2,167 research outputs found

    Über die GPS-basierte Bestimmung troposphĂ€rischer Laufzeitverzögerungen

    Get PDF
    One major problem of precise GPS data analysis is that of modeling wetdelays with high precision. All conventional models have to fail in this task due to the impossibility of modeling wet delays solely from surface measurements like temperature and relative humidity. Actually, the non-hydrostatic component of the tropospheric propagation delay is highly influenced by the distribution of water vapor in the lower troposphere which cannot be sufficiently predicted with sole help of surface measurements. A work-around is to include atmospheric parameters as additional unknowns in the analysis of GPS data from permanent monitor stations that turns out to improve the quality of position estimates. Moreover, knowledge of zenith wet delays allows to obtain a highly interesting value for climatology and meteorology: integrated or precipitable water vapor being important for the energy balance of the atmosphere and holds share of more than 60% of the natural greenhouse effect. GPS can thereby contribute to the improvement of climate models and weather forecasting. This work outlines the application of ground-based GPS to climate research and meteorology without omitting the fact that precise GPS positioning can also highly benefit from using numerical weather models for tropospheric delay determination for applications where GPS troposphere estimation is not possible, for example kinematic and rapid static surveys. In this sense, the technique of GPS-derived tropospheric delays is seen as mutually improving both disciplines, precise positioning as well as meteorology and climatology

    A comparative survey of current and proposed tropospheric refraction-delay models for DSN radio metric data calibration

    Get PDF
    The standard tropospheric calibration model implemented in the operational Orbit Determination Program is the seasonal model developed by C. C. Chao in the early 1970's. The seasonal model has seen only slight modification since its release, particularly in the format and content of the zenith delay calibrations. Chao's most recent standard mapping tables, which are used to project the zenith delay calibrations along the station-to-spacecraft line of sight, have not been modified since they were first published in late 1972. This report focuses principally on proposed upgrades to the zenith delay mapping process, although modeling improvements to the zenith delay calibration process are also discussed. A number of candidate approximation models for the tropospheric mapping are evaluated, including the semi-analytic mapping function of Lanyi, and the semi-empirical mapping functions of Davis, et. al.('CfA-2.2'), of Ifadis (global solution model), of Herring ('MTT'), and of Niell ('NMF'). All of the candidate mapping functions are superior to the Chao standard mapping tables and approximation formulas when evaluated against the current Deep Space Network Mark 3 intercontinental very long baselines interferometry database

    The Geodesy of the Main Saturnian Satellites

    Get PDF
    The work is organized as follows: Chapter 1 presents an overview of the Cassini mission with particular focus on the Radio Science instrumentation and describes the current knowledge of the main satellites of Saturn whose gravity was analyzed in this work. Chapter 2 reviews the basic concepts of planetary geodesy and all the geophysical models used in the analysis. Chapter 3 is dedicated to the description of the mathematical formulation of the orbit determination problem. It includes a detailed description of the approach used and the data on which the analysis is based. Chapter 4 describes with more details the general characteristics of the analysis methods used to derive the geodesy of the main Saturnian satellites and includes the description of the dynamical model and all the key points of the analysis. Chapter 5 reports the results of the data analysis process with possible interpretations. Finally, Chapter 6 gives conclusions and future work perspectives

    Institute for Space Studies of Catalonia

    Get PDF

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Atmospheric refraction and turbulence in VLBI data analysis

    Get PDF
    The progress in further improving the quality of results derived by space-geodetic techniques observing in the radio frequency domain, such as Very Long Baseline Interferometry (VLBI) or Global Navigation Satellite Systems (GNSS), is limited by rapid changes in the neutral part of the atmosphere. In particular, insufficient knowledge of the temporal and spatial refractivity variations restrict the attainable accuracy of the derived VLBI and GNSS target parameters. In the current model describing the additional propagation delay due to the neutral part of the atmosphere, only annual to hourly long periodic variations are taken into account. In contrast, small-scale fluctuations mainly originating from turbulent motions are generally neglected, although they form a serious error source for electromagnetic wave propagation. Dynamic processes in the neutral atmosphere additionally induce physical correlations in space and time, which are also largely ignored so far. Particularly with regard to future requirements, as, for instance, defined within the framework of the Global Geodetic Observing System established by the International Association of Geodesy, the current tropospheric model is not sufficient and needs to be improved. High rate GNSS data of 1 Hz sampling and below, and the VLBI Global Observing System with faster telescopes result in a better sampling of the atmosphere. However, new challenges emerge with respect to improved and proper analysis strategies, in particular to model the stochastic properties of atmospheric refraction, which represents a crucial issue in research and the main objective of this thesis. Quantifying and assessing the small-scale behavior of atmospheric refraction is extremely challenging, since small-scale characteristics of atmospheric refraction cannot be analyzed without sufficient knowledge of the stability of the VLBI observing system. An optimal experimental setup for both, investigations in atmospheric refraction and system stability issues, emerges from the commissioning phase of the twin radio telescope at the Wettzell Geodetic Observatory in Germany. Specially designed so-called WHISP sessions are scheduled, observed and analyzed within this thesis allowing to quantify the individual components of the observing system, in part for the first time. On this basis, refractivity fluctuations are quantified which are found to be in the range of 1-3 millimeters. A number of noteworthy conclusions has been drawn which would not have been possible without the novel observing approach. Special emphasis is also given to the development of an atmospheric turbulence model, which stochastically describes small-scale refractivity fluctuations due to turbulent motions in the neutral atmosphere. The results have produced an important contribution to the modeling of refraction effects in the neutral atmosphere now considering temporal and spatial correlations between the observations in a physical and meteorological way. By analyzing 2700 VLBI sessions including traditional and local observing networks, it is demonstrated that the incorporation of the newly devised model into the VLBI data analysis leads to an improvemen of the solutions compared to the standard strategies of the International VLBI Service for Geodesy and Astrometry, or other strategies refining the stochastic model of VLBI observations. Compared to other approaches addressing the issue of atmospheric turbulence, the model developed within this thesis has the advantage to be operationally efficient for routine mass analysis of VLBI observing sessions. Since the current atmospheric model reveals severe deficiencies with respect to the estimation of atmospheric parameters, new modeling and adjustment strategies are introduced to better describe the behavior of the neutral atmosphere. It is demonstrated that, in particular, the least squares collocation method ensures an improved modeling of the stochastic properties of the neutral atmosphere, which allows a zenith wet delay estimation in more meaningful and appropriate sense. The main achievements of this thesis are the development of an atmospheric turbulence model to improve the stochastic model of VLBI observations and the quantification of local atmospheric refraction variations in space and time. Both allows for new interpretations and model improvements in a stochastic and deterministic sense.AtmosphĂ€rische Refraktion und Turbulenzin der VLBI-Auswertung Die stetige Weiterentwicklung und QualitĂ€tsverbesserung von Ergebnissen aus weltraum-geodĂ€tischen Verfahren im Radiofrequenzbereich, wie beispielsweise VLBI (Very Long Baseline Interferometry) oder GNSS (Global Navigation Satellite Systems), ist durch schnelle VerĂ€nderungen in der neutralen AtmosphĂ€re limitiert. Die zu erreichende Genauigkeit von Stationskoordinaten, Erdrotationsparametern oder anderen Zielparametern wird durch die unzureichende Kenntnis rĂ€umlicher oder zeitlicher Variationen in der RefraktivitĂ€t maßgeblich begrenzt. Das aktuelle AtmosphĂ€renmodell in der Auswertung weltraum-geodĂ€tischer Verfahren sieht ausschließlich die BerĂŒcksichtigung langperiodischer Signale vor. Kleinskalige, ĂŒberwiegend durch turbulentes Verhalten in der AtmosphĂ€re hervorgerufene Fluktuationen werden hingegen weitestgehend vernachlĂ€ssigt, obwohl sie einen nicht unerheblichen Einfluss auf die Ausbreitung elektromagnetischer Wellen haben. Des Weiteren induzieren dynamische Prozesse in der neutralen AtmosphĂ€re sowohl rĂ€umliche als auch zeitliche Korrelation zwischen den Beobachtungen, die ebenfalls weitestgehend ignoriert werden. Insbesondere im Hinblick auf die von der IAG (International Association of Geodesy) formulierten GGOS (Global Geodetic Observing System) Ziele genĂŒgt das aktuelle AtmosphĂ€renmodell nicht den zukĂŒnftigen Anforderungen. Zwar fĂŒhren hoch aufgelöste GNSS-Daten mit Abtastfrequenzen von bis zu 1 Hz und eine neue Generation von schnelleren und prĂ€ziseren sogenannten VGOS (VLBI Global Observing System) Radioteleskopen zu einer besseren Abtastung der AtmosphĂ€re, jedoch entstehen auch neue Herausforderungen hinsichtlich einer verbesserten und geeigneteren Modellierung der stochastischen Eigenschaften atmosphĂ€rischer Refraktion, welche allgemein eine zentrale Fragestellung darstellt und folglich die wesentliche Aufgabe dieser Arbeit reprĂ€sentiert. Die Quantifizierung und Bewertung des Verhaltens der atmosphĂ€rischen Refraktion stellt eine große Herausforderung dar. Da insbesondere das kleinskalige Verhalten der atmosphĂ€rischen Refraktion eng mit den StabilitĂ€tseigenschaften des VLBI-Beobachtungssystems zusammenhĂ€ngt, mĂŒssen diese ausreichend gut bekannt sein. Durch die Inbetriebnahme des weltweit ersten Twin-Teleskops am GeodĂ€tischen Observatorium Wettzell in Deutschland entstanden optimale Voraussetzungen fĂŒr die Detektion der StabilitĂ€tseigenschaften des Beobachtungssystems sowie der atmosphĂ€rischen Refraktion. In dieser Arbeit wurden spezielle WHISPExperimente entworfen, die es erlauben, einzelne Komponenten des Beobachtungssystems zum Teil erstmalig zu quantifizieren. Auf dieser Grundlage wird auch der Einfluss von Variationen in der RefraktivitĂ€t bestimmt, dem eine GrĂ¶ĂŸenordnung von 1-3 Millimetern zugerechnet wird. Ein besonderer Fokus liegt außerdem auf der Entwicklung eines Turbulenzmodells, welches zum einen zeitliche und rĂ€umliche Korrelationen zwischen den Beobachtungen berĂŒcksichtigt und zum anderen kleinskalige Fluktuationen in der RefraktivitĂ€t stochastisch sowie physikalisch und meteorologisch sinnvoll beschreibt. Auf Basis der Auswertung von 2700 VLBI-Beobachtungssessionen unterschiedlicher NetzwerkgrĂ¶ĂŸe wird gezeigt, dass die EinfĂŒhrung des neuen Turbulenzmodells in die VLBI-Auswertung fĂŒr die operationelle Auswertung geeignet ist und zu Verbesserungen gegenĂŒber der Standardlösung des IVS (International VLBI Service for Geodesy and Astrometry) sowie alternativer AnsĂ€tze zur Verfeinerung des stochastischen Modells fĂŒhrt. Da das routinemĂ€ĂŸig verwendete AtmosphĂ€renmodell einige Defizite hinsichtlich der SchĂ€tzung atmosphĂ€rischer Parameter aufweist, werden in dieser Arbeit einige Modellierungs- und Ausgleichungsstrategien eingefĂŒhrt, um die neutrale AtmosphĂ€re besser zu charakterisieren. Es wird gezeigt, dass insbesondere die Kleinste-Quadrate-Kollokation eine verbesserte Modellierung der stochastischen Eigenschaften der neutralen AtmosphĂ€re erlaubt und somit zu einer aussagekrĂ€ftigeren und geeigneteren SchĂ€tzung der AtmosphĂ€renparameter fĂŒhrt. Die Haupterrungenschaften dieser Arbeit sind die Entwicklung eines Turbulenzmodells zur Verbesserung des stochastischen Modells sowie die verbesserte Quantifizierung lokaler Refraktionseigenschaften in Raum und Zeit. Beides resultiert in neuen Interpretationsmöglichkeiten und Modellverbesserungen in deterministischer und stochastischer Hinsicht

    VLBI Geodesy: Observations, Analysis and Results

    Get PDF

    A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity and surface pressure

    Get PDF
    An optimal estimation inverse method is presented which can be used to retrieve simultaneously vertical profiles of temperature and specific humidity, in addition to surface pressure, from satellite-to-satellite radio occultation observations of the Earth's atmosphere. The method is a non-linear, maximum {\it a posteriori} technique which can accommodate most aspects of the real radio occultation problem and is found to be stable and to converge rapidly in most cases. The optimal estimation inverse method has two distinct advantages over the analytic inverse method in that it accounts for some of the effects of horizontal gradients and is able to retrieve optimally temperature and humidity simultaneously from the observations. It is also able to account for observation noise and other sources of error. Combined, these advantages ensure a realistic retrieval of atmospheric quantities. A complete error analysis emerges naturally from the optimal estimation theory, allowing a full characterisation of the solution. Using this analysis a quality control scheme is implemented which allows anomalous retrieval conditions to be recognised and removed, thus preventing gross retrieval errors. The inverse method presented in this paper has been implemented for bending angle measurements derived from GPS/MET radio occultation observations of the Earth. Preliminary results from simulated data suggest that these observations have the potential to improve NWP model analyses significantly throughout their vertical range.Comment: 18 (jgr journal) pages, 7 figure

    New GPS Time Series Analysis and a Simplified Model to Compute an Accurate Seasonal Amplitude of Tropospheric Delay

    Get PDF
    Horizontal and vertical deformation of the Earth’s crust is due to a variety of different geophysical processes that take place on various spatiotemporal scales. The quality of the observations from spaced-based geodesy instruments such as Global Positioning System (GPS) and differential interferometric synthetic aperture radar (DInSAR) data for monitoring these deformations are dependent on numerous error sources. Therefore, accurately identifying and eliminating the dominant sources of the error, such as troposphere error in GPS signals, is fundamental to obtain high quality, sub-centimeter accuracy levels in positioning results. In this work, I present the results of double-differenced processing of five years of GPS data, between 2008 and 2012, for sparsely distributed GPS stations in southeastern Ontario and western QuĂ©bec. I employ Bernese GPS Software Version 5.0 (BSW5.0) and found two optimal sub-networks which can provide high accuracy estimation of the position changes. I demonstrate good agreement between the resulted coordinate time series and the estimates of the crustal motions obtained from a global solution. In addition, I analyzed the GPS position time series by using a complex noise model, a combination of white and power-law noises. The estimated spectral index of the noise model demonstrates that the flicker noise is the dominant noise in most GPS stations in our study area. The interpretation of the observed velocities suggests that they provide an accurate constraint on glacial isostatic adjustment (GIA) prediction models. Based on a deeper analysis of these same GPS stations, I propose a model that accurately estimates the seasonal amplitude of zenith tropospheric delay (ZTD) error in the GPS data on local and regional spatial scales. I process the data for the period 2008 through 2012 from eight GPS stations in eastern Ontario and western QuĂ©bec using precise point positioning (PPP) online analysis available from Natural Resource Canada (NRCan) (https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php). The model is an elevation-dependent model and is a function of the decay parameter of refractivity with altitude and the seasonal amplitude of refractivity computed from atmospheric data (pressure, temperature, and water vapor pressure) at a given reference station. I demonstrate that it can accurately estimate the seasonal amplitude of ZTD signals for the GPS stations at any altitude relative to that reference station. Based on the comparison of the observed seasonal amplitudes of the differenced ZTD at each station and the estimates from the proposed model, it can provide an accurate estimation for the stations under normal atmospheric conditions. The differenced ZTD is defined as the differences of ZTD derived from PPP at each station and ZTD at the reference station. Moreover, I successfully compute a five-year precipitable water vapor (PWV) at each GPS site, based on the ZTD derived from meteorological data and GPS processing. The results provide an accurate platform to monitor long-term climate changes and inform future weather predictions. In an extension of this research, I analyze DInSAR data between 2014 and 2017 with high temporal and spatial resolution, from Kilauea volcano in Hawaii in order to derive the spatial and temporal pattern of the seasonal amplitude of ZTD. I propose an elevation-dependent model by the data from a radiosonde station and observations at a surface weather station for modeling the seasonal amplitudes of ZTD at any arbitrary elevation. The results obtained from this model fit the vertical profile of the observed seasonal amplitude of ZTD in DInSAR data, increasing systematically from the elevation of the DInSAR reference point. I demonstrate that the proposed model could be used to estimate the seasonal amplitude of the differenced ZTD at each GPS station within a local network with high accuracy. The results of this study concluded that, employing this model in GPS processing applications eliminates the need for the meteorological observations at each GPS site

    Determination of GPS orbits to submeter accuracy

    Get PDF
    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation
    • 

    corecore