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Abstract. Several types of timing attacks have been published, but they are 
either in theory or hard to be taken into practice. In order to improve the 
feasibility of attack, this paper proposes an advance timing attack scheme on 
RSA-CRT with T-test. Similar timing attacks have been presented, such as BB-
Attack and Shindler’s attack, however none of them applied statistical tool in 
their methods with such efficiency, and showed the complete recovery in 
practice by attacking on RSA-CRT. With T-test, we enlarge the 0-1 gap, reduce 
the neighborhood size and improve the precision of decision. The most 
contribution of this paper is that our algorithm has an error detection 
mechanism which can detect the erroneous decision of guessing qk and correct 
it. Experiment results show that we could make the success rate of recovering q 
to be 100% indeed for interprocess timing attack, recovery 1024 bits RSA key 
completely in practice. 

Keywords: Timing attack, RSA, T-test, Montgomery reduction, Chinese 
Remainder Theorem, Error detection 

1   Introduction 

Cryptography offers several algorithms that are considered safe on the theoretical 
level. However, there may be some deceptive signs that expose the algorithms to 
potential attacks on implementation level. Timing attack is one of the side channel 
attacks where the attacker could break a cryptosystem by measuring the time 
differences between specific events. Others include power analysis and attacks based 
on electromagnetic radiation. Unlike the timing attack, these extended side channel 
attacks require special equipment and physical access to the machine. 

Since the idea of Timing attack was first suggested in 1996 by Paul Kocher[1]. 
There are several papers that present new, or extend existing theoretical timing attack. 
In 1998 J.-F. Dhem[2] took Timing attack into practice on Smartcard that stores a 
private RSA key. Schindler[3] presented timing attacks on implementation of RSA 
exponentiation that employ the Chinese Remainder Theorem (CRT). There are also 
some papers which use the results of such theoretical papers to attack some 
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algorithms in practice. OpenSSL is a well-known free (open source) crypto library 
which is often used on Apache Web Servers to provide SSL functions. In 2003 
Brumley and Boneh[4] demonstrated that timing attacks can reveal RSA private keys 
from an OpenSSL-based web server over a local network. In 2005, Onur Aciimez and 
Shindler[5] proposed an efficient attack on RSA implementations that use CRT with 
Montgomery’s multiplication algorithm, and suggested a general improvement of the 
decision strategy. 

Although there are several implementation of RSA algorithm, such as the well-
known left to right square and multiply, CRT algorithm. Here we only focus on the 
timing attack on RSA-CRT. These timing attack algorithm mostly guess the secret key 
bit by bit. The advantage of this technique is that it is fast, there are some 
disadvantages. One is that the attacker couldn’t begin guess the bit of q from the first 
one, Schindler began at the fifth bit, the first few bits are assumed to be determined by 
BB-attack, in fact they are to be found by using exhaustive search, this will be 
explained latter, then using the timing attack to guess the remaining bits of q. 
However, only one of the 31 exhaustive searches makes sense. The other one is that if 
one single bit is guessed wrongly using timing attack, the following work is 
meaningless and time consuming, because the next bit to be guessed is based on the 
hypothesis that the former bits have been guessed correctly, it will not get the correct 
key. In this paper we propose an advanced algorithm that has an error-detection 
mechanism. Basically, our algorithm is using statistical data collected by timing 
measurements to detect the error guess. The experiment result shows that this 
algorithm could detect the error guess and is an improvement of reducing the number 
of samples, by a factor of more than 30 for complete recovery key in practice. The 
most important contribution is, that we improve the feasibility of timing attack on 
RSA. 

The remainder of the paper is structured as follows. Section 2 gives an overview of 
timing attack, describes the RSA implementation that we are going to use to 
demonstrate our algorithm, and briefly describes the Chinese Remainder Theorem and 
Montgomery multiplication algorithm, and explains the statistical tools we are going 
to use. The general idea of Timing attack on RSA-CRT is introduced in Section 3. 
Section 4 presents our improved algorithm in details. In Section 5, implementation 
details are addressed, and the complexity analysis and comparison are discussed 
between the former attacks and our algorithm. Section 6 is the conclusion. 

2   Preliminaries 

2.1   Timing Attack 

Implementations of cryptographic algorithms often perform computations in non-
constant time, due to performance optimizations. If secret parameters are involved in 
such operations, these timing variations can leak some information and provided 
enough knowledge of the implementation is at hand, a careful statistical analysis 
could even lead to the total recovery of these secret parameters. This idea was firstly 



proposed by Kocher[1]. 
Timing attack is one of the Side Channel Attack, it is essentially a way of 

obtaining some user’s private information by carefully measuring the time it takes the 
user to carry out cryptographic operations. The attacker could measure and use time 
differences between specific event in the system, once enough information is 
available, the cryptosystem could be broken. The more accurate the measurements of 
the attacker are, the errors are smaller, and the fewer time measurements are required.  

2.2   Implementation of RSA 

2.2.1 RSA 
To date, RSA algorithm is still the most popular and secure pubic-key cryptographic 
system[6]. It is proposed by Rivest, Shamir and Adleman in 1977. Let p and q be two 
distinct large random primes. The modulus n is the product of these two primes: 
n=p*q. Euler’s totient function of n is given by ( ) ( 1)( 1)n p q    . And then 

select a number 1<e<phi(n), where phi(n)=(p-1)*(q-1), such that gcd(e,phi(n))=1, and 
compute d with d*e=1mod phi(n) using the extended Euclidean algorithm. Here e is 
the public exponent and d is the private exponent. The encryption is performed by 
computing C=Me (mod n), where M is the plaintext and C is the ciphertext from which 
the plaintext M can be computed using M=Cd (mod n). 

2.2.2 Chinese Remainder Theorem 
The heart of RSA decryption is a modular exponentiation M=Cd(mod n). OpenSSL 
uses the Chinese Remainder Theorem to perform this exponentiation. The CRT is 
described as follows [6]. 

Algorithm 1 Chinese Remainder Theorem 

Input: p，q，d，n and C 

1： ， ； mod( 1) modd p
pC C  p q

)

mod( 1) modd q
qC C 

2： ， ； 1( modu q q p 1( mod )v p p q
3： ( , ) ( , ) . . modp q n p q p qM CRT C C u C v C n   ； 

4：Return M 。 
RSA decryption with CRT gives up to a factor of four speedup than normal 

modular exponentiation, such as left to right square and multiply, making it essential 
for competitive RSA implementations. RSA-CRT is not vulnerable to Kocher’s 
original timing attack. However, since RSA-CRT uses the factor of N, once the 
factorization of N is revealed, it is easy to obtain the private key d by computing d=e-

1mod phi(n). 

2.2.3   Montgomery Multiplication 
The sliding windows exponentiation algorithm performs a modular multiplication at 



every step. Montgomery Multiplication (MM) is discovered by Peter Montgomery[7] 
in 1985. It is the most efficient algorithm to compute modular multiplications during a 
modular exponentiation. It uses additions and divisions by powers of 2, which can be 
accomplished by shifting the operand to the right, to calculate the result. Since it 
eliminates time consuming integer divisions, the efficiency of the algorithm is very 
high. 

Montgomery Multiplication is used to calculate 
1(mod )Z abR n  

Where R is a constant power of 2, R>n, and R-1 is the inverse of R in module n. A 
conversion to and from n-residue format is required to use this algorithm. Hence, it is 
more attractive to use it for repeated multiplications on the same residue, just like 
modular exponentiations. In order to use Montgomery reduction all variables must 
first be put into Montgomery form which transforms number x into xR(mod q). So x 
and y can be multiplied as: xR*bR=cR2. Then, use the fast Montgomery reduction 
algorithm, to compute cR*R-1=cR(mod q). Note that the result is also in Montgomery 
form, and thus can be directly used in subsequent Montgomery operations. At the end 
of the exponentiation algorithm the output is put back into standard form by 
multiplying it by R-1mod q. Montgomery Multiplication Algorithm is shown in Figure 
1. The conditional subtraction s-n is called ‘extra reduction’ [7]. 

Algorithm 2 Montgomery Multiplication Algorithm 

Input: X, Y 
S=MM(X,Y)=XYR-1(mod n) 
1. S=0; 
2. for i=0 to n-1 do 
3.  if Xi is 1 then 
4.    S=S+Y 
5.  end if 
6.  if S is an odd number then 
7.   S=S+N 
8.  end if 
9. Shift right the binary form of S with one 

position 
10. end for 
11. if S n  then 
12.  S=S-n 
13. end if 

2.3   Statistical tool 

In this section, the statistical tools that used in our improved algorithm. The most 
important tool is the two-sample unpooled T-test. We describe the aim and the main 
characteristic of T-test. In this paper we use the output values for decision making on 
the key bits during the data analysis phase of timing attack. 

Two-sample unpooled T-test [8] aims to analyze the means of samples from two 
independent populations. The null hypothesis states that there are no differences 
between the means of the different groups. The alternative hypothesis is that any of 



the group means differ from the others[9]. T-test aims to test the rejection region. 
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The t-test function is given in Equation 1 as follow. 
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， 2s s  , 1x  and 2x  are the estimated 

means of the two samples. 
Given a confidence level , it is possible to calculate a two-sided confidence 

interval with an upper and a lower bound value using the t-test function. If the null 
hypothesis is true, then the absolute values of these bounds are equal. If the test 
function output a value within the confidence interval, then the null hypothesis is 
accepted. If the test function results a value outside the confidence interval, then mean 
values are considered significantly different. When H0 is true, the form of rejection 
region is described as follow. 
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, rejection region is 

|t| .  / 2 1 2( 2t n n  

3   General idea of Timing Attack on RSA-CRT 

As shown in the Algorithm 2, the timing difference is depended whether the extra 
reduction step is taken. The key relevant fact about Montgomery reduction is at the 
end of the reduction one checks whether the output cR is greater than q. If so, one 
subtracts q from the output to ensure that the output cR is in the rang[0 . The 

timing difference depended on different inputs. Because Schindler noticed that the 
probability of an extra reduction during an exponentiation gd (mod n) is proportional 
to how close g is to q[3]. He showed that the probability for an extra reduction is 
given in Equation 2: 

, )q

mod
Pr[  ]

2

g q
extra reduction

R
  

(2) 

Consequently, as g approaches either factor p or q from below, the number of 
extra reductions during the exponentiation algorithm greatly increases. At exact 
multiples of p or q, the number of extra reductions drops dramatically. This 
relationship is showed in Figure 2[3], with the discontinuities appearing at multiples 
of p and q. By detecting timing differences that result from extra reductions we can 
tell how close g is to a multiple of one of factors.  
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Figure 2 Number of extra reductions in a Montgomery reduction as a function of the input 
g 

As showed in Figure 2, when g1<q<g2, the difference of the number of 
Montgomery reduction between g1 and g2 is larger than the situation that g1<g2<q. So 
we can reduce the search space of q by measuring the timing difference between g1 
and g2. This is the basic idea of timing attack on RSA-CRT. 

BB-Attack[4] exploits the multiplications 
1,( , ;q )MM temp y q  that are carried 

out in the exponentiation phase of Sliding Window Exponentiation. Let assume that 
the attacker has gotten the most significant k bits, he tries to recover qk, where 
q=(q0,q1,…,q511). The attacker generates g and gi, where g=(q0,q1,…,qk-1,0,0,…,0) and 
gi=(q0,q1,…,qk-1,1,0,…,0). Note that there are two possibilities for q: g<q<gi (when 
qk=0) or g<gi<q (when qk=1). He decides qk is 0 or 1 by determining the decryption 
time  and , where ug=g*R-

1(mod n) and ugi=gi*R-1(mod n). If qk is 0, as shown in Figure 2, g<q<gi, then |t1-t2| 
must be “large”, otherwise |t1-t2| must be “small”, which implies that qk is 1. BB-
Attack does not only compare the timings for gR-1(mod n) and giR

-1(mod n), but also 
uses the whole neighborhoods of g and gi, ie., N(g,N)={g,g+1,…,g+N-1} and 
N(gi,N)={gi,gi+1,…,gi+N-1}, respectively. The parameter N is called the 
neighborhood size. We difine Tg and Tgi as the time to compute g and gi with sliding 
windows when considering a neighborhood of values, calculated as follow. 
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The attacker could decide whether qk is 0 or 1 depending on the relationship of 
the value of |

i
|g gT T  and a criteria △, △ is build by the attack. If | |

ig gT T >△, 

qk is 0, else qk is 1. Repeat the former steps to guess the remaining bits of q, if the 
upper half of the bit representation of either p or q to factorize n by applying a lattice-
based algorithm[9]. 



More details about BB-Attack can be found in [4]. Whereas Schindler’s attack 
exploits the multiplications with the second power of the base(multiplied with R) in 
the initialization phase of the table, more detail can be found in [5]. 

4   Improved Timing Attack with Error Detection  

4.1   A new attack model using analysis of T-test with Measurements 

This paper we propose a new timing attack model on RSA-CRT, using the statistical 
tool, such as T-test function, we using the T value instead of ||

ig gT T  which is used 

by BB-Attack to decide whether the qk is 1 or 0. The values generated by the T-test 
function need to be analyzed before using them in the decision making on the 
correctness of guess. According to T-test function, when the difference between the 
means of two groups, the T value will within the confidence interval, otherwise 
outside the confidence interval. Suppose we already get the top k-1 bits of q, Let g be 
an integer that has the same top k-1 bits as q and the remaining bits of g are 0, and gi 
is the same of g, except the k’th set to 1, in our new attack model, we recover the k’th 
bit of q as follows: 
1. if the k’th bit of q is 1, then g<gi<q, Otherwise, 

g<q<gi. 
2. Compute R and R-1, and build he ug and ugi, ug=g*R

-1(mod 
n), ugi=gi*R

-1(mod n), This step puts g and gi into 
Montgomery form. 

3. Measuring the time to decrypt both ug and ugi, using a 
neighborhood size N, we will get two samples: 

 and 1 21 2[ , ,..., ]NT T T T [ , ,..., ]NT T T T   , where Ti=DecryptTime(ug), 
and 'iT = DecryptTime(ugi). 

4. Calculate the T value of T and 'T using Equation 2. If 
g<q<gi, the T value will outside the confidence 
interval. Thus we use the T value as an indicator for 
the k’th bit of q. 
So we also build a criteria t △ according to the confidence interval, if Tk> t△ , we 

guess qk is 0, else qk is 1. 
Our attack model has several advantages on the previous ones, using the T value 

can enlarge the 0-1 gap when qk is 0, where the 0-1 gap is the time 
difference| |

ig gT T . so we can reduce the neighborhood size, improving the accuracy 

of guess and the efficiency of attack. Using our attack model, we enlarge the 0-1 gap 
by a factor of about 2 over BB-Attack, reducing the neighborhood size from 400 into 
the rang [250,300] for key of different length. 

The most interesting feature for the new attack model is its error detection 
mechanism. With this mechanism, we make timing attack on RSA more practical than 
previous ones. This will be proposed in the next section. 



4.2   Algorithm with error detection 

There are some important problems about the previous timing attack, it is difficult to 
take into practice. Those timing attack algorithms mostly guess the secret key bit by 
bit. The advantage of this technique is that it is fast, there are some disadvantages. 
One is that the attacker couldn’t begin guess the bit of q from the first one, Schindler 
began at the fifth bit, even more the top bits are supposed to be known. The first few 
bits are assumed to be determined by BB-Attack. Because when the number of the 
known bits of q is small, the difference between g and gi are large, as shown in Figure 
2, when the 0-1 gap is small, we can’t decide the value of qk is 0 or 1. Hence, they are 
to be found by using exhaustive search, then using the timing attack to guess the 
remaining bits of q. However, only one of the 31 exhaustive searches makes sense. 
The other problem is that if one single bit is guessed wrongly using timing attack, the 
following work is meaningless and time consuming, because the next bit to be 
guessed is based on the hypothesis that the former bits have been guess correctly. 
Suppose we made an erroneous decision for the value of qk. Since the bit guessed of 
qk is based on the hypothesis that {q0,q1,…,qk-1} is guessed correctly, we attempt to 
decide whether qk is 1 or 0 will thus not make sense, and the criteria we build will 
both be meaningless. This remains true for the following bits. 

The remarkable mechanism of our attack is that it has an error detection 
mechanism. We find that if the bit of qk-1 is guessed wrongly, then one of the two 
inequations g<gi<q and q<g<gi will be always true. As shown in figure 2, the 

||
ig gT T

|

 will always be “small”, in addition, we enlarge the 0-1 gap, so the next 

|
ig gT T  will be always “small”. Normally, there aren’t 10~20 continuous 1 bits in 

the random private key of OpenSSL’s RSA implementation, the error detection is 
based on this fact. If appearing a number of continuous “small” 0-1gaps during the 
timing attack, we decide that an erroneous choice has happened. We also propose an 
error correction policy using the observation of 0-1 gap distributing. 

4.3   Error Correction Policy 

When using the error correction policy, success rate of recovering q will be improved. 
It is necessary to find a way to make the attack robust against an as big error 
proportion as possible. Errors are always detected based on some criterion value. We 
decided to use a criterion based on the decision criterion for the next bit value after 
many trials. 

We try to find a solution of the first problem of the previous timing attack, 
suppose we want to guess the top 5 bits of q by timing attack, So we enumerate 31 
instance of the top 5 bits of q, but only one instance makes meaning. For every 31 
instance, if we find that there are 10~20 continuous “small” 0-1gaps in one instance, 
we decide this instance is meaningless, stop the attack for this instance and try the 
next instance. Using this solution we get the first top 5 bits of q, but nor for every 
instance we try the whole timing attack, it is quite time-consuming. 

For the second problem, the solution is similar to the first one. We trace the 
decision criterion back from the first bit Q1 which the continuous “small” 0-1gaps 



start from. And then alter the criteria to change it’s value, then the next bit Q2’s 
value,…,until there are not a number of continuous “small” 0-1gaps, but not 
exhaustive search the instances of a window of bits as the first solution. 

Basically, the error correction policy is described as following: 
1. For (2k-1 instances of the top k bits of q) 

{ 
2. For every instance, start by performing the attack 

until guessing the 20th bit of q, without any 
correction. 

3. Get the first 20 T value, analyze the with the 
decision criterion. 

4. if appear 10~20 continuous “small” 0-1gaps 
5.  we decide this instance is meaningless, and continue 

next instance. 
6. else 

for(i=k; i<the number of guessing bits of q;i++) 
{ 

i. continue the timing attack as before, and check 
that whether appearing 10~20 continuous “small” 
0-1gaps. 

ii. If so 
{ 
(1) Try to correct the value of the bit Q1 which the 

continuous “small” 0-1gaps start from, and try 
to change the bit value at position Q2, then 
Q3,…, repeat the attack, until there are not 
continuous “small” 0-1gaps. 

(2) If there are still continuous “small” 0-1gaps 
in this way, we conclude the first error 
occurred before Q1, or else q has 10~20 
continuous bits which are all 1, but the 
probability is very small. We thus find the 
last place, before Q1 and change the bit value, 
restart the same process. 

} 
Else continue; 

} 
} 

The above algorithm will try to detect these errors and correct them. Of course, 
every time the upper half of the bit representation of q is guessed, we can factorize n 
by applying a lattice-based algorithm, and then get the private key d using calculate 
d=e-1(mod (p-1)(q-1)), check whether it is the right one and stop as soon as the key is 
found. 



5   Experimental Results and Complexity Analysis 

5.1   Environment configuration 

The same as BB-Attack, we take the OpenSSL as the target of timing attack, but the 
version of OpenSSL is 0.9.8b [11], All test are run under Linux Fedora on a Intel P4 
3.00GHz processor with 1 GB of RAM, using gcc 4.1.2. All RSA keys are generated 
at random via OpenSSL’s key generation routine. The environment configuration of 
experiment is shown in Table 1. 

Table 1 Environment configuration of Timing attack on RSA-CRT  
Configuration Item Parameter 
Operating System Fedora Linux 8 
CPU Intel(R) Pentium(R) 4 CPU 3.00GHz 
Gcc gcc version 4.1.2 
Cryptographic Library OpenSSL v0.9.8b 

5.2   Experimental Results 

Under the environment configuration shown in Table 1, we performed a series of 
experiments to demonstrate the effectives of our attack on OpenSSL, especially the 
error detection mechanism of our attack. In order to get the time of decryption 
accurately, we use the Pentium cycle counter on the attack machine as such a clock, 
giving a time resolution of 3.0 billion ticks per second. Thus, the decryption time is 
the cycle counter which is accessible via the “rdtsc” instruction [12], which returns 
the 64-bit cycle count since the CPU initialization. 

Firstly, we repeat BB-Attack, suppose that the top 5 bits of q has been know, but 
we using the T-value which has been introduced in section 2.3, instead of | |

ig gT T . 

Using the T-value to decide the bit of qk is 0 or 1 by a decision criterion. During the 
experiment, we use a sample size of 7 and a neighborhood size of 300, resulting in 
1075200 total queries for BB-Attack on 1024 RSA bits. With these parameters a 
typical attack approximately 65 minutes in the abstract. We could recover all the bits 
of q by timing attack, but it is not necessary, if we get the upper half of the bit 
representation of q, n could be factorized by applying a lattice-based algorithm [9]. As 
we suppose that the top 5 bits of q has been know, the distribution of T-value of bits 
guessed of factor q from 6th to 106th is shown in Figure 3. 
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Figure 3 The distribution of T-value of bits guessed of factor q from 6th to 106th 
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Figure 4 The distribution of ||

ig gT T  of bits guessed of factor q from 6th to 106th 

As shown in Figure 3, Using the decision criterion of T-value 0.04, we can 
recover the top 106 bits of q completely. And the 0-1 gap is about 200% larger in our 
attack. 

In practice, during the timing attack, we performed interprocess attacks, the 
precision of time decryption may be affected by the noise caused by other process in 
operation system or the confliction of software and hardware. Clearly, in network 
timing attacks the noise may be much larger, and hence an attack may become 
impractical even if it is feasible for an interprocess attack, under the same 
environmental conditions. The noise may result in an erroneous decision for the value 
of bit qk, affect BB-Attack and Shindler’attack as well. But the previous timing 
attacks without error correction policy, it is hard to take them in practice. We propose 
an algorithm for error detection, the result is shown in Figure 5, when the 98th bit of q 
is guessed wrongly, it is obviously that there are more than 10 continuous “small” 0-



1gaps after 98th, we can conclude that the 98th guessed bit may be wrong, so then we 
try the error correction policy to correct the erroneous decision. We can try to alter the 
criteria to be 0.03, so the 98th bit of q can be guessed as 0 criteria, and continue the 
attack of 99th bit of q. 
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Figure 5 Detection of an error at the 98th bit guessed of q for a 1024-bit RSA key 
There are two things worth about the experiment: Firstly, it can be seen that 

when we use T-value instead of | |
ig gT T , it can enlarge the 0-1 gaps, making the 0-1 

gaps are larger than before, so 0-1 gaps are easy to be distinguished, we improve the 
precision of decision. Secondly, thanks to the error detection mechanism, we can 
build an attack model that would be robust against errors and correct them, improving 
the practice of timing attack. 

5.3   Complexity Analysis and Comparisons 

We focused on improvements able to improve success rate of recovering a secret key 
by timing attack. The previous timing attacks are based the on the hypothesis that the 
top 5 bits of q have been know, but how to get the top 5 bits? In fact they are to be 
found by using exhaustive search, then using the timing attack to guess the remaining 
bits of q. If using the error correction policy, it could reduce the sample size for 
successfully by a factor about 31 in theory. 

The performance of timing attack are highly environment dependent, therefore it 
is not reliable to compare the figures of two different attacks running on different 
systems[5]. When we perform the BB-Attack and Shindler’attack in the same 
environment shown in Table 1, under the precondition that the top 5 bits of q have 
been know, our attack aims to get the bits of q from 6th to 256th, and calculate the 
success rate. For interprocess attacks, the probability for correct guesses is in the rang 
[91%,96%], and the error guesses mostly happen in the top bit from 6th to 32th when 
we attack the 1024 bits RSA key in OpenSSL. In the attack of these bits, we must 
increase the neighborhood size to reduce the difference between g and gi, the 
neighborhood is about 500, while it is about 300 for the bits from 100th to 256th. For 
network attacks, the probability for correct guesses is lower than above, is in the rang 



[81%,90%], and even lower, with noise caused by network delay times additionally. 
The success rate of recovering a secret 1024 bits key is shown in Table 2. 

Table 2 Success rate of recovering q 
Success Rate 

Interprocess attack Network attack Timing Attack
Without error 

correction 
With error 
correction 

Without error 
correction 

With error 
correction 

BB-Attack 91%~96% 99%-100% 81%~90% 90%-95% 
Shindler’attack 93%~97% 99%-100% 82%~90% 91%-95% 

The Shindler’attack can give an improvement by a factor of more than 5 over BB-
Attack[5], but it could not improve the success rate of attack so much. For network 
attack, as the noise caused by network delay is much large, affecting the time 
precision badly. With error correction, we make the success rate of recovering q to be 
100% indeed, whereas more samples will be need in practice.  

6   Conclusion 

We have proposed an advanced timing attack on RSA-CRT with error correction 
policy. Our experimental result shows that using T-test statistical tool, it could enlarge 
the 0-1 gap to reduce the neighborhood size and improve the precision of decision; 
most important is that our attack algorithm has an error detection mechanism. This 
mechanism has been demonstrated in the experiment of timing attack on RSA-CRT of 
OpenSSL in practice. With error correction, the 1024bits RSA key can be completely 
recovered in interprocess timing attack in practice. 
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