2 research outputs found

    Optimum NN Algorithms Parameters on the UJIIndoorLoc for Wi-Fi Fingerprinting Indoor Positioning Systems

    Get PDF
    Wi-Fi fingerprinting techniques are commonly used in Indoor Positioning Systems (IPS) as Wi-Fi signal is available in most indoor settings. In such systems, the position is estimated based on a matching algorithm between the enquiry points and the recorded fingerprint data. In this paper, our objective is to investigate and provide quantitative insight into the performance of various Nearest Neighbour (NN) algorithms. The NN algorithms such as KNN are also often employed in IPS. We extensively study the performance of several NN algorithms on a publicly available dataset, UJIIndoorLoc. Furthermore, we propose an improved version of the Weighted KNN algorithm. The proposed model outperforms the existing works on the UJIIndoorLoc dataset and achieves better results for the success rate and the mean positioning error

    An indoor positioning system using Bluetooth Low Energy

    Get PDF
    In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different locations in a home environment. The specific location of the user in the building has been pre-recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been carried out in different home environments to verify the proposed system and methods. The results show that our system is able to accurately track the user location in home environments and can track the living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the tracking accuracy
    corecore