such knowledge may not be available

and simple exploratory analysis of the data (using, for instance KNN) may be

unsuitable. Sparse filtering, thanks to its scalability and its efficiency, could also

be used to infer the data structure underlying the data. The usefulness of polar

coordinates in several scientific fields and physical applications may suggest that

interpreting data according to cosine distance could be a sensible choice.

Additionally, we proved that, in high dimensions, sparse filtering can still

probabilistically preserve Euclidean distances. This is justified by the fact that,

under the assumptions we made, the probability that unrelated points with high

Euclidean distance will have the same angular coordinates θi can be bounded

(Section 3.12).

Interestingly, our study of sparse filtering as an unsupervised learning algo-

rithm shares a similar methodology with the very recent work by McNamara

et al. (2016). Re-casting our analysis in their framework we can demonstrate

that, with high probability, sparse filtering working on radial data contributes

to the reduction of the risk in standard supervised learners by showing that: (i)

P (X) has a structure explained by cosine neighborhoodness; (ii) P (Y |X) share

the same structure as P (X); (iii) sparse filtering relies on the cosine distance;

(iv) a supervised learner, such as SVM, can exploit the new Euclidean structure

in the learned representations.
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6. Concluding Remarks

In this paper, we have explained why sparse filtering works (by proving its

property of preservation of cosine neighborhoodness) and when it should be ex-

pected to provide useful representations (by considering the data structure of

the samples).

Our theoretical analysis and simulations were not designed to show that

sparse filtering is able to provide state-of-the-art performance against other al-

gorithms, but, instead, to show how the implicit assumptions and constraints

of sparse filtering make it better suited for certain scenarios instead of others.

In particular, for the standard sparse filtering algorithm implemented using an

absolute-value non-linearity we demonstrated that its success is tied to the data

having a structure explained by cosine neighborhoodness. Consistently with the

no-free lunch theorem (Wolpert & Macready, 1997), we reached the conclusion

that sparse filtering is not a better algorithm than other Euclidean-based clus-

tering algorithms, but that there is a specific set of problems (in which p(Y |X)

is explained by the cosine metric) where the performance of sparse filtering is

excellent, balanced by a set of problems (in which p(Y |X) is explained by the

Euclidean metric or other metrics) where its performance is less outstanding.

This led us to interpret the representation of sparse filtering as a “view” of the

data according to the cosine metric alternative to the more standard Euclidean

view. Combining these two different views could provide representations with

more discriminative power.

At the foundation of our analysis lies the understanding that sparse filtering

must preserve some information carried by the pdf p(X). Despite sparse filtering

ignoring the problem of explicitly modeling the true pdf p (X), we showed that

the algorithm is hard-coded with an implicit constraint that guarantees the

preservation of some data structure. This is clearly a specific conclusion about

the particular algorithm of sparse filtering, but we can expect that this principle
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will be applicable to the whole class of feature distribution learning algorithms.

We might expect that any feature distribution learning algorithm, in order to be

successful, must take into account, through constraints or priors, the problem

of preserving the mutual information between the original representations X(i)

and the learned representations Z(i).

Being aware of this requirement can give a precious contribution in the fu-

ture research and design of new feature distribution learning algorithms; for

instance, it may prevent us from considering in sparse filtering alternative non-

linearities that do not preserve any interesting structure (such as, the ReLU

function) or it may help us to avoid solutions that, being unable to preserve

any structure of the data, are bound to produce unsatisfactory representations.

Ongoing research is focused on discovering which structures may be preserved

by alternative version of sparse filtering, with a particular focus on periodic

structures that may be learned using trigonometric functions.

A deeper theoretical understanding of the dynamics of sparse filtering may

be developed in connection with manifold learning and information geometry

(Amari, 2016). The property of preservation of structure that we uncovered

in this paper may be more formally explained in the framework of differential

geometry, by modeling the data samples as a points on a Riemannian manifold.

Relevant data structures (that we presented in terms of Euclidean or cosine

distance) may then be described in terms of Riemannian metric tensors, and

preservation properties may be studied in terms of preservation of these tensors.

Another promising avenue in our research is the extension of sparse filtering

to semi-supervised learning. Indeed, the paradigm of feature distribution learn-

ing seems perfectly suited for the scenario in which we are provided with few

labeled samples and many unlabeled samples: we may exploit the information

carried by the labeled samples to better shape the feature distribution p(Z),

without addressing the problem of estimating the true pdf p (X∗); at the same

time, the constraint of sparsity would help us to not overfit, and the constraint
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of structure preservation would help us to preserve the information conveyed

by p(X). Furthermore, assuming some regularity in the original representation

space, we hypothesize that we could use the information in the labeled samples

to address the problem of covariate shift (Sugiyama & Kawanabe, 2012) in a

semi-supervised learning scenario.

Appendix A. Proofs

Appendix A.1. Proposition 1

Proposition 1. Let
{
X(i) ∈ RO

}N
i=1

be a set of points in the original space

RO. Then, the transformations from A1 to A4 do not preserve the structure of

the data described by the Euclidean metric.

Proof. We prove this proposition by counterexample.

Let us consider the case in which X(1) is a vector such that X
(1)
j = 1√

2
, ∀j,

1 ≤ j ≤ O, X(2) is another vector such that X(2) = −X(1), L = O, and W = I,

where I is the identity matrix.

The Euclidean distance between the vectors X(1) and X(2) is:

DE

(
X(1),X(2)

)
=

√√√√ O∑
j=1

(
1√
2

+
1√
2

)2

=
√

2L.

Let us now apply the transformation fA1:A4 to the vectors X(1) and X(2):

fA1

(
X(1)

)
= IX(1) = X(1) fA1

(
X(2)

)
= IX(2) = X(2)

fA2

(
X(1)

)
=
∣∣X(1)

∣∣ = X(1) fA2

(
X(2)

)
=
∣∣X(2)

∣∣ = X(1)

fA3

(
X(1)

)
=

[
X

(1)
j

√
2

√
N

]
=
[

1√
N

]
fA3

(
X(1)

)
=

[
X

(1)
j

√
2

√
N

]
=
[

1√
N

]
fA4

([
1√
N

])
=

[
X

(1)
j

√
N

√
L

]
=
[

1√
L

]
= Z(1) fA4

([
1√
N

])
=

[
X

(1)
j

√
N

√
L

]
=
[

1√
L

]
= Z(1).

Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the Euclidean

distance between the vectors fA1:A4

(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE

(
Z(1),Z(1)

)
= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of

the data described by the Euclidean metric. �
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Appendix A.2. Lemma 1

Lemma 1. Let us consider u,v ∈ RO, two generic collinear vectors, and

let f : RO → RL be a linear transformation defined as f(u) = Wu, where W

is the matrix associated with the linear transformation. Then, f (u) , f(v) ∈ RL

are also collinear.

Proof. Let us consider the two collinear vectors u and v. By definition,

collinearity means that there exists k ∈ R, k 6= 0, such that v = ku. Let us now

consider the linear transformation f encoded by matrix W and let us apply it

to the vector v:

f(v) = Wv = W (ku) = k (Wu) = k · f(u).

Therefore, collinearity is preserved. �

Appendix A.3. Lemma 2

Lemma 2. Let us consider u,v ∈ RL, two generic collinear vectors, and let

f : RL → RL be the element-wise absolute-value function f(u) = |u| = [|uj |].

Then f (u) , f(v) ∈ RL are also collinear.

Proof. Let us consider the two collinear vectors u and v. By definition,

collinearity means that there exists k ∈ R, k 6= 0, such that v = ku. Let us now

consider the element-wise absolute-value function f and let us apply it to the

vector v:

f(v) = |v| = |ku| = |k| · |u| = |k| · f(u).

Therefore, collinearity is preserved. �

Appendix A.4. Lemma 3

Lemma 3. Let us consider u,v ∈ RL, two collinear vectors whose compo-

nents are all strictly positive10, and let f : RL → RL be the `2-normalization

along the features. Then f (u) , f(v) ∈ RL are also collinear.

10Notice that we can safely make the assumption of strict positivity in sparse filtering since

u and v are the output of an absolute-value function implemented as f(x) =
√
x2 + ε.
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Proof. Let us consider the two collinear vectors u and v. By defini-

tion, collinearity means that there exists k ∈ R, k 6= 0, such that v = ku.

Let us now consider the function of normalization along the features f(u) =[
uj√∑

w={u,v...}w2
j

]
. Normalizing along the features means dividing each compo-

nent uj by a constant cj equal to the `2-norm of the component j across all

the available vectors u,v, ..., that is f(u) =
[

uj
cj

]
= c ◦ u, where c is the vector

containing all the constants cj and ◦ is the element-wise product. Let us now

apply the normalization along the features to the vector v:

f(v) = c ◦ v = c ◦ (ku) = k · (c ◦ u) = k · f(u).

Therefore, collinearity is preserved. �

Appendix A.5. Lemma 4

Lemma 4. Let us consider u ∈ RL, a vector whose components are all

strictly positive 11, and let f : RL → RL be the `2-normalization along the

samples. Then f (u) ∈ RL have the same angular coordinates as u.

Proof. Let us consider the function of normalization along the features

f(u) =

[
uj√∑
j u2

j

]
. Normalizing along the samples means dividing each compo-

nent uj by the `2-norm of the same vector u, that is f(u) =
[

uj
`2(u)

]
= 1

`2(u) ·u.

Multiplying all the components of the same vector u by the constant k = 1
`2(u)

leaves the angular coordinates unaltered. Therefore, the angular coordinates

are preserved. �

Appendix A.6. Theorem 4

Theorem 4. Let X(1),X(2) ∈ RO be two original data samples and let

Z(1),Z(2) ∈ RL be their representations computed by sparse filtering. If the co-

sine distance between the original samples is arbitrarily small DC

[
X(1),X(2)

]
<

δ, for δ > 0, then the Euclidean distance between the computed representations is

11Notice that we can safely make the assumption of strict positivity in sparse filtering since

u is the output of the normalization along the feature which preserves the positivity.
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arbitrarily small DE

[
Z(1),Z(2)

]
< ε, for ε > 0, and ε = L·

(
k+|√2δ−δ2|
`2(F̃(2))

− 1

`2(F̃(1))

)
,

where k is a constant accounting for partial collinearity and `2
(
F̃(i)

)
is the `2-

norm of the representations computed by sparse filtering after step A3. In the

limit, it holds that limδ→0 ε = 0.

Proof. In order to prove this theorem we adopt the following strategy:

we compute the representations at each step of the computation (before sparse

filtering, after steps A1 and A2, after step A3 and after step A4) and we up-

per bound the displacement accounting for the Euclidean distance between the

representations.

Recall that given two generic points X(1) and X(2), we can express X(2) as

a function of X(1) plus a displacement vector X̄:

X(2) = X(1) + X̄, (A.1)

so that we can easily account for the Euclidean distance between X(1) and X(2)

just as a function of the displacement vector X̄:

DE

[
X(1),X(2)

]
= `2

(
X̄
)
.

(Before sparse filtering.) Let us now consider two points X(1) and X(2)

which are almost collinear with an arbitrary small cosine distanceDC

[
X(1),X(2)

]
<

δ. We can then express X(2) as a point collinear with X(1) to which a bias vector

B is added:

X(2) = kX(1) + B,

where k ∈ R is a constant that preserves collinearity. With no loss of generality,

we will assume k > 1; we exclude values of k smaller than zero which would

generate a reflection (reflections are not relevant for the following treatment

as they induce a cosine distance far greater than δ) and we ignore values of k

between zero and one (in such a case, our proof will hold once we swap X(1)

and X(2)). The bias vector B accounts for a relative displacement between the

perfectly collinear sample kX(1) and the almost collinear sample kX(1) + B.
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With reference to Equation A.1, the displacement vector X̄ is:

X̄ = (k − 1)X(1) + B, (A.2)

from which follows that:

DE

[
X(1),X(2)

]
= `2

(
X̄
)

= `2

(
(k − 1)X(1) + B

)
.

(Before sparse filtering - Upper bound) To upper boundDE

[
X(1),X(2)

]
,

we can evaluate the maximum value that `2
(
X̄
)
can reach, consistent with the

constraint of a bounded cosine distance DC

[
X(1),X(2)

]
. Formally, we can set

up the optimization problem:

max
X̄∈RO

`2
(
X̄
)

under the constraint:

DC

[
X(1),X(2)

]
< δ.

The maximization can be rewritten as:

max
X̄∈RO

`2
(
X̄
)

= max
X̄j∈R

√√√√ O∑
j=1

X̄2
j

= max
Bj∈R

√√√√ O∑
j=1

(
(k − 1)X

(1)
j + Bj

)2

= max
Bj∈R

√√√√ O∑
j=1

(Bj)
2

= max
Bj∈R

Bj ,

assuming: (i) that X(1) and k are given, and (ii) that X
(1)
j and Bj are both

positive (as this constitute the worst case that needs to be considered in the

analysis of the upper bound). An upper bound on the displacement X̄ can

be then computed from the solution to the individual constrained optimization

problems for each component Bj :

max
Bj∈R

Bj
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under the constraint:

δ > DC

[
X(1),X(2)

]
= DC

[
X(1), kX(1) + B

]
.

By construction, we know that DC

[
X(1), kX(1)

]
= 0. Therefore the entire

cosine distance must be accounted by the bias vector B. Trigonometrically,

from the cosine distance δ we can recover the angle opposite to a cathetus

corresponding to the radius of an hypersphere centered on kX(1) and bounding

the module of B. Let θ be the underlying angle between X(1) and X(2):

δ = 1− cos θ

θ = arccos(1− δ).

The radius of the hypersphere centered on kX(1) inducing at most a cosine

distance δ is:

Bj ≤ X
(1)
j sin arccos(1− δ)

= X
(1)
j

√
1− (1− δ)2

= X
(1)
j

√
2δ − δ2.

Substituting in Equation A.2, the displacement on each component can the be

upper bounded as:

X̄j = (k − 1)X
(1)
j + Bj

≤ (k − 1)X
(1)
j + X

(1)
j

√
2δ − δ2

= X
(1)
j

(
k − 1 +

√
2δ − δ2

)
.

This upper bound depends on the original cosine distance δ, but, more sig-

nificantly on the module of X(1) and the stretching constant k. Indeed, the

Euclidean distance along each component is given by the stretch (X(1)
j (k − 1))

plus a small distance due to the angle (X(1)
j

√
2δ − δ2).

(Steps A1 and A2) Let us now apply the linear projection and the absolute-
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value function defined in transformation A1 and A2:

F(1) = fA1:A2

(
X(1)

)
=

∣∣∣WX(1)
∣∣∣

F(2) = fA1:A2

(
X(2)

)
=

∣∣∣W (
kX(1) + B

)∣∣∣ = kF(1) ± |WB| .

Component-wise we have:

F
(1)
l =

∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣
F

(2)
l = kF

(1)
l + |WB|l = k

∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣±
∣∣∣∣∣∣
O∑
j=1

W
(j)
l Bj

∣∣∣∣∣∣ .
The new displacement and the new Euclidean distance are:

F̄l = (k − 1) F
(1)
l ± |WB|l , (A.3)

DE

[
F(1),F(2)

]
= `2

(
F̄
)

=

√√√√ L∑
l=1

(
(k − 1) F

(1)
l ± |WB|l

)2

.

(Steps A1 and A2 - Upper bound) The upper bound of each component

of the new bias vector follows immediately:

|WB|l =

∣∣∣∣∣∣
O∑
j=1

W
(j)
l Bj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

√
2δ − δ2

∣∣∣∣∣∣


=
∣∣∣√2δ − δ2

∣∣∣
∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣ ,
and then the upper bound on each component of the displacement in Equation

A.3 is:

F̄l ≤ (k − 1) F
(1)
l +

∣∣∣√2δ − δ2
∣∣∣
∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣
= (k − 1)

∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣+
∣∣∣√2δ − δ2

∣∣∣
∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣
=

(
k − 1 +

∣∣∣√2δ − δ2
∣∣∣)
∣∣∣∣∣∣
O∑
j=1

W(l)X
(1)
j

∣∣∣∣∣∣ .
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(Step A3) Let us now apply the normalization along the rows defined in

transformation A3:

F̃
(1)
l = fA3

(
F

(1)
l

)
=

F
(1)
l√∑N

i

(
F

(i)
l

)2

F̃
(2)
l = fA3

(
F

(2)
l

)
=

kF
(1)
l + |WB|l√∑N
i

(
F

(i)
l

)2
= kF̃

(1)
l +

|WB|l√∑N
i

(
F

(i)
l

)2
.

Notice that the denominator is given by a feature-dependent sum across N

samples; for simplicity, we will take this value to be a constant {cl}Ll=1, c ∈ R:

F̃
(1)
l =

F
(1)
l

cl

F̃
(2)
l = kF̃

(1)
l +

|WB|l
cl

.

The new displacement and the new Euclidean distance are:

¯̃
Fl = (k − 1) F̃

(1)
l +

|WB|l
cl

, (A.4)

DE

[
F̃(1), F̃(2)

]
= `2

(
¯̃
F
)

=

√√√√ L∑
l=1

(
(k − 1) F̃

(1)
l +

|WB|l
cl

)2

.

(Step A3 - Upper bound) The upper bound of each component of the

new bias vector follows immediately:

|WB|l
cl

≤

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl

and then the upper bound on each component of the displacement in Equation
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A.4:

¯̃
Fl ≤ (k − 1) F̃

(1)
l +

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl

= (k − 1)
F

(1)
l

cl
+

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl

= (k − 1)

∣∣∣∑O
j=1 W

(j)
l X

(1)
j

∣∣∣
cl

+

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl

=
k − 1 +

∣∣√2δ − δ2
∣∣

cl

∣∣∣∣∣∣
O∑
j=1

W
(j)
l X

(1)
j

∣∣∣∣∣∣
=

1

cl
F̄l.

Not surprisingly, after transformation A3, the Euclidean distanceDE

[
F̃(1), F̃(2)

]
is just rescaled since each component of the displacement F̄l is reduced by a fac-

tor 1
cl

= 1√∑N
i

(
F

(i)
l

)2
.

(Step A4) Finally, let us apply the normalization along the samples defined

in transformation A4:

Z
(1)
l = fA4

(
F̃

(1)
l

)
=

F̃
(1)
l

`2

(
F̃(1)

) =

F
(1)
l

cl

`2

(
F̃(1)

)
Z

(2)
l = fA4

(
F̃

(2)
l

)
=

F̃
(2)
l

`2

(
F̃(2)

) =
kF̃

(1)
l +

|WB|l
cl

`2

(
F̃(2)

) =
k

F
(1)
l

cl

`2

(
F̃(2)

) +

|WB|l
cl

`2

(
F̃(2)

) .
Let us now consider the first term of Z

(2)
l and let us multiply it by

`2(F̃(1))
`2(F̃(1))

:

Z
(2)
l =

k
F

(1)
l

cl

`2

(
F̃(2)

) `2
(
F̃(1)

)
`2

(
F̃(1)

) +

|WB|l
cl

`2

(
F̃(2)

) = kZ
(1)
l

`2

(
F̃(1)

)
`2

(
F̃(2)

) +

|WB|l
cl

`2

(
F̃(2)

) .
The new displacement and the new Euclidean distance are:

Z̄l =

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1

Z
(1)
l +

|WB|l
cl`2

(
F̃(2)

) , (A.5)
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DE

[
Z(1),Z(2)

]
= `2

(
Z̄
)

=

√√√√√√ L∑
l=1

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1

Z(1) +
|WB|l

cl`2

(
F̃(2)

)
2

.

(A.6)

For consistency, notice that if X(1) and X(2) were to be collinear, then `2
(
F̃(2)

)
=

k`2

(
F̃(1)

)
, and, by construction, B = 0; therefore, in case of collinearity,

DE

[
Z(1),Z(2)

]
computed in Equation A.6 would be zero, thus agreeing with

Theorem 2.

(Step A4 - Upper bound) Now, the upper bound of each component of

the bias vector can be immediately upper bounded:

|WB|l
cl`2

(
F̃(2)

) ≤

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl`2

(
F̃(2)

) ,

and then the upper bound on each component of the displacement:

Z̄l ≤

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1

Z
(1)
l +

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl`2

(
F̃(2)

)
=

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1

 F
(1)
l

cl`2

(
F̃(1)

) +

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl`2

(
F̃(2)

)
=

k `2
(
F̃(1)

)
`2

(
F̃(2)

) − 1


∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl`2

(
F̃(1)

) +

∣∣√2δ − δ2
∣∣ ∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl`2

(
F̃(2)

)
=

∣∣∣∑O
j=1 W

(j)
l X

(1)
j

∣∣∣
cl

k +
∣∣√2δ − δ2

∣∣
`2

(
F̃(2)

) − 1

`2

(
F̃(1)

)
 .

Notice that
∣∣∣∑O

j=1 W
(j)
l X

(1)
j

∣∣∣
cl

< 1 since cl =

√∑N
i

(
F

(i)
l

)2

. Thus:

Z̄l ≤

k +
∣∣√2δ − δ2

∣∣
`2

(
F̃(2)

) − 1

`2

(
F̃(1)

)
 .

The overall Euclidean distance between the representations Z(1) and Z(2) can
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then be bounded by:

DE

[
Z(1),Z(2)

]
=

√√√√ L∑
l=1

(
Z̄l
)2

≤ L ·

k +
∣∣√2δ − δ2

∣∣
`2

(
F̃(2)

) − 1

`2

(
F̃(1)

)
 .

Thus ε = L ·
(
k+|√2δ−δ2|
`2(F̃(2))

− 1

`2(F̃(1))

)
.

(Limit case) Lastly, let us consider the behaviour of the Euclidean distance

DE [z1, z2] as the the cosine distance DC [x1,x2] tends to zero:

lim
δ→0

DE [z1, z2] = lim
δ→0

ε

= lim
δ→0

L ·

k +
∣∣√2δ − δ2

∣∣
`2

(
f̃2

) − 1

`2

(
f̃1

)


= lim
δ→0

L ·

 k

`2

(
f̃2

) − 1

`2

(
f̃1

)
 .

Let us now substitute `2
(
f̃2

)
with its definition. As the cosine distance δ tends

to zero, x1 and x2 tend to be collinear. Therefore, `2
(
f̃2

)
tends to k`2

(
f̃1

)
.

We can then rewrite:

lim
δ→0

DE [z1, z2] = lim
δ→0

L ·

 k

`2

(
f̃2

) − 1

`2

(
f̃1

)


= lim
δ→0

L ·

 k

k · `2
(
f̃1

) − 1

`2

(
f̃1

)


= 0.

Thus, in the limit, it holds that limδ→0 ε = 0.

�

Appendix A.7. Proposition 2

Proposition 2. Let Z =
{
Z(i)

}N
i=1

be a set of vectors such that Z(i) ∈ RL

and
∑L
j=1

(
Z

(i)
j

)2

= 1. Then an optimal set of vectors that solve the optimiza-
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tion problem min
Z∈RL×N

∑N
i=1

∑L
j=1 Z

(i)
j is given by a multi-set of the orthonormal

basis vectors of RL.

Proof. We will prove this proposition geometrically.

Let us consider the optimization problem:

min
Z∈RL

L∑
j=1

Z
(1)
j ,

subject the constraint:
L∑
j=1

(
Z

(1)
j

)2

= 1.

The constraint defines the set of points describing a unitary hyper-sphere in

RL, while the minimization problem defines diamond-shaped level sets (Bishop,

2007). The minimal level set intersecting the unitary hyper-sphere is the di-

amond inscribed in the unit sphere. The intersection points constitute the

solution of our minimization problem. These points are the intersection points

between the unit hyper-sphere and the axes of RL, having a single component

set to one, while all the others are set to zero. By definition, these 1-sparse

vectors are the orthonormal basis vectors {ei}Li=1. �

Appendix A.8. Proposition 3

Proposition 3. Let us consider the sparse filtering algorithm implemented

using a sigmoid non-linearity σ(x) = 1
1+e−x . Let

{
X(i) ∈ RO

}N
i=1

be a set of

points in the original space RO. Then, the transformations A1, A2*, A3 and

A4, where A2* is the sigmoid non-linearity, do not preserve the structure of the

data described neither by the Euclidean metric nor by the cosing metric.

Proof. We divide this proposition in two parts and we prove each one by

counterexample.

Let us focus first on the non-preservation of the Euclidean metric. Let us

consider the case in which X(1) is a vector such that X
(1)
j = 1, ∀j, 1 ≤ j ≤ O,

X(2) is another vector such that X(2) = 2, ∀j, 1 ≤ j ≤ O, L = O, and W = I,

where I is the identity matrix.
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The Euclidean distance between the vectors X(1) and X(2) is:

DE

(
X(1),X(2)

)
=

√√√√ O∑
j=1

(1− 2)
2

=
√
L.

Let us now apply the transformation fA1:A4 to the vectors X(1) and X(2):

fA1

(
X(1)

)
= IX(1) = X(1) fA1

(
X(2)

)
= IX(2) = X(2)

fA2∗
(
X(1)

)
= σ

(
X(1)

)
= Σ(1) fA2∗

(
X(2)

)
= σ

(
X(2)

)
= Σ(2)

fA3

(
Σ(1)

)
=

[
Σ

(1)
j√∑N
i=1 Σ

(i)
j

]
fA3

(
Σ(2)

)
=

[
Σ

(2)
j√∑N
i=1 Σ

(i)
j

]

fA4

([
Σ

(1)
j√∑L

j=1 Σ
(i)
j

])
=
[

1√
L

]
= Z(1) fA4

([
Σ

(2)
j√∑L

j=1 Σ
(i)
j

])
=
[

1√
L

]
= Z(1).

Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the Euclidean

distance between the vectors fA1:A4

(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE

(
Z(1),Z(1)

)
= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of

the data described by the Euclidean metric. This proves the first part of the

proposition.

Let us focus now on the non-preservation of the cosine metric. Let us consider

the case in which X(1) is a vector such that X
(1)
j = 2j , ∀j, 1 ≤ j ≤ O, X(2) is

another vector such that X(2) = −X(1), L = O = 2, and W = I, where I is the

identity matrix.

The cosine distance between the vectors X(1) and X(2) is:

DC

(
X(1),X(2)

)
= 1−

∣∣∣∣∣∣∣∣
∑O
j=1 X

(1)
j X

(2)
j√∑O

j=1

(
X

(1)
j

)2
√∑O

j=1

(
X

(2)
j

)2

∣∣∣∣∣∣∣∣ = 0.
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Let us now apply the transformation fA1:A4 to the vectors X(1) and X(2):

fA1

(
X(1)

)
= IX(1) = X(1) fA1

(
X(2)

)
= IX(2) = X(2)

fA2∗
(
X(1)

)
= σ

(
X(1)

)
= Σ(1) fA2∗

(
X(2)

)
= σ

(
X(2)

)
= Σ(2)

fA3

(
Σ(1)

)
=

[
Σ

(1)
j√∑N
i=1 Σ

(i)
j

]
fA3

(
Σ(2)

)
=

[
Σ

(2)
j√∑N
i=1 Σ

(i)
j

]

fA4

([
Σ

(1)
j√∑L

j=1 Σ
(i)
j

])
= Z(1) fA4

([
Σ

(2)
j√∑L

j=1 Σ
(i)
j

])
= Z(2).

Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(2), where Z(1) =

[
0.99 0.14

]
and Z(2) =

[
0.70 0.71

]
. Now, the cosine distance between the vectors

fA1:A4

(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DC

(
Z(1),Z(2)

)
6= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of

the data described by the cosine metric. This proves the second part of the

proposition. �

Appendix A.9. Proposition 4

Proposition 4. Let us consider the sparse filtering algorithm implemented

using a soft ReLU non-linearity ReLU(x) = max (ε, x), where ε is a small negli-

gible value (for instance, ε = 10−8). Let
{
X(i) ∈ RO

}N
i=1

be a set of points in the

original space RO. Then, the transformations A1, A2*, A3 and A4, where A2*

is the ReLU non-linearity, do not preserve the structure of the data described

neither by the Euclidean metric nor by the cosing metric.

Proof. We divide this proposition in two parts and we prove each one by

counterexample.

Let us focus first on the non-preservation of the Euclidean metric. Let us

consider the case in which X(1) is a vector such that X
(1)
j = − 3√

2
, ∀j, 1 ≤ j ≤ O,

X(2) is another vector such that X(2) = − 1√
2
, ∀j, 1 ≤ j ≤ O, L = O, and

W = I, where I is the identity matrix.

The Euclidean distance between the vectors X(1) and X(2) is:

DE

(
X(1),X(2)

)
=

√√√√ O∑
j=1

(
− 3√

2
+

1√
2

)2

=
√

2L.
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Let us now apply the transformation fA1:A4 to the vectors X(1) and X(2):

fA1

(
X(1)

)
= IX(1) = X(1) fA1

(
X(2)

)
= IX(2) = X(2)

fA2∗
(
X(1)

)
= ReLU

(
X(1)

)
= [ε] fA2∗

(
X(2)

)
= ReLU

(
X(2)

)
= [ε]

fA3 ([ε]) =
[

ε√
Nε

]
=
[

1√
N

]
fA3 ([ε]) =

[
ε√
Nε

]
=
[

1√
N

]
fA4

([
1√
N

])
=
[ √

N√
N
√
L

]
=
[

1√
L

]
= Z(1) fA4

([
1√
N

])
=
[ √

N√
N
√
L

]
=
[

1√
L

]
= Z(1).

Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the Euclidean

distance between the vectors fA1:A4

(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE

(
Z(1),Z(1)

)
= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of

the data described by the Euclidean metric. This proves the first part of the

proposition.

Let us focus now on the non-preservation of the cosine metric. Let us consider

the case in which X(1) is a vector such that X
(1)
j = 1

2j , ∀j, 1 ≤ j ≤ O, X(2) is

another vector such that X(2) = −X(1), L = O = 2, and W = I, where I is the

identity matrix.

The cosine distance between the vectors X(1) and X(2) is:

DC

(
X(1),X(2)

)
= 1−

∣∣∣∣∣∣∣∣
∑O
j=1 X

(1)
j X

(2)
j√∑O

j=1

(
X

(1)
j

)2
√∑O

j=1

(
X

(2)
j

)2

∣∣∣∣∣∣∣∣ = 0.

Let us now apply the transformation fA1:A4 to the vectors X(1) and X(2):

fA1

(
X(1)

)
= IX(1) = X(1) fA1

(
X(2)

)
= IX(2) = X(2)

fA2∗
(
X(1)

)
= ReLU

(
X(1)

)
= X(1) fA2∗

(
X(2)

)
= ReLU

(
X(2)

)
= [ε]

fA3

(
X(1)

)
=

[
X

(1)
j 2j

√
1+22jε2

]
=
[

1√
1+22jε2

]
fA3 ([ε]) =

[
ε2j√

1+22jε2

]
fA4

([
1√

1+22jε2

])
=

[
1√

1+22jε2√∑L
j=1

1

1+22jε2

]
= Z(1) fA4

([
ε2j√

1+22jε2

])
=

 ε2j√
1+22jε2√∑L
j=1

22jε2

1+22jε2

 = Z(2).

Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(2), where Z(1) =

[ √
1+16ε2√
2+20ε2

√
1+4ε2√
2+20ε2

]
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and Z(2) =
[ √

1+16ε2√
5+32ε2

2
√

1+4ε2√
5+32ε2

]
. Now, the cosine distance between the vec-

tors fA1:A4

(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DC

(
Z(1),Z(2)

)
6= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of

the data described by the cosine metric. This proves the second part of the

proposition. �

Appendix A.10. Theorem 5

Theorem 5. Let X(1) ∈ RO be a point in the original space RO and let

Rek
X(1) be a representation filter centered on X(1), that is, Rek

X(1)

(
X(1)

)
= 0. Let

us now consider a point X(2) ∈ RO within the same representation cone, that

is, a point such that Rek
X(1)

(
X(2)

)
≤ ε for an arbitrarily small ε ∈ R, ε > 0.

Let us assume that: (i) points X(i) ∈ RO distribute in a limited region

of space bounded by a hyper-sphere of radius M ; and, (ii) points X(i) ∈ RO

distribute uniformly in this limited region of space.

Then, given that Rek
X(1)

(
X(2)

)
≤ ε, it follows:

Oδ(
M
m

)O−1
·

Γ
(
O+1

2

)
Γ
(
O+2

2

) ≤ P (DE

[
Z(1),Z(2)

]
≤ δ
)
≤ Oδ

m
·

Γ
(
O+1

2

)
Γ
(
O+2

2

) ,
where δ ∈ R, δ > 0 defines the neighborhood of X(1), m is the distance of X(1)

from the origin, and Γ(·) is the gamma function.

Proof. Let us consider X(1) ∈ RO and let us consider its neighborhood as

the set of points X(i) within a hyper-sphere of radius δ, that is,DE

[
X(1),X(i)

]
≤

δ.

Let us consider now the representation filter Rek
X(1) and let m be the distance

of X(1) from the origin. We first define the minimal representation filter Rek
X(1)

as the hyper-cone of height m and radius δ inscribing the neighborhood of X(1).

We also define a maximal representation filter Rek
X(1) as the hyper-cone of height

M and, by trigonometry, radius ∆ = M · δm . For illustration, refer to the schema

in Figure A.9, where we represented this setup in the case O = 2.
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Figure A.9: Schema of the data point X(1), the neighborhood of X(1), and the representation

filter Rek
X(1) in two-dimensional space.

Let us now consider the point X(2) sampled within the representation filter

Rek
X(1) . Since the sampling probability is uniform within the representation filter

Rek
X(1) , we can evaluate the probability of X(2) to fall in the neighborhood of

X(1) as the volume of the neighborhood of X(1) normalized by the total volume

of the representation filter Rek
X(1) .

Let us consider the neighborhood of X(1). Its volume can be computed as:

Vsphere(O, δ) = VOδO,

where VO is the following function:

Vn =
π
n
2

Γ
(
n
2 + 1

) .
Let us now consider the representation filter Rek

X(1) . We bound this volume

considering the minimal and maximal hyper-cone described above. The volume

of the hyper-cone depends on the volume of the lower-dimensional hyper-sphere

in the base (Ball, 1997) and it can be computed as:

1

O
·m · Vsphere(O − 1, δ) ≤ Vcone(O, δ, l) ≤

1

O
·M · Vsphere(O − 1,∆)

1

O
·m · VO−1 · δO−1 ≤ Vcone(O, δ, l) ≤

1

O
·M · VO−1 ·

(
M · δ

m

)O−1
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Let us now consider the ratio of the volume of the hyper-sphere and the volume

of the hyper-cone:

VOδO
1
O ·M · VO−1 ·

(
M · δm

)O−1
≤ Vsphere(O,δ)

Vcone(O,δ,l)
≤ VOδO

1
O ·m · VO−1 · δO−1

OδmO−1

MO
·

Γ
(
O+1

2

)
Γ
(
O+2

2

) ≤ Vsphere(O,δ)
Vcone(O,δ,l)

≤ Oδ

m
·

Γ
(
O+1

2

)
Γ
(
O+2

2

)
Thus, since we assumed that Rek

X(1)

(
X(2)

)
≤ ε, it follows that Oδ

(Mm )
O−1 ·

Γ(O+1
2 )

Γ(O+2
2 )
≤ P

(
DE

[
Z(1),Z(2)

]
≤ δ
)
≤ Oδ

m ·
Γ(O+1

2 )
Γ(O+2

2 )
. �
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