409 research outputs found

    A smart phone based multi-floor indoor positioning system for occupancy detection

    Get PDF
    At present there is a lot of research being done simulating building environment with artificial agents and predicting energy usage and other building performance related factors that helps to promote understanding of more sustainable buildings. To understand these energy demands it is important to understand how the building spaces are being used by individuals i.e. the occupancy pattern of individuals. There are lots of other sensors and methodology being used to understand building occupancy such as PIR sensors, logging information of Wi-Fi APs or ambient sensors such as light or CO2 composition. Indoor positioning can also play an important role in understanding building occupancy pattern. Due to the growing interest and progress being made in this field it is only a matter of time before we start to see extensive application of indoor positioning in our daily lives. This research proposes an indoor positioning system that makes use of the smart phone and its built-in integrated sensors; Wi-Fi, Bluetooth, accelerometer and gyroscope. Since smart phones are easy to carry helps participants carry on with their usual daily work without any distraction but at the same time provide a reliable pedestrian positioning solution for detecting occupancy. The positioning system uses the traditional Wi-Fi and Bluetooth fingerprinting together with pedestrian dead reckoning to develop a cheap but effective multi floor positioning solution. The paper discusses the novel application of indoor positioning technology to solve a real world problem of understanding building occupancy. It discusses the positioning methodology adopted when trying to use existing positioning algorithm and fusing multiple sensor data. It also describes the novel approach taken to identify step like motion in absence of a foot mounted inertial system. Finally the paper discusses results from limited scale trials showing trajectory of motion throughout the Nottingham Geospatial Building covering multiple floors

    PEOPLEx: PEdestrian Opportunistic Positioning LEveraging IMU, UWB, BLE and WiFi

    Full text link
    This paper advances the field of pedestrian localization by introducing a unifying framework for opportunistic positioning based on nonlinear factor graph optimization. While many existing approaches assume constant availability of one or multiple sensing signals, our methodology employs IMU-based pedestrian inertial navigation as the backbone for sensor fusion, opportunistically integrating Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), and WiFi signals when they are available in the environment. The proposed PEOPLEx framework is designed to incorporate sensing data as it becomes available, operating without any prior knowledge about the environment (e.g. anchor locations, radio frequency maps, etc.). Our contributions are twofold: 1) we introduce an opportunistic multi-sensor and real-time pedestrian positioning framework fusing the available sensor measurements; 2) we develop novel factors for adaptive scaling and coarse loop closures, significantly improving the precision of indoor positioning. Experimental validation confirms that our approach achieves accurate localization estimates in real indoor scenarios using commercial smartphones

    Positioning Techniques with Smartphone Technology: Performances and Methodologies in Outdoor and Indoor Scenarios

    Get PDF
    Smartphone technology is widespread both in the academy and in the commercial world. Almost every people have today a smartphone in their pocket, that are not only used to call other people but also to share their location on social networks or to plan activities. Today with a smartphone we can compute our position using the sensors settled inside the device that may also include accelerometers, gyroscopes and magnetometers, teslameter, proximity sensors, barometer, and GPS/GNSS chipset. In this chapter we want to analyze the state-of-the-art of the positioning with smartphone technology, considering both outdoor and indoor scenarios. Particular attention will be paid to this last situation, where the accuracy can be improved fusing information coming from more than one sensor. In particular, we will investigate an innovative method of image recognition based (IRB) technology, particularly useful in GNSS denied environment, taking into account the two main problems that arise when the IRB positioning methods are considered: the first one is the optimization of the battery, that implies the minimization of the frame rate, and secondly the latencies due to image processing for visual search solutions, required by the size of the database with the 3D environment images

    Improvement Schemes for Indoor Mobile Location Estimation: A Survey

    Get PDF
    Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation, including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus on the location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    Mobility increases localizability: A survey on wireless indoor localization using inertial sensors

    Get PDF
    Wireless indoor positioning has been extensively studied for the past 2 decades and continuously attracted growing research efforts in mobile computing context. As the integration of multiple inertial sensors (e.g., accelerometer, gyroscope, and magnetometer) to nowadays smartphones in recent years, human-centric mobility sensing is emerging and coming into vogue. Mobility information, as a new dimension in addition to wireless signals, can benefit localization in a number of ways, since location and mobility are by nature related in the physical world. In this article, we survey this new trend of mobility enhancing smartphone-based indoor localization. Specifically, we first study how to measure human mobility: what types of sensors we can use and what types of mobility information we can acquire. Next, we discuss how mobility assists localization with respect to enhancing location accuracy, decreasing deployment cost, and enriching location context. Moreover, considering the quality and cost of smartphone built-in sensors, handling measurement errors is essential and accordingly investigated. Combining existing work and our own working experiences, we emphasize the principles and conduct comparative study of the mainstream technologies. Finally, we conclude this survey by addressing future research directions and opportunities in this new and largely open area.</jats:p
    • …
    corecore