4,669 research outputs found

    A plug-and-play ripple mitigation approach for DC-links in hybrid systems

    Get PDF
    © 2016 IEEE.In this paper, a plug-and-play ripple mitigation technique is proposed. It requires only the sensing of the DC-link voltage and can operate fully independently to remove the low-frequency voltage ripple. The proposed technique is nonintrusive to the existing hardware and enables hot-swap operation without disrupting the normal functionality of the existing power system. It is user-friendly, modular and suitable for plug-and-play operation. The experimental results demonstrate the effectiveness of the ripple-mitigation capability of the proposed device. The DC-link voltage ripple in a 110 W miniature hybrid system comprising an AC/DC converter and two resistive loads is shown to be significantly reduced from 61 V to only 3.3 V. Moreover, it is shown that with the proposed device, the system reliability has been improved by alleviating the components' thermal stresses

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    Boost converter fed high performance BLDC drive for solar PV array powered air cooling system

    Get PDF
    This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV) array and the Voltage Source Inverters (VSI) in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC) motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC) motor drive system and from the simulated results it is found that the proposed system performs better

    Solid-State Transformers for Interfacing Solar Panels to the Power Grid: An Optimum Design Methodology of a High Frequency Transformer for dc-dc Converter Applications

    Get PDF
    Nowadays the use of power electronic interfaces to integrate distributed generation with the power grid is becoming relevant due to the increased penetration of renewable energy sources like solar, and the continued interest to move to a smarter and more robust electric grid. Those interfaces, which also provide a voltage step-up or step-down function, are of particular interest because renewable energy sources do not always have voltages compatible with the connecting grid. Among them, the so-called “power electronic transformer” or “solid-state transformer” (SST) is the focus of significant research. Advantages such as bidirectional power flow, improved system control, reduced size, and premium power quality at the output terminals, increase the interest of the SST for future electric grids. The SST consists mainly of two components: a high-frequency transformer (made out of advanced magnetic materials) and power converters (employing efficient power semiconductor devices like those based on silicon carbide (SiC)) to enable operation at frequencies higher than the grid frequency. This paper presents an optimum design method that can be employed to build a high-frequency transformer for a SST intended to interface a renewable energy source (e.g., a photovoltaic system) to the electric grid. Core material, geometry, and size will be analyzed in order to provide an optimum balance between cost, efficiency, thermal management, and size. Special consideration will also be given to the selection of the winding conductors given the skin effect associated with operation at high frequencies

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance

    Design and implementation of synchronous buck converter based PV energy system for battery charging applications

    Get PDF
    The Photo Voltaic (PV) energy system is a very new concept in use, which is gaining popularity due to increasing importance to research on alternative sources of energy over depletion of the conventional fossil fuels world-wide. The systems are being developed to extract energy from the sun in the most efficient manner and suit them to the available loads without affecting their performance. In this project, synchronous buck converter based PV energy system for portable applications; especially low power device applications such as charging mobile phone batteries are considered. Here, the converter topology used uses soft switching technique to reduce the switching losses which is found prominently in the conventional buck converter, thus efficiency of the system is improved and the heating of MOSFETs due to switching losses reduce and the MOSFETs have a longer life. The DC power extracted from the PV array is synthesized and modulated by the converter to suit the load requirements. Further, the comparative study between the proposed synchronous buck converter and the conventional buck converter is analysed in terms of efficiency improvement and switching loss reduction. The proposed system is simulated in the MATLAB-Simulink environment and the practical implementation of the proposed converter is done to validate the theoretical results. Open-loop control of synchronous buck converter based PV energy system is realised through ICs and experimental results were observed

    Verification of ZVS boost converter with resonant circuit & modelling of an accurate two-diode PV array system simulator using MATLAB simulink

    Get PDF
    This thesis proposes a MATLAB Simulink simulator for Photo Voltaic (PV) Array system. The main contribution is the utilisation of a Two-Diode model to represent a PV cell. This model is preferred because of its better accuracy at low irradiance levels. A PV of Kyocera (KC200GT) 50*10 Array is taken & the characteristics curves are plotted. The same simulator can be interfaced with MPPT algorithms & Power Electronics converters for better efficiency. The P-V & I-V Curves of this simulator is found in exact with that given by the manufacturers. It is expected that the proposed work can be very useful for PV professionals who require a simple, fast & accurate PV simulator in order to design their systems. A detailed analysis of a resonant circuit based soft-switching boost-converter for PV applications is also performed. The converter operates at Zero Voltage Switching (ZVS) turn-on and turn-off of the main switch, & Zero Current Switching (ZCS) turn-on and ZVS turn-off of the auxiliary switch due to resonant circuit incorporated into the circuit. Detailed operation of the converters, analysis of various modes, simulation as well as experimental results for the design has also been aptly presented. The systems are modelled & simulated in MATLAB 2013a 64-bit version and the output waveforms are shown

    Implementation of standalone dynamic solar array fed permanent magnet synchronous motor drive using zero voltage switching resonant converter for the reduction of switching losses and oscillations

    Get PDF
    The Proposed research deals implementation of standalone dynamic solar array fed permanent magnet synchronous motor drive using zero voltage resonant switch converter for the reduction of switching losses and oscillations. The closed loop control voltage strategy has been proposed for power flow management between solar photovoltaic (PV), battery, motor load and to maintain constant load voltage to perform continuous MPPT operation of solar PV. For improving the efficiency and to reduce vibration across the load SPV array fed Zero Voltage Switching (DISOZVS) Resonant Converter with permanent magnet synchronous motor (PMSM) drive is proposed. The DISOZVS resonant converter with suitable switching operation accomplishes for the purpose of reducing the Switching losses. The ZVS converter is constructed by a buck-boost circuit, which is operated as a buck circuit when charging and a boost circuit when discharging. So, we can use many power related systems, which improves efficiency, lower losses and higher performance. The various dynamics and oscillations of standalone SPV array is analysed in the proposed research. The performance of the proposed system is simulated in MATLAB/Simulink atmosphere and various parameters outputs are carried. A hardware prototype of the proposed system has been fabricated for the proposed converter and various analysis were incorporated. The working of the proposed scheme for the different levels of input solar insolation and Load power demand has been satisfactorily demonstrated for both simulation and experimental compared to conventional it results more efficient with reduced losses and oscillations

    Optimization And Design Of Photovoltaic Micro-inverter

    Get PDF
    To relieve energy shortage and environmental pollution issues, renewable energy, especially PV energy has developed rapidly in the last decade. The micro-inverter systems, with advantages in dedicated PV power harvest, flexible system size, simple installation, and enhanced safety characteristics are the future development trend of the PV power generation systems. The double-stage structure which can realize high efficiency with nice regulated sinusoidal waveforms is the mainstream for the micro-inverter. This thesis studied a double stage micro-inverter system. Considering the intermittent nature of PV power, a PFC was analyzed to provide additional electrical power to the system. When the solar power is less than the load required, PFC can drag power from the utility grid. In the double stage micro-inverter, the DC/DC stage was realized by a LLC converter, which could realize soft switching automatically under frequency modulation. However it has a complicated relationship between voltage gain and load. Thus conventional variable step P&O MPPT techniques for PWM converter were no longer suitable for the LLC converter. To solve this problem, a novel MPPT was proposed to track MPP efficiently. Simulation and experimental results verified the effectiveness of the proposed MPPT. The DC/AC stage of the micro-inverter was realized by a BCM inverter. With duty cycle and frequency modulation, ZVS was achieved through controlling the inductor current bi-directional in every switching cycle. This technique required no additional resonant components and could be employed for low power applications on conventional full-bridge and half-bridge inverter topologies. Three different current mode control schemes were derived from the basic theory of the proposed technique. They were referred to as Boundary Current Mode (BCM), Variable Hysteresis Current Mode (VHCM), and Constant Hysteresis Current Mode (CHCM) individually in this paper with their advantages and disadvantages analyzed in detail. Simulation and experimental iv results demonstrated the feasibilities of the proposed soft-switching technique with the digital control schemes. The PFC converter was applied by a single stage Biflyback topology, which combined the advantages of single stage PFC and flyback topology together, with further advantages in low intermediate bus voltage and current stresses. A digital controller without current sampling requirement was proposed based on the specific topology. To reduce the voltage spike caused by the leakage inductor, a novel snubber cell combining soft switching technique with snubber technique together was proposed. Simulation and experimental waveforms illustrated the same as characteristics as the theoretical analysis. In summary, the dissertation analyzed each power stage of photovoltaic micro-inverter system from efficiency and effectiveness optimization perspectives. Moreover their advantages were compared carefully with existed topologies and control techniques. Simulation and experiment results were provided to support the theoretical analysis
    corecore