9 research outputs found

    Molecular Imaging

    Get PDF
    The present book gives an exceptional overview of molecular imaging. Practical approach represents the red thread through the whole book, covering at the same time detailed background information that goes very deep into molecular as well as cellular level. Ideas how molecular imaging will develop in the near future present a special delicacy. This should be of special interest as the contributors are members of leading research groups from all over the world

    An Information Theoretic Approach via IJM to Segmenting MR Images with MS Lesions

    No full text

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Multivariate methods for interpretable analysis of magnetic resonance spectroscopy data in brain tumour diagnosis

    Get PDF
    Malignant tumours of the brain represent one of the most difficult to treat types of cancer due to the sensitive organ they affect. Clinical management of the pathology becomes even more intricate as the tumour mass increases due to proliferation, suggesting that an early and accurate diagnosis is vital for preventing it from its normal course of development. The standard clinical practise for diagnosis includes invasive techniques that might be harmful for the patient, a fact that has fostered intensive research towards the discovery of alternative non-invasive brain tissue measurement methods, such as nuclear magnetic resonance. One of its variants, magnetic resonance imaging, is already used in a regular basis to locate and bound the brain tumour; but a complementary variant, magnetic resonance spectroscopy, despite its higher spatial resolution and its capability to identify biochemical metabolites that might become biomarkers of tumour within a delimited area, lags behind in terms of clinical use, mainly due to its difficult interpretability. The interpretation of magnetic resonance spectra corresponding to brain tissue thus becomes an interesting field of research for automated methods of knowledge extraction such as machine learning, always understanding its secondary role behind human expert medical decision making. The current thesis aims at contributing to the state of the art in this domain by providing novel techniques for assistance of radiology experts, focusing on complex problems and delivering interpretable solutions. In this respect, an ensemble learning technique to accurately discriminate amongst the most aggressive brain tumours, namely glioblastomas and metastases, has been designed; moreover, a strategy to increase the stability of biomarker identification in the spectra by means of instance weighting is provided. From a different analytical perspective, a tool based on signal source separation, guided by tumour type-specific information has been developed to assess the existence of different tissues in the tumoural mass, quantifying their influence in the vicinity of tumoural areas. This development has led to the derivation of a probabilistic interpretation of some source separation techniques, which provide support for uncertainty handling and strategies for the estimation of the most accurate number of differentiated tissues within the analysed tumour volumes. The provided strategies should assist human experts through the use of automated decision support tools and by tackling interpretability and accuracy from different anglesEls tumors cerebrals malignes representen un dels tipus de càncer més difícils de tractar degut a la sensibilitat de l’òrgan que afecten. La gestió clínica de la patologia esdevé encara més complexa quan la massa tumoral s'incrementa degut a la proliferació incontrolada de cèl·lules; suggerint que una diagnosis precoç i acurada és vital per prevenir el curs natural de desenvolupament. La pràctica clínica estàndard per a la diagnosis inclou la utilització de tècniques invasives que poden arribar a ser molt perjudicials per al pacient, factor que ha fomentat la recerca intensiva cap al descobriment de mètodes alternatius de mesurament dels teixits del cervell, tals com la ressonància magnètica nuclear. Una de les seves variants, la imatge de ressonància magnètica, ja s'està actualment utilitzant de forma regular per localitzar i delimitar el tumor. Així mateix, una variant complementària, la espectroscòpia de ressonància magnètica, malgrat la seva alta resolució espacial i la seva capacitat d'identificar metabòlits bioquímics que poden esdevenir biomarcadors de tumor en una àrea delimitada, està molt per darrera en termes d'ús clínic, principalment per la seva difícil interpretació. Per aquest motiu, la interpretació dels espectres de ressonància magnètica corresponents a teixits del cervell esdevé un interessant camp de recerca en mètodes automàtics d'extracció de coneixement tals com l'aprenentatge automàtic, sempre entesos com a una eina d'ajuda per a la presa de decisions per part d'un metge expert humà. La tesis actual té com a propòsit la contribució a l'estat de l'art en aquest camp mitjançant l'aportació de noves tècniques per a l'assistència d'experts radiòlegs, centrades en problemes complexes i proporcionant solucions interpretables. En aquest sentit, s'ha dissenyat una tècnica basada en comitè d'experts per a una discriminació acurada dels diferents tipus de tumors cerebrals agressius, anomenats glioblastomes i metàstasis; a més, es proporciona una estratègia per a incrementar l'estabilitat en la identificació de biomarcadors presents en un espectre mitjançant una ponderació d'instàncies. Des d'una perspectiva analítica diferent, s'ha desenvolupat una eina basada en la separació de fonts, guiada per informació específica de tipus de tumor per a avaluar l'existència de diferents tipus de teixits existents en una massa tumoral, quantificant-ne la seva influència a les regions tumorals veïnes. Aquest desenvolupament ha portat cap a la derivació d'una interpretació probabilística d'algunes d'aquestes tècniques de separació de fonts, proporcionant suport per a la gestió de la incertesa i estratègies d'estimació del nombre més acurat de teixits diferenciats en cada un dels volums tumorals analitzats. Les estratègies proporcionades haurien d'assistir els experts humans en l'ús d'eines automatitzades de suport a la decisió, donada la interpretabilitat i precisió que presenten des de diferents angles

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    The Role of Circadian Entrainment in Rice Blast Disease

    Get PDF
    A circadian clock is present in some capacity in almost all forms of life, and is useful for a wide array of traits, but crucially allows organisms to predict future conditions and adapt their behaviour to synchronise with, and thrive under, their dynamic environment. Accordingly, plant environmental stress responses are gated in a circadian manner, including that for pathogenic defence and immunity. Comparatively less work has been carried out on the plant pathogens, but there are increasing reports of pathogens capable of rhythmically altering their behaviour and virulence-related traits. Magnaporthe oryzae, the fungal pathogen responsible for the destruction of enough rice to feed at least 60 M people annually, has been shown to possess some circadian clock components, and based on bioinformatic analyses, likely contains all the core, accessory, and circadian-associated genes. M. oryzae displays a conidial banding pattern, reminiscent of the model clock species, N. crassa, and (after sufficient entrainment) this pattern can continue to occur under free running conditions for a number of days, with a period of approximately 24 h. This rhythm is also presented on a range of nutrient-rich and poor media, suggesting a nutritionally-compensated circadian rhythm in M. oryzae. This onset of conidial banding is partially determined by the presence of secreted metabolites, the sensation of which is facilitated by the circadian clock, predominantly via WC2. The entraining light conditions that M. oryzae is exposed to can significantly alter its vegetative growth, conidiation and conidial development, and even pathogenicity. Further, inoculation timing (dawn or dusk) plays a role in both the virulence of M. oryzae, and in the susceptibility of the plant host, seemingly in a species-by-species manner, where rice is most susceptible at dawn, and barley most susceptible at dusk. For M. oryzae, pre-inoculation entrainment to darkness predominantly favours dawn inoculations, and those exposed to prolonged periods of light prefer dusk inoculation. Upon mutation of the core clock genes, WC2 and FRQ, vegetative growth, conidiation and conidial development, photoadaptation, and pathogenicity were all significantly altered compared to the wild type, suggesting an important role of the clock in the general fitness of M. oryzae. This work discusses how entraining light cycles and the circadian clock impacts the growth, development, conidiation, virulence, and ultimate severity in the economically important rice blast disease

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Life Sciences Program Tasks and Bibliography for FY 1996

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
    corecore