386 research outputs found

    An Improved Timing Attack with Error Detection on RSA-CRT

    Get PDF
    Several types of timing attacks have been published, but they are either in theory or hard to be taken into practice. In order to improve the feasibility of attack, this paper proposes an advance timing attack scheme on RSA-CRT with T-test statistical tool. Similar timing attacks have been presented, such as BB-Attack and Shindler’s attack, however none of them applied statistical tool in their methods with such efficiency, and showed the complete recovery in practice by attacking on RSA-CRT. With T-test, we enlarge the 0-1 gap, reduce the neighborhood size and improve the precision of decision. However, the most contribution of this paper is that our algorithm has an error detection property which can detect the erroneous decision of guessing qk and correct it. We could make the success rate of recovering q to be 100% indeed for interprocess timing attack, recovery 1024bits RSA key completely in practice

    Formal Analysis of CRT-RSA Vigilant's Countermeasure Against the BellCoRe Attack: A Pledge for Formal Methods in the Field of Implementation Security

    Full text link
    In our paper at PROOFS 2013, we formally studied a few known countermeasures to protect CRT-RSA against the BellCoRe fault injection attack. However, we left Vigilant's countermeasure and its alleged repaired version by Coron et al. as future work, because the arithmetical framework of our tool was not sufficiently powerful. In this paper we bridge this gap and then use the same methodology to formally study both versions of the countermeasure. We obtain surprising results, which we believe demonstrate the importance of formal analysis in the field of implementation security. Indeed, the original version of Vigilant's countermeasure is actually broken, but not as much as Coron et al. thought it was. As a consequence, the repaired version they proposed can be simplified. It can actually be simplified even further as two of the nine modular verifications happen to be unnecessary. Fortunately, we could formally prove the simplified repaired version to be resistant to the BellCoRe attack, which was considered a "challenging issue" by the authors of the countermeasure themselves.Comment: arXiv admin note: substantial text overlap with arXiv:1401.817

    Estudio exploratorio de la técnicaTimming Attack en el criptosistema RSA

    Get PDF
    This paper makes an exploratory bibliographic analysis of the Timing Attack (TA) technique on the Side Channel Attacks (SCA) in RSA. The information assets, operation modes and countermeasures of 22 papers were analyzed. Findings show that smartcards are the most attacked information assets (32%), blinding is the most applied countermeasure (33%) and the Chinese Remainder Theorem (CRT) or Montgomery Multiplication (MM) with CRT are the most frequent operation modes (41%). Furthermore, just one attack was executed in telecom unication systems, this opens the possibilty for future work, analyzing the same technique using the tecnologies WiMAX and the SIP VoIP protocol.  El presente trabajo realiza un análisis bibliográfico exploratorio del tipo de ataque Timing Attack (TA) de On The Side Channel Attack (SCA) en RSA. Para lo cual, se analizaron los activos de información, los modos de operación y las contramedidas efectuadas de 22 artículos. Los resultados evidencian que el activo de información que más ataques tuvo son las tarjetas inteligentes (32%), la contramedida mayormente aplicada es el cegamiento (33%) y los modos de operación más utilizados son el Chinese Remainder Theorem (CRT) o Montgomery Multiplication (MM) con CRT (41%). Adicionalmente se evidencia que sólo un ataque fue realizado a los sistemas de telecomunicaciones, lo cual permite plantear trabajos futuros en el análisis de la misma técnica con base en las tecnologías WiMAX y el protocolo SIP de VoIP. &nbsp

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    Mayhem: Targeted Corruption of Register and Stack Variables

    Full text link
    In the past decade, many vulnerabilities were discovered in microarchitectures which yielded attack vectors and motivated the study of countermeasures. Further, architectural and physical imperfections in DRAMs led to the discovery of Rowhammer attacks which give an adversary power to introduce bit flips in a victim's memory space. Numerous studies analyzed Rowhammer and proposed techniques to prevent it altogether or to mitigate its effects. In this work, we push the boundary and show how Rowhammer can be further exploited to inject faults into stack variables and even register values in a victim's process. We achieve this by targeting the register value that is stored in the process's stack, which subsequently is flushed out into the memory, where it becomes vulnerable to Rowhammer. When the faulty value is restored into the register, it will end up used in subsequent iterations. The register value can be stored in the stack via latent function calls in the source or by actively triggering signal handlers. We demonstrate the power of the findings by applying the techniques to bypass SUDO and SSH authentication. We further outline how MySQL and other cryptographic libraries can be targeted with the new attack vector. There are a number of challenges this work overcomes with extensive experimentation before coming together to yield an end-to-end attack on an OpenSSL digital signature: achieving co-location with stack and register variables, with synchronization provided via a blocking window. We show that stack and registers are no longer safe from the Rowhammer attack

    Timing attacks and local timing attacks against Barrett’s modular multiplication algorithm

    Get PDF
    Montgomery’s and Barrett’s modular multiplication algorithms are widely used in modular exponentiation algorithms, e.g. to compute RSA or ECC operations. While Montgomery’s multiplication algorithm has been studied extensively in the literature and many side-channel attacks have been detected, to our best knowledge no thorough analysis exists for Barrett’s multiplication algorithm. This article closes this gap. For both Montgomery’s and Barrett’s multiplication algorithm, differences of the execution times are caused by conditional integer subtractions, so-called extra reductions. Barrett’s multiplication algorithm allows even two extra reductions, and this feature increases the mathematical difficulties significantly. We formulate and analyse a two-dimensional Markov process, from which we deduce relevant stochastic properties of Barrett’s multiplication algorithm within modular exponentiation algorithms. This allows to transfer the timing attacks and local timing attacks (where a second side-channel attack exhibits the execution times of the particular modular squarings and multiplications) on Montgomery’s multiplication algorithm to attacks on Barrett’s algorithm. However, there are also differences. Barrett’s multiplication algorithm requires additional attack substeps, and the attack efficiency is much more sensitive to variations of the parameters. We treat timing attacks on RSA with CRT, on RSA without CRT, and on Diffie-Hellman, as well as local timing attacks against these algorithms in the presence of basis blinding. Experiments confirm our theoretical results

    Méthodes logicielles formelles pour la sécurité des implémentations cryptographiques

    Get PDF
    Implementations of cryptosystems are vulnerable to physical attacks, and thus need to be protected against them.Of course, malfunctioning protections are useless.Formal methods help to develop systems while assessing their conformity to a rigorous specification.The first goal of my thesis, and its innovative aspect, is to show that formal methods can be used to prove not only the principle of the countermeasures according to a model,but also their implementations, as it is where the physical vulnerabilities are exploited.My second goal is the proof and the automation of the protection techniques themselves, because handwritten security code is error-prone.Les implémentations cryptographiques sont vulnérables aux attaques physiques, et ont donc besoin d'en être protégées.Bien sûr, des protections défectueuses sont inutiles.L'utilisation des méthodes formelles permet de développer des systèmes tout en garantissant leur conformité à des spécifications données.Le premier objectif de ma thèse, et son aspect novateur, est de montrer que les méthodes formelles peuvent être utilisées pour prouver non seulement les principes des contre-mesures dans le cadre d'un modèle, mais aussi leurs implémentations, étant donné que c'est là que les vulnérabilités physiques sont exploitées.Mon second objectif est la preuve et l'automatisation des techniques de protection elles-même, car l'écriture manuelle de code est sujette à de nombreuses erreurs, particulièrement lorsqu'il s'agit de code de sécurité

    High Speed Clock Glitching

    Get PDF
    In recent times, hardware security has drawn a lot of interest in the research community. With physical proximity to the target devices, various fault injection hardware attack methods have been proposed and tested to alter their functionality and trigger behavior not intended by the design. There are various types of faults that can be injected depending on the parameters being used and the level at which the device is tampered with. The literature describes various fault models to inject faults in clock of the target but there are no publications on overclocking circuits for fault injection. The proposed method bridges this gap by conducting high-speed clock fault injection on latest high-speed micro-controller units where the target device is overclocked for a short duration in the range of 4-1000 ns. This thesis proposes a method of generating a high-speed clock and driving the target device using the same clock. The properties of the target devices for performing experiments in this research are: Externally accessible clock input line and GPIO line. The proposed method is to develop a high-speed clock using custom bit-stream sent to FPGA and subsequently using external analog circuitry to generate a clock-glitch which can inject fault on the target micro-controller. Communication coupled with glitching allows us to check the target\u27s response, which can result in information disclosure.This is a form of non-invasive and effective hardware attack. The required background, methodology and experimental setup required to implement high-speed clock glitching has been discussed in this thesis. The impact of different overclock frequencies used in clock fault injection is explored. The preliminary results have been discussed and we show that even high-speed micro-controller units should consider countermeasures against clock fault injection. Influencing the execution of Tiva C Launchpad and STM32F4 micro-controller units has been shown in this thesis. The thesis details the method used for the testing a
    • …
    corecore