767 research outputs found

    免疫学的および進化的アルゴリズムに基づく改良された群知能最適化に関する研究

    Get PDF
    富山大学・富理工博甲第175号・楊玉・2020/3/24富山大学202

    NMEP based Gaussian Mutation Process on Optimizing Fitness Function for MOEED

    Get PDF
    The increment of Economic Dispatch (ED) problem is very distressing today. In view of countless of the researchers doing the research to minimize the ED problem day after day, the multi objective New Meta Heuristic Evolutionary Programming (NMEP) techniques are proposed to optimize the multi objective function in ED problem called as Multi Objective Environmental Economic Dispatch (MOEED). The techniques mimic the original Meta Heuristic Evolutionary Programming (Meta-EP) and merge with Artificial Immune System (AIS) with some improvement in Gaussian mutation process and cloning process. The NMEP produced two objective function result simultaneously by exercising the weighted sum method. In order to justify the result, the comparison between the NMEP and Meta-EP techniques is conducted with difference case number of alpha. Therefore, the outcome of the simulation shows the NMEP approach is better than Meta-EP in the both case numbers of alpha. The simulation is operated using MATLAB simulation based on standard IEEE 26 bus system in the laboratory

    Solving the Response Time Variability Problem by means of a psychoclonal approach

    Get PDF
    The Response Time Variability Problem (RTVP) is a combinatorial scheduling problem which has recently appeared in the literature. This problem has a wide range of reallife applications in, for example, manufacturing, hard real-time systems, operating systems and network environment. Originally, the RTVP occurs whenever products, clients or jobs need to be sequenced in such a way that the variability in the time between the instants at which they receive the necessary resources is minimized. Since RTVP is hard to solve, heuristic techniques are needed for solving it. In a previous study, three metaheuristic algorithms (a multi-start, a GRASP and a PSO algorithm) were proposed to solve the RTVP. These three metaheuristic algorithms have been the most efficient to date in solving non-small instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm based approach. The psychoclonal algorithm inherits its attributes from the need hierarchy theory proposed by Maslow and the artificial immune system (AIS) approach, specifically the clonal selection principle. In this paper we compare the proposed psychoclonal algorithm with the other three metaheuristic algorithms previously mentioned and show that, on average, the psychoclonal algorithm strongly improves the obtained results

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Hybrid nature-inspired computation methods for optimization

    Get PDF
    The focus of this work is on the exploration of the hybrid Nature-Inspired Computation (NIC) methods with application in optimization. In the dissertation, we first study various types of the NIC algorithms including the Clonal Selection Algorithm (CSA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), Harmony Search (HS), Differential Evolution (DE), and Mind Evolution Computing (MEC), and propose several new fusions of the NIC techniques, such as CSA-DE, HS-DE, and CSA-SA. Their working principles, structures, and algorithms are analyzed and discussed in details. We next investigate the performances of our hybrid NIC methods in handling nonlinear, multi-modal, and dynamical optimization problems, e.g., nonlinear function optimization, optimal LC passive power filter design, and optimization of neural networks and fuzzy classification systems. The hybridization of these NIC methods can overcome the shortcomings of standalone algorithms while still retaining all the advantages. It has been demonstrated using computer simulations that the proposed hybrid NIC approaches are capable of yielding superior optimization performances over the individual NIC methods as well as conventional methodologies with regard to the search efficiency, convergence speed, and quantity and quality of the optimal solutions achieved
    corecore