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Abstract— At present there is a lot of research being done
simulating building environment with artificial agents and
predicting energy usage and other building performance related
factors that helps to promote understanding of more sustainable
buildings. To understand these energy demands it is important to
understand how the building spaces are being used by individuals
i.e. the occupancy pattern of individuals. There are lots of other
sensors and methodology being used to understand building
occupancy such as PIR sensors, logging information of Wi-Fi APs
or ambient sensors such as light or CO2 composition. Indoor
positioning can also play an important role in understanding
building occupancy pattern. Due to the growing interest and
progress being made in this field it is only a matter of time before
we start to see extensive application of indoor positioning in our
daily lives.

This research proposes an indoor positioning system that
makes use of the smart phone and its built-in integrated sensors;
Wi-Fi, Bluetooth, accelerometer and gyroscope. Since smart
phones are easy to carry helps participants carry on with their
usual daily work without any distraction but at the same time
provide a reliable pedestrian positioning solution for detecting
occupancy. The positioning system uses the traditional Wi-Fi and
Bluetooth fingerprinting together with pedestrian dead reckoning
to develop a cheap but effective multi floor positioning solution.

The paper discusses the novel application of indoor
positioning technology to solve a real world problem of
understanding building occupancy. It discusses the positioning
methodology adopted when trying to use existing positioning
algorithm and fusing multiple sensor data. It also describes the
novel approach taken to identify step like motion in absence of a
foot mounted inertial system. Finally the paper discusses results
from limited scale trials showing trajectory of motion throughout
the Nottingham Geospatial Building covering multiple floors.

Keywords—Occupancy; Particle Filter; Indoor Positioning;
Wifi; Bluetooth; Multi sensor fusion; Motion detection

I. INTRODUCTION

The energy demand and performance of a building depends
on the behavior of occupants engaged in various activities. To
understand these energy demands it is important to understand
how the building spaces are being used by individuals i.e. the
occupancy pattern of individuals. There has been previous
work in detecting occupancy of building users using PIR
sensors or ambient sensors. The major shortcoming of the
previous methods is the sensors limitation in detecting presence
and absence of individual occupants in the room only. Indoor
positioning technology can potentially be used to overcome
this problem by detecting the individual’s journey throughout
the building.

An understanding of occupancy in a building environment
requires a robust indoor positioning solution to be deployed.
Although the positioning system might not require a very high
degree of positioning accuracy, the application still requires
correct identification of transitions between rooms and
corridors and entry and exit from the building. These details
together help to get a clear picture of the journey the occupant
makes which has possible applications in built environment
modelling. The use of Wi-Fi in radio map fingerprinting and
Bluetooth Low Energy as a proximity sensor has seen
extensive research in indoor positioning over the last couple of
years. Pedestrian dead reckoning solution using sensors like
UWB and foot mounted inertial sensors are gaining more
popularity. These sensors require devices which are bulky or
have to be worn and are not very convenient for participants to
be in their natural state of occupancy over a long period of time
such as typical office hours. Thus it becomes a very different
scenario when it comes to deployment of indoor positioning
system in large areas involving continuous data collection over
a long period of time in an environment like academic or office
buildings. The use of BLE in indoor positioning research has
made a lot of advances recently due to the fact that it is
extremely cost effective, easy to deploy and has the potential to
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be used in a variety of context. Due to its short but adaptable
range it has been very appealing for research in industries
related to smart cars, supermarkets or hospitals requiring
proximity based localization. The availability of both Wi-Fi
and BLE sensors in smart phones makes it more convenient for
the user to easily carry potential positioning capability on their
own pocket and although the hardware capability of inertial
sensors like accelerometer and gyroscope may fall short of
widely used state of the art foot mounted Inertial MEMS
sensors it nevertheless allow for research opportunities in novel
application of indoor positioning using smart phones for
personal positioning.

This research presents a novel application of indoor
positioning technology proposing a prototype positioning
system for occupancy detection in building environment using
personal positioning. The solution is based on a particle filter
that combines Bluetooth Low Energy (BLE) and Wi-Fi
fingerprinting. The positioning algorithm utilizes
environmental features such as map matching and computes
relative heading information from an orientation filter, based
on accelerometer and gyro data from the smart phone. The
entire proposed positioning solution is dependent on a smart
phone to be carried by participants in their pockets all the time
and carry on with their daily work in an office environment.
Due to the absence of foot mounted inertial sensor zero
velocity based step detection is not possible since the Smart
phone will be in the pocket; instead particles are propagated
forward by a simple but novel step-like motion detection
algorithm using accelerometer data from the smart phone. The
motion detection algorithm looks for step like motion using a
simple pattern matching algorithm in every constant short
interval of time. Transition between floors is detected using
Bluetooth Low Energy that can be used as a trigger on and off
the stairways by reducing the range of BLE Beacons and
deploying them strategically along the stairways.

This paper starts with a brief review of current occupancy
detection methodology and indoor positioning technology. The
following sections discusses experimental results of the relative
heading computation based on the gyro data and the results
from motion detection involving trials to account for different
walk patterns (fast and slow). We then discuss the Wi-Fi and
Bluetooth fingerprinting and static positioning accuracy when
both Wi-Fi and BLE fingerprinting are combined compared to
their accuracy when used on their own. Finally different
individual sensor data are integrated in a simple multisensory
integrated indoor positioning system and the results of actual
trials carried out throughout the building are discussed.

II. BACKGROUND

To understanding the motivation behind this paper it is
important to briefly understand the current state of occupancy
detection methodology before we can move on to review
indoor positioning techniques and choice of technology for
occupancy detection. Occupancy detection has been the core to
developing models related to understanding building energy
usage and occupant behavioral models. The university of
Nottingham Built Environment department has worked
extensively to develop an in-house custom built Multi Agent
Simulation Platform [1] incorporating behavioral models and

an occupant presence model [2]. Other methodology discussed
in [3] shows the use of environmental sensors such as light,
temperature and CO2 using different statistical and machine
learning modelling techniques. Other similar research can be
seen in [4]–[6] where authors have experimented with using
camera technology, ambient sensors, agent based modelling
approach etc. The application of indoor positioning sensor can
be seen in [7] where iBeacons have been used as a proximity
sensor to detect occupancy in building using android smart
phone for data collection. Some of the important shortcoming
of methods related to the use of CO2 and ambient sensors is that
the trials are done in a controlled and small scale and not done
to detect actual occupancy covering an entire building. The PIR
sensor fails to account for the presence of the participants in
any other part of the building. This means even though the
individual is not present in their respective office they may still
be within the building. Indoor positioning technology has the
potential to be used for occupancy detection. There has been a
lot of research on the use of indoor positioning technology as a
pedestrian positioning solution. There is a discussion on
available positioning technology and algorithm in [8], with
Bluetooth and Wi-Fi being the most widely researched.

Bluetooth is a wireless technology commonly used in short
range communication. It is widely popular in smart phones for
transmitting data within short range and traditionally operates
in the 2.4 GHz spectrum, ranging from 2400 to 2485 MHz.
Since Bluetooth operates in short ranges it can be understood
that there is a correlation with the transmitted power and the
effective area coverage. This flexibility helps to customize the
range of the device for proximity based positioning. Research
work related to the use of Bluetooth can be seen in [9]. The
authors’ uses a client server architecture model and locates the
device using a combination of Trilateration technique and
signal coverage density method (SCDM). A more thorough
approach to Bluetooth fingerprinting based positioning
algorithm can be found in [10] where Faragher et al provides a
thorough analysis of the accuracy of Bluetooth fingerprint
positioning and compares with the Wifi fingerprinting.
Application of Machine learning algorithm in estimating
position is discussed in [11] Proximity based positioning can
be found in [12]. Bayesian and Gaussian filter based
positioning solution can be seen in [13][14] and use of context
or behaviour aiding traditional positioning can be found in
[15].

Wi-Fi on the other hand is a communication mid-range
WLAN standard operating in the 50 to 100m range and
frequency of 2.4 GHz and sometimes 5GHz. Since Wi-Fi
signal strength is very noisy and easily affected by fading,
multipath and obstruction it is important to include the standard
deviation when computing the position as discussed in [16]
were a maximum likelihood classification technique is utilized
instead of K-Nearest Neighbour. The use of probability
distribution comparison can be seen in [17] using the
Bhattacharyya coefficient. In [18] the author's made a
comparative evaluation between K nearest neighbor and fuzzy
C-means algorithm used in Wi-Fi fingerprinting. A hybrid
positioning solution combining both Wi-Fi and Bluetooth can
be seen in [19], [20] where Bluetooth is used as a partitioning
tool for the map when searching the fingerprint database and



thus reducing computation. Wi-Fi AP can also serve as
proximity detectors. As seen in the paper [21] the authors were
working on effective scheduling of task management in the
Queens Medical Center Hospital, Nottingham. Inertial
positioning solution using smart phones can be found in [22]–
[24]. A thorough overview of the wide array of positioning
technology is not within the scope of this paper but the intent is
to provide the reader with a brief background of the
possibilities and potential carried with them. In the following
section we will discuss the motion detection and the heading
estimation algorithm followed by the implementation our
proposed positioning framework.

III. MOTION DETECTION

A. Background

Human Steps can be analysed using the accelerometer data
which can be easily retrieved from available sensors in a smart
phone. Due to its periodic pattern during each step foot
mounted IMU detects zero velocity updates or Peaks to
identify a step. Since in this research the Smart phone is
supposed to be in the user’s pocket correctly identifying a zero
velocity update during each step becomes very complicated
and subsequently inaccurate. This is because the phone will
always be in motion both during each walking stance and
when the foot is on the ground due to hip movement.
Generally smart phones have poor quality of sensors which
makes the output very noisy. A typical accelerometer plot
showing the normalized acceleration for a period of nine
seconds can be seen in Fig. 2 and of two seconds in Fig. 3.
Typically during a step the acceleration varies from person to
person and also depending on walking speed. As such it is
difficult to analyze the data in terms of statistical measure, like
variance, or covariance, since it is not possible to define a
specific threshold for variance when matching the reference
walk template data. Peak-valley analysis of accelerometer data
is not always accurate because of random body movement due
to change in postures and turns.

Fig. 1. Walking stance phase; one complete cycle [25]

This will produce acceleration peaks which are similar to a
step and will be wrongly identified as one. Other alternatives
are using machine learning techniques to learn steps based on
individual motion characteristics and can be computationally
expensive. It can be seen in Fig. 1 what a typical walking gait
cycle looks like. Empirical results shows that it takes a
minimum 1 sec to complete one walking cycle i.e 2 steps using
both feet, starting from initial contact to terminal stance shown
in the picture. Since in this research only walking is taken into
consideration when detecting motion we can discard running or
jogging. In this paper two different methods of identifying

motion have been discussed; peak-valley analysis of the raw
accelerometer data and pattern matching using discrete
fourier transform (DFT) analysis of every two seconds of
accelerometer data. The peak-valley analysis is used as a
complementary check with the DFT results and a
combined algorithm is developed for step like motion
detection.

B. DFT based motion detection

We have developed a simple pattern matching algorithm
that takes in two seconds of the accelerometer data as input in
time domain and performs a Discrete Fourier Transform
(DFT). The mathematical details of how the DFT calculates
the amplitude is not part of the research but rather the analysis
of the amplitude to find patterns that can be used to identify
walk like motion. In this case accelerometer sampling rate was
50 Hz or every 0.02 millisecond thus every 2 seconds of data
is worth 100 samples in the walk template. The DFT output
will have 50 amplitude peaks in the frequency domain plus 1
offset peak. The idea is to look for the dominant frequencies;
in this case the top 5 dominant frequencies are checked against
a threshold typical of a walk like motion.

Fig. 2. Typical Acceleration Plot over a period of 9 seconds

Fig. 3. Typical Acceleration Plot over a period of 2 seconds

Fig. 4. Peak-Valley Plot showing the peak and valley points of each 2 second
and corresponding average



C. Peak-Valley motion detection

In a peak-valley analysis every two seconds of acceleration
data is analysed for peak acceleration and adjacent valley;
minimum acceleration. Since there will be peaks for any kind
of motion in the smart phone whether in the pocket or in the
hand we compute the average of the peak and valley
acceleration values for every two seconds of data. This helps to
provide more reliable average peak detection during motion. It
can be seen in Fig. 4 that the green points mark the peak
acceleration and the red points mark the corresponding valley
acceleration for every 2 seconds of data. The purple point is the
average of the two extremities. During motion there can be
multiple peaks and valleys in the two second window but we
take only the maximum peak and valley data. It can be seen,
during regular walking motion that the average peak valley is
always above a certain threshold, in this case the experimental
threshold was above gravity, g, or roughly 10m/s2. At the same
time it can be also seen that there are some false peaks due to
the smart phone in the hand at the beginning or feet movement
not implying actual walk but rather change in body postures in
static scenarios. This will create the false impression of a step
like motion being taken and will likely overestimate and end up
with erroneous position. The paper [26] suggests using this
technique alone but the conditions in which the trials were
carried out were very much in controlled environment where
the steps were clearly defined and prominent unlike in a real
world environment where participants will be freely navigating
without any constraint.

D. Combined DFT and Peak-Valley motion detection

To minimize the effect of falsely detected motion an
algorithm has been developed that combines both the results
during detection of step like motion. The DFT pattern is
compared with a peak-valley analysis of every two seconds of
accelerometer data. The DFT method is used to detect clearly
identifiable step like motion that agrees with the DFT threshold
for the dominant frequencies and the upper limit threshold. The
average peak valley analysis result is used to identify the lower
limit threshold in motion which is below a specific average. In
a real life walk scenario based on experimental evaluation the
average peak-valley value will never be equal to or less than
the gravity g even though the individual peaks and valley may
be well above g. The idea is to make a correction by checking
for average peak-valley results which are below gravity g
acceleration but wrongly detected as motion using the DFT
method, thus providing a filtering layer to minimize error. The
algorithm looks into every two seconds of accelerometer data
to detect step-like motion. This implies the individual is in
motion in both the seconds.

ALGORITHM STEPS

1) Smooth the normalized raw accelerometer data using a
moving average filter.

2) Compute the DFT amplitude for 2 sec of actual walk
3) Analyze the top 5 dominant frequency peaks and define

a threshold αDFT (experimental threshold) for the amplitude.
4) Check if number of peaks above αDFT is greater than or

equal to 2 (experimental threshold for minimum number of

peaks required to qualify for a step like motion) and the offset
frequency amplitude is less than 25 (experimental upper limit)

5) If true a step-like motion is detected according to DFT
method

6) Find peak and valley from the same two seconds of
accelerometer data and compute the mean acceleration µPkv

7) Check if DFT motion is detected and mean µPkv is
below a threshold αPkv (experimental threshold 9.75).

8) If true update the step-like motion detection to false
otherwise keep the DFT value.

9) Repeat from step 3 for every 2 second of accelerometer
data till the end.

Some of the walk trial results can be seen in the following
figures. A brief analysis of the plots (at different walking pace)
show peak-valley analysis in purple along the actual
accelerometer plot, the DFT plot in red and the combined
analysis plot in green. Fig. 5 shows the circled points where
peak-valley analysis suggests a step-like motion is being taken
but the DFT pattern matching correctly identifies them as no-
step. In Fig. 6 and Fig. 7 the DFT has wrongly identified a
step-like motion but the peak-valley analysis corrects it as
shown in the circled area. The algorithm discussed above is
very simple yet highly effective when detecting step-like
motion and both the peak-valley and DFT template matching
technique compliments and corrects each other’s output to
provide a reliable step-like motion detection solution.

Fig. 5. Trial walk-1, circles showing wrongly detected motion in peak-valley
average but corrected using the DFT as shown in the combined plot.

Fig. 6. Trial walk-2, circles showing wrongly detected motion in DFT
but corrected using peak-valley analysis in the combined plot.



Fig. 7. Trial walk-3, circles showing wrongly detected motion in DFT but
corrected using peak-valley analysis in the combined plot.

IV. HEADING ESTIMATE

In recent years, MEMS inertial sensors (3D accelerometers
and 3D gyroscopes) have become widely available because of
low cost and smaller size. Measurements from inertial sensors
like accelerometer and gyro are obtained at high sampling rates
and can be integrated to obtain position and orientation
information. These estimates are accurate on a short time scale,
but suffer from integration drift over longer time scales as
discussed in this paper [8]. Also for collecting occupancy data
it is not convenient to wear a foot mounted IMU over a long
period of time. As such an IMU from the smart phone is the
most practical choice instead of a foot tracker; though the
sensors can be of even poorer quality and would suffer from
the same drift issue. A significant amount of research has been
done to understand the application of mobile phones in
pedestrian dead reckoning [27]–[31] and they discuss the
performance of the positioning solution and evaluate related
issues such as bias and noise in mobile phone sensors.

Orientation computation is not something new and there are
numerous papers [28], [30], [32] that discuss the
implementation. Typically heading estimate can be computed
using a fusion of gyro and magnetometer if the initial
orientation of the device is known or if the earth’s magnetic
north is used as a reference. It is well known that
magnetometers suffer from distortion when indoor due to
various reasons, most importantly due to presence of ferrous or
magnetic objects. As such heading estimate using a
magnetometer and gyro sometimes might give unreliable
results. Thus accelerometer is also used as an alternative or in
combination with a magnetometer to improve accuracy [33].
This sensor fusion may use any but not limited to the following
algorithms for accurate estimation of heading; Madgwick
AHRS filter [34], Mahony AHRS filter [34], Complimentary
filter, Kalman filter, Compensation of Magnetic Disturbances
[35]. Current smart phones are generally equipped with a tri-
axial accelerometer, gyro and magnetometer. To estimate
heading just by using accelerometer and gyro it is important to
have a heading direction reference for initialization. Since it
will be inconvenient for participant’s to start every time facing
a specific direction we try to compute relative heading simply
by using the gyro and accelerometer in a Mahony filter [34],
[36]. The mean accelerometer data is used during the
initialization period of coarse alignment known as levelling to
compute error between the attitude and a known measured

direction of gravity and the rate of change of quaternion. We
then use the gyro reading at every epoch and use quaternion
computation to estimate the relative heading from the gyro
data. In our case since the particle filter will be used and the
particles are initialized with random heading (0-360◦ uniform 
distribution), it is not necessary to compute absolute heading.
An accurate heading-change estimate is enough to guide the
particles to propagate in the right direction.

The computation of heading using the Mahony filter is
quite straightforward. Accelerometer data is collected at each
epoch and applied to correct the estimated direction of gravity.
During trial data collection the phone is always kept in the
user’s trouser pocket with the data logger running in the
background. This helps to ensure the measured direction of
gravity never deviate too much due to tilting of the phone over
time and will remain stable. The corrected direction of gravity
is applied to the corresponding gyro data with the filter gain.
Filter gain is the rate of convergence toward the measurement
error, in this case in the Gyro measurement. The compensation
of gyro bias in traditional Kalman filter is done in an additional
state but according to Mahony et al [36] this can be easily done
in simple orientation filters through the integral feedback of the
error in the rate of change of orientation calculated. Thus the
gyro bias drift is automatically compensated when the rate of
change of quaternion is computed and subsequent integration
to yield quaternion for that epoch. Heading is then obtained by
computing the yaw from the quaternion vector. To get a clear
idea of quaternion mathematics the reader is referred to the
following paper [37].

A. Experimental Results

In the trial an LG Nexus smart phone was used which has a
3-axis accelerometer and a gyroscope integrated. The data
collection rate was kept at 50Hz. To evaluate the accuracy and
stability of the heading estimate walk trials were carried out as
shown in Fig. 9. The results show stable heading estimate

Fig. 8. Heading computed over a period of approx. 6 hours to check for any
drift.



Fig. 9. Heading evaluation trial walk results showing clerly distinguishable
heading changes during major turns.

with clearly identifiable heading change corresponding to the
turns. To further evaluate the stability of the gyro and the
accelerometer the smart phone was kept on a table for almost 6
hours with two 90◦ rotations being made. This was mainly to 
check if there are any significant drift over long period of time.
The resulting plot can be seen in Fig. 8.

V. MULTI SENSOR POSITIONING FRAMEWORK

In this section we evaluate and discuss the basis of the
positioning framework that forms the core of the proposed
positioning system in this paper. The system is developed by
creating radio maps utilizing existing WLAN commonly
known as Wi-Fi and Bluetooth low energy or BLE beacons
deployed throughout the of Nottingham Geospatial Building.
Radio maps are creating using the widely known technique of
Fingerprinting; based on collection of radio signals on
predefined reference points spatially located in the building
layout.

A. Test Bed configuration

The site for experimental trial was the Nottingham
Geospatial Building located in Jubilee Campus, University of
Nottingham. It is a three storey state-of-the-art building
housing academics, PhD students and researchers. The
research was carried out covering the first two floors of the
building. In total there were 8 Wi-Fi AP’s transmitting in both

2.4 GHz and 5GHz frequencies. Floor-A had 15 and Floor-B
had 10 beacons deployed. The range and power of the beacons
were configured according to the area of coverage required
ensuring there is enough variability of the radio signal. A
custom built Android specific data logger was developed that
could log Wi-Fi, Bluetooth, accelerometer and gyro data
together with system time information in separate files. The
data collection rate of accelerometer and gyro was configured
at 50Hz and Wifi and Bluetooth was configured at every
second. In reality the actual time of data logged was sensor
specific. For Wi-Fi typical scan results in the Android OS is
returned after scanning all the 12 channels from all the
accessible Wi-Fi AP’s, this resulted in signal data being
recorded typically after every 4 second interval. Bluetooth on
the other hand logged data whenever it detected a beacon
within its range. These also sometimes resulted in missing
some signal data completely, during instances when it cannot
detect any iBeacons or Wi-Fi AP due to no-LOS, interference,
obstruction or hardware malfunction.

B. Gaussian Processed Fingerpinting

Fig. 10. Floor-A map with reference training points (TP)

Fig. 11. Floor-B map with reference training points (TP)



Fig. 12. BLE Heat map showing the signal variability.

Static fingerprint databases were created using Wi-Fi and
BLE signal RSSI recorded at each of the Training reference
points (TP); 181 for Floor A and 165 for Floor B marked in
blue as shown in the Fig. 10 and Fig. 11. At each TP signal
strength was recorded for an average duration of 5 mins
resulting in nearly 30 hours of data collection spanned over
several weeks. For data collection an LG Nexus 5 was used.
The TP’s were then used as input in a Gaussian Process
Regression (GP) similar to [10] to develop a fingerprint of
0.5m by 0.5m resolution. Gaussian Process is a supervised
machine learning technique that predicts based on input mean,
covariance and likelihood approximation. A typical heat map
of a BLE and Wi-Fi GP fingerprint can be seen in Fig. 12 and
Fig. 13. The color bar on the right hand side shows the scale of
variation of the RSSI value.

Fig. 13. Wifi Heat map showing the signal variability.

C. Evaluation of Fingerprint Positioning

After generating the GP fingerprint Wi-Fi and BLE
samples were collected in a stationary state at different marked
points in the building to evaluate the static positioning
accuracy. The collected samples were compared with their
corresponding GP fingerprint database and difference map was
computed. This was done using a pattern matching algorithm
as mentioned in [38] such as the root mean square of the
difference between measured and database signal strength for
both Wi-Fi and BLE. The difference map is normalized in the
scale of 0-1 to produce a probability map. Then, using a
weighted K-Nearest Neighbor approach position is computed
for Wi-Fi and BLE separately. Aggregate position is computed
by combining the probability maps using joint probability. The
results of the positioning error can be seen in Table 1.

Surprisingly the positioning error in Floor B for BLE and Wi-
Fi-BLE Aggregate increased compared to Floor A. This can
possibly happen because of less beacon density, large amount
of furniture’s and people significantly affecting the signals.

TABLE I. STATIC POSITIONING ERROR STATISTICS

Data
Statistics

Agg
Mean

BLE
Mean

Wi-Fi
Mean

Agg
Median

BLE
Median

Wi-Fi
Median

Floor B 3.7m 4.2m 7.4m 3.6m 3.9m 5.2m

Floor A 4.2m 4.57m 3.2m 4.04m 4.26m 3.2m

D. Map Matching

Map matching is a part of environmental feature matching
explained in [38]. It is widely used in positioning algorithms to
aid movement of objects or particles so that we get a well-
controlled projection of movements within the area at each
epoch. In this research floor plan design files were provided in
CAD format. These CAD files were converted into Matlab
matrices with characteristics of the floor, like doors, walls and
their association with adjacent walls and rooms. Rooms are
identified as polygons with the walls as coordinates and doors
are represented as coordinates accordingly. All the rooms and
doors are given an ID.

E. Stair Detection

BLE beacons were used to detect transition between floors.
The Kontakt BLE beacons range can be configured from the
admin panel and they are tuned to the minimum to ensure
detection when passing by. NGB had three stairs and
appropriate numbers of Beacon’s were placed on each stairs so
as to detect an individual’s entire journey time through the
stairway. The Beacons for each stair also acts as a label thus
providing the stair information as well. This helps to identify
the transition from one floor to the other and the stair
information helps to locate the entry and exit when transiting
between floors.

F. Particle Filter Engine

A Particle filter is a Sequential Monte Carlo (SMC) method
of non-linear filter that incorporates Bayesian statistical
inference. Particle filtering methodology, basically a Markov
process follows a genetic type mutation-selection sampling
approach, with a set of particles to represent the posterior
distribution of some stochastic process given some noisy
observations. Particles are initialized with weights based on
specific criterion and application context. Then based on the
model prediction an update is made of the state. It also involves
re-sampling of the particle distribution based on the fitness of
the particles after every epoch or if majority of the particles is
found to be impoverished. Particle Filters are widely used in
position estimation because of their ability to compensate for
the uncertainties in non-linear system for which a traditional
Kalman Filter would fail. Certain parameters required are the
position coordinates, step detection, heading information and
particle weights.



The sensor fusion diagram can be seen in Fig. 15. Since
data is post-processed in this positioning system, at each epoch
when radio observations became available the Wi-Fi and BLE
GP fingerprint database is looked up respectively, compared
with their recorded mean RSSI and a difference map is
computed for each. Since the sampling rate of the Wi-Fi was
every four seconds and BLE was every two seconds, the
missing observations between the epochs were computed
according to Fig. 14. The difference map of the Wi-Fi and BLE
are normalized to get probability maps and their joint-
probability is computed to get the aggregate observation map.
This aggregate observation is used at each epoch to compute
static position when stationary and alternatively when in
motion passed to the particle filter engine to provide the
weights of the particles. Here an epoch corresponds to a
second. In our filter engine 4000 particles were used and their
weights were taken directly from the Wi-Fi and BLE aggregate
map as discussed before.

Fig. 14. Wi-Fi and BLE observation computed for missing epochs

Fig. 15. Sensor fusion engine showing the different sensor intergration

PARTICLE FILTER ALGORITHM STEPS

1) Initialize particles with random heading uniformly
distributed from 0-360◦ and with some uncertainty around the 
initial starting position. The initial starting position is taken
from the last known stationary position already computed.

2) For each epoch check if step-like motion is detected.
3) Check Stair detection, if true record stair number and

repeat step 2 else go to step 4.
4) Prediction State: If step-like motion detection is true

propagate particles forward based on heading and step length.
Step length can vary depending on persons' height, weight and
context. Also step length can vary significantly if a door
encountered or if the person stops for few seconds; this
situation are taken into account as well to simulate a realistic
scenario as much as possible. All the values are based on
experimental observation.

a) Default = 1.3m

b) Door encountered = 0.3m

c) Sudden pause = 0.8 m for next 3 seconds

Check for heading change (threshold 10◦) and update the 
particle clouds’ heading together with some heading noise.
Random noise is added +/- 0.3 m to account for uncertainty in
step length. Then the new position coordinate for each particle
is predicted using the updated heading and step length.

5) Update State: Use Map matching to constrain particle
movement within walls and corridors by checking if a particle
crosses a wall. If a particle crosses a wall without a door
within 0.5 m vicinity it is given a zero weight. Then each
particle is given weight from the RSSI difference map
directly. Then the particles are normalized so that ∑ܹ ௧=1

6) Re-sampling: After the update step the effective particle
size with non-zero weights are taken and Multinomial re-
sampling method is employed to re-sample the particles based
on their weights. A particle trajectory history was kept and this
is also resampled. This ensures the characteristics such as
heading, position, weight etc. of the fittest and longest
surviving particles are copied to the old ones according to the
equation Ptnew = Ptold+ ϵ.
If the effective number of particles with non-zero weights
become zero we reinitialize the particle distribution to the
previously computed Wifi/BLE position with random heading
distribution of 0 - 360◦.. 

7) Finally compute the effective median position from the
particle history and repeat from step 2.
The position vector is then updated with the newly computed
position from the particle filter. In epochs when stairs are
detected the position matrix is kept null but labelled separately
with the stair number to facilitate floor transition and stair
identification.

VI. RESULTS AND DISCUSSION

In this section we will discuss the trial results. The trials
were carried out keeping the movement as natural as possible
starting from both sitting and standing positions. The smart
phone was kept in the trousers pocket all the time with the



android data logger running in the background. All the trials
were done in a walking state only; the running state is not taken
into consideration. The red trajectory on each plot is the
aggregate position (median) from the particle filter and the
yellow ones are the particles position at the end of the trial. The
trial plots on different floors can be seen in Fig. 16, Fig. 17,
Fig. 18. In general the results showed relatively good
performance in terms of accurately identifying occupancy
information i.e transition between rooms and corridors. The
plot in Fig. 19, Fig. 20 and Fig. 21, Fig. 22 shows trajectories
involving multiple floors and stair detection. It can be seen in
Fig. 19, the trajectory halting infront of the stairway in Floor-B
and then reappearing in Floor-A and then continuing as shown
in Fig. 21. A Similar trial can be seen in Fig. 21 and Fig. 22
where stairs were detected and the transition between floors
occurred. It should be noticed that the trajectory on Fig. 21
should have turned a bit further after the turn and ended infront
of the stair marked in black and orange. Similarly in some plots
the particles are clustered at more than one position. This
happened mainly because of the particles receiving good
weights from the fingerprint difference maps due to the less
variability and an overlapping coverage area from the BLE
Beacons. To ensure relatively unique signal coverage more
BLE beacons could have been placed at regular intervals or at
important junctions. Wi-Fi has almost no impact since it has a
very large coverage area with relatively poor variability of the
signal strength within short distances. The map constraint
helped aid the positioning significantly especially along the
narrow corridors and smaller rooms with walls.

Finally to evaluate occupancy detection a trial was carried
out for almost an hour. The plot in Fig. 23 shows the sequence
of movement when in motion only. Stationary periods involved
sitting on the desk for long period or talking while standing in
between each trajectory to mimic a realistic occupancy
scenario; evident from the occupancy plot in Fig. 24 but
excluded from the trajectory plots below.

Fig. 16. Floor A Trial-1 showing the particle filter trajectory from a test walk.

Fig. 17. Floor A Trial-2 showing the particle filter trajectory from a test walk

Fig. 18. Floor B Trial-1 showing the particle filter trajectory from a test walk

Fig. 19. Stairway Trial 1A showing the trajectory till the stair



Fig. 20. Stairway Trial 1B showing the trajectory after coming off the stair

Fig. 21. Stairway Trial 2A showing the trajectory till the stair

Fig. 22. Stairway Trial 2B showing the trajectory after coming off the stair
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Fig. 23. Multiple plots numbered (1-6) showing sequence of movements over
a continuous period of time

The corresponding occupancy plot can be seen in the Fig.
24 with the entire time series of occupancy with room numbers
marked. Floor changes are detected with short transition
between the stairs. In the figure rooms are numbered randomly
and do not represent actual physical room numbers. Stairs were
labelled with a negative number for ease of presentation only.
Plot, marked one on Fig. 23, shows the position almost near the
wall of the next room due to the particles weight distribution
from the map. The plot, marked three shows the trajectory
going inside the room instead of turning toward the stairs,
marked in blue. This was mainly due to the majority of the
particles drifting inside the room due to good area coverage
from Beacons inside resulting in erroneous positioning at the
end.

Fig. 24. Occupancy time series plot showing the occupancy corresponding to
the Fig 23

VII. CONCLUSION AND FUTURE WORK

This paper has discussed the research carried out with the
intention to develop a prototype multi sensor indoor
positioning system, using a typical smart phone capable of
detecting natural occupancy that includes transition
information as well. The main objective was to evaluate the

robustness of such a positioning system if deployed in an
academic office environment to understand occupancy
patterns, thus highlighting the possibility of another novel
application of indoor positioning.

The research showed promising results but it should be
acknowledged that industrial level application of smart phone
based indoor positioning technology in populated or
architecturally complex environment such as office or
residential buildings is still a far cry. Even though the research
intended to detect occupancy in the most natural state of a
person’s occupancy there were still some constraints that had to
be applied. In our case we considered the walking state only, in
real life there will be scenarios when a person might be rushing
if not running. Even though there are papers discussing various
motion-mode detection algorithms they are tested mostly in
controlled environment with clearly identifiable state changes
such as phone in the hand or talking etc. Phone in the hand
would also impact the heading information; in our case the
phone was always kept in the pocket to avoid this additional
computation and integration. The particle filter showed
occurrences of multiple clusters whenever there was less
variability from the GP fingerprint map or similar RSS values
in overlapping areas. One possible solution is to use more BLE
Beacons.

So far the trials discussed in this paper were carried out by
the lead author himself. Future work would cover day long trial
within the existing constraints of this positioning framework
already developed. Ethics approval will be sought to carrying
out positioning trials involving other participants. This would
help to further understand the robustness and accuracy of the
system when used by different users to detect occupancy.
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