
An Improved Timing Attack with Error Detection on
RSA-CRT*

CHEN Cai-Sen, Wang Tao, Tian Jun-Jian

Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang

caisenchen@163.com

Abstract. Several types of timing attacks have been published, but they are
either in theory or hard to be taken into practice. In order to improve the
feasibility of attack, this paper proposes an advance timing attack scheme on
RSA-CRT with T-test. Similar timing attacks have been presented, such as BB-
Attack and Shindler’s attack, however none of them applied statistical tool in
their methods with such efficiency, and showed the complete recovery in
practice by attacking on RSA-CRT. With T-test, we enlarge the 0-1 gap, reduce
the neighborhood size and improve the precision of decision. The most
contribution of this paper is that our algorithm has an error detection
mechanism which can detect the erroneous decision of guessing qk and correct
it. Experiment results show that we could make the success rate of recovering q
to be 100% indeed for interprocess timing attack, recovery 1024 bits RSA key
completely in practice.

Keywords: Timing attack, RSA, T-test, Montgomery reduction, Chinese
Remainder Theorem, Error detection

1 Introduction

Cryptography offers several algorithms that are considered safe on the theoretical
level. However, there may be some deceptive signs that expose the algorithms to
potential attacks on implementation level. Timing attack is one of the side channel
attacks where the attacker could break a cryptosystem by measuring the time
differences between specific events. Others include power analysis and attacks based
on electromagnetic radiation. Unlike the timing attack, these extended side channel
attacks require special equipment and physical access to the machine.

Since the idea of Timing attack was first suggested in 1996 by Paul Kocher[1].
There are several papers that present new, or extend existing theoretical timing attack.
In 1998 J.-F. Dhem[2] took Timing attack into practice on Smartcard that stores a
private RSA key. Schindler[3] presented timing attacks on implementation of RSA
exponentiation that employ the Chinese Remainder Theorem (CRT). There are also
some papers which use the results of such theoretical papers to attack some

* Supported by the National Natural Science Foundation of China under Grant No. 60772082;

the Natural Science Foundation of Hebei Province under Grant No. 08M010.

mailto:caisenchen@163.com

algorithms in practice. OpenSSL is a well-known free (open source) crypto library
which is often used on Apache Web Servers to provide SSL functions. In 2003
Brumley and Boneh[4] demonstrated that timing attacks can reveal RSA private keys
from an OpenSSL-based web server over a local network. In 2005, Onur Aciimez and
Shindler[5] proposed an efficient attack on RSA implementations that use CRT with
Montgomery’s multiplication algorithm, and suggested a general improvement of the
decision strategy.

Although there are several implementation of RSA algorithm, such as the well-
known left to right square and multiply, CRT algorithm. Here we only focus on the
timing attack on RSA-CRT. These timing attack algorithm mostly guess the secret key
bit by bit. The advantage of this technique is that it is fast, there are some
disadvantages. One is that the attacker couldn’t begin guess the bit of q from the first
one, Schindler began at the fifth bit, the first few bits are assumed to be determined by
BB-attack, in fact they are to be found by using exhaustive search, this will be
explained latter, then using the timing attack to guess the remaining bits of q.
However, only one of the 31 exhaustive searches makes sense. The other one is that if
one single bit is guessed wrongly using timing attack, the following work is
meaningless and time consuming, because the next bit to be guessed is based on the
hypothesis that the former bits have been guessed correctly, it will not get the correct
key. In this paper we propose an advanced algorithm that has an error-detection
mechanism. Basically, our algorithm is using statistical data collected by timing
measurements to detect the error guess. The experiment result shows that this
algorithm could detect the error guess and is an improvement of reducing the number
of samples, by a factor of more than 30 for complete recovery key in practice. The
most important contribution is, that we improve the feasibility of timing attack on
RSA.

The remainder of the paper is structured as follows. Section 2 gives an overview of
timing attack, describes the RSA implementation that we are going to use to
demonstrate our algorithm, and briefly describes the Chinese Remainder Theorem and
Montgomery multiplication algorithm, and explains the statistical tools we are going
to use. The general idea of Timing attack on RSA-CRT is introduced in Section 3.
Section 4 presents our improved algorithm in details. In Section 5, implementation
details are addressed, and the complexity analysis and comparison are discussed
between the former attacks and our algorithm. Section 6 is the conclusion.

2 Preliminaries

2.1 Timing Attack

Implementations of cryptographic algorithms often perform computations in non-
constant time, due to performance optimizations. If secret parameters are involved in
such operations, these timing variations can leak some information and provided
enough knowledge of the implementation is at hand, a careful statistical analysis
could even lead to the total recovery of these secret parameters. This idea was firstly

proposed by Kocher[1].
Timing attack is one of the Side Channel Attack, it is essentially a way of

obtaining some user’s private information by carefully measuring the time it takes the
user to carry out cryptographic operations. The attacker could measure and use time
differences between specific event in the system, once enough information is
available, the cryptosystem could be broken. The more accurate the measurements of
the attacker are, the errors are smaller, and the fewer time measurements are required.

2.2 Implementation of RSA

2.2.1 RSA
To date, RSA algorithm is still the most popular and secure pubic-key cryptographic
system[6]. It is proposed by Rivest, Shamir and Adleman in 1977. Let p and q be two
distinct large random primes. The modulus n is the product of these two primes:
n=p*q. Euler’s totient function of n is given by () (1)(1)n p q . And then

select a number 1<e<phi(n), where phi(n)=(p-1)*(q-1), such that gcd(e,phi(n))=1, and
compute d with d*e=1mod phi(n) using the extended Euclidean algorithm. Here e is
the public exponent and d is the private exponent. The encryption is performed by
computing C=Me (mod n), where M is the plaintext and C is the ciphertext from which
the plaintext M can be computed using M=Cd (mod n).

2.2.2 Chinese Remainder Theorem
The heart of RSA decryption is a modular exponentiation M=Cd(mod n). OpenSSL
uses the Chinese Remainder Theorem to perform this exponentiation. The CRT is
described as follows [6].

Algorithm 1 Chinese Remainder Theorem

Input: p，q，d，n and C

1： ， ； mod(1) modd p
pC C p q

)

mod(1) modd q
qC C

2： ， ； 1(modu q q p 1(mod)v p p q
3： (,) (,) . . modp q n p q p qM CRT C C u C v C n ；

4：Return M 。
RSA decryption with CRT gives up to a factor of four speedup than normal

modular exponentiation, such as left to right square and multiply, making it essential
for competitive RSA implementations. RSA-CRT is not vulnerable to Kocher’s
original timing attack. However, since RSA-CRT uses the factor of N, once the
factorization of N is revealed, it is easy to obtain the private key d by computing d=e-

1mod phi(n).

2.2.3 Montgomery Multiplication
The sliding windows exponentiation algorithm performs a modular multiplication at

every step. Montgomery Multiplication (MM) is discovered by Peter Montgomery[7]
in 1985. It is the most efficient algorithm to compute modular multiplications during a
modular exponentiation. It uses additions and divisions by powers of 2, which can be
accomplished by shifting the operand to the right, to calculate the result. Since it
eliminates time consuming integer divisions, the efficiency of the algorithm is very
high.

Montgomery Multiplication is used to calculate
1(mod)Z abR n

Where R is a constant power of 2, R>n, and R-1 is the inverse of R in module n. A
conversion to and from n-residue format is required to use this algorithm. Hence, it is
more attractive to use it for repeated multiplications on the same residue, just like
modular exponentiations. In order to use Montgomery reduction all variables must
first be put into Montgomery form which transforms number x into xR(mod q). So x
and y can be multiplied as: xR*bR=cR2. Then, use the fast Montgomery reduction
algorithm, to compute cR*R-1=cR(mod q). Note that the result is also in Montgomery
form, and thus can be directly used in subsequent Montgomery operations. At the end
of the exponentiation algorithm the output is put back into standard form by
multiplying it by R-1mod q. Montgomery Multiplication Algorithm is shown in Figure
1. The conditional subtraction s-n is called ‘extra reduction’ [7].

Algorithm 2 Montgomery Multiplication Algorithm

Input: X, Y
S=MM(X,Y)=XYR-1(mod n)
1. S=0;
2. for i=0 to n-1 do
3. if Xi is 1 then
4. S=S+Y
5. end if
6. if S is an odd number then
7. S=S+N
8. end if
9. Shift right the binary form of S with one

position
10. end for
11. if S n then
12. S=S-n
13. end if

2.3 Statistical tool

In this section, the statistical tools that used in our improved algorithm. The most
important tool is the two-sample unpooled T-test. We describe the aim and the main
characteristic of T-test. In this paper we use the output values for decision making on
the key bits during the data analysis phase of timing attack.

Two-sample unpooled T-test [8] aims to analyze the means of samples from two
independent populations. The null hypothesis states that there are no differences
between the means of the different groups. The alternative hypothesis is that any of

the group means differ from the others[9]. T-test aims to test the rejection region.

0 1 2:H ，
1 1 2:H

The t-test function is given in Equation 1 as follow.

1 2 1 2

1 2

() (

1 1

x x
t

s
n n

)

 (1)

Where
2 2

1 1 2 2

1 2

(1) (1)

2

n s n s
s

n n

， 2s s , 1x and 2x are the estimated

means of the two samples.
Given a confidence level , it is possible to calculate a two-sided confidence

interval with an upper and a lower bound value using the t-test function. If the null
hypothesis is true, then the absolute values of these bounds are equal. If the test
function output a value within the confidence interval, then the null hypothesis is
accepted. If the test function results a value outside the confidence interval, then mean
values are considered significantly different. When H0 is true, the form of rejection
region is described as follow.

1 2 1 2

1 2

() ()

1 1

x x
k

s
n n

 Where K= / 2 1 2(2)t n n

)

, rejection region is

|t| . / 2 1 2(2t n n

3 General idea of Timing Attack on RSA-CRT

As shown in the Algorithm 2, the timing difference is depended whether the extra
reduction step is taken. The key relevant fact about Montgomery reduction is at the
end of the reduction one checks whether the output cR is greater than q. If so, one
subtracts q from the output to ensure that the output cR is in the rang[0 . The

timing difference depended on different inputs. Because Schindler noticed that the
probability of an extra reduction during an exponentiation gd (mod n) is proportional
to how close g is to q[3]. He showed that the probability for an extra reduction is
given in Equation 2:

,)q

mod
Pr[]

2

g q
extra reduction

R

(2)

Consequently, as g approaches either factor p or q from below, the number of
extra reductions during the exponentiation algorithm greatly increases. At exact
multiples of p or q, the number of extra reductions drops dramatically. This
relationship is showed in Figure 2[3], with the discontinuities appearing at multiples
of p and q. By detecting timing differences that result from extra reductions we can
tell how close g is to a multiple of one of factors.

g mod q=0

g mod p=0

q 2q 3q p 4q 5q

N
um

be
r

of
 M

on
tg

om
er

y
re

du
ct

io
n

g1

g2

Values g between o and 6q

Figure 2 Number of extra reductions in a Montgomery reduction as a function of the input
g

As showed in Figure 2, when g1<q<g2, the difference of the number of
Montgomery reduction between g1 and g2 is larger than the situation that g1<g2<q. So
we can reduce the search space of q by measuring the timing difference between g1
and g2. This is the basic idea of timing attack on RSA-CRT.

BB-Attack[4] exploits the multiplications
1,(, ;q)MM temp y q that are carried

out in the exponentiation phase of Sliding Window Exponentiation. Let assume that
the attacker has gotten the most significant k bits, he tries to recover qk, where
q=(q0,q1,…,q511). The attacker generates g and gi, where g=(q0,q1,…,qk-1,0,0,…,0) and
gi=(q0,q1,…,qk-1,1,0,…,0). Note that there are two possibilities for q: g<q<gi (when
qk=0) or g<gi<q (when qk=1). He decides qk is 0 or 1 by determining the decryption
time and , where ug=g*R-

1(mod n) and ugi=gi*R-1(mod n). If qk is 0, as shown in Figure 2, g<q<gi, then |t1-t2|
must be “large”, otherwise |t1-t2| must be “small”, which implies that qk is 1. BB-
Attack does not only compare the timings for gR-1(mod n) and giR

-1(mod n), but also
uses the whole neighborhoods of g and gi, ie., N(g,N)={g,g+1,…,g+N-1} and
N(gi,N)={gi,gi+1,…,gi+N-1}, respectively. The parameter N is called the
neighborhood size. We difine Tg and Tgi as the time to compute g and gi with sliding
windows when considering a neighborhood of values, calculated as follow.

1 () (mod)d
gt T g Time u n 2 () (mod)d

i git T g Time u n

1

0

1

0

(()* (mod))

(()* (mod))
i

N

g
i

N

g i
i

T DecryptTime g i R n

T DecryptTime g i R n

The attacker could decide whether qk is 0 or 1 depending on the relationship of
the value of |

i
|g gT T and a criteria △, △ is build by the attack. If | |

ig gT T >△,

qk is 0, else qk is 1. Repeat the former steps to guess the remaining bits of q, if the
upper half of the bit representation of either p or q to factorize n by applying a lattice-
based algorithm[9].

More details about BB-Attack can be found in [4]. Whereas Schindler’s attack
exploits the multiplications with the second power of the base(multiplied with R) in
the initialization phase of the table, more detail can be found in [5].

4 Improved Timing Attack with Error Detection

4.1 A new attack model using analysis of T-test with Measurements

This paper we propose a new timing attack model on RSA-CRT, using the statistical
tool, such as T-test function, we using the T value instead of ||

ig gT T which is used

by BB-Attack to decide whether the qk is 1 or 0. The values generated by the T-test
function need to be analyzed before using them in the decision making on the
correctness of guess. According to T-test function, when the difference between the
means of two groups, the T value will within the confidence interval, otherwise
outside the confidence interval. Suppose we already get the top k-1 bits of q, Let g be
an integer that has the same top k-1 bits as q and the remaining bits of g are 0, and gi
is the same of g, except the k’th set to 1, in our new attack model, we recover the k’th
bit of q as follows:
1. if the k’th bit of q is 1, then g<gi<q, Otherwise,

g<q<gi.
2. Compute R and R-1, and build he ug and ugi, ug=g*R

-1(mod
n), ugi=gi*R

-1(mod n), This step puts g and gi into
Montgomery form.

3. Measuring the time to decrypt both ug and ugi, using a
neighborhood size N, we will get two samples:

 and 1 21 2[, ,...,]NT T T T [, ,...,]NT T T T , where Ti=DecryptTime(ug),
and 'iT = DecryptTime(ugi).

4. Calculate the T value of T and 'T using Equation 2. If
g<q<gi, the T value will outside the confidence
interval. Thus we use the T value as an indicator for
the k’th bit of q.
So we also build a criteria t △ according to the confidence interval, if Tk> t△ , we

guess qk is 0, else qk is 1.
Our attack model has several advantages on the previous ones, using the T value

can enlarge the 0-1 gap when qk is 0, where the 0-1 gap is the time
difference| |

ig gT T . so we can reduce the neighborhood size, improving the accuracy

of guess and the efficiency of attack. Using our attack model, we enlarge the 0-1 gap
by a factor of about 2 over BB-Attack, reducing the neighborhood size from 400 into
the rang [250,300] for key of different length.

The most interesting feature for the new attack model is its error detection
mechanism. With this mechanism, we make timing attack on RSA more practical than
previous ones. This will be proposed in the next section.

4.2 Algorithm with error detection

There are some important problems about the previous timing attack, it is difficult to
take into practice. Those timing attack algorithms mostly guess the secret key bit by
bit. The advantage of this technique is that it is fast, there are some disadvantages.
One is that the attacker couldn’t begin guess the bit of q from the first one, Schindler
began at the fifth bit, even more the top bits are supposed to be known. The first few
bits are assumed to be determined by BB-Attack. Because when the number of the
known bits of q is small, the difference between g and gi are large, as shown in Figure
2, when the 0-1 gap is small, we can’t decide the value of qk is 0 or 1. Hence, they are
to be found by using exhaustive search, then using the timing attack to guess the
remaining bits of q. However, only one of the 31 exhaustive searches makes sense.
The other problem is that if one single bit is guessed wrongly using timing attack, the
following work is meaningless and time consuming, because the next bit to be
guessed is based on the hypothesis that the former bits have been guess correctly.
Suppose we made an erroneous decision for the value of qk. Since the bit guessed of
qk is based on the hypothesis that {q0,q1,…,qk-1} is guessed correctly, we attempt to
decide whether qk is 1 or 0 will thus not make sense, and the criteria we build will
both be meaningless. This remains true for the following bits.

The remarkable mechanism of our attack is that it has an error detection
mechanism. We find that if the bit of qk-1 is guessed wrongly, then one of the two
inequations g<gi<q and q<g<gi will be always true. As shown in figure 2, the

||
ig gT T

|

 will always be “small”, in addition, we enlarge the 0-1 gap, so the next

|
ig gT T will be always “small”. Normally, there aren’t 10~20 continuous 1 bits in

the random private key of OpenSSL’s RSA implementation, the error detection is
based on this fact. If appearing a number of continuous “small” 0-1gaps during the
timing attack, we decide that an erroneous choice has happened. We also propose an
error correction policy using the observation of 0-1 gap distributing.

4.3 Error Correction Policy

When using the error correction policy, success rate of recovering q will be improved.
It is necessary to find a way to make the attack robust against an as big error
proportion as possible. Errors are always detected based on some criterion value. We
decided to use a criterion based on the decision criterion for the next bit value after
many trials.

We try to find a solution of the first problem of the previous timing attack,
suppose we want to guess the top 5 bits of q by timing attack, So we enumerate 31
instance of the top 5 bits of q, but only one instance makes meaning. For every 31
instance, if we find that there are 10~20 continuous “small” 0-1gaps in one instance,
we decide this instance is meaningless, stop the attack for this instance and try the
next instance. Using this solution we get the first top 5 bits of q, but nor for every
instance we try the whole timing attack, it is quite time-consuming.

For the second problem, the solution is similar to the first one. We trace the
decision criterion back from the first bit Q1 which the continuous “small” 0-1gaps

start from. And then alter the criteria to change it’s value, then the next bit Q2’s
value,…,until there are not a number of continuous “small” 0-1gaps, but not
exhaustive search the instances of a window of bits as the first solution.

Basically, the error correction policy is described as following:
1. For (2k-1 instances of the top k bits of q)

{
2. For every instance, start by performing the attack

until guessing the 20th bit of q, without any
correction.

3. Get the first 20 T value, analyze the with the
decision criterion.

4. if appear 10~20 continuous “small” 0-1gaps
5. we decide this instance is meaningless, and continue

next instance.
6. else

for(i=k; i<the number of guessing bits of q;i++)
{

i. continue the timing attack as before, and check
that whether appearing 10~20 continuous “small”
0-1gaps.

ii. If so
{
(1) Try to correct the value of the bit Q1 which the

continuous “small” 0-1gaps start from, and try
to change the bit value at position Q2, then
Q3,…, repeat the attack, until there are not
continuous “small” 0-1gaps.

(2) If there are still continuous “small” 0-1gaps
in this way, we conclude the first error
occurred before Q1, or else q has 10~20
continuous bits which are all 1, but the
probability is very small. We thus find the
last place, before Q1 and change the bit value,
restart the same process.

}
Else continue;

}
}

The above algorithm will try to detect these errors and correct them. Of course,
every time the upper half of the bit representation of q is guessed, we can factorize n
by applying a lattice-based algorithm, and then get the private key d using calculate
d=e-1(mod (p-1)(q-1)), check whether it is the right one and stop as soon as the key is
found.

5 Experimental Results and Complexity Analysis

5.1 Environment configuration

The same as BB-Attack, we take the OpenSSL as the target of timing attack, but the
version of OpenSSL is 0.9.8b [11], All test are run under Linux Fedora on a Intel P4
3.00GHz processor with 1 GB of RAM, using gcc 4.1.2. All RSA keys are generated
at random via OpenSSL’s key generation routine. The environment configuration of
experiment is shown in Table 1.

Table 1 Environment configuration of Timing attack on RSA-CRT
Configuration Item Parameter
Operating System Fedora Linux 8
CPU Intel(R) Pentium(R) 4 CPU 3.00GHz
Gcc gcc version 4.1.2
Cryptographic Library OpenSSL v0.9.8b

5.2 Experimental Results

Under the environment configuration shown in Table 1, we performed a series of
experiments to demonstrate the effectives of our attack on OpenSSL, especially the
error detection mechanism of our attack. In order to get the time of decryption
accurately, we use the Pentium cycle counter on the attack machine as such a clock,
giving a time resolution of 3.0 billion ticks per second. Thus, the decryption time is
the cycle counter which is accessible via the “rdtsc” instruction [12], which returns
the 64-bit cycle count since the CPU initialization.

Firstly, we repeat BB-Attack, suppose that the top 5 bits of q has been know, but
we using the T-value which has been introduced in section 2.3, instead of | |

ig gT T .

Using the T-value to decide the bit of qk is 0 or 1 by a decision criterion. During the
experiment, we use a sample size of 7 and a neighborhood size of 300, resulting in
1075200 total queries for BB-Attack on 1024 RSA bits. With these parameters a
typical attack approximately 65 minutes in the abstract. We could recover all the bits
of q by timing attack, but it is not necessary, if we get the upper half of the bit
representation of q, n could be factorized by applying a lattice-based algorithm [9]. As
we suppose that the top 5 bits of q has been know, the distribution of T-value of bits
guessed of factor q from 6th to 106th is shown in Figure 3.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 10
2

10
6

Bits guessed of factor q

T-
v
al
u
e

T-value of bit guessed

Figure 3 The distribution of T-value of bits guessed of factor q from 6th to 106th

0

20000

40000

60000

80000

100000

120000

140000

6

1
0

1
4

1
8

2
2

2
6

3
0

3
4

3
8

4
2

4
6

5
0

5
4

5
8

6
2

6
6

7
0

7
4

7
8

8
2

8
6

9
0

9
4

9
8

1
0
2

1
0
6

Bits guessed of factor q

T
i
m
e

v
a
r
i
a
t
i
o
n

i
n

C
P
U

c
y
c
l
e
s

cycles of bit guessed

Figure 4 The distribution of ||

ig gT T of bits guessed of factor q from 6th to 106th

As shown in Figure 3, Using the decision criterion of T-value 0.04, we can
recover the top 106 bits of q completely. And the 0-1 gap is about 200% larger in our
attack.

In practice, during the timing attack, we performed interprocess attacks, the
precision of time decryption may be affected by the noise caused by other process in
operation system or the confliction of software and hardware. Clearly, in network
timing attacks the noise may be much larger, and hence an attack may become
impractical even if it is feasible for an interprocess attack, under the same
environmental conditions. The noise may result in an erroneous decision for the value
of bit qk, affect BB-Attack and Shindler’attack as well. But the previous timing
attacks without error correction policy, it is hard to take them in practice. We propose
an algorithm for error detection, the result is shown in Figure 5, when the 98th bit of q
is guessed wrongly, it is obviously that there are more than 10 continuous “small” 0-

1gaps after 98th, we can conclude that the 98th guessed bit may be wrong, so then we
try the error correction policy to correct the erroneous decision. We can try to alter the
criteria to be 0.03, so the 98th bit of q can be guessed as 0 criteria, and continue the
attack of 99th bit of q.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

Bits guessed of factor q

T
-
v
a
l
u
e

no error

error happen

Error happen

Figure 5 Detection of an error at the 98th bit guessed of q for a 1024-bit RSA key
There are two things worth about the experiment: Firstly, it can be seen that

when we use T-value instead of | |
ig gT T , it can enlarge the 0-1 gaps, making the 0-1

gaps are larger than before, so 0-1 gaps are easy to be distinguished, we improve the
precision of decision. Secondly, thanks to the error detection mechanism, we can
build an attack model that would be robust against errors and correct them, improving
the practice of timing attack.

5.3 Complexity Analysis and Comparisons

We focused on improvements able to improve success rate of recovering a secret key
by timing attack. The previous timing attacks are based the on the hypothesis that the
top 5 bits of q have been know, but how to get the top 5 bits? In fact they are to be
found by using exhaustive search, then using the timing attack to guess the remaining
bits of q. If using the error correction policy, it could reduce the sample size for
successfully by a factor about 31 in theory.

The performance of timing attack are highly environment dependent, therefore it
is not reliable to compare the figures of two different attacks running on different
systems[5]. When we perform the BB-Attack and Shindler’attack in the same
environment shown in Table 1, under the precondition that the top 5 bits of q have
been know, our attack aims to get the bits of q from 6th to 256th, and calculate the
success rate. For interprocess attacks, the probability for correct guesses is in the rang
[91%,96%], and the error guesses mostly happen in the top bit from 6th to 32th when
we attack the 1024 bits RSA key in OpenSSL. In the attack of these bits, we must
increase the neighborhood size to reduce the difference between g and gi, the
neighborhood is about 500, while it is about 300 for the bits from 100th to 256th. For
network attacks, the probability for correct guesses is lower than above, is in the rang

[81%,90%], and even lower, with noise caused by network delay times additionally.
The success rate of recovering a secret 1024 bits key is shown in Table 2.

Table 2 Success rate of recovering q
Success Rate

Interprocess attack Network attack Timing Attack
Without error

correction
With error
correction

Without error
correction

With error
correction

BB-Attack 91%~96% 99%-100% 81%~90% 90%-95%
Shindler’attack 93%~97% 99%-100% 82%~90% 91%-95%

The Shindler’attack can give an improvement by a factor of more than 5 over BB-
Attack[5], but it could not improve the success rate of attack so much. For network
attack, as the noise caused by network delay is much large, affecting the time
precision badly. With error correction, we make the success rate of recovering q to be
100% indeed, whereas more samples will be need in practice.

6 Conclusion

We have proposed an advanced timing attack on RSA-CRT with error correction
policy. Our experimental result shows that using T-test statistical tool, it could enlarge
the 0-1 gap to reduce the neighborhood size and improve the precision of decision;
most important is that our attack algorithm has an error detection mechanism. This
mechanism has been demonstrated in the experiment of timing attack on RSA-CRT of
OpenSSL in practice. With error correction, the 1024bits RSA key can be completely
recovered in interprocess timing attack in practice.

References

1. Paul Kocher. Timing attack on Implementations of Diffie-Hellman, RSA, DSS, and Other
systems[A]. Proceedings of Advances in Cryptology-CRYPTO’96, Springer-verlag,
1996:104-113.

2. J.-F.Dhem, K.Koeune, P.-A. Leroux, P. Mestre,J.-J.Quisquater and J.-L. Williams. A
practical implementation of the timing attack. In proceedings of CARDIS 98, or University
Catholique de Louvain, Crypto Group Technical Report.

3 W. Schindler．A timing attack against RSA with the Chinese remainder theorem,Proc. of
Cryptographic Hardware and Embedded Systems (CHES 2000) (C. Paar, eds.), Springer,
2000, LNCS 1965: 109-124.

4. Brumley.D and Boneh.D．Remote timing attacks are practical[J],Proceedings of the 12th
Usenix Security Symposium, 2003,4(12):1-14

5. Onur Acıic¸mez,Werner Schindler. Improving Brumley and Boneh Timing Attack on
Unprotected SSL Implementations Oregon State University Corvallis[A], USA. CCS’05,
November 7–11, 2005, Alexandria, Virginia, USA.Copyright 2005 ACM 1595932267/
05/0011

6. A.J. Menezes, P.C. van Oorschot, S.C. Vanstone:Handbook of Applied Cryptography, Boca
Raton, CRC Press 1997.

7. Montgomery.Peter．Modular multiplication without trial division[J]. Mathematics of
Computation, 1985,44(170):519–521

8. J. M. Utts and R. F. Heckard, Statistical Ideas and Methods. South Melbourne, Victoria
3205, 80 Dorcas Street, Australia: Cengage LearningAustralia, 2006.Rudolf Toth,Zoltan

9. Faigl,Mate Szalay,Sandor Imre. An advanced Timing attack scheme on RSA.In Proceedings
of the 13th International Telecommunications Network Strategy and Planning
Symposium,NETWORKS 2008.Budapest,Magyarorszag,2008.09.18-2008.10.02 pp.1-
24.(ISBN:978-963-8111-68-5).

10. D. Coppersmith: Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities. J.Cryptology 10 (no. 4) (1997) 233-260.

11. OpenSSL Project: OpenSSL:http://www.openssl.org.
12. Intel. Using the RDTSC instruction for performance monitoring [R]. Amerrica:Intel, 1997.

