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Abstract—Wi-Fi fingerprinting techniques are commonly 

used in Indoor Positioning Systems (IPS) as Wi-Fi signal is 

available in most indoor settings. In such systems, the position is 

estimated based on a matching algorithm between the enquiry 

points and the recorded fingerprint data. In this paper, our 

objective is to investigate and provide quantitative insight into 

the performance of various Nearest Neighbour (NN) algorithms. 

The NN algorithms such as KNN are also often employed in IPS. 

We extensively study the performance of several NN algorithms 

on a publicly available dataset, UJIIndoorLoc. Furthermore, we 

propose an improved version of the Weighted KNN algorithm. 

The proposed model outperforms the existing works on the 

UJIIndoorLoc dataset and achieves better results for the success 

rate and the mean positioning error.  

Keywords— Indoor positioning, Wi-Fi fingerprinting, KNN 

algorithm, WKNN algorithm, data-driven KNN. 

I. INTRODUCTION  

Indoor Positioning System (IPS) determines an object’s 
position inside a building [1]. Positioning technologies use 
different means such as radio signals [2], Optical [3], and 
Magnetic [4] technologies. The radio-based technology is 
favoured in IPS because it has a low cost and can easily cover 
a large area. In radio-based positioning systems, Wi-Fi 
technology is commonly used as it is widespread and does not 
require additional infrastructure to implement for indoor 
positioning, as many buildings have already been equipped 
with Wireless Access Points (WAPs) [5]. The most common 
method of Wi-Fi technology in IPS is utilizing Received 
Signal Strength Indicators (RSSI) measures through 
fingerprinting technique and creating a radio map of a place, 
i.e. collections of Reference Points (RPs). The user’s position 
is then calculated by comparing and matching to pre-existing 
fingerprinting RSSI measures [6].  

The Wi-Fi fingerprinting technique consists of two phases, 
the offline phase considering the collection RSSI and building 
the radio map (Fingerprinting) and the online phase 
calculating the position estimation. Fig.1 depicts an overall 
Wi-Fi IPS architecture. There are varieties of algorithms from 
simple ones such as Nearest Neighbour (NN) algorithms [7] 
to more complex such as Deep Neural Network (DNN) 
algorithms [8]. The NN algorithm is the most suitable 
classifier for indoor positioning as presented in [9] and [10], 
where different machine learning algorithms are compared for 
their suitability for indoor positioning, especially in pattern 
recognition and large data. In the fingerprinting approach, 
there are two methods: probabilistic methods and 
deterministic methods. The latter methods do not require prior 
knowledge of the Wi-Fi signal probability model, thus, easy 
to implement and widely used. In the deterministic methods, 

the Nearest Neighbour (NN) algorithms are commonly used; 
including Nearest Neighbour (NN), K-Nearest Neighbour 
(KNN), and Weighted K-Nearest Neighbour (WKNN) [11].  

In this paper, the NN algorithms, mainly KNN and WKNN 
are considered because of their simplicity and effectiveness in 
classification and regression problems. Although the 
computational cost and memory limitation are big drawbacks, 
the NN algorithms are highly efficient in pattern recognition 
[12, 13]. In multi-building multi-floor scenarios, there are two 
problems associated with positioning estimation. The correct 
location of the building and floor should be detected first 
followed by obtaining the in-floor position with the lowest 
estimation error. Therefore, our first objective is to obtain the 
correct location and in-floor position using only basic NN 
algorithms on the publically available UJIIndoorLoc database 
[14]. To mitigate the fingerprinting data linearity we 
introduced data representations as proposed in [15]. The 
accuracy issue was addressed by tuning the k-value and 
applying distance weight in combination with distance 
measures.  

The second objective of this study is to identify the best 
parameters for both KNN and WKNN algorithms in the 
UJIINdoorLoc dataset as an alternative to simple Euclidean 
distance and k=1, as often presented in many studies. This 
provides insights into developing straightforward algorithms 
that are suitable for real-time operation applications such as 
IPS. In this work, we are motivated to provide the best NN 
algorithms parameters on the UJIIndoorLoc database as a 
benchmark for further development. Therefore, the 
significance of this paper is highlighting the parameter tuning 
of NN algorithms on the UJIIndoorLoc database, because it is 
challenging to deal with sparse datasets in indoor positioning 
and get acceptable positioning estimation.  

In the following, Section 2 provides related work. Section 
3 provides the methodology. Results of experiments and 
performance evaluation are presented in Section 4 followed 
by a discussion and brief conclusion in Section 5. 

 
Fig. 1. A schematic of a generic Wi-Fi IPS. 



II. RELATED WORK 

The previous work can be divided into the two following 
categories: 

A. Improving KNN and WKNN Algorithms   

Many studies presented in the literature introduced either 
improving or optimizing the KNN algorithm in different 
ways. However, the k-value is significantly important to 
obtain the positioning estimation accuracy, as a fixed k-value 
is always not appropriate for all types of data. Hence, in [16] 
an adoptive k-value to the KNN was proposed by analyzing 
the correlation between the RSSI and k-value. This helped to 
boost the position accuracy above 30% compared with the 
fixed k-value. Furthermore, in [17] an algorithmic 
improvement to KNN by replacing the WAPs features with a 
Wi-Fi signal propagation model. Their exploratory results 
appear that the KNN optimization algorithm incorporates a 
certain degree of enforceability. Nevertheless, the results 
improved significantly in terms of positioning accuracy. Also 
[18] investigated applying quartile analysis to pre-process the 
RSSI data and tackle the signal interferences and variance of 
RSSI measurements to improve the positioning accuracy.  

Taking a different approach, [19] adopted the Fuzzy KNN 
classifier by assigning membership in the probable label as a 
function of the Euclidean distance vector from the basic KNN 
algorithm. The experimental results show improving position 
accuracy. Nevertheless, this method requires exceptionally 
large memory. To address this issue, [20] proposed a 
compression method for the data before applying the KNN 
algorithm. This helped to reduce the memory required and 
maintain the accuracy of the algorithm. In [21] took an 
approach data-driven to compute the k-value based on sparse 
learning to overcome fixed k-value by learning the optimal k-
value for each test sample.  

For the WKNN algorithm, similar to the KNN, the k-value 
and the distance function are important parameters affecting 
the positioning performance. Therefore, researchers consider 
finding an optimal setting for the k-value by working on the 
cluster-filtered methods or adopting the environment changes 
to adjust the k-value adaptively [11]. In addition, adding 
weight to the calculated space distance, especially where k>1 
in sparse data improves data classification performance. This 
dramatically improves the algorithm performance when it is 
combined with a dynamic k as in [22], in which they proposed 
a self-adaptive WKNN (SAWKNN) algorithm with a dynamic 
k. This SAWKNN is adjusting the value of k based on the RSS 
to obtain a better positioning accuracy than traditional WKNN. 

 In [23] an improved WKNN was introduced by selecting 
RP based on both distances of RSS the physical and space 
distance. A fusion of weighted distances algorithm was then 
applied to calculate the position estimation. This approach was 
also efficient to enhance the accuracy of experimental results. 
Similarly [11] considered fingerprinting clustering and signal-
weighted Euclidean distance considering the position 
distribution of reference points (RPs). In [24] an entropy 
WKNN method was proposed to adapt to environmental 
changes based on location characteristics and indoor 
distribution. Obtaining the entropy weight requires often 
complex processing of large data by adaptively adjusting the 
weight index. An improved WKNN was also proposed in [25] 
considering positioning speed as an objective where a 
selection of WAP algorithms was combined with an 
asymmetric Gaussian filter algorithm.  

B. ML Algorithms on UJIIndoorLoc Database 

The related works that use UJIIndoorLoc have been 
summarized with their performance results in Table I. It is 
worth mentioning that not all works have the same database 
configuration, for example, some are tested on each building 
separately and others on a complete database. The first two 
methods in Table I have KNN as the main algorithm by 
Torres-Sospedra et al. [13] where they created the 
UJIIndoorLoc database. They also provided an explanation of 
the dataset and a baseline result based on KNN for k=1 and 
using Euclidean distance. They then respectively obtained 
89.92% and 7.9 (m) for success rate and error. Later in [15], 
they introduced a comprehensive study on the distance metrics 
and shows that using k = 13 and Sorensen distance combined 
with power RSSI data representation can obtain 95.2 and 6.19 
(m) for success and error, respectively. However, the results 
in positioning errors were obtained based on correctly 
identifying the building and floor, which is not always the case 
in practice.  

The rest of the works [26-36] used different algorithms 
such as Decision Tree (DT), Deep Neural Network (DNN), 
Random Decision Forest (RDF), Artificial Neural Network 
(ANN), Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN) with different methods and 
configurations.  

III. METHODOLOGY 

Our method to improve the KNN and WKNN algorithms 
in the position estimation context by investigating the impact 
of the k-value on positioning estimation using an 
UJIIndoorLoc dataset on the following procedure: 

A. Tuning k-value for KNN & WKNN 

In KNN and WKNN, the k represents the number of 
samples from the fingerprint dataset, setting a low value of k, 
such as 1, maybe not be adequate since only a single sample 
is considered to estimate the final position, whereas a high k- 

TABLE I.  COMPARISON OF RESULTS ON DIFFERENT CONFIGURATION  

Reference 
Success (%) Error 

(m) BLD FLO Mean 

Torres-Sospedra et al. (2014) [14] - - 89.92 7.90 

Torres-Sospedra et al. (2015) [15] - - 95.2 6.19 

RTLS@UM:  
Moreira et al.a (2015) [26] 

100 93.74 - 6.20 

Nowicki and Wietrzykowski 
(2017) [27] 

- - 92 - 

Ibrahim et al. b c (2018) [28] 100 100  2.77 

Hybloc: Akram et al. d  (2018) [29] - - 85 6.29 

Gan et al. (2019) [30] 100 95.41 - 6.40 

CNNLoc: Song et al. (2019) [31] 100 96.03 - 
11.7

8 

Liu et al. (2021) [32] 99.64 91.18 - 8.39 

CCpos: Qin et al. (2021) [33] 99.6 95.3 - 12.4 

Cao et al. (2021) [34] - 99.54 - 3.46 

Abdalla et al. (2021) [35] 100 95.24 - 
11.7

8 

Tang et al.e (2022) [36] 100 94.20 - 8.42 
a)
 The testing set was provided exclusively as part of the EVAAL competition. 

b)
 Only the training dataset was used with spilt-out samples from the training dataset for testing.  

c)
 Data was manipulated to obtain RSS time-series readings and then the new dataset was split. 

d)
 A new attribute generated named Room ID consists of Building ID, Floor ID, and Space ID. 

e)
 The validation dataset was split into new validation and test sets 



value could degrade the model. The previous studies used a 
given k-value for all the considered models. However, we 
have noticed that the k-value can be for each class or model 
rather than one k-value for the algorithm. Consequently, the 
best k-value performance is varying from model to model. 
Therefore, we test different k-value from 1 to 25 by generating 
a model on different values of k and checking their 
performance in each experiment configuration. 

B. Database Size Configurations 

UJIIndoorLoc database contains data for three buildings 
referred to as BLD0, BLD1, and BLD2. Each building has 
multi-floors, four in BLD0 and BLD1, while BLD2 has five 
floors. The UJIIndoorLoc database has a training dataset 
(19,938 samples)  and a validation dataset (1,111 samples) as 
no testing dataset is available we used the validation dataset 
as a testing dataset. The datasets are represented as fixed-size 
vectors where each index corresponds to 520  WAPs available 
across the three buildings at Jaume I University in Spain. 
Those vectors contain the original RSS intensity values 
ranging from 0 (the highest signal) to -104 (the lowest signal) 
in (-dBm) and a default value of (100 dBm) denoted for those 
WAPs was not detected [14]. In dataset configuration, we 
have used a complete dataset then each building separately. 

C. RSSI Data Representation 

Using three data representations to the RSSI values by 
converting the raw RSSI measurement data to positive, 
exponential, and powered data. These data representations 
were introduced by Torres-Sospedra et al. 2015 [14]. This pre-
processing action has shown evidence of improving the model 
performance to represent the RSSI measurements in a better 
way for efficient algorithm calculation. In addition, this pre-
processing is a method that can reduce the training time and 
increase the maximum possible accuracy, here we have: 

• Positive representation 

���� (�) = 
(���� − ���)   �� ����  is detected0                                     Otherwise  (1) 
• Exponential representation  

 �!�(�) = "#$ (%&&'()'*+ )
"#$ (()'*+ )     ,                      (2) 

• Powed representation  

��.�(�) = (/00'12�3)4
(12�3)4  ,                                  (3) 

where ����  is a received signal strength measurement, ��� 
represents the minimum value of ����  in the datasets. Lastly, 
α and β are mathematical constants that have values of 24 and 
2, respectively. 

D. Distance Function 

As suggested by [15], we further investigated the impact 
of distance metrics (distance function) on the NN algorithms 
using common distance matrices including Cityblock, 
Euclidean, Minkowski, Cosine, and Correlation with different 
k-values. We tested each distance function on a different 
dataset configuration and recorded their performance. These 
distance measures are defined in [15] and [37].  

Cityblock, Euclidean, and Minkowski belong to the 
Minkowski family group, the general equation is defined as:  

 6��78�9:$(�, ;) = <∑ |�� − ;�|$?�@AB  , ∀! ∈ EF  (4) 

where P refers to Position Points and Q denotes the Quarry 
Points. The distance between these two vectors is being 
calculated and 6  refers to the length of the vector. In the 
above, ! determines the distance measures, where ! = 1 and 2 
results in Cityblock, and Euclidean distance, respectively. We 
also tested ! =3, 4, and 5 in the Minkowski group. 

Cosine distance belongs to the Inner Product family. The 
cosine similarity computes the angle between two vectors 
from the same or different distributions. However, the two 
vectors should have the same number of features. Given two 
sample feature vectors P, Q Є ℝ3, ! = H!A, !I, … . !3L, M =HMA, MI, … , M3L.  The cosine similarity subtracted from one is: 

9��(�, ;) = 1 − ∑ N'O'*'PQ<∑ NR*'PQ  <∑ OR*'PQ            (5) 
Correlation distance computes the correlation 

between two jointly distributed random variables. In which, � 
samples were sampled from a bivariate (P, Q) joint 
distribution. Correlation distance is a version of the Pearson 
distance, where the Pearson distance is scaled in the range 
between zero and one. Given �  samples consisting of two 
features, H(!A, MA), (!I, MI), … , (!3 , M3)L,  the correlation 
distance is defined as: 

T�U(�, ;) = AI V1 − ∑ (N'O')*'PQ 1(3NWOW)
<∑ N'R13NWR*'PQ <∑ O'R13OWR*'PQ

X (6) 
E. Distance Weight for KNN 

In KNN, the distance weight (w) is equal, while in WKNN 
there are two distance weights namely inverse distance and 
squared inverse distance commonly used with the KNN 
algorithm to form Weighted KNN. We will test them with the 
best results obtained from previous steps. The inverse distance 
weight is given by:  

.�3Z"[\"(�, ;)  = A?  .                                 (7) 
The squared inverse distance weight is given by:  

.\^_`["? �3Z"[\"(�, ;)  = A?R ,                  (8) 
where d is the distance between two points in signal space.  

 

IV. PERFORMANCE EVALUATION 

There are two matrices, Success, and Error to evaluate the 
algorithm performance. Success is defined as the percentage 
of accuracy for a building or floor that is correctly predicted 
known as Hit Rate. 

b�7 �87:cde f[ gdh = (if[["ij N["?�ij�f3\)kll N["?�ij�f3\ ∗ 100%          (9) 

 
We added building and floor accuracy to get the mean success 
rate as a metric accountable for both.  
 o:8� �p9:��cdeFgdh = (kii_[`iqrstFkii_[`iqusv)I     (10) 



The Error refers to the Position Error (PE), which is the 
Euclidean distance between the estimated position and the 
actual position given by: 
 � = w(� − �x)I + (z − zx)I               (11) 

 
where the (� − �x) represent Longitude error and (z −zx)represent Latitude error. The hat marks (^) refer to the 
estimated position and non-hat marks refer to the actual 
position. However, we are applying a vector of points, and as 
a result, we get the PE in a vector, therefore, we use the mean 
position error: 
 o:8� ����7���  UU = A3 ∑ w(� − �x)I + (z − zx)I3�@A       (12)  

Where � is the number of errors.  
 

A. Experiment Setup 

Modelling and testing have been implemented using 
MATLAB R2021 (a), running and tested on a Lenovo Laptop, 
equipped with a processor Intel(R) Core(TM) i5-8265U 
CPU@ 1.60GHz, 1.80 GHz and 8 GB of RAM, and operated 
with Windows 10, 64 bits. The modelling procedure has three 
programming steps as follows: 

a) Import Training and Validation datasets 
b) Pre-process Datasets  
c) Apply KNN and WKNN algorithms on each 

model for each configuration. 
d) Record and plot the performance results.  

 

UJIIndoorLoc dataset has four main labels 
(LONGITUDE, LATITUDE, BUILDING ID, and FLOOR) 
which are required to predict the location and estimated 
position. The Longitude and Latitude are regression problems, 
while the Building ID and Floor are classification problems. 
We followed the procedure in Section 3 to test the 
performance of KNN and WKNN algorithms. 

B. Experiment Results 

1) Obtaining the best k-value 
i) The best k-value on the complete dataset 

 
The performance results are shown in Table II and Fig 2. 

It shows that the highest success rate is 98.15% when using 
correlation distance with exponential representation and the 
lowest mean positioning error is 7.64 (m) using the 
correlation distance with exponential representation on a 
complete dataset. This is a significantly better set of results 
compared with those in Table I.  

ii) The best k-value on each separated building 
 

From obtained results in Tables III, IV, and V, we can see 
there is a variant of positioning errors from building to 
building. This leads us to look at the signal distribution on 
each building in Fig 3. We can interpret that the BLD1 has the 
lower RPs compared to the other two buildings, while the 
BLD2 has a higher number of RPs, yet we can see the error 
range in 9 m, unlike the BLD0 which has a lower error in the 
BLD2 has a higher number of RPs, yet we can see the error 
range in 9 m, unlike BLD0 which has a lower error in the range 

of 5 m. Thus, we looked at each building and found out that 
only two mobile devices surveyed the BLD0, while the other 
two buildings have many different devices. The heterogeneity 
of the devices might cause a large positioning error. A 
summary of the best results is presented in Table VI. 

TABLE II.  BEST PERFORMANCE OF K VALUE ON DIFFERENT DISTANCE 
FUNCTIONS AND DATA REPRESENTATIONS USING A COMPLETE DATASET  

TABLE III.  PERFORMANCE RESULT ON BLD0 

Distance 
Metrics D

at
a 

R
ep

. FLO Success (%) Positioning Error (m) 

k Hit Rate k Mean Error 

Cityblock 

Pos 9-11 97.20 10 5.47846 
Exp 3 97.01 4 5.29077 

Pow 4 97.38 4 5.42837 

Euclidean  

Pos 19 97.76 3 5.49774 
Exp 9 97.38 1 5.57302 

Pow 4,7 97.01 5 5.25164 

Cosine 

Pos 8, 9 97.76 8 5.74659 
Exp 1 97.57 4 5.16713 

Pow 1 97.57 6 5.39378 

Correlation 

Pos 7- 9 97.76 8 5.47846 
Exp 1 97.94 5 5.17979 

Pow 1 97.57 6 5.41620 

TABLE IV.  PERFORMANCE RESULT ON BLD1 

Distance 
Metrics D

at
a 

R
ep

. FLO Success (%) Positioning Error (m) 

k Hit Rate k Mean Error 

Cityblock 

Pos 2 77.85 3 11.9846 
Exp 6 79.47 3 11.8343 

Pow 6,10 79.47 2 11.2378 

Euclidean  

Pos 18 78.50 23 11.1771 
Exp 18-24 81.75 14 10.3903 

Pow 4, 20 83.71 21 10.6452 

Cosine 

Pos 24 85.34 21 9.54734 
Exp 24 85.66 15 9.98617 

Pow 21 93.81 3 9.57655 

Correlation 

Pos 24 85.34 21 9.52438 
Exp 22, 23 93.48 23 9.16244 

Pow 21 93.81 24 9.74990 

Distance 
Metrics D

at
a 

R
ep

. Location Success (%) Error (m) 

k BLD FLO Mean k Error 

Cityblock 
Pos 1 98.88 89.28 94.05 16 11.4158 
Exp 1 99.00 90.81 94.91 1 10.5256 
Pow 1 99.36 90.90 95.13 1 9.89261 

Euclidean 
Pos 17,19 99.36 91.26 95.31 1 9.19835 
Exp 5 99.55 92.79 96.17 1 8.58877 
Pow 6 99.73 93.15 96.44 2 8.76081 

Minkowski 
P3 

Pos 8 99.91 90.99 95.45 5 9.13964 
Exp 6,8 99.73 93.60 96.66 2 8.69334 
Pow 5 99.73 93.87 96.80 1 8.65620 

Minkowski 
P4 

Pos 9,19 99.82 91.08 95.45 2 8.92590 
Exp 7,11 100 94.05 97.02 2 8.39160 
Pow 6 99.82 94.05 96.93 2 8.42007 

Minkowski 
P5 

Pos 8 100 90.90 95.45 2 8.95207 
Exp 5 100 94.14 97.07 2 8.30021 
Pow 11 99.82 94.23 97.02 2 8.57079 

Cosine 
Pos 24 100 93.96 96.93 13 7.82302 
Exp 5,7 99.55 93.60 96.57 1 8.52173 
Pow 21 100 96.30 98.15 23 7.72135 

Correlation 
Pos 22,24 100 93.87 96.89 24 7.85285 
Exp 22,23 100 96.30 98.15 22 7.64517 

Pow 20,22 100 96.21 98.10 23 7.69166 



TABLE V.  PERFORMANCE RESULT ON BLD2 

Distance 
Metrics D

at
a 

R
ep

. FLO Success (%) Positioning Error (m) 

k Hit Rate k Mean Error 

Cityblock 

Pos 1,2 90.29 9 12.9376 
Exp 1 94.02 1 11.3889 

Pow 1 94.77 1 11.0013 

Euclidean 

Pos 2 95.52 1 11.1046 
Exp 4 97.38 6 10.0375 

Pow 3-5 97.01 5 10.3945 

Cosine 

Pos 6,8 97.01 22 9.45524 
Exp 8-10 97.01 8 9.79197 

Pow 22, 24 97.38 9 9.72947 

Correlation 

Pos 7, 8 97.01 24 9.28354 
Exp 22-24 97.01 22 9.24040 

Pow 20, 22 97.01 5 9.86497 

 

 

 

 

 

 

 

TABLE VI.  BEST RESULTS ON EACH BUILDING 

BLD 
No. 

Data 
Rep. 

Distance 
Metrics 

FLO Success (%) 
Positioning 

Error(m) 
k Hit rate k Error 

BLD0 Exp Correlation 1 97.94 5 5.17979 

BLD1 Exp Correlation 23 93.48 23 9.16244 

BLD2 Exp Correlation 22 97.01 22 9.24040 

Average    7.86087 

 

2) Obtaining the best distance weight (w)  
The next step is to move from KNN to WKNN, by introducing 
distance weight (w) but this time using only the Correlation 
distance and exponential data representation as this 
combination showed the best performance in the previous 
experiments. This requires testing each distance weight (w), 
inverse, and squared inverse on a complete dataset and each 
building configuration. We must recalculate the k-value, since 
it was noticed that there is improvement following applying 
distance weight, hence, we further increased the k-value from 
24 to 50 and recorded the best results when k >1 only in Table 
VII. The best result is 7.39 m, which is better than the KNN. 

C. Comparison of Findings with Other Studies. 

To make the comparison more reasonable, we evaluate our 
best-tuned algorithm (WKNN) with the same dataset 
configurations, here we have selected for comparison the 
studies that have similar settings of using both the training 
dataset and validation dataset regardless of the used algorithm 
or methods. In other words, comparing with the complete 
dataset and applying validation dataset for testing where 
possible. Table VIII shows our results compared to the other 
studies. It clearly shows that our proposed approach has 
yielded a significant improvement in the mean success rate 
and positioning error, which demonstrates an innovative 
design and contributes to WKNN's better performance. 

 
Fig. 3. Distribution of Signals on Each Building. 

 

 

 

 

 
Fig. 2. Results of k-value on Success and Error for Different 

Configurations 



TABLE VII.  INTRODUCE THE DISTANCE WEIGHTS ON THE WHOLE 
DATASET FOR CORRELATION DISTANCE  

B
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t  

Location Success (%) Positioning 
Error(m) 

k 
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D 

HR 
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HR 

Mea
n 

k Error 

012 Ex
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1/d 
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96.3
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98.15 26 
7.3964

3 

1/d
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20,4
3 

100 96.2
1 

98.10 26 
7.4472

5 

0 
Ex
p 
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97.9

4 
- 24 

5.5275
1 

1 
Ex
p 

1/d 
42,4
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- 

94.1
3 

- 26 
9.0296

8 

1/d
² 

43,4
6 

- 93.4
8 

- 26 
9.2561

2 

2 Ex
p 

1/d 2-5 - 97.0
1 

- 29 
9.0386

1 
1/d
² 

4, 5 - 
97.0

1 
- 35 

8.9510
7 

TABLE VIII.  COMPARISON OF THE RESULTS OF DIFFERENT STUDIES  

Reference 
Location Success (%) Positioning 

Error (m) BLD FLO Mean 

Torres-Sospedra et al. 
(2014) [14] 

- - 89.92 7.90 

Torres-Sospedra et al. 
(2015) [15] 

- - 95.2 6.19 

Gan et al. 2019 [30] 100 95.41 - 6.40 

CNNLoc:  
Song et al. 2019 [31] 

100 96.03 - 11.78 

Liu et al. 2021 [32] 99.64 91.18 - 8.39 

CCpos: 
Qin et al. 2021[33] 

- - - 12.4 

Abdalla et al. 2021 [35] 100 95.24 - 11.78 

Tang et al. 2022 [36] 100 94.20 - 8.42 

Our tuned 

WKNN 
100 96.30 98.15 7.39 

V. DISCUSSIONS AND CONCLUSION 

In these experiments, we considered one k-value for both 
Longitude and Latitude, when calculating the mean 
positioning error. This makes a general k-value that works 
with widely used algorithms. In case there are multi-k values, 
we have chosen the higher two values. For example, in Table 
I, Correlation has different k-values with the same 
performance including 8, 20-22, and 24. We recorded the 
higher two k-values 22 & 24 as it is generally more suitable in 
big sparse data. We have noticed different best k-value 
performances on each model, except in the case of correlation 
and cosine where they intend to stay close to linearity for both 
classification and regression compared to other distances. This 
gives them the advantage to perform well for all k-value.  

This study concludes that the correlation distance function 
is among the best algorithms in the UJIIndoorLoc dataset, 
especially when it combines with exponential data 
representation. In addition, introducing the distance weight 
has provided the lowest positioning error to the whole dataset 
(BLD012) at 7.39 (m) compared to KNN. However, the 
success rate does not improve and remains the same in both 
KNN and WKNN. In terms of distance weight, the inverse is 
the best for the whole dataset and it varies on the individual 
building between inverse and squared inverse. From Table 

VII, there is a slight improvement when applying distance 
weight in both inverse and squared inverse compared to 
previous results without distance weight.  

From the results obtained on the complete dataset, the best 
tuning for KNN is Correlation distance in conjunction with 
exponential data representation and k=22. In WKNN, the best 
tuning is Correlation distance in conjunction with exponential 
data representation, inverse weight, and k=26. The 
contribution of this study is providing a real benchmark for the 
best basic KNN and WKNN at their highest performance on 
the UJIIndoorLoc database. This will help the research 
community to compare and design their system when applying 
machine-learning algorithms for Wi-Fi fingerprinting indoor 
positioning.  
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