
Timing attacks and local timing attacks against
Barrett’s modular multiplication algorithm

Johannes Mittmann and Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
firstname.lastname@bsi.bund.de

Abstract. Montgomery’s and Barrett’s modular multiplication algorithms are widely
used in modular exponentiation algorithms, e.g. to compute RSA or ECC operations.
While Montgomery’s multiplication algorithm has been studied extensively in the
literature and many side-channel attacks have been detected, to our best knowledge
no thorough analysis exists for Barrett’s multiplication algorithm. This article closes
this gap. For both Montgomery’s and Barrett’s multiplication algorithm, differences
of the execution times are caused by conditional integer subtractions, so-called extra
reductions. Barrett’s multiplication algorithm allows even two extra reductions, and
this feature increases the mathematical difficulties significantly.
We formulate and analyse a two-dimensional Markov process, from which we deduce
relevant stochastic properties of Barrett’s multiplication algorithm within modular
exponentiation algorithms. This allows to transfer the timing attacks and local
timing attacks (where a second side-channel attack exhibits the execution times of the
particular modular squarings and multiplications) on Montgomery’s multiplication
algorithm to attacks on Barrett’s algorithm. However, there are also differences.
Barrett’s multiplication algorithm requires additional attack substeps, and the attack
efficiency is much more sensitive to variations of the parameters. We treat timing
attacks on RSA with CRT, on RSA without CRT, and on Diffie-Hellman, as well
as local timing attacks against these algorithms in the presence of basis blinding.
Experiments confirm our theoretical results.
Keywords: Timing attacks · Local timing attacks · Barrett modular multiplication ·
RSA · RSA-CRT · Diffie-Hellman · Stochastic modeling · Statistical decision theory

1 Introduction
In his famous pioneer paper [Koc96] Kocher introduced timing analysis. Two years later
[DKL+98] presented a timing attack on an early version of the Cascade chip. Both
papers attacked unprotected RSA implementations which did not apply the Chinese
Remainder Theorem (CRT). While in [Koc96] the execution times of the particular
modular multiplications and squarings are at least approximately normally distributed,
this is not the case for the implementation in [DKL+98] since the Cascade chip applied the
wide-spread Montgomery multiplication algorithm [Mon85]. Due to conditional integer
subtractions (so-called extra reductions) the execution times can only attain two values, and
the probability whether an extra reduction occurs depends on the preceding Montgomery
operations within the modular exponentiation. This fact caused substantial additional
mathematical difficulties.

In [Sch02b] the random behaviour of the occurence of extra reductions within a
modular exponentiation was studied. The random extra reductions were modelled by a
non-stationary time-discrete stochastic process. The analysis of this stochastic process
(combined with an efficient error detection and correction strategy) allowed to drastically

mailto:firstname.lastname@bsi.bund.de

2 Timing attacks and local timing attacks against Barrett’s modular multiplication

reduce the sample size, i.e. the number of timing measurements, namely from 200,000 to
300,000 [DKL+98] down to 5,000 [SKQ01a].

The analysis of the above-mentioned stochastic process turned out to be very fruitful
also beyond this attack scenario. First, the insights into the probabilistic nature of the
occurance of extra reductions within modular exponentiations enabled the development of
a completely new timing attack against RSA with CRT and Montgomery’s multiplication
algorithm [Sch00]. This attack was extended to an attack on the sliding-window-based
RSA implementation in OpenSSL v.0.9.7b [BB05], which caused a patch. The efficiency
of this attack (in terms of the sample size) was increased by a factor of ≈ 10 in [ASK05].
Years later it was shown that even exponent blinding (cf. [Koc96], Sect. 10) does not suffice
to prevent this type of timing attack [Sch15, Sch16].

Moreover, in [Sch02a, AS08, DGD+16] local timing attacks were considered. There, a
side-channel attack (e.g. a power attack or an instruction cache attack) is carried out first,
which yields the execution times of the particular Montgomery operations. This plus of
information (compared to ‘pure’ timing attacks) allows to overcome basis blinding (a.k.a.
message blinding, cf. [Koc96], Sect. 10), and the attack works against both RSA with CRT
and RSA without CRT. We mention that [AS08] led to a patch of OpenSSL v.0.9.7e.

Barrett’s (modular) multiplication algorithm (a.k.a. Barrett reduction) [Bar86] is a
well-known alternative to Montgomery’s algorithm. It is described in several standard
manuals covering RSA, Diffie-Hellman (DH) or elliptic curve cryptosystems (e.g. [MvOV96,
CFA+05]). The efficiency of Barrett’s algorithm compared to Montgomery’s algorithm has
been analysed for both software implementations [BGV93] and hardware implementations
[KVV10]. However, to our knowledge there do not exist thorough security evaluations
of Barrett’s multiplication algorithm. In this paper we close this gap. For the sake of
comparison with previous work on Montgomery’s algorithm, we focus again on RSA with
and without CRT. In addition, we cover static DH, which can be handled almost identically
to RSA without CRT.

Similarly to Montgomery’s algorithm, timing differences in Barrett’s multiplication
algorithm are caused by conditional subtractions (so-called extra reductions), which suggests
to apply similar mathematical methods. However, for Barrett’s algorithm the mathematical
challenges are significantly greater. One reason is that more than one extra reduction may
occur. In particular, in place of a stochastic process over {0, 1}, a two-dimensional Markov
process over [0, 1)× {0, 1, 2} has to be analysed and understood. Again, probabilities can
be expressed by multidimensional integrals over [0, 1)`, but the integrands are less suitable
for explicit computations than in the Montgomery case. This causes additional problems
in particular for the local attacks, where ` is usually very large. Our results show many
parallels to the Montgomery case, and after suitable modifications all the known attacks on
Montgomery’s algorithm can be transferred to Barrett’s multiplication algorithm. However,
there are also significant differences. First of all, for Barrett’s multiplication algorithm the
attack efficiency is very sensitive to deviations of the modulus (i.e. of the RSA primes p1
and p2 if the CRT is applied), and attacks on RSA with CRT require additional attack
steps.

The paper is organized as follows: In Section 2 we study the stochastic behaviour of
the execution times of Barrett’s multiplication algorithm in the context of the square
& multiply exponentiation algorithm. We develop, prove and collect results, which will
be needed later to perform the attacks. In Section 3 properties of Montgomery’s and
Barrett’s multiplication algorithms are compared, and furthermore, a variant of Barrett’s
algorithm is investigated. In Section 4 the particular attacks are described and analysed,
while Section 5 provides experimental results which confirm the theoretical considerations.
Interesting in its own right is also an efficient look-ahead strategy. Finally, Section 6
discusses countermeasures.

Johannes Mittmann and Werner Schindler 3

2 Stochastic modeling of modular exponentiation
In this section we analyse the stochastic timing behaviour of modular exponentiation
algorithms when Barrett’s multiplication is applied. We consider a basic version of Barrett’s
multiplication algorithm (cf. Algorithm 1). The slightly optimized version of this algorithm
due to Barrett [Bar86] will be discussed in Subsubsection 3.2.2 (cf. Algorithm 5), where
we show that the same analysis applies, albeit with additional algorithmic noise. Since we
assume that Steps 1 to 3 of Algorithm 1 run in constant time for fixed modulus length and
base (see Justification of Assumption 2 in Subsubsection 3.2.1), we focus on the stochastic
behaviour of the number of extra reductions in Algorithm 1. This knowledge will be needed
in Section 4 when we consider concrete attacks. In Subsection 2.1 we investigate the
Barrett’s multiplication algorithm in isolation, and in Subsection 2.2 we use our results to
study the square & multiply exponentiation algorithm if Barrett’s multiplication is applied.
This approach can be transferred to table-based exponentiation algorithms. Finally, we aim
at equivalent results, which are already known for Montgomery’s multiplication algorithm.
We reach this goal, but the technical difficulties are significantly larger than they are
for Montgomery’s multiplication algorithm (cf. Subsection 3.1). In Subsection 2.3 we
summarize the facts that are relevant for the attacks in Section 4. This allows to skip the
technical Subsections 2.1 and 2.2 during the first reading of this paper.

2.1 Barrett’s modular multiplication algorithm
In this subsection we study the basic version of Barrett’s modular multiplication algorithm
(cf. Algorithm 1).

Definition 1. Let N := {0, 1, . . . }. For M ∈ N≥2, let ZM := {0, 1, . . . ,M − 1}. Given
x ∈ Z, we denote by x mod M the unique integer in ZM congruent to x modulo M , i.e.
x mod M = x − bx/McM . We define the fractional part of a real number x ∈ R by
{x} := x− bxc ∈ [0, 1).

Let M ∈ N≥2 be a modulus of length k = blogbMc + 1 in base b ∈ N≥2, i.e. we
have bk−1 ≤ M ≤ bk − 1. The multiplication modulo M of two integers x, y ∈ ZM
can be computed by an integer multiplication followed by a modular reduction. The
resulting remainder is r := (x · y) mod M = z − qM , where z := xy and q := bz/Mc. The
computation of q is the most expensive part, because it involves an integer division. The
idea of Barrett’s multiplication algorithm is to approximate q by

q̃ :=
⌊
bz/bk−1c · bb2k/Mc

bk+1

⌋
.

⌊
(z/bk−1) · (b2k/M)

bk+1

⌋
= q .

If the integer reciprocal µ := bb2k/Mc of M has been precomputed and if b is a power
of 2, then q̃ can be computed using only multiplications and bit shifts, which on common
computer architectures are cheaper operations than divisions. From q̃ an approximation
r̃ := z − q̃M of r can be obtained. Since q̃ can be smaller than q, it may be necessary to
correct r̃ by some conditional subtractions of M , which we call extra reductions. This
leads to Algorithm 1.

Barrett showed that at most two extra reductions are required in Algorithm 1. The
following lemma provides an exact characterization of the number of extra reductions
and is at the heart of our subsequent analysis. In particular, the lemma identifies two
important constants α ∈ [0, 1) and β ∈ (0, 1] associated with M and b.

Lemma 1. On input x, y ∈ ZM , the number of extra reductions carried out in Algorithm 1
is ⌈

α
x

M

y

M
+ β

{
xy

bk−1

}
−
{
xy

M

}⌉
∈ Z3 , (1)

4 Timing attacks and local timing attacks against Barrett’s modular multiplication

Algorithm 1 Barrett modular multiplica-
tion.
Input: A modulus M ∈ N≥2 of length

k = blogbMc + 1 in base b ∈ N≥2, the
integer reciprocal µ = bb2k/Mc of M ,
and integers x, y ∈ ZM .

Output: (x · y) mod M .
1: z ← x · y
2: q̃ ← bbz/bk−1cµ/bk+1c
3: r ← z − q̃ ·M
4: while r ≥M do
5: r ← r −M . Extra reduction
6: end while
7: return r

Algorithm 2 Left-to-right binary (a.k.a.
square & multiply) exponentiation.
Input: A modulus M ∈ N≥2, a ba-

sis y ∈ ZM , and an exponent d =
(d`−1, . . . , d0)2 ∈ N≥1 with d`−1 = 1.

Output: yd mod M .
1: x← y
2: for i← `− 2, . . . , 0 do
3: x← x2 mod M
4: if di = 1 then
5: x← (x · y) mod M
6: end if
7: end for
8: return x

where

α := (M2/b2k){b2k/M} ∈ [0, 1) and β := bb2k/Mc/bk+1 ∈ (0, 1] . (2)

Proof. Set z := xy, q := bz/Mc, and q̃ := bbz/bk−1cµ/bk+1c. Since z mod M = z − qM ,
the number of extra reductions is

q − q̃ =
⌊
z

M

⌋
−
⌊⌊

z

bk−1

⌋
µ

bk+1

⌋
=
⌈⌊

z

M

⌋
−
⌊

z

bk−1

⌋
µ

bk+1

⌉
=
⌈(

z

M
−
{
z

M

})
−
(

z

bk−1 −
{

z

bk−1

})
µ

bk+1

⌉
=
⌈
z

b2k

(
b2k

M
− µ

)
+
{

z

bk−1

}
µ

bk+1 −
{
z

M

}⌉
=
⌈
z

b2k

{
b2k

M

}
+
{

z

bk−1

}
µ

bk+1 −
{
z

M

}⌉
=
⌈
α
z

M2 + β

{
z

bk−1

}
−
{
z

M

}⌉
.

Since α, β ∈ [0, 1], this number of extra reductions is in {0, 1, 2}.

Remark 1. Note that α = 0 if and only if M divides b2k. In order to exclude this corner
case (which is not relevant to our applications anyway) we assume α > 0 for the remainder
of this paper. Typically, b = 2ws for some word size ws ≥ 1 and α = 0 can only happen if
M is a power of two, and then modular multiplication is easy anyway. More special cases
of α and β will be discussed in Subsubsection 3.2.3.

We first study the distribution of the number of extra reductions which are needed in
Algorithm 1 for random inputs. To this end, we introduce the following stochastic model.
Random variables are denoted by capital letters, and realizations of these random variables
(i.e. values taken on by these random variables) are denoted with the corresponding small
letters.

Stochastic Model 1. Let s, t ∈ [0, 1). We define the random variable

R(s, t) :=
⌈
αst+ βU − V

⌉
, (3)

where U, V are independent, uniformly distributed random variables on [0, 1).

Johannes Mittmann and Werner Schindler 5

A realization r of R(s, t) expresses the random quantity of extra reductions which
is required in Algorithm 1 for normalized inputs x/M, y/M ∈ M−1ZM within a small
neighbourhood of s and t in [0, 1).

Justification of Stochastic Model 1. Assume that N(s) and N(t) are small neighbourhoods
of s and t in [0, 1), respectively. Let smin, s

′ ∈ N(s) ∩M−1ZM such that smin is minimal.
Analogously, let tmin, t

′ ∈ N(t) ∩M−1ZM such that tmin is minimal. Then there are
m,n ∈ Z such that s′ = smin + m/M and t′ = tmin + n/M . Then x′ := Ms′, xmin :=
Msmin, y

′ := Mt′, ymin := Mtmin are integers in ZM such that x′y′ − xminymin ≡ mymin +
nxmin+mn (mod M). The integersm and n assume values in {0, . . . , |N(s)∩M−1ZM |−1}
and {0, . . . , |N(t) ∩M−1ZM | − 1}, respectively. For cryptographically relevant modulus
sizes, these numbers are very large so that one may assume that the admissible terms
{(mymin + nxmin +mn) mod M} are essentially uniformly distributed on ZM , justifying
the model assumption that the random variable V is uniformly distributed on [0, 1). The
assumptions on the uniformity of U and the independence of U and V have analogous
justifications.

Remark 2. (i) In Stochastic Model 1 and Stochastic Model 2 we follow a strategy which
has been very successful in the analysis of Montgomery’s multiplication algorithm.
Of course, the number of extra reductions needed for a particular computation
(xy) mod M is deterministic. On the other hand, by Lemma 1 the number of extra
reductions only depends on the fact whether in (1) the sum within the brackets d·e is
contained in (−1, 0], (0, 1] or (1, 2). We exploit the fact that concerning the number
of extra reductions x, x′ ∈ ZM have similar stochastic properties if |x/M − x′/M |
is small in R. Furthermore, for moduli M that are used in cryptography even very
small intervals in [0, 1) contain a gigantic number of elements of ZM/M .

(ii) For extremely small input x or y of Algorithm 1, Stochastic Model 1 may not apply.
In particular, if one of the inputs x, y is 0 or 1, the integer product x · y is already
reduced modulo M , hence q̃ = 0 and no extra reductions occur (cf. Remark 3).

Definition 2. For x ∈ R, we use the notation (x)+ := max{0, x}. Moreover, we set
(x)0

+ := 1{x≥0} and (x)n+ := ((x)+)n for n ∈ N>0.

Lemma 2. Let s, t ∈ [0, 1).

(i) The term (an)−1(ax+ b)n+ is an antiderivative of (ax+ b)n−1
+ for all a, b ∈ R with

a 6= 0 and all n ∈ N>0.

(ii) Let B([0, 1)) be the Borel σ-algebra on [0, 1). For r ∈ Z3 and B ∈ B([0, 1)), we have
Pr
(
R(s, t) ≤ r, V ∈ B

)
= β−1 ∫

B

(
(r − αst+ v)+ − (r − αst− β + v)+

)
dv.

(iii) For r ∈ Z3, we have Pr
(
R(s, t) ≤ r

)
= (2β)−1(−(r − αst)2

+ + (r − αst− β)2
+ + (r −

αst+ 1)2
+ − (r − αst− β + 1)2

+
)
.

(iv) We have E
(
R(s, t)

)
= αst+ β/2.

(v) We have Var
(
R(s, t)

)
= αst+ β/2− (αst+ β/2)2 + β−1(αst+ β − 1)2

+.

Proof. For assertion (i), see e.g. [BPC09]. Now let r ∈ Z3 and v ∈ [0, 1). By (3), we
have Pr

(
R(s, t) ≤ r | V = v

)
=
∫ 1

0 1{αst+βu−v≤r} du =
∫ 1

0 (r − αst − βu + v)0
+ du =

β−1((r − αst + v)+ − (r − αst − β + v)+
)
. Now let B ∈ B([0, 1)). Since V is uniformly

distributed on [0, 1), we obtain Pr
(
R(s, t) ≤ r, V ∈ B

)
=
∫
B

Pr
(
R(s, t) ≤ r | V =

v
)
dv = β−1 ∫

B

(
(r − αst + v)+ − (r − αst − β + v)+

)
dv. Setting B = [0, 1), we get

Pr
(
R(s, t) ≤ r

)
= β−1 ∫ 1

0
(
(r−αst+ v)+− (r−αst−β+ v)+

)
dv = (2β)−1(−(r−αst)2

+ +
(r−αst−β)2

+ + (r−αst+ 1)2
+− (r−αst−β+ 1)2

+
)
. Distinguishing the cases αst+β ≤ 1

6 Timing attacks and local timing attacks against Barrett’s modular multiplication

and αst+ β > 1, the expectation and variance of R(s, t) can be determined by careful but
elementary computations.

Lemma 3. Let S be a uniformly distributed random variable on [0, 1) and let t ∈ (0, 1).

(i) For r ∈ Z3, we have Pr
(
R(S, t) ≤ r

)
= (6αβt)−1(−(r)3

+ + (r − αt)3
+ + (r − β)3

+ +
(r + 1)3

+ − (r − αt− β)3
+ − (r − αt+ 1)3

+ − (r − β + 1)3
+ + (r − αt− β + 1)3

+
)
.

(ii) We have E
(
R(S, t)

)
= αt/2 + β/2.

(iii) We have Var
(
R(S, t)

)
= αt/2 + β/2− (αt/2 + β/2)2 + (3αβt)−1(αt+ β − 1)3

+.

Proof. Let r ∈ Z3. We have Pr
(
R(S, t) ≤ r

)
=
∫ 1

0 Pr
(
R(s, t) ≤ r

)
ds. By Lemma 2 (iii),

we obtain Pr
(
R(S, t) ≤ r

)
= (2β)−1 ∫ 1

0
(
−(r − αst)2

+ + (r − αst− β)2
+ + (r − αst+ 1)2

+ −
(r − αst− β + 1)2

+
)
ds = (6αβt)−1(−(r)3

+ + (r − αt)3
+ + (r − β)3

+ + (r + 1)3
+ − (r − αt−

β)3
+− (r−αt+ 1)3

+− (r−β+ 1)3
+ + (r−αt−β+ 1)3

+
)
. Distinguishing the cases αt+β ≤ 1

and αt+ β > 1, the expectation and variance of R(S, t) can be determined by careful but
elementary computations.

Lemma 4. Let S be a uniformly distributed random variable on [0, 1).

(i) For r ∈ Z3, we have Pr
(
R(S, S) ≤ r

)
= (30α1/2β)−1(−15r2 min{α, (r)+}1/2 +

10rmin{α, (r)+}3/2 − 3 min{α, (r)+}5/2 + 15(r − β)2 min{α, (r − β)+}1/2 − 10(r −
β) min{α, (r − β)+}3/2 + 3 min{α, (r − β)+}5/2 + 15(r + 1)2 min{α, (r + 1)+}1/2 −
10(r + 1) min{α, (r + 1)+}3/2 + 3 min{α, (r + 1)+}5/2 − 15(r − β + 1)2 min{α, (r −
β + 1)+}1/2 + 10(r − β + 1) min{α, (r − β + 1)+}3/2 − 3 min{α, (r − β + 1)+}5/2

)
.

(ii) We have E
(
R(S, S)

)
= α/3 + β/2.

(iii) If α + β ≤ 1, then Var
(
R(S, S)

)
= α/3 + β/2 − (α/3 + β/2)2. If α + β > 1, then

Var
(
R(S, S)

)
= α/3+β/2− (α/3+β/2)2 +(15β)−1(15(1−β)2−10α(1−β)+3α2)−

8(15α1/2β)−1(1− β)5/2.

Proof. Let r ∈ Z3. We have Pr
(
R(S, S) ≤ r

)
=
∫ 1

0 Pr
(
R(s, s) ≤ r

)
ds. By Lemma 2 (iii),

we obtain Pr
(
R(S, S) ≤ r

)
= (2β)−1 ∫ 1

0
(
−(r − αs2)2

+ + (r − αs2 − β)2
+ + (r − αs2 +

1)2
+ − (r − αs2 − β + 1)2

+
)
ds. For c ∈ {r, r − β, r + 1, r − β + 1}, we have

∫ 1
0 (c −

αs2)2
+ = (15α1/2)−1(15c2 min{α, (c)+}1/2−10cmin{α, (c)+}3/2+3 min{α, (c)+}5/2

)
. This

implies (i). Distinguishing the cases α+β ≤ 1 and α+β > 1, the expectation and variance
of R(S, S) can be determined by careful but elementary computations.

2.2 Modular exponentiation (square & multiply algorithms)
Now we consider the left-to-right binary exponentiation algorithm (see Algorithm 2),
where modular squarings and multiplications are performed using Barrett’s algorithm (see
Algorithm 1). Our goal is to define and analyse a stochastic process which allows to study
the stochastic behaviour of the execution time of Algorithm 2. Subsection 2.2 provides a
sequence of technical lemmata which be needed later.

Definition 3. Let d ∈ N>0. The binary representation of d is denoted by (d`−1, . . . , d0)2
with d`−1 = 1 and ` is called bit-length of d. The Hamming weight of d is defined as
ham(d) := d0 + · · ·+ d`−1.

Let y ∈ ZM be an input basis of Algorithm 2. We denote the intermediate values
computed in the course of Algorithm 2 by x0, x1, . . . ∈ ZM and associate the sequence of
squaring and multiplication operations with a string O1O2 · · · over the alphabet {S, M}. For

Johannes Mittmann and Werner Schindler 7

the sake of defining an infinite stochastic process, we assume that Algorithm 2 may run
forever, hence x0, x1, . . . is an infinite sequence and O1O2 · · · ∈ {S, M}ω. Consequently, we
have x0 = y and

xn+1 =
{
x2
n mod M , if On+1 = S ,

(xn · y) mod M , if On+1 = M ,

for all n ∈ N. Note that O1O2 · · · does not contain the substring MM. We will refer to strings
O1O2 · · · without substring MM as operation sequences.

Note that the square & multiply algorithm applied to an exponent d corresponds
to a particular finite (d-specific) operation sequence O1O2 · · · O`+ham(d)−2, where ` is the
bit-length of d.

Stochastic Model 2. Let t ∈ [0, 1) and let O1O2 · · · ∈ {S, M}ω be an operation sequence.
We define a stochastic process (Sn, Rn)n∈N on the state space S := [0, 1)×Z3 as follows. Let
S0, S1, . . . be independent random variables on [0, 1). The random variable S0 is uniformly
distributed in N(s0) ∩M−1ZM , where N(s0) is a small neighbourhood of s0 = y/M .
Further, the random variables S1, S2, . . . are uniformly distributed random variables on
[0, 1), while R0 is arbitrary (e.g. R0 = 0), and for n ∈ N we define

Rn+1 :=
{⌈
αS2

n + βUn+1 − Sn+1
⌉
, if On+1 = S ,⌈

αSnt+ βUn+1 − Sn+1
⌉
, if On+1 = M ,

(4)

where U1, U2, . . . are independent, uniformly distributed random variables on [0, 1).

The value t represents a normalized input y/M of Algorithm 2, realizations s0, s1, . . . of
S0, S1, . . . represent the normalized intermediate values x0/M, x1/M, . . . ∈M−1ZM , and
a realization rn+1 of Rn+1 represents the number of extra reductions which are necessary
to compute xn+1 from xn (and, additionally, from y if On+1 = M).

Justification of Stochastic Model 2. This follows from the justification of Stochastic Model 1
by observing that, for inputs x, y ∈ ZM of Algorithm 1, the term {xy/M} in (1) equals the
normalized value

(
(xy) mod M

)
/M of the product modulo M . As in Stochastic Model 1

we first conclude that U1 and S1 are uniformly distributed on [0, 1). It follows by induction
that S2, S3, . . . are uniformly distributed on [0, 1), and S0, S1, S2, . . . are independent.

Remark 3. Remark 2 (ii) applies to the stochastic Stochastic Model 2 as well. In Subsec-
tion 4.3 we will adjust the stochastic process (Sn, Rn)n∈N to a table-based exponentiation
algorithm (fixed window exponentiation), where multiplications by 1 occur frequently.
Multiplications by 1 will therefore be handled separately.

Lemma 5. Let λ be the Lebesgue measure on the Borel σ-algebra B([0, 1)), let η be the
counting measure on the power set P(Z3) (i.e. η(0) = η(1) = η(2) = 1), and let λ⊗ η be
the product measure on the product σ-algebra B([0, 1))⊗ P(Z3).

(i) The stochastic process (Sn, Rn)n∈N is a non-homogeneous Markov process on S.

(ii) The random vector (Sn, Rn) has a density fn(sn, rn) with respect to λ⊗ η.

(iii) For B ∈ B([0, 1)), rn+1 ∈ Z3, and fixed (sn, rn) ∈ S, we have

Pr(Sn+1 ∈ B,Rn+1 = rn+1 | Sn = sn, Rn = rn)

=
∫
B×{rn+1}

hn+1(sn+1, r | sn) dsn+1 dη(r) =
∫
B

hn+1(sn+1, rn+1 | sn) dsn+1 ,

8 Timing attacks and local timing attacks against Barrett’s modular multiplication

where the conditional density is defined by

hn+1(sn+1, rn+1 | sn)
= β−1((rn+1 − αs2

n + sn+1)+ − (rn+1 − αs2
n + sn+1 − β)+

− (rn+1 − αs2
n + sn+1 − 1)+ + (rn+1 − αs2

n + sn+1 − β − 1)+
)

if On+1 = S (i.e. the (n+ 1)-th operation is squaring) and

hn+1(sn+1, rn+1 | sn)
= β−1((rn+1 − αsnt+ sn+1)+ − (rn+1 − αsnt+ sn+1 − β)+

− (rn+1 − αsnt+ sn+1 − 1)+ + (rn+1 − αsnt+ sn+1 − β − 1)+
)

if On+1 = M (i.e. the (n+ 1)-th operation is multiplication by y).
In particular, the conditional density hn+1(sn+1, rn+1 | sn) does not depend on rn.
(This justifies the omission of rn from the list of arguments.)

Proof. Assertion (i) is an immediate consequence of the definition of Stochastic Model 2.
To show (ii), let B ⊆ [0, 1)× Z3 be a (λ⊗ η)-zero set. Then B =

⋃
j∈Z3

Bj × {j} (disjoint
union) for measurable λ-zero sets B0, B1 and B2. Hence λ(Bu) = 0 for Bu := B0∪B1∪B2.
Finally, we get Pr((Sn, Rn) ∈ B) ≤ Pr((Sn, Rn) ∈ Bu × Z3) = Pr(Sn ∈ Bu) = λ(Bu) = 0.
This shows that the pushforward measure of (Sn, Rn) is absolutely continuous with respect
to λ⊗ η, therefore assertion (ii) follows from the Radon–Nikodym Theorem. Assertion (iii)
follows from Lemma 2 (ii) with (s, t) = (sn, sn) (if On+1 = S) or (s, t) = (sn, t) (if On+1 = M)
and V = Sn+1.

Lemma 6.

(i) For rn+1 ∈ Z3, we have

Pr(Rn+1 = rn+1)

=
∫

[0,1)×Z3

(∫ 1

0
hn+1(sn+1, rn+1 | sn) dsn+1

)
fn(sn, rn) dsn dη(rn)

=
∫ 1

0

(∫ 1

0
hn+1(sn+1, rn+1 | sn) dsn+1

)
dsn .

In particular, the distribution of Rn+1 does not depend on n but only on the operation
type On+1 ∈ {S, M}.

(ii) There exist µS, µM, σ
2
S , σ

2
M ∈ R such that E(Rn+1) = µOn+1 and Var(Rn+1) = σ2

On+1
for all n ∈ N. In particular, we have

µS = α/3 + β/2 , µM = αt/2 + β/2 (5)

σ2
S =


α/3 + β/2− (α/3 + β/2)2 if α+ β ≤ 1
α/3 + β/2− (α/3 + β/2)2 + (15β)−1(15(1− β)2

−10α(1− β) + 3α2)− 8(15α1/2β)−1(1− β)5/2 if α+ β > 1
(6)

σ2
M = αt/2 + β/2− (αt/2 + β/2)2 + (3αβt)−1(αt+ β − 1)3

+ . (7)

The expectation µM is strictly monotonously increasing in t = y/M .

Proof. Let rn+1 ∈ Z3. Since

Pr(Rn+1 = rn+1) = Pr
(
(Sn, Rn) ∈ S, (Sn+1, Rn+1) ∈ [0, 1)× {rn+1}

)
,

Johannes Mittmann and Werner Schindler 9

the first equation of assertion (i) follows from Lemma 5. The second equation of (i)
follows from the fact that

∑2
r=0 fn(sn, r) = 1 for all sn ∈ [0, 1), because Sn is uniformly

distributed on [0, 1). Assertion (ii) is an immediate consequence of (i). The formulae (5),
(6), and (7) follow from Lemma 4 (ii), Lemma 3 (ii), Lemma 4 (iii), and Lemma 3 (iii).
The final assertion of (ii) is obvious since α > 0.

Definition 4. A sequence X1, X2, . . . of random variables is called m-dependent if the
random vectors (X1, . . . , Xu) and (Xv, . . . , Xn) are independent for all 1 ≤ u < v ≤ n
with v − u > m.

Lemma 7.

(i) For rn+1, . . . , rn+u ∈ Z3, we have

Pr(Rn+1 = rn+1, . . . , Rn+u = rn+u)

=
∫

[0,1)×Z3

(∫ 1

0

(
· · ·
∫ 1

0
hn+u(sn+u, rn+u | sn+u−1) dsn+u · · ·

)
hn+1(sn+1, rn+1 | sn) dsn+1

)
fn(sn, rn) dsn dη(rn)

=
∫ 1

0

(∫ 1

0

(
· · ·
∫ 1

0
hn+u(sn+u, rn+u | sn+u−1) dsn+u · · ·

)
hn+1(sn+1, rn+1 | sn) dsn+1

)
dsn .

In particular, the joint distribution of Rn+1, . . . , Rn+u does not depend on n but only
on the operation types On+1, . . . , On+u ∈ {S, M}.

(ii) There exist covSS, covSM, covMS ∈ R such that Cov(Rn, Rn+1) = covOnOn+1 for all
n ∈ N>0.

(iii) The sequence R1, R2, . . . is 1-dependent. In particular, we have Cov(Rn, Rn+s) = 0
for all s ≥ 2.

Proof. Let rn+1, . . . , rn+u ∈ Z3. Then

Pr(Rn+1 = rn+1, . . . , Rn+u = rn+u)
= Pr

(
(Sn, Rn) ∈ S, (Sn+i, Rn+i) ∈ [0, 1)× {rn+i} for i = 1, . . . , u

)
and assertion (i) follows from Lemma 5, Lemma 6 (i), and the Ionescu-Tulcea Theorem.
Assertion (ii) is an immediate consequence of (i). To prove (iii), let 1 ≤ u < v ≤ n such
that v − u > 1, let r1, . . . , ru, rv, . . . , rn ∈ Z3, and define the events

E1 :=
{

(S0, R0) ∈ S
}
, E2 :=

{
(Si, Ri) ∈ [0, 1)× {ri} for i = 1, . . . , u

}
,

E3 :=
{

(Sv−1, Rv−1) ∈ S
}
, E4 :=

{
(Si, Ri) ∈ [0, 1)× {ri} for i = v, . . . , n

}
.

Using the Markov property of (Sn, Rn)n∈N and (i), we obtain

Pr(R1 = r1, . . . , Ru = ru, Rv = rv, . . . , Rn = rn)
= Pr(E1, E2, E3, E4)
= Pr(E1, E2) · Pr(E3 | E1, E2) · Pr(E4 | E1, E2, E3)
= Pr(E1, E2) · 1 · Pr(E4 | E3)
= Pr(E1, E2) · Pr(E3, E4) · Pr(E3)−1

= Pr(E1, E2) · Pr(E3, E4)
= Pr(R1 = r1, . . . , Ru = ru) · Pr(Rv = rv, . . . , Rn = rn) ,

10 Timing attacks and local timing attacks against Barrett’s modular multiplication

hence (R1, . . . , Ru) and (Rv, . . . , Rn) are independent. We conclude that R1, R2, . . . is a
1-dependent sequence.

Definition 5. The normal distribution with mean µ and variance σ2 is denoted by
N (µ, σ2), and Φ(x) := (2π)−1/2 ∫ x

−∞ e−t
2/2 dt is the cumulative distribution function of

N (0, 1). For strings x, y ∈ {S, M}∗, we denote by #x(y) ∈ N the number of occurences of x
in y.

Below we will use the following version of the central limit theorem for m-dependent
random variables due to Hoeffding & Robbins.

Lemma 8 ([HR48, Theorem 1]). Let X1, X2, . . . be an m-dependent sequence of ran-
dom variables such that E(Xi) = 0 and E(|Xi|3) is uniformly bounded for all i ∈ N>0.
For i ∈ N>0 define Ai := Var(Xi+m) + 2

∑m
j=1 Cov(Xi+m−j , Xi+m). If the limit A :=

limu→∞ u−1∑u
h=1Ai+h exists uniformly for all i ∈ N, then (X1 + · · ·+Xs)/

√
s has the

limiting distribution N (0, A) as s→∞.

Lemma 9. Let O1O2 · · · ∈ {S, M}ω be an operation sequence such that the limit

ρ := lim
u→∞

#M(Oi+1 · · · Oi+u)
u

(8)

exists uniformly for all i ∈ N and define

A := ρ · σ2
M + (1− ρ) · σ2

S + 2ρ · covMS +2ρ · covSM +(2− 4ρ) · covSS .

Then lims→∞Var(Rn+1 + · · ·+Rn+s)/s = A and

Rn+1 + · · ·+Rn+s − E(Rn+1 + · · ·+Rn+s)√
s

has the limiting distribution N (0, A).

Proof. Let R′i := Ri − E(Ri) for all i ∈ N>0. Then R′1, R′2, . . . is a 1-dependent sequence
of random variables with E(R′i) = 0 and E(|R′i|3) ≤ 23 = 8 for all i. Define Ai :=
Var(R′i+1) + 2 Cov(R′i, R′i+1). For x ∈ {S, M}∗ and 0 ≤ i ≤ j, we set #i,j

x := #x(Oi · · · Oj).
With this notation, we have

u∑
h=1

Ai+h = #i+2,i+u+1
M σ2

M + #i+2,i+u+1
S σ2

S

+ 2#i+1,i+u+1
MS covMS +2#i+1,i+u+1

SM covSM +2#i+1,i+u+1
SS covSS .

Using the identities

#i+1,i+u+1
MS = #i+1,i+u

M , #i+2,i+u+1
S = u−#i+2,i+u+1

M ,

#i+1,i+u+1
SM = #i+2,i+u+1

M , #i+1,i+u+1
SS = u− 1−#i+1,i+u

M −#i+2,i+u+1
M ,

we obtain

u∑
h=1

Ai+h = #i+2,i+u+1
M σ2

M + (u−#i+2,i+u+1
M)σ2

S + 2#i+1,i+u
M covMS

+ 2#i+2,i+u+1
M covSM +2(u− 1−#i+2,i+u+1

M −#i+1,i+u
M) covSS .

Johannes Mittmann and Werner Schindler 11

As u→∞, the ratio #i+1,i+u
M /u converges to ρ uniformly for all i by assumption, therefore

u−1∑u
h=1Ai+h converges to A uniformly for all i. Since

Var(R′n+1 + · · ·+R′n+s) = Var(R′n+1) +
s∑

h=1
An+h −An+s ,

Var(R′n+1 + · · ·+R′n+s)/s converges to A as s→∞. Finally, (R′n+1 + · · ·+R′n+s)/
√
s has

the limiting distribution N (0, A) by Lemma 8.

We note that for random operation sequences O1O2 · · · (corresponding to random
exponents with independent and unbiased bits), the convergence of (8) is not uniform
with probability 1. However, for any given finite operation sequence On+1 · · · On+s we
may construct an infinite sequence O1O2 · · · with subsequence On+1 · · · On+s for which
convergence of (8) is uniform and ρ ≈ #M(On+1 · · · On+s)/s. Therefore, if s is sufficiently
large, it is reasonable to assume that the normal approximation

Pr
(
Rn+1 + · · ·+Rn+s − E(Rn+1 + · · ·+Rn+s)√

Var(Rn+1 + · · ·+Rn+s)
≤ x

)
≈ Φ(x) , (9)

is appropriate. We mention that in our experiments in Subsection 5.1 approximation (9)
is applied and leads to successful attacks.

2.3 Summary of the relevant facts
In this section we studied the random behaviour of the number of extra reductions
when Barrett’s modular multiplication algorithm is used within the square & multiply
exponentiation algorithm. In Subsection 4.3 we generalize this approach to table-based
exponentiation algorithms.

We defined a stochastic process (Sn, Rn)n∈N. The random variable Sn represents the
(random) normalized intermediate value (= intermediate value divided by the modulus M)
in Algorithm 2 after the n-th Barrett operation, and the random variable Rn represents
the (random) number of extra reductions needed for the n-th Barrett operation.

Algorithm 1 needs 0, 1 or 2 extra reductions. The stochastic process (Sn, Rn)n∈N is a
non-homogeneous Markov chain on the state space S = [0, 1)× Z3. The projection onto
the first component gives independent random variables S1, S2, . . ., which are uniformly
distributed on the unit interval [0, 1). However, we are interested in the stochastic process
R1, R2, . . . on Z3, which is more difficult to analyse. In particular, E(Rn) and Var(Rn)
depend on the operation type On of the n-th Barrett operation (multiplication M or
squaring S), while the covariances Cov(Rn, Rn+1) depend on the operation types of the
n-th and the (n+ 1)-th Barrett operation (SM, MS or SS). The formulae (5), (6) and (7)
provide explicit formulae for the expectations and the variances while Lemma 7 (i), (ii)
explains how to compute the covariances. Further, the stochastic process (Rn)n∈N≥1 is
1-dependent. In particular, a version of the Central Limit Theorem for dependent random
variables can be applied to approximate the distribution of standardized finite sums (cf.
(9)).

3 Montgomery multiplication vs. Barrett multiplication
In Subsection 3.1 we briefly treat Montgomery’s multiplication algorithm (MM) [Mon85]
and summarize relevant stochastic properties. This is because in Section 4 we consider
the question whether the (known) pure and local timing attacks against Montgomery’s
multiplication algorithm can be transferred to implementations that apply Barrett’s
algorithm.

12 Timing attacks and local timing attacks against Barrett’s modular multiplication

3.1 Montgomery’s multiplication algorithm in a nutshell
Montgomery’s multiplication algorithm is widely used to compute modular exponentiations
because it transfers modulo operations and divisions to moduli and divisors, which are
powers of 2.

For an odd modulus M (e.g. an RSA modulus or a prime) the integer R := 2t > M is
called Montgomery’s constant, and R−1 ∈ ZM denotes its multiplicative inverse moduloM .
Moreover, M∗ ∈ ZR satisfies the integer equation RR−1 −MM∗ = 1.

Montgomery’s algorithm computes (a, b) 7→ MM(a, b;M) := abR−1 mod M with a
version of Algorithm 3. Here ws denotes the word size of the arithmetic operations
(typically, depending on the platform ws ∈ {8, 16, 32, 64}), which divides the exponent t.
Further, r = 2ws, so that R = rv with v = t/ws. In Algorithm 3 the operands x, y and s are
expressed in the r-adic representation. That is, x = (xv−1, ..., x0)r, y = (yv−1, ..., y0)r and
s = (sv−1, ..., s0)r with r = 2ws. Finally, m∗ = M∗ mod r. After Step 3 the intermediate
value s ≡ abR−1 (mod M) and s ∈ [0, 2M). The instruction s := s−M in Step 4, called
‘extra reduction’ (ER), is carried out iff s ∈ [M, 2M). This conditional integer subtraction
is responsible for timing differences, and thus is the source of side channel attacks.

Algorithm 3 Montgomery modular multi-
plication.
Input: An odd modulus M ∈ N≥2, Mont-

gomery constant R = rv > M with r =
2ws, m∗ = M∗ mod r, and integers x =
(xv−1, . . . , x0)r, y = (yv−1, . . . , y0)r ∈
ZM .

Output: xyR−1 mod M .
1: s← 0
2: for i← 0, . . . , v − 1 do
3: u← (s+ xiy0)m∗ mod r
4: s← (s+ xiy + uM)/r
5: end for
6: if s ≥M then
7: s← s−M . Extra reduction
8: end if
9: return s . s = MM(x, y;M)

Algorithm 4 Montgomery left-to-right bi-
nary exponentiation.
Input: An odd modulus M ∈ N≥2, Mont-

gomery constant R > M , integers
x, y ∈ ZM , and an exponent d =
(d`−1, . . . , d0)2 ∈ N≥1 with d`−1 = 1.

Output: yd mod M .
1: ỹ ← MM(y,R;M) . ỹ ← yR mod M
2: x̃← ỹ
3: for i← `− 2, . . . , 0 do
4: x̃← MM(x̃, x̃;M)
5: if di = 1 then
6: x̃← MM(x̃, ỹ;M)
7: end if
8: end for
9: x← MM(x̃, 1;M) . x← x̃R−1 mod M

10: return x

Assumption 1 (Montgomery modular multiplication). For fixed modulus M and fixed
Montgomery constant R,

Time
(
MM(a, b;M)

)
∈ {c, c+ cER} for all a, b ∈ ZM , (10)

which means that an MM operation costs time c if no ER is needed, and cER equals the
time for an ER. (The constants c and cER depend on the concrete implementation.)

Justification of Assumption 1. (see [Sch15], Remark 1, for a comprehensive analysis)
For known-input attacks (with more or less randomly chosen inputs) Assumption 1 should
usually be valid. An exception are pure timing attacks on RSA with CRT implementations
in old versions of OpenSSL [BB03, ASK05], cf. Subsection 4.2. The reason is that OpenSSL
applies different subroutines to compute the for-loop in Algorithm 3, depending on whether
x and y have identical word size or not. The before-mentioned timing attacks on RSA with
CRT are adaptive chosen input attacks, and during the attack certain MM-operands become
smaller and smaller. This feature makes the attack to some degree more complicated
but does not prevent it because new sources for timing differences occur. Smart cards

Johannes Mittmann and Werner Schindler 13

and microcontroller should not have this feature because in normal use for RSA operands
with different word size rarely occur so that an optimization of this case seems to be
needless.

In the following we summarize some well-known fundamental stochastic properties of
Montgomery’s multiplication algorithm, or more precisely, on the distribution of random
extra reductions within a modular exponentiation algorithm. Their knowledge is needed
to develop (effective and efficient) pure or local timing attacks [Sch00, SKQ01a, Sch02b,
Sch02a, BB03, ASK05, Sch05, Sch15, Sch16].

We interpret the normalized intermediate values of Algorithm 4 as realizations of
random variables S0, S1, With the same arguments as in Subsection 2.2 (for Barrett’s
multiplication) one concludes that for Algorithm 4 the random variables S1, S2, . . . are
iid uniformly distributed on [0, 1). We set wi = 1 if the i-th Montgomery operation
requires an ER and wi = 0 otherwise. We interpret the values w1, w2, . . . as realizations of
{0, 1}-valued random variables W1,W2,

Interestingly, it does not depend on the word size ws whether an ER is necessary but
only on the quadruple (a, b,M,R). This allows to consider the case ws = t (i.e. v = 1) when
analyzing the stochastic behaviour of the random variables Wi in modular exponentiation
algorithms. In particular,

(MM(a, b;M) requires an ER) iff
(

MM(a, b,M)
M

<
a

M

b

M

M

R

)
. (11)

This observation allows to express the random variable Wi in terms of Si−1 and Si. For
Algorithm 4 this implies

Wi =
{

1{Si<Si−1
ỹ
M

M
R }

if the i-th MM operation is a multiplication by ỹ,
1{Si<S2

i−1
M
R }

if the i-th MM operation is a squaring.
(12)

The random variables W1,W2, . . . have interesting properties which are similar to those
of R1, R2, In particular, they are neither stationary distributed nor independent but
1-dependent and under weak assumption they fulfil a version of the Central Limit Theorem
for dependent random variables. Relation (12) allows to represent joint probabilities
Pr(Wi = wi, . . . ,Wi+k−1 = wi+k−1) as integrals over the (k + 1)-dimensional unit cube.
We just note that

Pr(Wi = 1) =
{

ỹ
2R if the i-th MM operation is a multiplication by ỹ,
M
3R if the i-th MM operation is a squaring.

(13)

3.2 A closer look at Barrett’s multiplication algorithm
In this subsection we develop and justify equivalents to Assumption 1 for the two (dif-
ferent) Barrett multiplication algorithms (Algorithm 1 and Algorithm 5). Therefrom we
deduce stochastic representations, which describe the random timing behaviour of modular
exponentiations y 7→ yd mod M .

3.2.1 Modular exponentiation with Algorithm 1

At first we formulate an equivalent to Assumption 1.

Assumption 2 (Barrett modular multiplication). For fixed modulus M ,

Time
(
BM(a, b;M)

)
∈ {c, c+ cER, c+ 2cER} for all a, b ∈ ZM , (14)

14 Timing attacks and local timing attacks against Barrett’s modular multiplication

which means that a Barrett multiplication (BM) costs time c if no ER is needed, and
cER equals the time for one ER. (The constants c and cER depend on the concrete
implementation.)

Justification of Assumption 2. The justification of Assumption 2 is rather similar to the
justification of Assumption 1 in Subsection 3.1. In Line 1 of Algorithm 1, x, y ∈ ZM are
multiplied in Z, and in Line 2 the rounding off brackets b·c are simple shift operations
if b equals 2 or a suitable power of two (e.g. b = 2ws, where ws denotes the word size
of the underlying arithmetic). For known-input attacks (with more or less randomly
chosen inputs), and for smart cards and microcontrollers in general it is reasonable to
assume that the Lines 1 to 3 cost identical time for all x, y ∈ ZM and, consequently, that
Assumption 1 is valid. Exceptions may exist for adaptive chosen input timing attacks on
RSA implementations (cf. Subsection 4.2) on PCs, which use large general libraries. Even
then it seems to be very likely that (as for Montgomery’s multiplication algorithm) such
optimisations allow timing attacks anyway.

This leads to the following stochastic representation of the (random) timing of a
modular exponentiation yd mod M if it is calculated with Algorithm 2.

(Alg. 2 + Alg. 1): Time(yd mod M) = tset + (`+ ham(d)− 2)c+ (15)
(R1 + · · ·+R`+ham(d)−2)cER +N

Here the ‘setup-time’ tset summarizes the time needed for all operations that are not part
of Algorithm 1, e.g. the time needed for input and output and maybe for the computation
of the constant µ (if not stored). The random variable N quantifies the ‘timing noise’.
This includes measurement errors and possible deviations from Assumption 2. We assume
that N ∼ N (0, σ2). We allow σ2 = 0, which means ’no noise’ (i.e. N ≡ 0) while a non-zero
expectation E(N) is ‘moved’ to tset. The data-dependent timing differences are quantified
by the stochastic process R1, R2, . . . , R`+ham(d)−2, which has been thoroughly analysed
in Section 2. Recall that the distribution of this stochastic process depends on the secret
exponent d and on the ratio t = y/M .
Remark 4. (i) Without blinding mechanisms Time(yd mod M) is identical for repeated

executions with the same basis y if we neglect possible measurement errors. At first
sight the stochastic representation (15) may be surprising but the stochastic process
R1, R2, . . . describes the random timing behaviour for bases y′ ∈ ZM whose ratio
y′/M is close to t = y/M (cf. Stochastic Model 1).

(ii) A similar stochastic representation exists for table-based exponentiation algorithms,
see Subsection 4.3.

3.2.2 Modular exponentiation with Algorithm 5

Algorithm 5 is a modification of Algorithm 1 containing an optimization which was
already proposed by Barrett [Bar86]. Its Lines 3-6 substitute Line 3 of Algorithm 1. We
may assume b = 2ws > 2, where ws is the word size of the integer arithmetic (typically,
ws ∈ {8, 16, 32, 64}). Line 3 of Algorithm 1 computes a multiplication q̃ · M of two
integers, which are in the order of bk, and a subtraction of two integers, which are in the
order of b2k. In contrast, Line 3 of Algorithm 5 only requires a modular multiplication
(q̃ ·M) mod 2ws(k+1), the subtraction of two integers in the order of bk+1 and Line 5 possibly
one addition by bk+1.

After Line 6 of Algorithm 5, r ≡ z−(q̃·M) (mod bk+1), and further 0 ≤ r < bk+1. Since
blogbMc ≤ logbM < k = blogbMc+ 1, we have bk−1 ≤M < bk, hence 3M < 3bk ≤ bk+1.
By Lemma 1 the values r after Line 3 of Algorithm 1 and r after Line 6 of Algorithm 5 thus
coincide, which means that the number of extra reductions is the same for both algorithms.

Johannes Mittmann and Werner Schindler 15

Algorithm 5 Barrett modular multiplica-
tion (optimized).
Input: A modulus M ∈ N≥2 of length

k = blogbMc + 1 in base b ∈ N≥3, the
integer reciprocal µ = bb2k/Mc of M ,
and integers x, y ∈ ZM .

Output: (x · y) mod M .
1: z ← x · y
2: q̃ ← bbz/bk−1cµ/bk+1c
3: r ←

(
z mod bk+1)− ((q̃ ·M) mod bk+1)

4: if r < 0 then
5: r ← r + bk+1 . Extra addition
6: end if
7: while r ≥M do
8: r ← r −M . Extra reduction
9: end while

10: return r

Algorithm 6 RSA with CRT, left-to right
exponentiation, Barrett multiplication.
Input: Prime factors p1 and p2 with n =

p1p2, exponents d(i) = d mod (pi − 1),
and an integer y ∈ Zn.

Output: yd mod n.
1: y(1) := y mod p1

2: Compute x(1) = y
d(1)
(1) mod p1 with

Alg. 2
3: y(2) := y mod p2

4: Compute x(2) = y
d(2)
(2) mod p2 with

Alg. 2
5: Compute x = yd mod n from x(1) and
x(2) (recombination step)

6: return x

If cadd denotes the time needed for an addition of bk+1 in Line 5 of Algorithm 5 this leads
to an equivalent of Assumption 2.

Assumption 3 (Barrett modular multiplication, optimized). For fixed modulus M ,

Time
(
BM(a, b;M)

)
∈ {c, c+ cER, c+ 2cER, c+ cadd, c+ cER + cadd, c+ 2cER + cadd} (16)

for all a, b ∈ ZM , which means that a Barrett multiplication (BM) with Algorithm 5
(without extra reductions or an addition by bk+1) costs time c, while cER and cadd equal
the time for one ER or for an addition by bk+1, respectively. (The constants c, cER and
cadd depend on the concrete implementation.) When implemented on the same platform
the constant c in (16) should be smaller than in (14).

Justification of Assumption 3. The justification is rather similar to that of Assumption 2.
The relevant arguments have already been discussed at the beginning of this subsection.
This also concerns the general expositions to the impact of possible optimizations of the
integer multiplication algorithm.

The if-condition in Line 4 of Algorithm 5 introduces an additional source of timing
variability, which has to be analysed. We have already explained that this if-condition
does not affect the number of extra reductions. Next, we determine the probability of an
extra addition by bk+1.

Let x, y ∈ ZM and let z = x · y. We denote by ra the number of extra additions by
bk+1 in the computation of z mod M . Obviously, ra = 1 iff z mod bk+1 < q̃M mod bk+1

(and ra = 0 otherwise), or equivalently, when dividing both terms by bk+1,

ra = 1 iff
{

z

bk+1

}
<

{
q̃M

bk+1

}
. (17)

Next, we derive a more convenient characterisation of (17). Let γ := M/bk+1 ∈ (0, b−1).

16 Timing attacks and local timing attacks against Barrett’s modular multiplication

We have

q̃M

bk+1 =
⌊⌊

z

bk−1

⌋
bb2k/Mc
bk+1

⌋
M

bk+1

=
⌊

z

bk−1

⌋
bb2k/Mc
bk+1

M

bk+1 −
{⌊

z

bk−1

⌋
bb2k/Mc
bk+1

}
M

bk+1

= z

bk−1
bb2k/Mc
bk+1

M

bk+1 −
{

z

bk−1

}
bb2k/Mc
bk+1

M

bk+1 − γ
{
β

⌊
z

bk−1

⌋}
= z

bk−1
b2k/M − {b2k/M}

bk+1
M

bk+1 − βγ
{

z

bk−1

}
− γ
{
β

⌊
z

bk−1

⌋}
= z

bk+1 −
z

M2
M2

b2k

{
b2k

M

}
M

bk+1 − βγ
{

z

bk−1

}
− γ
{
β

⌊
z

bk−1

⌋}
= z

bk+1 − αγ
z

M2 − βγ
{

z

bk−1

}
− γ
{
β

⌊
z

bk−1

⌋}
.

Since 0 ≤ αγ(z/M2) + βγ{z/bk−1} + γ{βbz/bk−1c} ≤ 3γ < 3/b ≤ 1, we can rewrite
characterization (17) as

ra = 1 iff
{

z

bk+1

}
< αγ

z

M2 + βγ

{
z

bk−1

}
+ γ

{
β

⌊
z

bk−1

⌋}
. (18)

Our aim is to develop a stochastic model for the extra addition. We start with a
closer inspection of the right-hand side of (18). Let z = (z2k−1, . . . , z0)b be the b-ary
representation of z, where leading zero digits are permitted. Then

u′ :=
{
z/bk+1} = (0.zk, . . . , z0)b ,

v1 := z/M2 = (z2k−1, . . . , z0)b/M2 ,

v2 :=
{
z/bk−1} = (0.zk−2, . . . , z0)b , and

v3 :=
{
βbz/bk−1c

}
=
{
bb2k/Mc(0.z2k−1, . . . , zk−1)b

}
.

(19)

We now assume that Algorithm 5 is applied in the modular exponentiation algorithm
Algorithm 2. In analogy to the extra reductions we interpret the number of extra additions
by bk+1 in the (n + 1)-th Barrett operation, denoted by ra;n+1, as a realization of a
{0, 1}-valued random variable Ra;n+1. In particular, (x · y) mod M either represents a
squaring (x = y) or a multiplication of the intermediate value x by the basis y, respectively.

As in Stochastic Model 2 we model v1 = (xy)/M2 as a realization of S2
n (squaring)

or Snt (multiplication by the basis y) with t = y/M , respectively, and v2 as a realization
of the random variable Un+1 which is uniformly distributed on [0, 1). With the same
argumentation as for v2 we model u′n+1 := u′ = {xy/bk+1} as a realization of a random
variable U ′n+1 that is uniformly distributed on [0, 1).

It remains to analyse v3. Let for the moment (ak, . . . , a0)b be the b-ary representation
of bb2k/Mc (we have bk ≤ bb2k/Mc < bk+1 since we excluded the corner case M = bk−1)
and a−1 = a−2 = 0. Then

v3 =
{

k∑
j=0

ajb
j
k+1∑
i=1

z2k−ib
−i

}
=
{

k−1∑
h=−k−1

bh
∑
j−i=h

ajz2k−i

}

≈

{ −1∑
h=−3

bh
∑
j−i=h

ajz2k−i

}
=
∑k+1
i=1
(∑−1

h=−3 ai+hb
3+h)z2k−i mod b3

b3
.

(20)

We model vn+1 := v3 as a realization of a random variable Vn+1 that is uniformly distributed
on [0, 1).

Johannes Mittmann and Werner Schindler 17

By (19) and (20) the values u′, v1, v2 and v3 essentially depend on zk (resp., on (zk, zk−1)
if ws is small), on the most significant digits of z in the b-ary representation, on zk−2 (resp.
on (zk−2, zk−3) if ws is small) and on the weighted sum of the b-ary digits z2k−1, . . . , zk−1,
respectively. This justifies the assumption that the random variables U ′n+1, Sn, Un+1, Vn+1
(essentially) behave as if they were independent.

We could extend the non-homogeneous Markov chain (Sn, Rn)n∈N on the state space
[0, 1)× Z3 from Section 2 to a non-homogeneous Markov chain (Sn, Rn, Ra;n)n∈N on the
state space [0, 1) × Z3 × Z2. Its analysis is analogous to that in Section 2 but more
complicated in detail. Since for typical word sizes w the impact of the extra additions
on the execution time is by an order of magnitude smaller than the impact of the extra
reductions we do not elaborate on this issue. We only mention that

Pr(Ra;n+1 = 1) = Pr(U ′n+1 < αγS2
n + βγUn+1 + γVn+1) (21)

=
∫

[0,1)3
Pr(U ′n+1 < αγs2

n + βγun+1 + γvn+1) dvn+1 dun+1 dsn

=
∫

[0,1)3
(αγs2

n + βγun+1 + γvn+1) dvn+1 dun+1 dsn

= αγ/3 + βγ/2 + γ/2 =: µa,S , if On+1 = S ,

and analogously

Pr(Ra;n+1 = 1) = Pr(U ′n+1 < αγSnt+ βγUn+1 + γVn+1) (22)
= αγt/2 + βγ/2 + γ/2 =: µa,M , if On+1 = M .

For the reason mentioned above we treat the extra additions as noise. Equation (23) is
the equivalent to (15) for the modified version of Barrett’s multiplication algorithm. We
use the same notation as in (15).

(Alg. 2 + Alg. 5): Time(yd mod M) = t∗set + (`+ ham(d)− 2)c+
(R1 + · · ·+R`+ham(d)−2)cER +N∗ , (23)

with t∗set = tset + (µa,S(`− 1) + µa,M(ham(d)− 1))cadd and N∗ ∼ N (0, (µa,S(1− µa,S)(`−
1) + µa,M(1− µa,M)(ham(d)− 1))c2add + σ2). The expected time for all extra additions has
been moved to the setup time, and the variance became part of N∗. While the formula for
the expectation is exact, we used a coarse approximation for the variance which neglects
any dependencies. We just mention that Rn+1 and Ra;n+1 are positively correlated. This
follows from the fact that apart from the factor γ the terms ‘αγS2

n’, ‘αγSnt’, and ‘βγUn+1’
in (21) and (22) coincide with terms in (4) and since Ra;n+1 and Rn+1 are both ‘large’ if
the corresponding terms in (21), (22) and (4) are ‘large’.
Remark 5. (i) The stochastic representations (15) and (23) are essentially identical

although (23) has slightly larger noise.

(ii) The ratio cadd/cER depends on the implementation.

3.2.3 Special values for α and β

The stochastic behaviour of the Barrett multiplication algorithm depends on α and β. In
particular, α has significant impact on most of the attacks discussed in Section 4. In this
subsection we briefly analyse the extreme cases α ≈ 0 and β ≈ 0.

The condition k = blogbMc + 1 (cf. Algorithm 1 and Algorithm 5) implies bk−1 ≤
M < bk. Now assume that bk/2 < M < bk, which is typically fulfilled if the modulus M
has ‘maximum length’ (e.g. 1024 or 2048 bits). Then

0 ≤ β = bb
2k/Mc
bk+1 ≤ 2bk

bk+1 = 2
b
. (24)

18 Timing attacks and local timing attacks against Barrett’s modular multiplication

If b = 2ws with ws� 1 (e.g. ws ≥ 16), then β ≈ 0. In this case one may neglect the term
‘βU ’ in (3), accepting a slight inaccuracy of the stochastic model.

Going the next step, cancelling ‘βUn+1’ in (4) simplifies Stochastic Model 2 as (4)
can be rewritten as Rn+1 = 1{Sn+1<αS2

n} and Rn+1 = 1{Sn+1<αSnt}, respectively. This
representation is equivalent to the Montgomery case (12), simplifying the computation of
the variances, covariances and the probabilities in Lemma 7 (i) considerably (as for the
Montgomery multiplication). The Barrett-specific features and difficulties yet remain.

Now assume that bk−1 ≤M < 2bk−1. Then

0 ≤ α = M2

b2k

{
b2k

M

}
≤ M2

b2k
<

4
b2
. (25)

If again b = 2ws with ws� 1, e.g. ws ≥ 8, then α ≈ 0. As above we may neglect the terms
‘αst’ in (3) and analogously ‘αS2

n’, resp. ‘αSnt’, in (4), which yields the representation
Rn+1 = 1{Sn+1<βUn+1}. Consequently, R1, R2, . . . are iid {0, 1}-valued random variables
with Pr(Rj = 1) = β/2. While β ≈ 0 is quite likely the case α ≈ 0 should occur rarely
because the bit length of the modulus would be slightly larger than a power of b = 2ws.

More generally, assume that bk−1 ≤ 2w′bk−1 ≤ M < 2w′+1bk−1 ≤ bk for some w′ ∈
{0, . . . ,ws− 1}. With the same strategy as in (24) and (25) we conclude

0 ≤ α < (2w′+1bk−1)2

b2k
=
(

2w′+1

b

)2
and 0 ≤ β ≤ bk/(2w′bk−1)

bk+1 = 1
2w′ . (26)

The impact of α ≈ 0 and β ≈ 0 on the attacks in Section 4 will be discussed in
Subsection 4.4.

3.3 A short summary
The stochastic process R1, R2, . . . is the equivalent to W1,W2, . . . (Montgomery multipli-
cation). Both stochastic processes are 1-dependent. Hence it is reasonable to assume that
attacks on Montgomery’s multiplication algorithm can be transferred to implementations
which use Barrett’s multiplication algorithm. In Section 4 we will see that this indeed the
case.

However, for Barrett’s multiplication algorithm additional problems arise. In particular,
there is no equivalent to the characterization (11), which allows to directly analyse the
stochastic process W1,W2, . . . For Barrett’s algorithm a ‘detour’ to the two-dimensional
Markov process (Si, Ri)i∈N is necessary. Moreover, for Montgomery’s multiplication
algorithm the respective integrals can be computed much easier than for Barrett’s algorithm
since simple closed formulae exist. If β ≈ 0, the evaluation of the integrals becomes easier
(as for Montgomery’s algorithm), and if α ≈ 0, the computations become absolutely
simple. For CRT implementations the parameter estimation is more difficult for Barrett’s
multiplication algorithm than for Montgomery’s algorithm. We return to these issues in
Section 4.

4 Timing attacks against Barrett’s modular multiplication
The conditional extra reduction in Montgomery’s multiplication algorithm is the source of
many timing attacks and local timing attacks [DKL+98, Sch00, SKQ01a, SKQ01b, Sch02b,
Sch02a, BB03, ASK05, AS08, Sch15, DGD+16, Sch16]. Some of them even work in the
presence of particular blinding mechanisms. When applied to modular exponentiation, the
stochastic representations of the execution times are similar for Montgomery’s and Barrett’s
multiplication algorithms. The analysis of Barrett’s algorithm, however, is mathematically
more challenging as explained in Sections 2 and 3. In Subsections 4.1 to 4.3 we transfer

Johannes Mittmann and Werner Schindler 19

attacks on Montgomery’s multiplication algorithm to attacks on Barrett’s multiplication
algorithm, where we assume that the ‘basic’ Algorithm 1 is applied. We point out that
our attacks can be adjusted to Algorithm 5 (cf. Subsubsection 3.2.2).

4.1 Timing attacks on RSA without CRT and on DH
In this subsection we assume that M is an RSA modulus or the modulus of a DH-
group (i.e. a subgroup of F∗M) and that yd mod M is computed with Algorithm 2, where
d = (d`−1, . . . , d0)2 is a secret exponent. Blinding techniques are not applied. We transfer
the attack from Sect. 6 in [Sch02b] to Barrett’s multiplication algorithm and extend it by
a look-ahead strategy.

The attacker (or evaluator) measures the execution times tj = Time(ydj mod M) for
j = 1, . . . , N for known bases yj . The tj may be noisy (cf. (15)). Moreover, we assume
that the attacker knows (or has estimated) c and cER. (Sect. 6 in [SKQ01b] explains a
guessing procedure for Montgomery’s multiplication algorithm.) In a pre-step the sum
`+ ham(d) can be estimated in a straight-forward way. We may assume that the attacker
knows ` and thus also ham(d). (If necessary the attack could be restarted with different
candidates for `. However, apart from its end the attack is robust against small deviations
from the correct value `.) At the beginning the attacker subtracts the data-independent
terms tset and (`+ ham(d)− 2)c from the timings tj and divides the differences by cER,
yielding the ‘discretised’ execution times td,1, . . . , td,N .

The attack strategy is to guess subsequently the exponent bits d`−1 = 1, d`−2,
For the moment we assume that the guesses d̃`−1 = 1, d̃`−2, . . . , d̃k+1 have been correct.
Now we focus on the guessing procedure of the exponent bit dk. Currently, Algorithm 2
‘halts’ before the if-statement (for i = k) so that k squarings and m (calculated from the
guesses d̃`−1, . . . , d̃k+1) multiplications still have to be carried out. On the basis of the
previous guesses the attacker computes the intermediate values xj , and the number of extra
reductions needed for the squarings and multiplications executed so far are subtracted from
the td,j , yielding the discretised remaining execution times tdrem,j . In terms of random
variables this reads

Tdrem,j = R`+ham(d)−k−m−1,j + · · ·+R`+ham(d)−2,j +Nd,j for 1 ≤ j ≤ N (27)

with Nd,j ∼ N (0, σ2/c2ER). Recall that the distribution of those Ri, which belong to
multiplications, depends on the basis yj ; see e.g. the stochastic representation (4).

To optimise our guessing strategy we apply statistical decision theory. We point the
interested reader to [Sch05], Sect. 2, where statistical decision theory is introduced in a
nutshell and the presented results are tailored to side-channel analysis. In the following
Θ := {0, 1} denotes the parameter space, where θ ∈ Θ corresponds to the hypothesis
dk = θ.

We may assume that the probability that the exponent bit dk equals θ is approximately
0.5. (In the case of RSA, d0 = 1 and for indices k close to dlog2(n)e the exponent bits
may be biased.) More formally, if we view dk, dk−1, . . . as realisations of iid uniformly
{0, 1}-distributed random variables Zk, Zk−1, . . . we obtain the a priori distribution

η(θ) = Pr(Zk = θ | ham(dk, . . . , d0) = m) =
(
k + 1−m
k + 1

)1−θ(
m

k + 1

)θ
. (28)

To guess the next exponent bit dk we employ a look-ahead strategy. For look-ahead depth
λ ∈ N≥1 the decision for exponent bit dk is based on information obtained from the next
λ exponent bits. As the attacker knows the intermediate value xj (of sample j) he is
able to determine the number of extra reductions needed to process the λ exponent bits
dk, . . . , dk−λ+1 for each of the 2λ admissible values ~ρ = (ρ0, . . . , ρλ−1) ∈ {0, 1}λ. This

20 Timing attacks and local timing attacks against Barrett’s modular multiplication

yields the discretized time needed to process the left-over exponent bits dk−λ, . . . , d0, which
is fictional except for the correct vector ~ρ.

In this subsection t~ρ,j denotes the number of extra reductions required to process the
next λ exponent bits for the basis yj if (dk, . . . , dk−λ+1) = ~ρ. For these computations λ
modular squarings and ham(~ρ) modular multiplications by yj are performed. Further-
more, tdrem,j − t~ρ,j may be viewed as a realisation of R`+ham(d)−k−m+λ+ham(~ρ)−1,j + · · ·+
R`+ham(d)−2,j +Nd,j . By (9), Lemma 6 (ii), and Lemma 7 (ii), (iii), this random variable
is approximately N (e~ρ,j , v~ρ,j)-distributed where

e~ρ,j := (k − λ)µS + (m− ham(~ρ))µM,j and
v~ρ,j := (k − λ)σ2

S + (m− ham(~ρ))σ2
M,j + 2(m− ham(~ρ))(covMS,j + covSM,j)

+ 2(k − λ−m+ ham(~ρ)− 1) covSS + Var(Nd,j) .
(29)

We define the observation space Ω := (Ω′)N consisting of vectors ~ω = (ω1, . . . , ωN) of
timing observations

ωj =
(
tdrem,j , (t~ρ,j)~ρ∈{0,1}λ

)
∈ Ω′ := R× N2λ , 1 ≤ j ≤ N . (30)

For the remainder of this subsection let f~ρ(·) denote the Lebesgue density of the normal
distribution N (e~ρ,j , v~ρ,j). The joint distribution of all N traces is given by the N -fold
product density of f~ρ(·) with arguments tdrem,1−t~ρ,1, . . . , tdrem,N−t~ρ,N . For λ = 1 we have
~ρ = ρ0 = θ, and for hypothesis dk = θ the distribution of the discretized computation time
needed for the left-over exponent bits dk−λ, dk−λ−1, . . . has the product density

∏N
j=1 fθ(·).

If λ > 1 the situation is more complicated. More precisely, for hypothesis θ ∈ Θ the
distribution of the left-over time is given by a convex combination of normal distributions
with density

fθ : Ω→ R , fθ(~ω) =
∑

~ρ∈{0,1}λ :
ρ0=θ

µ~ρ

N∏
j=1

f~ρ(tdrem,j − t~ρ,j) , (31)

where the coefficients µ~ρ are given by

µ~ρ = Pr(Zk−1 = ρ1, . . . , Zk−λ+1 = ρλ−1 | ham(dk, . . . , d0) = m− ρ0)

=
λ−1∏
i=1

Pr(Zk−i = ρi | ham(dk−i, . . . , d0) = m− ham(ρ0, . . . , ρi−1))

=
λ−1∏
i=1

(
k + 1− i− (m− ham(ρ0, . . . , ρi−1))

k + 1− i

)1−ρi(m− ham(ρ0, . . . , ρi−1)
k + 1− i

)ρi
.

(32)

Finally, we choose A = Θ as the set of alternatives and consider the loss function
s : Θ × A → R≥0 defined by s(θ, a) = 1{θ 6=a}, i.e. we penalize the wrong decisions (‘0’
instead of ‘1’, ‘1’ instead of ‘0’) equally since all forthcoming guesses then are useless. We
obtain the following optimal decision strategy for look-ahead depth λ.

Decision Strategy 1 (Guessing dk). Let ~ω = (ω1, . . . , ωN) be a vector of N timing
observations ωj ∈ Ω′ as in (30). Then the indicator function

τ(~ω) := 1{f0(~ω)/f1(~ω)≤η(1)/η(0)} (33)

is an optimal strategy (Bayes strategy) against the a priori distribution η.

Johannes Mittmann and Werner Schindler 21

Proof. We interpret ω1, ω2, . . . ωN as realisations of independent random vectors Xj :=
(Tdrem,j , (T~ρ,j)~ρ∈{0,1}λ) with values in Ω′ for 1 ≤ j ≤ N , which has already been assumed
when (31) was developed. We denote by µ the product of the Lebesgue measure on R and
the counting measure on N2λ . We equip Ω′ with the product σ-algebra B(R)⊗ P(N2λ).
Then µ is a σ-finite measure on Ω′, and the N -fold product measure µN = µ ⊗ · · · ⊗ µ
is σ-finite on the observation space Ω = Ω′ × · · · × Ω′. Note that Pr((T~ρ,j)~ρ∈{0,1}λ =
(t~ρ,j)~ρ∈{0,1}λ) is independent of (dk, . . . , dk−λ+1) and thus in particular independent of dk.
Furthermore, this probability is > 0 because all alternatives ~ρ are principally possible.
Define Cj := R×

∏
~ρ∈{0,1}λ{t~ρ,j} and C :=

∏N
j=1 Cj ⊆ Ω. (Here

∏
denotes the cartesian

product of sets.) If dk = θ then the conditional probability distribution of (X1, . . . , XN)
given C is fθ · µN . Thus all conditions of Theorem 1 (iii) in [Sch05] are fulfilled, and this
completes the proof.

For look-ahead depth λ = 1, Decision Strategy 1 is essentially equivalent to Theo-
rem 6.5 (i) in [Sch02b].
Remark 6. All decisions after a wrong bit guess are useless because then the attacker
computes wrong intermediate values x′1, . . . , x′N and therefore values t′~ρ,j that are not
correlated to the correct number of extra reductions t~ρ,j . However, the situation is
not symmetric in 0 and 1 because for dk = 0 one uncorrelated term and for dk = 1 two
uncorrelated terms are subtracted. In [SKQ01a] (look-ahead depth λ = 1) for Montgomery’s
multiplication algorithm an efficient three-option error detection and correction strategy
was developed, which allowed to reduce the number of attack traces by ≈ 40%. We do not
develop an equivalent strategy for Barrett’s multiplication algorithm but apply a dynamic
look-ahead strategy. This is much more efficient as we will see in Subsection 5.1. To the
best of our knowledge this look-ahead strategy is new if we ignore the fact that the idea
was very roughly sketched in [Sch02b], Remark 4.1.

4.2 Timing attacks on RSA with CRT
The references [Sch00, BB03, ASK05] introduce and analyse or improve timing attacks on
RSA implementations which use the CRT and Montgomery’s multiplication algorithm,
including the square & multiply exponentiation algorithm and table-based exponentiation
algorithms. Even more, these attacks can be extended to implementations which are
protected by exponent blinding [Sch15, Sch16].

Unless stated otherwise, we assume in this subsection that RSA with CRT applies
Algorithm 6 with Barrett’s multiplication (Algorithm 1). Let n = p1p2 be an RSA
modulus, let d be a secret exponent, and let y ∈ Zn be a basis. We set y(i) := y mod pi
and d(i) := d mod (pi − 1) for i = 1, 2. For y ∈ Zn let T (y) := Time(yd mod n).

Let ν := blog2 nc+ 1 be the bit-length of n. We may assume that p1, p2 have bit-length
≈ ν/2 and that d(1), d(2) have Hamming weight ≈ ν/4. From (5) we obtain

E(T (y)) ≈ tset + 2c
(
ν

2 + ν

4

)
+ cER

(
ν

2
∑
i=1,2

(
αi
3 + βi

2

)
+ ν

4
∑
i=1,2

(
αiti

2 + βi
2

))
, (34)

where ti := y(i)/pi. Now assume that 0 < u1 < u2 < n with u2 − u1 � p1, p2. Three cases
are possible:

Case A: {u1 + 1, . . . , u2} does not contain a multiple of p1 or p2.

Case Bi: {u1 + 1, . . . , u2} contains a multiple of pi, but not of p3−i.

Case C: {u1 + 1, . . . , u2} contains a multiple of both p1 and p2.

22 Timing attacks and local timing attacks against Barrett’s modular multiplication

By (34) we conclude

E(T (u2)− T (u1)) = E(T (u2))− E(T (u1)) ≈


0 in Case A ,
− 1

8ναicER in Case Bi ,
− 1

8ν(α1 + α2)cER in Case C ,
(35)

because if pi is in {u1 + 1, . . . , u2} then ti,2 := (u2 mod pi)/pi ≈ 0 and ti,1 := (u1 mod
pi)/pi ≈ 1. For RSA without CRT the parameters α and β can easily be calculated
while for RSA with CRT the parameters α1, α2, β1, β2 are unknown and thus need to be
estimated.

We note that
β1β2 =

⌊
b2k

p1

⌋
·
⌊
b2k

p2

⌋
b−(2k+2) ≈ b2k−2

n
. (36)

The parameter βi is not sensitive against small deviations of pi and could be approximated
by bb2k/pic/bk+1 ≈ bk−1/pi ≈ bk−1/

√
n ∈ (0, 1). However, this estimate can be improved

at the end of attack phase 1 below because then more precise information on p1 and p2 is
available. We mention that in the context of this timing attack the knowledge of β1 and β2
is only relevant to estimate Var(T (y)), which allows to determine an appropriate sample
size for the attack steps. Unlike βi, the second term {b2k/pi} of αi = (p2

i /b
2k){b2k/pi}

and thus αi is very sensitive against deviations of pi since pi � b2k.
In the remainder of this subsection we assume p1 < p2 < 2p1, i.e. that p1, p2 have

bit-length ` ≈ ν/2. It follows that the interval I1 :=
(√

n/2,
√
n
)
contains p1 but no

multiple of p2 and the interval I2 :=
(√
n,
√

2n
)
contains p2 but no multiple of p1. (In

the general case, we would have to guess r ∈ N≥2 such that (r − 1)p1 < p2 < rp1. Then
I1 :=

(√
n/r,

√
n/(r − 1)

)
contains p1 but no multiple of p2 and I2 :=

(√
(r − 1)n,

√
rn
)

contains p2 but no multiple of p1.) Let u′0 := d
√
n/2e < u′1 < . . . < u′h := b

√
nc be

approximately equidistant integers in I1 and let u′′0 := d
√
ne < u′′1 < . . . < u′′h := b

√
2nc

be approximately equidistant integers in I2, where h ∈ N is a small constant (say h = 4).
Further, define

MeanTime(u,N) := 1
N

N∑
j=1

T (u+ j) . (37)

The goal of attack phase 1 is to identify j′, j′′ such that p1 ∈ [u′j′−1, u
′
j′] and p2 ∈

[u′′j′′−1, u
′′
j′′]. The selection of j′ and j′′ follows from the quantitative interpretation of (35).

If αi is small but α3−i is significantly larger, the decision (for j′, resp., for j′′) in attack
phase 1 might be incorrect, but this is of minor importance since attack phase 2 searches
p3−i anyway. If both α1 and α2 are small the efficiency of the attack is low anyway. To be
on the safe side one then may repeat phase 1 with larger sample size N1. Moreover, (36)
allows to check the selection of j′ and j′′.

Attack Phase 1

(1) Select an appropriate integer N1.

(2) For j = 1, . . . , h, compute δ′j ← MeanTime(u′j−1, N1)−MeanTime(u′j , N1) and δ′′j ←
MeanTime(u′′j−1, N1)−MeanTime(u′′j , N1).

(3) Set j′ ← arg max1≤j≤h{δ′j} and j′′ ← arg max1≤j≤h{δ′′j }. (The attacker believes that
p1 ∈ [u′j′−1, u

′
j′] and p2 ∈ [u′′j′′−1, u

′′
j′′].)

(4) Set α̃1 ← 8δ′j′/(νcER) and α̃2 ← 8δ′′j′′/(νcER) (estimates for α1 and α2).

(5) Set β̃1 ← 2bk−1/(u′j′−1 + u′j′) and β̃2 ← 2bk−1/(u′′j′′−1 + u′′j′′) (estimates for β1 and
β2).

Johannes Mittmann and Werner Schindler 23

Attack Phase 2

(1) If α̃1 > α̃2 then set i← 1, u1 ← u′j′−1, and u2 ← u′j′ ; else set i← 2, u1 ← u′′j′′−1, and
u2 ← u′′j′′ . (Attack phase 2 searches for pi iff α̃i > α̃3−i. This prime is assumed to be
contained in [u1, u2].)

(2) Select N2 (depending on α̃i and Var
α̃1,α̃2,β̃1,β̃2

(T (u))).

(3) While log2(u2 − u1) > `/2− 6, do the following:

(a) Set u3 ← b(u1 + u2)/2c.
(b) If MeanTime(u2, N2) −MeanTime(u3, N2) > − 1

16να̃icER then set u2 ← u3 (the
attacker believes that Case A is correct); else set u1 ← u3 (the attacker believes
that Case Bi is correct).

The decision rule follows from (35) (Case A vs. Case Bi). After phase 2 more than half of
the upper bits of u1 and u2 coincide, which yields more than half of the upper bits of pi
(more precisely, ≈ `/2 + 6). This enables attack phase 3.

Attack Phase 3

(1) Compute pi with Coppersmith’s algorithm [Cop97].

Of course, all decisions in attack phase 2 (including the initial choice of u1 and u2) need
to be correct. However, it is very easy to verify from time to time whether all decisions in
attack phase 2 have been correct so far, or equivalently, whether the current interval (u1, u2)
indeed contains pi. If MeanTime(u2 + N2, N2) −MeanTime(u3 + N2, N2) < − 1

16να̃cER
this confirms the assumption that (u1, u2) contains pi, and (u1, u2) is called a ‘confirmed
interval’ but if not, one computes MeanTime(u2 + 2N2, N2)−MeanTime(u3 + 2N2, N2). If
this difference is < − 1

16να̃cER then (u1, u2) becomes a confirmed interval. Otherwise the
attack goes back to the preceding confirmed interval (u1;c, u2;c) and restarts with values
in the neighbourhood of u1;c and u2;c, which have not been used before when the attack
already was at this stage.
Remark 7. (i) Similarities to Montgomery’s multiplication algorithm. By (5) the ex-

pected number of extra reductions needed for a multiplication by yi := y mod pi is
an affine function in ti = yi/pi. (For Montgomery’s multiplication algorithm it is
a linear function in (yR mod pi)/pi, cf. (13).) As for Montgomery’s multiplication
algorithm, (34) allows to decide whether an interval contains a prime p1 or p2 and
finally to factorise the RSA modulus n.

(ii) Differences to Montgomery’s multiplication algorithm. If y1 < pi < y2, the expec-
tation E(T (y1) − T (y2)) is linear in αi, which is very sensitive to variations in pi.
Consequently, the attack efficiency may be very different whether the attacker targets
p1 or p2. This is unlike to Montgomery’s multiplication algorithm where the corre-
sponding expectation is linear in pi/R ≈

√
n/R. As a consequence attack phase 1

is very different in both cases, depending on whether the targeted implementation
applies Barrett’s or Montgomery’s multiplication algorithm.

It should be noted that this timing attack against Barrett’s multiplication algorithm
can be adapted to fixed window exponentiation and sliding window exponentiation and
also works against exponent blinding. For table-based methods the timing difference in
(35) gets smaller while exponent blinding causes large algorithmic noise. In both cases the
parameters N1 and N2 must be selected considerably larger, which of course lowers the
efficiency of the timing attack. This is rather similar to timing attacks on Montgomery’s
multiplication algorithm [Sch15, Sch16].

24 Timing attacks and local timing attacks against Barrett’s modular multiplication

4.3 Local timing attacks
Unlike for the ‘pure’ timing attacks discussed in Subsections 4.1 and 4.2 we assume that
a potential attacker is not only able to measure the overall execution time but also the
timing for each squaring and multiplication, which means that he knows the number of
extra reductions. This may be achieved by power measurements. In [AS08] an instruction
cache attack was applied against Montgomery’s multiplication algorithm. The task of a
spy process was to realize when a particular routine from the BIGNUM library is applied,
which is only used to calculate the extra reduction. This approach may not be applicable
against Barrett’s multiplication algorithm because here more than one extra reduction is
possible.

In this subsection we assume that fixed window exponentiation is applied where basis
blinding (introduced in [Koc96], Sect. 10, a.k.a. message blinding) is a applied as a security
measure. Algorithm 7 updates the blinding values to prevent an attacker from calibrating
an attack to fixed blinding values. Our attack works against RSA without CRT and
against RSA with CRT as well. The papers [Sch02a, AS07, AS08, DGD+16] consider
several modular exponentiation algorithms with Montgomery’s multiplication algorithm.

Algorithm 7 Fixed Window Exponentia-
tion, basis blinding, Barrett modular multi-
plication.
Input: A modulus M ∈ N≥2 of length

k = blogbMc + 1 in base b, width
of the window w ≥ 2, a secret ex-
ponent d = (d`−1, . . . , d0)2w in 2w-ary
representation, blinding values A,B =
A−d mod M ∈ ZM , the integer recip-
rocal µ = bb2k/Mc of M , and a basis
y ∈ ZM .

Output: yd mod M and updated blinding
values A2 mod M , B2 mod M .

1: u0 ← 1
2: u1 ← A · y mod M
3: for j ← 2, . . . , 2w − 1 do
4: uj ← uj−1 · u1 mod M
5: end for
6: x← u0
7: for j ← `− 1, . . . , 0 do
8: for i← 1, . . . , w do
9: x← x · x mod M

10: end for
11: x← x · udj mod M
12: end for
13: x← B · x mod M
14: A← A2 mod M , B ← B2 mod M
15: return x and A, B

Algorithm 8 RSA with CRT, modular ex-
ponentiation with Alg. 7.
Input: Prime factors p1 and p2 with n =

p1p2, exponents d(i) = d mod (pi − 1),
and a basis y ∈ Zn.

Output: yd mod n.
1: y(1) := y mod p1

2: Compute x(1) = y
d(1)
(1) mod p1 with

Alg. 7
3: y(2) := y mod p2

4: Compute x(2) = y
d(2)
(2) mod p2 with

Alg. 7
5: Compute x = yd mod n from x(1) and
x(2) (recombination step)

6: return x

4.3.1 RSA without CRT and DH

In this subsection we assume that yd mod M is computed with Algorithm 7. The exponen-
tiation phase starts in Step 6. Analogously to Algorithm 2 (left-to-right exponentiation)
the exponentiation phase of Algorithm 7 can be described by a sequence of operations

Johannes Mittmann and Werner Schindler 25

O1, O2, . . . with Oj ∈ {S, M0, . . . , M2w−1}, where Mθ stands for a multiplication by the table
entry uθ. Since one multiplication by some table entry uj follows each w squarings, it
remains to guess the operations Oj(w+1) ∈ {M0, . . . , M2w−1} for j = 1, 2,

As for Algorithm 2 the exponentiation phase can be described by a stochastic process
(Sn, Rn)n∈N on the state space [0, 1) × Z3, where S0 models Step 6 in Algorithm 7, i.e.
S0 = 0. Again, this is a Markov process. However, there are some peculiarities: First
of all, S0 = . . . = Sw are identical and correspond to the initialisation x := 1 and to
the first w squarings. We may assume that Sw+1, Sw+2, . . . are uniformly distributed on
[0, 1). However, if Oj(w+1) = M0 (multiplication by u0 = 1) then Sj(w+1)−1 = Sj(w+1). The
sequence Sw+1, Sw+2, . . . with those duplicate variables removed is iid uniformly distributed
on [0, 1). In particular, Remark 2 (ii) allows to identify the j′s for which Oj(w+1) = M0
(multiplication by 1). Consequently, we define Rw+1 := 0 (multiplication by x = 1) and
Rj(w+1) := 0 for all j ≥ 2 with Oj(w+1) = M0 (multiplication by u0 = 1).

Since Rw+1 = 0, the attacker has to guess Ow+1 ∈ {M0, . . . , M2w−1} by exhaustive search,
which costs at most 2w trials. Now we focus on the operations O2(w+1), O3(w+1),

Lemma 10. Let j ≥ 2. For θ ∈ {1, . . . , 2w − 1} we have

Prθ(Rj(w+1) = rj(w+1))

=
∫ 1

0

(∫ 1

0
h[θ](sj(w+1), rj(w+1) | sj(w+1)−1) dsj(w+1)

)
dsj(w+1)−1 .

(38)

The conditional density h[θ](sn+1, rn+1 | sn) is defined like hn+1 with On+1 = M in
Lemma 5 (iii) with (sj(w+1), sj(w+1)−1, t[θ] = s′θ) in place of (sn+1, sn, t). Here Prθ denotes
the probability under the hypothesis θ, i.e. under the assumption Oj(w+1) = Mθ. Further,
we have

Pr0(Rj(w+1) = 0) = 1 . (39)

Proof. Equation (38) follows from Lemma 6 (i) with M = Mθ and equation (39) holds by
definition.

However, the attacker does not know the ratios t1, . . . , t2w−1 and in Subsubsection 4.3.2,
additionally, not even the moduli p1 and p2. Anyway, the table initialisation phase is
the source of our attack since the attacker knows the type of operations. In analogy
to the exponentiation phase we formulate a stochastic process (S′j , R′j)1≤j≤2w−1 on the
state space [0, 1)× Z3, where S′j corresponds to the normalised table entry tj := uj/M .
This again defines a two-dimensional Markov process, and S′1, . . . , S′2w−1 are iid uniformly
distributed on [0, 1). This leads to Lemma 11.

Lemma 11. Let j ≥ 2.

(i) For θ ∈ {1, . . . , 2w − 1} we have

Prθ(R′2 = r′2, . . . , R
′
2w−1 = r′2w−1, Rj(w+1) = rj(w+1))

=
∫ 1

0

∫ 1

0
h∗(s′2, r′2 | s′1) · · ·

∫ 1

0
h∗(s′2w−1, r

′
2w−1 | s′2w−2)∫ 1

0

∫ 1

0
h[θ](sj(w+1), rj(w+1) | sj(w+1)−1)

dsj(w+1) dsj(w+1)−1 ds
′
2w−1 ds

′
2w−2 · · · ds′2 ds′1 .

(40)

For j = 1, . . . , 2w−2 the function h∗(sj+1, rj+1 | sj) is defined like hn+1 for On+1 = M
in Lemma 5 (iii) with (s′j+1, s

′
j , t1 = s′1) in place of (sn+1, sn, t).

26 Timing attacks and local timing attacks against Barrett’s modular multiplication

(ii) For θ ∈ {0, . . . , 2w − 1} we have

Prθ(R′2 = r′2, . . . , R
′
2w−1 = r′2w−1, Rj(w+1) = rj(w+1))

=
∫ 1

0

∫ 1

0
h∗(s′2, r′2 | s′1) · · ·

∫ 1

0
h∗(s′2w−1, r

′
2w−1 | s′2w−2)

Prθ(Rj(w+1) = rj(w+1)) ds′2w−1 ds
′
2w−2 . . . ds

′
2 ds

′
1 .

(41)

Proof. The random variables S′1, . . . , S′2w−1, Sj(w+1)−1, Sj(w+1) are iid uniformly distributed
on [0, 1). For j = 1 . . . , 2w−2 and for given r′j+1 the conditional densities h∗(s′j+1, r

′
j+1 | s′j)

quantify the dependency on the ‘history’ (recall that S′1, . . . , S′2w−1 is a Markov process).
Similarly, h[θ](sj(w+1), rj(w+1) | sj(w+1)−1) quantifies the dependency on the ‘history’. As
in the proof of Lemma 7 (i), equation (40) follows from the Ionescu-Tulcea Theorem.
Evaluating the integrals with respect to sj(w+1)−1 and sj(w+1) proves (41) for θ > 0. For
θ = 0 it is obvious because R′j(w+1) does not depend on S′1, . . . , S′j(w+1)−1.

Decision Strategy 2. Let j ≥ 2 and assume that the attacker has observed N samples
of extra reduction vectors (r′2,k, . . . , r′2w−1,k, rj(w+1),k) for 1 ≤ k ≤ N . Then the optimal
decision strategy is to decide for Oj(w+1) = Mθ∗ , where

θ∗ := arg max
θ∈{0,...,2w−1}

N∏
k=1

Prθ
(
R′2,k = r′2,k, . . . , R

′
2w−1,k = r′2w−1,k, Rj(w+1),k = rj(w+1),k

)
.

(42)

Proof. All θ ∈ {0, . . . , 2w − 1} are equally likely, and each false decision is equally harm-
ful. Hence the optimal decision strategy is given by the maximum likelihood estima-
tor, which follows e.g. from Theorem 1 (i) in [Sch05]. The extra reduction vectors
(R′2,1, . . . , R′2w−1,1, Rj(w+1),1), . . . , (R′2,N , . . . , R′2w−1,N , Rj(w+1),N) may be considered to
be independent, which yields (42). Formula (42) combines both cases θ = 0 and θ 6= 0.

Remark 8. (i) Similarities to Montgomery’s multiplication algorithm. For both Barrett’s
and Montgomery’s multiplication algorithm the joint probabilities can be expressed
by integrals over high-dimensional unit cubes. In both cases the type of the first
multiplication (operation w + 1) has to be guessed exhaustively.

(ii) Differences to Montgomery’s multiplication algorithm. For Barrett’s multiplication
algorithm these integrals are (2w + 1)-dimensional while for Montgomery’s algorithm
they are (2w + 2)-dimensional. This is due to the pre-operation (cf. Algorithm 4,
Step 1).

4.3.2 RSA with CRT

In this subsection we assume that yd mod n is computed with Algorithm 8. Algorithm 8
calls Algorithm 7 twice, which applies basis blinding. (Alternatively, the basis blinding
could also be moved to a pre-step 0 and to Step 6 in Algorithm 8 but this would not
affect the attack.) Here the situation for the attacker is even less favourable than in
Subsubsection 4.3.1 because not only the blinded basis and thus the table entries are
unknown but also the moduli p1 and p2. However, apart from additional technical
difficulties our attack still applies.

We first note that it suffices to recover d(1) or d(2). In fact, if x = yd mod n then
gcd(x− yd(i) mod n, n) = pi for i = 1, 2 (cf. [AS08], eq. (1)). If necessary the attacker may
construct such a pair, e.g. by setting y = x′

e mod n and x = x′ for some x′ ∈ Zn.
The plan is to apply the attack method from the preceding subsection to the modu-

lar exponentiation mod p1 or mod p2. First, similarly as in Subsection 4.2 we estimate

Johannes Mittmann and Werner Schindler 27

α1, β1, α2, β2. To estimate αi and βi we consider all k′S squarings in the modular expo-
nentiation mod pi, beginning with operation w + 2. We neglect all multiplications by
1, which can be identified by the fact that no extra reductions can occur, so that k′M
relevant multiplications remain. Counting the extra reductions in the relevant squarings
and multiplications over all N exponentiations give numbers nS and nM, respectively. We
may assume that for θ > 0 the normalised table entries behave like realisations of iid
random variables, which are uniformly distributed on [0, 1). Thus we may assume that
the average of all normalised table entries over all N samples is ≈ 0.5. From (5) we thus
conclude

nS ≈ Nk′S
(
αi
3 + βi

2

)
and nM ≈ Nk′M

(
αi
4 + βi

2

)
. (43)

Replacing ≈ by = and solving the linear equations provides estimates α̃i and β̃i for αi
and βi. The attacker focuses on the exponentiation mod p1 iff α̃1 > α̃2.
Remark 9. (i) Similarities to Montgomery’s multiplication algorithm. As for Mont-

gomery’s multiplication algorithm the attack remains feasible if the CRT is applied.

(ii) Differences to Montgomery’s multiplication algorithm. Unlike for Montgomery’s
multiplication algorithm the choice, whether the modular exponentiation mod p1 or
mod p2 is attacked, may have significant impact on the attack’s efficiency. This is
similar to the situation in Subsection 4.2.

4.4 α ≈ 0, β ≈ 0, Algorithm 5: Impact on the attack efficieny
In Subsubsection 3.2.3 we mentioned that α ≈ 0 and β ≈ 0 may occur if b = 2ws � 2,
e.g. for ws = 8, 16, 32, 64. While β ≈ 0 is quite likely, α ≈ 0 is certainly possible but very
unusual. For both special cases the necessary computations become considerably easier.

For β ≈ 0 all before-mentioned attacks remain feasible. The attacks in Subsection 4.2
and Subsection 4.3 exploit differences between multiplications with different factors, which
are caused by different α-values. As β ≈ 0 this reduces the part of variances which does
not depend on the particular factor. Hence β ≈ 0 there leads to even more efficient attacks
while this has little relevance for the attack in Subsection 4.1. If α ≈ 0 the {0, 1}-valued
random variables R1, R2, . . . are iid distributed with Pr(Rj = 1) = β/2, and thus only the
timing attack in Subsection 4.1 remains feasible.

In Subsubsection 3.2.2 we have shown that in Algorithm 5 extra additions are rather
rare and thus can be treated like noise. For the timing attacks in Subsection 4.1 and
Subsection 4.2 this effect slightly increases the variance and thus also the sample size.
If cadd 6≈ cER in the local timing attacks in Subsection 4.3, the extra additions can be
detected yielding to the same situation as for Algorithm 1. If cadd ≈ cER, we occasionally
get a wrong number of extra reductions, which may slightly increase the sample size. (As
already pointed out for β ≈ 0 the situation is rather similar to Montgomery’s multiplication
algorithm.)

5 Experiments
In this section we report experimental results for the attacks presented in Section 4. In
each experiment we used simulations of the exponentiation algorithms returning the exact
number of extra reductions needed by the multiplications and squarings, either cumulative
(pure timing attacks) or per operation (local timing attacks). This represents the ideal
(noise-free) case (accurate timing measurement, no time noise by other operations). Of
course, non-ideal scenarios would require larger sample sizes.

We performed timing attacks on RSA without CRT and on Diffie-Hellman exemplarily
on 512-bit RSA moduli and on a 3072-bit DH group, and for RSA with CRT we considered

28 Timing attacks and local timing attacks against Barrett’s modular multiplication

1024-bit moduli and 3072-bit moduli. Finally, we carried out local timing attacks on 512-bit
RSA moduli and on a 3072-bit DH group. Our experiments confirmed the theoretical
results. Of course, 512-bit RSA moduli have not been secure for many years, and also
1024-bit RSA is no longer state-of-the-art. These choices yet allow direct comparisons to
results from previous papers on Montgomery’s multiplication algorithm which considered
these modulus sizes.

We primarily report on experiments using Barrett’s multiplication algorithm with base
b = 2, but in the respective subsections we also explain how the results change when a
more common base b = 2ws for ws ≥ 8 is used. The case b = 2 is usually less favourable
for the attacker in terms of efficiency and represents a worst-case analysis in this sense.
Mathematically it is also the most challenging case as it requires the most general stochastic
model.

The experiments were implemented using the Julia programming language [BEKS17]
with the Nemo algebra package [FHHJ17].

5.1 Timing attacks on RSA without CRT and on DH
We implemented the timing attack with the look-ahead strategy as presented in Subsec-
tion 4.1.

Since our simulations are noise-free, we set Var(Nd,j) := 0 in (29). For simplicity, in (29)
we approximated the covariances covMS,j , covSM,j and covSS by the empirical covariances
of suitable samples generated from Stochastic Model 2. For instance, covMS,j can be
approximated using samples from

Rn =
⌈
αSn−1tj + βUn − Sn

⌉
,

Rn+1 =
⌈
αS2

n + βUn+1 − Sn+1
⌉
,

where tj := yj/M is the normalized basis of the j-th timing sample. (Recall that the random
variables Sn−1, Sn, Un and Un+1 are iid uniformly distributed on [0, 1).) Furthermore, the
n-th and the (n+ 1)-th Barrett operations correspond to a multiplication by the basis and
a squaring, respectively. We point out that Lemma 7 (i) would theoretically allow an exact
computation of these covariances since Cov(Rn, Rn+1) = E(RnRn+1) − E(Rn) E(Rn+1)
and E(RnRn+1) =

∑
1≤i,j≤2 ij Pr(Rn = i, Rn+1 = j).

In order to make the attack more efficient, we chose the look-ahead depth λ dynamically
during the attack. Our strategy is based on the observation that when Decision Strategy 1
fails for the first time the decisions usually are close, i.e., using the notation of Subsection 4.1,
|η(0)f0(~ω)− η(1)f1(~ω)| is small. Close decisions happen mostly at the beginning of the
attack when the number of remaining exponent bits k is large (if Var(Nd,j) ≈ 0 then the
variance v~ρ,j in (29) decreases (essentially) linearly in k) or if the number N of timing
samples is insufficient. For each decision, we gradually incremented the look-ahead depth
λ starting from 1 until either the heuristic condition∣∣η(0)f0(~ω)− η(1)f1(~ω)

∣∣ ≥ 3 · log2
(
1 +N/k

)
was fulfilled or we reached some maximum look-ahead depth λmax.

For simplicity, we assumed in our experiments that we know the bit-length and Hamming
weight of the secret exponent (cf. Subsection 4.1).

For the first experiment we used the Diffie–Hellman group dhe3072 defined in Ap-
pendix A.2 of RFC 7919 [Gil16]. RFC 7919 recommends to use this group with secret
exponents of bit-length at least 275. The 3072-bit modulus of this group has Barrett
parameters α ≈ 0.63 and β ≈ 0.5 for the base b = 2 we used. The results of the experiment
are reported in Table 1. For each sample size N and maximum look-ahead depth λmax
given in the table, we conducted 100 trials of the timing attack. For each trial, a 275-bit
secret exponent and N input bases were chosen independently at random.

Johannes Mittmann and Werner Schindler 29

Table 1: Timing attack on Diffie–Hellman group dhe3072 with 275-bit secret exponents
(base b = 2).

Sample size Success rate (in %)
N λmax : 1 2 3 4 5 6 7 8 9 10
400 0 0 0 0 0 1 2 1 1 4
600 0 0 1 2 12 13 21 41 39 50
800 0 0 5 23 37 54 74 73 75 83

1000 0 0 31 42 65 82 83 88 93 91
1200 0 11 37 72 88 89 94 97 98 100
1400 3 32 69 89 95 94 100 99 99 99

Table 1 shows that in terms of the sample size the applied (dynamic) look-ahead
strategy is much more efficient than the constant look-ahead strategy λ = 1.

For the second experiment we considered RSA with 512-bit moduli and again used
Barrett’s multiplication with base b = 2. Of course, factoring 512-bit RSA moduli has been
an easy task for many years but this choice allows a direct comparison with the results
on Montgomery’s multiplication algorithm in [SKQ01a]. The results of these experiments
are reported in Table 2. For each sample size N and maximum look-ahead depth λmax
given in the table, we conducted 100 trials of the timing attack. For each trial, a 512-bit
RSA-modulus and N input bases were chosen independently at random. Since we chose
e := 65537 as public exponents, the secret exponents were ensured to be of bit-length near
512 as well.

Table 2: Timing attack on 512-bit RSA without CRT (base b = 2).

Sample size Success rate (in %)
N λmax : 1 2 3 4 5 6 7 8 9 10

1000 0 0 0 0 0 0 2 8 8 12
1500 0 0 0 8 18 32 50 63 71 77
2000 0 0 15 37 62 80 84 93 97 92
2500 0 7 40 74 91 89 97 98 100 97
3000 0 25 66 87 96 98 100 100 98 99
3500 0 49 80 98 100 99 99 98 100 99
5000 17 89 100
7000 66 99
9000 89 100

Reference [SKQ01a] treats 512-bit RSA moduli, the square & multiply algorithm and
Montgomery’s multiplication algorithm. In our terminology, [SKQ01a] applies the optimal
decision strategy for the constant look-ahead strategy λ = 1. For the sample size N = 5000
(for N = 7000, for N = 9000) simulations yielded success probabilities of 12% (55%,
95%). The results in Table 2 underline that the efficiency of the attacks on Barrett’s
and on Montgomery’s multiplication algorithm is rather similar for λ = 1. Moreover, in
[SKQ01a] also so-called real-life attacks were conducted where the timings were gained
from emulations of the Cascade chip (see [SKQ01a], Remark 4). For the above-mentioned
sample sizes the real-life attack was successful in 15%, 40% or 72% of the trials. In
[SKQ01a] further experiments were conducted where the optimal decision strategy was
combined with an error detection and correction strategy. There already N = 5000 led to

30 Timing attacks and local timing attacks against Barrett’s modular multiplication

success rates of 85% (simulation) and 74% (real-world attack). This improved the efficiency
of the original attack on the Cascade chip in [DKL+98] by a factor ≈ 50. We refer the
interested reader to [SKQ01a], Table 1 and Table 2, for further experimental results.

This error detection and correction strategy can be adjusted to Barrett’s multiplication
algorithm, and for λ = 1 this should also increase the efficiency (in terms of N) considerably.
Of course, one might combine this error detection and correction strategy with our look-
ahead strategy. We do not expect a significant improvement because the look-ahead
strategy treats suspicious (‘close’) decisions with particular prudence (by enlarging λ).
However, the other way round the look-ahead strategy can be applied to Montgomery’s
multiplication algorithm as well and should yield similar improvements.

Decision Strategy 1 considers the remaining execution time and the following λ exponent
bits. Since the variance of the remaining execution time v~ρ,j (29) is approximately linear in
the number of exponent bits, wrong decisions should essentially occur in the beginning of
the attack. This observation suggests a coarse rule of thumb to extrapolate the necessary
sample size to different exponent lengths: When the exponent length increases from `1
to `2 the sample size N should increase by factor ≈ `2/`1. The experimental results in
Table 1 and Table 2 are in line with this formula, cf. the results for N = 1000 (Table 1)
and N = 2000 (Table 2), for instance.

Our experiments showed the interesting feature that unlike for the attacks in Subsec-
tions 5.2 and 5.3 the parameters α and β only play a small role for the efficiency, at least
under optimal conditions when no additional noise occurs. Qualitatively, this feature can
be explained as follows: Decision Strategy 1 essentially exploits the fact that the variances
of the 2λ (hypothetical) remaining execution times should be the smaller the more of the
left-hand bits of the λ-bit window are correct. Large (resp., small) α, β imply large (resp.,
small) variances and differences of variances. In the presence of additional noise large α, β
should favour the attack efficiency because then the relative impact of the additional noise
on the variance is smaller.

We repeated some of the experiments in Tables 1 and 2 for base b = 28 and obtained
comparable success rates.

5.2 Timing attacks on RSA with CRT

We implemented the timing attack presented in Subsection 4.2 (RSA with CRT, square &
multiply algorithm).

The efficiency of the attack depends on the Barrett parameters α1, α2, β1, β2 of the
RSA-primes p1, p2. The value αi := max{α1, α2} (which is estimated in attack phase 1)
determines the ‘size’ of useful information (‘signal’), whereas α3−i, β1, β2 determine the
size of unwanted ‘algorithmic noise’ for the attack. We use αmax := max{α1, α2} and
β := (β1 + β2)/2 as simple measures for the amount of signal and algorithmic noise,
respectively.

The results of our experiments are reported in Table 3 and Table 4 for RSA moduli of
bit-size ν := 1024 (allowing a comparison with [Sch00]) and ν := 3072, respectively. We
used Barrett’s multiplication algorithm with base b = 2 and RSA primes of bit-size ν/2.
Each row of the table represents an experiment consisting of 100 trials. For each trial, we
used rejection sampling to generate an RSA modulus such that αmax and β are contained
in the given intervals.

In attack phase 1 we divided the initial intervals containing p1 and p2 into h := 4
subintervals each and chose a sample size of N1 := 32. For attack phase 2 we estimated
the sample size N2 as follows. For an interval [u3, u2], we consider ∆ := T (u2) − T (u3)
as random variable. Then we have Var(∆) ≈ (vi,3 + vi,2 + v3−i,3 + v3−i,2)c2ER, where the

Johannes Mittmann and Werner Schindler 31

Table 3: Timing attack on 1024-bit RSA with CRT (base b = 2, γ = 2−8 in (44)).

Signal Alg. noise Sample sizes Errors Success

αmax β Ñ2 N2 Ñtotal N total Etotal (in %)
[0.0, 0.2] [0.65, 0.80] 72.5 124.71 24226.5 46566.76 1.26 62

[0.50, 0.65] 59 101.14 18851.5 33270.86 0.78 64
[0.2, 0.4] [0.65, 0.80] 15 18.19 4878 5882.48 0.53 97

[0.50, 0.65] 15 17.80 4624 5630.72 0.41 86
[0.4, 0.6] [0.65, 0.80] 6 6.40 2171 2168.31 0.39 98

[0.50, 0.65] 6 6.20 1973 2149.02 0.44 98
[0.6, 0.8] [0.65, 0.80] 3 3.37 1200 1241.42 0.21 100

[0.50, 0.65] 3 3.31 1101 1240.08 0.25 99
[0.8, 1.0] [0.65, 0.80] 2 2.06 830 874.54 0.20 94

[0.50, 0.65] 2 2.06 830 864.67 0.13 100
[0.0, 1.0] [0.50, 0.80] 6 25.28 1973 9244.66 0.51 93

Table 4: Timing attack on 3072-bit RSA with CRT (base b = 2, γ = 2−9 in (44)).

Signal Alg. noise Sample sizes Errors Success

αmax β Ñ2 N2 Ñtotal N total Etotal (in %)
[0.0, 0.2] [0.65, 0.80] 29 57.52 27103 49030.68 0.80 69

[0.50, 0.65] 26.5 40.58 23444.5 34818.14 0.74 76
[0.2, 0.4] [0.65, 0.80] 7 7.34 5877.5 6431.51 0.60 92

[0.50, 0.65] 6 6.87 5082 6008.79 0.50 94
[0.4, 0.6] [0.65, 0.80] 3 2.79 2685 2582.59 0.33 100

[0.50, 0.65] 3 2.73 2685 2499.22 0.21 99
[0.6, 0.8] [0.65, 0.80] 2 1.53 1886 1525.63 0.22 100

[0.50, 0.65] 2 1.54 1884 1530.20 0.18 100
[0.8, 1.0] [0.65, 0.80] 1 1.00 1087 1095.58 0.13 100

[0.50, 0.65] 1 1.00 1087 1089.64 0.04 100
[0.0, 1.0] [0.50, 0.80] 3 8.17 2682 7188.71 0.24 95

second indices equal the index of the corresponding value uj . More precisely,

vi,j := ν

2 varS,αi,βi +ν

4 varM,ti,j ,αi,βi

+ 2
(
ν

4 covSS,αi,βi +ν

4 covMS,ti,j ,αi,βi +ν

4 covSM,ti,j ,αi,βi

)
and ti,j := (uj mod pi)/pi. Plugging in the estimates α̃1, α̃2, β̃1, β̃2 from attack phase 1 as
well as t̃i,3 ≈ 1, t̃i,2 = 0 and t̃3−i,3, t̃3−i,2 ≈ 1 (worst case), we obtain an approximate upper
bound σ̃2

∆,i for Var(∆) (holding for both Case A and Case Bi). Let γ denote the probability
that MeanTime(u2, N2)−MeanTime(u3, N2) > − 1

16να̃icER, although pi ∈ [u3, u2]. Each
difference T (u2 + j)− T (u1 + j) may be viewed as a realisation of the difference of two
normally distributed random variables, and thus the error probability γ is approximately
Φ
(
− 1

16να̃icER/(σ̃∆,i/
√
N2)

)
. Therefore, a desired maximum error probability γ for a single

decision can approximately be achieved by setting

N2 :=
⌈(

16 · σ̃∆,i · Φ−1(γ)
ν · α̃i · cER

)2⌉
. (44)

32 Timing attacks and local timing attacks against Barrett’s modular multiplication

We point out that (44) does not depend on cER because σ̃∆,i is a multiple of cER. In the
simulation we thus may assume cER = 1. Of course, in a noisy setting the relation between
the noise and cER is relevant. For the experiments in Tables 3 and 4, we chose γ := 2−8

and γ := 2−9, respectively. The median and mean of the values chosen for N2 in successful
attacks are denoted by Ñ2 and N2; the median and mean of the total number of timing
samples required for an successful attack are denoted by Ñtotal and N total.

The experiments were implemented using the error detection and correction strategy as
outlined in Subsection 4.2. We ‘confirmed’ every 64-th interval using additional N2 timing
samples and aborted attacks as soon as 10 errors had been detected. The average number
of errors that were corrected in successful attacks is denoted by Etotal in Tables 3 and 4.

Our experiments confirm the theory developed in Subsection 4.2. In particular, the
efficiency of the attack increases with αmax, which is the reason why in Step 2 of the attack
we focus on the prime pi with larger αi.

It may be surprising that the average sample sizes for 1024-bit moduli and for 3072-bit
moduli are comparable although the latter takes almost three times as many individual
decisions. The reason is that the average gap E(T (u2)− T (u1)) (35) increases linearly in
the exponent size while the standard deviation of MeanTime(u,N) (37) (in the absence of
additional noise, for fixed N) only grows as its square root.

For b = 2ws with ws ≥ 8, we have β1, β2 ≈ 0 and the algorithmic noise is considerably
reduced whereas the gap remains constant. In this case, the required sample sizes are
smaller on average compared to those reported in Tables 3 and 4 (except for ranges where
N2 is already 1).

5.3 Local timing attacks
We implemented the local timing attacks presented in Subsection 4.3.

For window width w, the computation of the decision rule (42) requires the evaluation
of (2w + 1)-dimensional integrals in (41). In contrast to the corresponding attack against
Montgomery’s algorithm, those integrals cannot easily be determined explicitly, which
is why we have to resort to numerical methods. However, due to the so-called ‘curse of
dimensionality’, generic numerical integration algorithms break down completely for w ≥ 3
in terms of either efficiency or accuracy. We therefore take a step back and consider the
stochastic model for the table initialisation phase,

R′2 =
⌈
αS′1S

′
1 + βU ′2 − S′2

⌉
,

R′3 =
⌈
αS′2S

′
1 + βU ′3 − S′3

⌉
,

...
R′2w−1 =

⌈
αS′2w−2S

′
1 + βU ′2w−1 − S′2w−1

⌉
,

(45)

and for operation Oj(w+1) = Mθ (j ≥ 2, θ ∈ {1, . . . , 2w − 1}) of the exponentiation phase,

Rj(w+1) =
⌈
αSj(w+1)−1S

′
θ + βUj(w+1) − Sj(w+1)

⌉
.

Let (r′2, . . . , r′2w−1, rj(w+1)) be a corresponding realisation of extra reductions. Let us
assume for the moment that we can draw samples (s′1,i, . . . , s′2w−1,i) and (u′2,i . . . , u′2w−1,i)
from (45) for 1 ≤ i ≤ N ′ which give rise to the extra reductions (r′2, . . . , r′2w−1). For N ′
sufficiently large (we used N ′ := 10,000 in our experiments), we obtain the approximation

Prθ
(
Rj(w+1) = rj(w+1) | R′2 = r′2, . . . , R

′
2w−1 = r′2w−1

)
≈ 1
N ′

N ′∑
i=1

Pr
(
R(Sj(w+1)−1, s

′
θ,i) = rj(w+1)

)
for all θ ∈ {1, . . . , 2w − 1} ,

(46)

Johannes Mittmann and Werner Schindler 33

where R(·, ·) is defined as in (3). The probabilities on the right-hand side of (46) can be com-
puted explicitly using Lemma 3 (i). Since Pr(R′2 = r′2, . . . , R

′
2w−1 = r′2w−1) is independent

of θ (and > 0), the joint probabilities Prθ(R′2 = r′2, . . . , R
′
2w−1 = r′2w−1, Rj(w+1) = rj(w+1))

in decision rule (42) can be replaced by the conditional probabilities in (46) without
affecting the decision.

A required sample (s′1, . . . , s′2w−1) and (u′2 . . . , u′2w−1) from (45) giving rise to an extra
reduction vector (r′2, . . . , r′2w−1) can in principle be generated using rejection sampling.
For w ≥ 3, however, this is way too inefficient for aforementioned reasons. We therefore
use an approach akin to Gibbs sampling. First, instead of generating the components
of (s′1, . . . , s′2w−1) and (u′2 . . . , u′2w−1) independently and uniformly from [0, 1), we sample
them adaptively in the order s′1, s′2, u′2, . . . , s′2w−1, u

′
2w−1, with each choice conditioned on

the previous choices (when we reach a dead end, we start over). At this moment, the samples
(s′1, . . . , s′2w−1) and (u′2 . . . , u′2w−1) give rise to (r′2, . . . , r′2w−1), but are biased and require
some correction. Therefore, we re-sample the elements s′1, s′2, u′2, . . . , s′2w−1, u

′
2w−1 cyclically

in this order, with each choice conditioned on the current values of the other variables.
In our experiments, we used just 10 such rounds. The final values of (s′1, . . . , s′2w−1) are
taken as the desired sample. For the next sample, we restart the whole process from the
beginning. (Our experiments have shown that continuing the process from the previous
sample may lead to a biased distribution.) Although this method is somewhat experimental,
our experiments below demonstrate that it is sufficient for our attacks to work. Note that
the time complexity of this approach is linear in 2w, while the complexity of rejection
sampling is in general exponential in 2w.

For the first experiment we used the Diffie–Hellman group dhe3072 defined in Ap-
pendix A.2 of RFC 7919 [Gil16] with 275-bit exponents (cf. Subsection 5.1). The 3072-bit
modulus of this group has Barrett parameters α ≈ 0.63 and β ≈ 0.5 for the base b = 2 we
used. The results of the experiment are reported in Table 5. For each window size w and
sample size N given in the table, we conducted 100 trials of the timing attack. For each
trial, a 275-bit secret exponent and N (unknown) input bases were chosen independently at
random. We counted attacks with at most 2 errors as successful since one or two errors can
easily be corrected by exhaustive search, beginning with the most plausible alternatives.
The mean number of errors is denoted by E.

It can be observed that the attack is exceptionally efficient for window size w = 1. The
reason is that in this case only the operations M0 (multiplication by 1) and M1 (multiplication
by the unknown input basis) have to be distinguished, which is easy because for M0 extra
reductions never occur.

For the second experiment we considered RSA without CRT with 512-bit moduli. We
used Barrett’s multiplication algorithm with base b = 2 and b = 28, and RSA primes of
bit-size 256. In this experiment we limited ourselves to window size w = 4. The results
of the experiment for b = 2 are reported in Table 6 and for b = 28 in Table 7. Since the
attack is sensitive to the value α of the modulus (‘signal’), we conducted trials for several
ranges of α. For each row of the table, we conducted 100 trials. For each trial, we used
rejection sampling to generate an RSA modulus with α in the given interval and we chose
N (unknown) input bases independently at random. Again, we counted attacks with at
most 2 errors as successful.

As in Subsection 5.1 the choice of 512-bit RSA moduli allows a comparison with the
results in [Sch02a] and [Sch05], Section 6. There Montgomery’s multiplication algorithm
was applied together with a slightly modified exponentiation algorithm, which resigned
on the multiplication by 1 (resp. by Montgomery constant R) when a zero block of the
exponent bits was processed. Even for large α the attack on Barrett’s multiplication
algorithm with b = 2 is to some extent less efficient than the attack against Montgomery’s
algorithm although there only one guessing error was allowed. In contrast, for ws = 8 (and
large α) the success rates are similar to those for Montgomery’s multiplication algorithm.

34 Timing attacks and local timing attacks against Barrett’s modular multiplication

Table 5: Local timing attack on Diffie–Hellman group dhe3072 with 275-bit secret
exponents (base b = 2).

Window width Sample size Errors Success rate
w N E (in %)
1 6 6.03 9

8 2.33 64
10 0.62 97
12 0.23 100

2 400 5.76 7
500 3.25 45
600 2.19 59
700 1.43 79
800 0.92 94
900 0.57 96
1000 0.31 100

3 500 6.14 6
600 3.78 26
700 2.24 62
800 1.74 74
900 1.09 91
1000 0.92 92
1100 0.47 100

4 600 5.26 7
800 2.35 55
1000 0.93 89
1200 0.50 98
1400 0.24 100

5 600 6.89 5
800 2.93 44
1000 1.33 88
1200 0.71 96
1400 0.23 100

The results for ws > 8 should be alike because β ≈ 0 in all cases.
For the local timing attack against RSA with CRT, the Barrett parameters α1, β1, α2, β2

of the unknown primes p1, p2 have to be estimated in a pre-step as outlined in Subsubsec-
tion 4.3.2. We successfully verified this procedure in experiments. Since the remaining
part of the attack is equivalent to the local timing attack against RSA without CRT, we
dispense with reporting additional results on the full attack against RSA with CRT.

A single decision by Decision Strategy 2 depends on the whole table initialisation phase
but only on one Barrett operation within the exponentiation phase. For given parameters
α, β, w, b and N its error probability thus does not depend on the length of the exponent.
Since the number of individual decisions increases linearly in the length of the exponent, for
longer exponents the sample size N has to be raised to some extent to keep the expected
number of guessing errors roughly constant. Table 5 to Table 7 underline that local timing
attacks scale well when the exponent length increases. Consider w = 3 in Table 5, for
instance: Increasing N from 1000 to 1400 reduces the error probability of single decisions
to ≈ 25%, which in turn implies that N = 1400 should lead to a similar success probability

Johannes Mittmann and Werner Schindler 35

Table 6: Local timing attack on 512-bit RSA with window width w = 4 (base b = 2).

Signal Sample size Errors Success rate
α N E (in %)

[0.4, 0.6] 1600 6.10 33
2000 3.75 46
2400 2.78 54
2800 1.93 67
3200 1.23 82
3600 1.14 84
4000 0.74 90
4400 0.49 95
4800 0.39 96

[0.6, 0.8] 800 4.11 36
1000 1.67 76
1200 0.84 90
1400 0.27 100

[0.8, 1.0] 500 3.80 29
600 1.84 77
700 0.79 95
800 0.35 99

Table 7: Local timing attack on 512-bit RSA with window width w = 4 (base b = 28).

Signal Sample size Errors Success rate
α N E (in %)

[0.4, 0.6] 800 3.25 44
1200 0.62 93

[0.6, 0.8] 600 1.47 84
800 0.23 100

[0.8, 1.0] 400 2.42 56
500 0.88 95

for exponent length 1024 as N = 1000 for exponent length 275.

6 Countermeasures
In Section 4 we discussed several attack scenarios against Barrett’s multiplication algorithm.
It has been pointed out that these attacks are rather similar to those when Montgomery’s
multiplication algorithm is applied. Consequently, the same countermeasures apply.

The most rigorous countermeasure definitely is when all modular squarings and mul-
tiplications within a modular exponentiation need identical execution times. Obviously,
then timing attacks and local timing attacks cannot work. Identical execution times
could be achieved by inserting up to two dummy operations per Barrett multiplication
if necessary. However, this should be done with care. A potential disadvantage of a
dummy operation approach is that dummy operations might be identified by a power
attack, and for software implementations on PCs the compiler might unnoticeably cancel
the dummy operations if they are not properly implemented. It should be noted that for
Montgomery’s multiplication algorithm a smarter approach exists: One may completely
resign on extra reductions if not only R > M but even R > 4M for modulus M [Wal02].

36 Timing attacks and local timing attacks against Barrett’s modular multiplication

For Barrett’s multiplication algorithm a similar approach exists, see the variant of this
algorithm presented in [Dhe98].

If constant execution times cannot be guaranteed (combinations of) blinding techniques
may be applied. We note that state of the art (pure) timing attacks on RSA without
CRT (or on DH) neither work against basis blinding nor against exponent blinding. While
basis blinding suffices to protect RSA with CRT implementations against timing attacks,
exponent blinding does not suffice. The attack from [Sch15, Sch16] can easily be transferred
to Barrett’s multiplication algorithm. On the other hand sole basis blinding does not
prevent local timing attacks as shown in Subsections 4.3 and 5.3.

If constant execution times cannot be achieved we propose to apply a combination of
basis blinding and exponent blinding (and possibly of modulus blinding). State-of-the-
art knowledge might be used to determine minimal countermeasures although we would
recommend to stay on the safe side by avoiding timing differences completely and reliably
or to apply several countermeasures at the same time.

7 Conclusion
We have thoroughly analysed the stochastic behaviour of Barrett’s multiplication algorithm
when applied in modular exponentiation algorithms. Unlike Montgomery’s multiplication
algorithm, Barrett’s algorithm does not only allow one but even two extra reductions,
a feature, which increases the mathematical difficulties considerably. All known timing
attacks and local timing attacks against Montgomery’s multiplication algorithm were
adapted to Barrett’s multiplication algorithm, but specific features require additional
attack substeps when RSA with CRT is attacked. Moreover, for timing attacks against
RSA without CRT and against DH we developed an efficient look-ahead strategy. Extensive
experiments confirmed our theoretical results. Fortunately, effective countermeasures exist.

References
[AS07] Onur Aciiçmez and Werner Schindler. A major vulnerability in RSA imple-

mentations due to microarchitectural analysis threat. IACR Cryptology ePrint
Archive, 2007:336, 2007.

[AS08] Onur Aciiçmez and Werner Schindler. A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on openssl. In Tal
Malkin, editor, Topics in Cryptology - CT-RSA 2008, The Cryptographers’
Track at the RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008.
Proceedings, volume 4964 of Lecture Notes in Computer Science, pages 256–273.
Springer, 2008.

[ASK05] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Improving Brumley
and Boneh timing attack on unprotected SSL implementations. In Vijay Atluri,
Catherine A. Meadows, and Ari Juels, editors, Proceedings of the 12th ACM
Conference on Computer and Communications Security, CCS 2005, Alexandria,
VA, USA, November 7-11, 2005, pages 139–146. ACM, 2005.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer, 1986.

Johannes Mittmann and Werner Schindler 37

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003. USENIX Association, 2003.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A
fresh approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[BGV93] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three
modular reduction functions. In Douglas R. Stinson, editor, Advances in
Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 175–186. Springer, 1993.

[BPC09] Aniello Buonocore, Enrica Pirozzi, and Luigia Caputo. A note on the sum of
uniform random variables. Statistics & Probability Letters, 79(19):2092 – 2097,
2009.

[CFA+05] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren, editors. Handbook of Elliptic and
Hyperelliptic Curve Cryptography. Chapman and Hall/CRC, 2005.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[DGD+16] Margaux Dugardin, Sylvain Guilley, Jean-Luc Danger, Zakaria Najm, and
Olivier Rioul. Correlated extra-reductions defeat blinded regular exponentiation.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 3–22. Springer, 2016.

[Dhe98] Jean-François Dhem. Design of an efficient public-key cryptographic library for
RISC-based smart cards. PhD thesis, Université Catholique de Louvain, 1998.

[DKL+98] Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick
Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. A practical im-
plementation of the timing attack. In Jean-Jacques Quisquater and Bruce
Schneier, editors, Smart Card Research and Applications, This International
Conference, CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-16, 1998,
Proceedings, volume 1820 of Lecture Notes in Computer Science, pages 167–182.
Springer, 1998.

[FHHJ17] Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson.
Nemo/hecke: Computer algebra and number theory packages for the julia
programming language. In Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pages 157–164,
New York, NY, USA, 2017. ACM.

[Gil16] Daniel Kahn Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for Transport Layer Security (TLS). RFC 7919, August 2016.

[HR48] Wassily Hoeffding and Herbert Robbins. The central limit theorem for depen-
dent random variables. Duke Math. J., 15(3):773–780, 1948.

38 Timing attacks and local timing attacks against Barrett’s modular multiplication

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996.

[KVV10] Miroslav Knezevic, Frederik Vercauteren, and Ingrid Verbauwhede. Faster
interleaved modular multiplication based on Barrett and Montgomery reduction
methods. IEEE Trans. Computers, 59(12):1715–1721, 2010.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Math.
Comp., 44:510–521, 1985.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[Sch00] Werner Schindler. A timing attack against RSA with the Chinese remainder
theorem. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2000, Second International Workshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture
Notes in Computer Science, pages 109–124. Springer, 2000.

[Sch02a] Werner Schindler. A combined timing and power attack. In David Naccache and
Pascal Paillier, editors, Public Key Cryptography, 5th International Workshop
on Practice and Theory in Public Key Cryptosystems, PKC 2002, Paris, France,
February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in Computer
Science, pages 263–279. Springer, 2002.

[Sch02b] Werner Schindler. Optimized timing attacks against public key cryptosystems.
Statistics & Risk Modeling, 20(1–4):191–210, 2002.

[Sch05] Werner Schindler. On the optimization of side-channel attacks by advanced
stochastic methods. In Serge Vaudenay, editor, Public Key Cryptography -
PKC 2005, 8th International Workshop on Theory and Practice in Public Key
Cryptography, Les Diablerets, Switzerland, January 23-26, 2005, Proceedings,
volume 3386 of Lecture Notes in Computer Science, pages 85–103. Springer,
2005.

[Sch15] Werner Schindler. Exclusive exponent blinding may not suffice to prevent timing
attacks on RSA. In Tim Güneysu and Helena Handschuh, editors, Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture
Notes in Computer Science, pages 229–247. Springer, 2015.

[Sch16] Werner Schindler. Exclusive exponent blinding is not enough to prevent any
timing attack on RSA. J. Cryptographic Engineering, 6(2):101–119, 2016.

[SKQ01a] Werner Schindler, François Koeune, and Jean-Jacques Quisquater. Improving
divide and conquer attacks against cryptosystems by better error detection
/ correction strategies. In Bahram Honary, editor, Cryptography and Coding,
8th IMA International Conference, Cirencester, UK, December 17-19, 2001,
Proceedings, volume 2260 of Lecture Notes in Computer Science, pages 245–267.
Springer, 2001.

[SKQ01b] Werner Schindler, François Koeune, and Jean-Jacques Quisquater. Unleashing
the full power of timing attack. Technical Report CG 2001/3, Université
Catholique de Louvain, Crypto Group, 2001.

Johannes Mittmann and Werner Schindler 39

[Wal02] Colin D. Walter. Precise bounds for montgomery modular multiplication and
some potentially insecure RSA moduli. In Bart Preneel, editor, Topics in
Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference,
2002, San Jose, CA, USA, February 18-22, 2002, Proceedings, volume 2271 of
Lecture Notes in Computer Science, pages 30–39. Springer, 2002.

	Introduction
	Stochastic modeling of modular exponentiation
	Barrett's modular multiplication algorithm
	Modular exponentiation (square & multiply algorithms)
	Summary of the relevant facts

	Montgomery multiplication vs. Barrett multiplication
	Montgomery's multiplication algorithm in a nutshell
	A closer look at Barrett's multiplication algorithm
	A short summary

	Timing attacks against Barrett's modular multiplication
	Timing attacks on RSA without CRT and on DH
	Timing attacks on RSA with CRT
	Local timing attacks
	0, 0, Algorithm 5: Impact on the attack efficieny

	Experiments
	Timing attacks on RSA without CRT and on DH
	Timing attacks on RSA with CRT
	Local timing attacks

	Countermeasures
	Conclusion

