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Abstract 

Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure 

surface deformation and is well suited for surveying active volcanoes using historical and 

existing satellites. However, the value and applicability of InSAR for geodynamic 

monitoring problems is limited by the influence of temporal decorrelation and 

electromagnetic path delay variations in the atmosphere, both of which reduce the 

sensitivity and accuracy of the technique.  

The aim of this PhD thesis research is: how to optimize the quantity and quality of 

deformation signals extracted from InSAR stacks that contain only a low number of 

images in order to facilitate volcano monitoring and the study of their geophysical 

signatures. 

In particular, the focus is on methods of mitigating atmospheric artifacts in 

interferograms by combining time-series InSAR techniques and external atmospheric 

delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter 

of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model 

for InSAR data correction has been studied extensively. Forecasted atmospheric delays 

derived from operational High Resolution Rapid Refresh for the Alaska region (HRRR-

AK) products have been compared to radiosonding measurements in the first chapter. 

The result suggests that the HRRR-AK operational products are a good data source for 

correcting atmospheric delays in spaceborne geodetic radar observations, if the 

geophysical signal to be observed is larger than 20 mm. In the second chapter, an 

advanced method for integrating NWP products into the time series InSAR workflow is 

developed. The efficiency of the algorithm is tested via simulated data experiments, 

which demonstrate the method outperforms other more conventional methods. In Chapter 

3, a geophysical case study is performed by applying the developed algorithm to the 

active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long 

term volcano deformation monitoring. The volcano source location at Westdahl is 

determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl 
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peak. This study demonstrates that Fisher caldera has had continuous subsidence over 

more than 10 years and there is no evident deformation signal around Shishaldin peak. 
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Introduction 

The main focus of this thesis research is to improve radar interferometry techniques 

for precision monitoring of geodynamic signals. Specifically, the research will focus on 

volcano deformation, which is one of three precursor signals indicating the potential of 

upcoming eruptions [Dzurisin, 2007].  

Many volcanic eruptions are preceded by pronounced ground deformation in response 

to increasing pressure from magma chambers, or to the upward intrusion of magma 

[Dvorak and Dzurisin, 1997]. These phenomena are one of the main precursor indicators 

before an eruption begins. The other two indicators are deep and long period seismic 

signals and changes in magmatic carbon dioxide emission rates [Dzurisin, 2003]. Exact 

knowledge of the spatial surface deformation signal helps in determining the location and 

shape of the pressure source underneath the surface, allows quantification of the 

parameters of a volcano source model in a parameter inversion, and provides information 

about the internal eruption physics and dynamics of a volcano [Segall, 2010]. 

With the development of classical geodetic procedures, systematic measurements of 

ground deformation were initiated in the early 20th century in USA and Japan [Dzurisin, 

2007]. In the decades, since the advent of spaceborne remote sensing, continued 

technological developments have turned Synthetic Aperture Radar interferometry 

(InSAR) remote sensing into a reliable and widely used geodetic technique that provides 

highly accurate observations of surface deformation at volcanoes in remote areas with 

high spatial resolution and large spatial coverage. Due to its independence from daylight 

and weather conditions, its predictable repetition cycle, and global observation strategy, 

InSAR distinguishes itself as a suitable tool to conduct a long time deformation 

monitoring over volcanoes across the world. InSAR represents uplift or subsidence 

movement associated with eruptions or magma intrusions as a phase change between 

repeated acquisitions that can be captured in interferograms. Advanced InSAR techniques 

can extract these motion signals with cm-accuracy [Hanssen, 2001], which can provide 

significant inputs for studying magma dynamics.   
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The value and applicability of InSAR for geodynamic monitoring problems is limited 

by the influence of temporal decorrelation, especially for non-urban areas. It is due to the 

unstable and complex ground coverage and electromagnetic path delay variations when 

signal propagates through atmosphere, both reducing the sensitivity and accuracy of the 

technique. Particularly problematic are seasonal changes of climatic conditions that can 

be significant on tall volcanic edifices and often limit the amount of useful data to images 

from similar seasons in order to make volcano monitoring feasible in sub-arctic 

environments [Lu and Freymueller, 1998].  

This study will focus on decorrelation mitigation by advanced InSAR techniques and 

mitigation of atmospheric artifacts by incorporating external atmospheric fields, for the 

purpose of reconstructing the geodynamic motion history.  In theoretical analyses and 

case studies, improvements in accuracy and precision of the extracted deformation 

signals will be quantified. Finally, the improved extracted deformation information will 

be used to quantify the parameters of volcano source models at selected study sites and 

evaluate their evolution. 

In the first chapter, I made a quantitative study on the accuracy of using operational 

Numerical Weather Prediction (NWP) products for signal delay correction in satellite 

radar geodetic remote sensing. The study focuses on the temperate, subarctic and Arctic 

climate regions due to the prevalence of relevant geophysical signals in these areas, e.g. 

Alaskan volcanoes, and on High Resolution Rapid Refresh over the Alaska region 

(HRRR-AK) model atmospheric delay products. The performance of the HRRR-AK 

products for correcting absolute atmospheric range delays in radar signals is assessed by 

comparing them to radiosonde observations. The study suggests that the HRRR-AK 

operational products are a good data source for spaceborne geodetic radar observations 

atmospheric delay correction, if the geophysical signal to be observed is larger than 

20mm.  

In Chapter 2, I analyze the capability of NWP models in producing realistic 

information about the statistical properties of atmospheric phase signals in InSAR data. 

The main achieved findings are: (1) that NWPs are able to robustly predict statistical 
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properties of atmospheric phase screens; and (2) that NWPs underestimate these 

statistical properties by a scaling factor that depends on the area’s surface topography but 

not on its climatic conditions. Based on these findings, a new concept for atmospheric 

mitigation, using NWP-derived statistical parameters to condition the design of an 

optimal atmospheric phase filter, is developed. The study shows that this filter concept 

outperforms other more conventional filtering methods.  

In the final chapter, I processed a seven year time series of Environment Advanced 

Synthetic Aperture Radar (ENVSAT ASAR) radar images over Unimak Island, Alaska in 

order to analyze volcanic signatures on this island. The method developed in Chapter 2, is 

applied for data processing. Data processing was assisted by using auxiliary numerical 

predicted radar signal delay maps to optimally distinguish the deformation signals from 

atmospheric contaminations. The reconstructed deformation time series maps are 

compared with historical and current GPS measurements as well as Small Baseline 

Subset (SBAS) InSAR technique results for quality assessment and geophysical 

interpretation. The results show that Westdahl Volcano is still inflating but at a lower rate 

than in the period before 2001. It also indicates that the volcano source is located approx. 

3.5 north of Westdahl peak, which agrees with previous GPS results [Mann and 

Freymueller, 2003]. The deformation found at Fisher caldera is linear and constant in 

time. There is no evidence of deformation found around Shishaldin peak, but unexplained 

deformation signals were observed about east of Shishaldin and over the Tugamak range.  

In the study of Chapter one, the HRRR-AK data was provided by the co-author Dr. 

Don Morton. My major contributions are on HRRR-AK data analyzing and statistical 

modeling. In the second chapter, the SAR data was provided by Dr. Ramon Hanssen and 

a part of the InSAR and NWP data were processed and analyzed by Dr. Shizhuo Liu. My 

contributions include InSAR and NWP data processing, the statistical modeling and the 

algorithms design and corresponding evaluation of the optimal atmospheric phase filter in 

time series InSAR techniques. In the third chapter, Dr. Chong Wook Lee processed SAR 

data with the SBAS approach. I was mainly working on the Persistent Scatterer InSAR 

(PSI) data processing with the optimal atmospheric filter developed in the second 
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chapter, comparing PSI measurements with results from SBAS and validating with 

historical and current GPS records, as well as the geophysical interpretation and 

inversion. All the co-authors for these three manuscripts have contributed to paper 

revision and putted effort into improving the quality of presented researches. 
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Chapter 1 Performance of the High Resolution Atmospheric Model HRRR-AK for 

Correcting Geodetic Observations from Spaceborne Radars 1 

1.1 Abstract 

Atmospheric phase delays are considered to be one of the main performance 

limitations for high-quality satellite radar techniques, especially when applied to ground 

deformation monitoring. Numerical weather prediction (NWP) models are widely seen as 

a promising tool for the mitigation of atmospheric delays as they can provide knowledge 

of the atmospheric conditions at the time of Synthetic Aperture Radar (SAR) data 

acquisition. However, a thorough statistical analysis of the performance of using NWP 

production in radar signal correction is missing to date. This study provides a quantitative 

analysis of the accuracy in using operational NWP products for signal delay correction in 

satellite radar geodetic remote sensing. The study focuses on the temperate, subarctic and 

Arctic climate regions due to a prevalence of relevant geophysical signals in these areas. 

In this study, the operational High Resolution Rapid Refresh over the Alaska region 

(HRRR-AK) model is used and evaluated. Five test sites were selected over Alaska (AK), 

USA, covering a wide range of climatic regimes that are commonly encountered in high 

latitude regions. The performance of the HRRR-AK NWP model for correcting absolute 

atmospheric range delays of radar signals is assessed by comparing to radiosonde 

observations. The average estimation accuracy for the one-way zenith total atmospheric 

delay from 24 hour simulations was calculated to be better than ~14 mm. This suggests 

that the HRRR-AK operational products are a good data source for spaceborne geodetic 

radar observations atmospheric delay correction, if the geophysical signal to be observed 

is larger than 20 mm. 

                                                 
1 Gong, W., F. J. Meyer, P. Webley, and D. Morton (2013), Performance of the high resolution atmospheric 
model HRRR-AK for correcting geodetic observations from spaceborne radars, Journal of Geophysical 
Research: Atmospheres, 2013JD020170. 
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1.2 Introduction 

Fine resolution and repeatable geodetic measurements are required to precisely 

measure movements and deformations of the Earth’s surface that are triggered by various 

geophysical phenomena including volcanoes [Dzurisin, 2007; Lu et al., 2010], permafrost 

[Liu et al., 2010], earthquakes [Segall, 2010; Wei et al., 2010], tidal motion [Eineder et 

al., 2011], and ground water extraction [Kampes, 2005]. Precise knowledge of the 

magnitude and spatial patterns of these surface deformation signals allows determination 

and quantification of geophysical parameters [Segall, 2010] and will improve our 

understanding of the dynamics of the earth’s interior [Sleep and Fujita, 1997].  

Despite a large number of successful case studies, the performance and applicability 

of synthetic aperture radar (SAR) as a geodetic measurement tool is limited by the 

influence of electromagnetic path delay variations when the signal is propagating through 

the atmosphere [Richter and Hitney, 1980]. While atmospheric delays can be 

decomposed into two parts, tropospheric delays and ionospheric delay [Hanssen, 2001; 

Resch, 1980], this study is focusing on the mitigation of tropospheric delays only.  

The majority of the research on atmospheric mitigation methods for geodetic radar 

remote sensing observations has so far focused on the correction of Interferometric SAR 

(InSAR) observations. InSAR techniques measure the spatial and temporal derivative of 

the SAR signal phase in order to extract surface deformation. Due to the double 

differencing procedure, atmospheric artifacts in InSAR data are mainly caused by the 

spatio-temporal variation of atmospheric water vapor while other atmospheric delay 

components largely cancel out. Mitigation methods often rely on water vapor 

measurements from external sources, such as dense networks of Global Positioning 

System (GPS) stations [Li, Fielding, Cross, et al., 2006; Onn and Zebker, 2006; Xu et al., 

2011] and spaceborne multispectral scanners [Li et al., 2009]. Alternative methods are 

using time series of SAR imagery to filter atmospheric artifacts based on the spatio-

temporal statistics of atmospheric water vapor distributions [Berardino et al., 2002; 

Ferretti et al., 2001]. Besides InSAR, geodetic observations have also been derived using 

tracking techniques or the recently developed absolute ranging method. Tracking 
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methods identify and track features or noise patterns through sequences of images to 

determine surface motion. With high resolution radar systems, tracking methods [Eineder 

et al., 2011] can detect range changes at the centimeter level, requiring accurate 

atmospheric correction to produce reliable surface motion measurements. The absolute 

ranging technique has become applicable since the launch of the TerraSAR-X radar 

system and allows for the retrieval of precise absolute range measurements between 

satellite and ground. Absolute ranging can measure geodetic signals like tectonic 

deformation from only one image but requires precise correction for absolute 

atmospheric delay for the method to succeed [Eineder et al., 2011]. 

In the past few years, Numerical Weather Prediction (NWP) simulations have become 

a novel data source for atmospheric correction of remote sensing data. Many studies have 

analyzed the merit of NWPs for atmospheric correction of InSAR data [Foster et al., 

2013; Fournier et al., 2011; Gong et al., 2010; Webley et al., 2002] and have found that 

NWPs are often able to correct for effects related to atmospheric stratification [Liu and 

Hanssen, 2009]. However, results are inconclusive when it comes to correcting for 

atmospheric turbulence patterns. While only few studies have addressed the correction of 

atmospheric delays for absolute ranging and tracking techniques, some of them 

demonstrated up to 3.2 cm ranging accuracy in slant range when using European Centre 

for Medium-Range Weather Forecasts (ECMWF) for absolute range phase correction 

[Cong et al., 2012]. In all studies, more thorough statistical analyses are necessary to 

quantify the performance of NWPs under a range of atmospheric conditions. The goal of 

our study is the qualification and quantification of the correction performance of the High 

Resolution Rapid Refresh (HRRR) over the Alaska region (HRRR-AK) based on the 

Weather Research and Forecasting (WRF) model. HRRR-AK performance is analyzed 

by a comparison of its predictions to a large number of radiosonde observations 

(RAOBS) acquired over five test sites in high-latitude regions twice a day and for sixteen 

months. Predictions and observations are compared using statistical methods, and 

differences between them are analyzed for their dependence on the model lead time, time 

of day, season, as well as geographic and climatologic properties of the test sites. Study 
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areas have been defined within Alaska, USA, for three reasons: (1) Alaska provides a 

large number of geophysical signals including volcanoes, glacier and tectonic motion and 

is therefore a natural test site for geodetic observations from space; (2) as arctic and 

subarctic environments are more and more becoming the focus of many radar-based 

remote sensing studies, this study is relevant to a large number of geophysical research 

questions; and (3) with the HRRR-AK, an operational high-resolution NWP is available 

for Alaska. HRRR-AK is the Alaska-centered adaptation of the 48 contiguous United 

States High Resolution Rapid Refresh (HRRR) operational atmospheric model. The 

HRRR-AK model is developed, maintained and run at the University of Alaska 

Fairbanks’ Arctic Region Supercomputing Center (ARSC) [ARSC, 2012] and model 

outputs are publicly available (http://weather.arsc.edu/HRRR/). 

A short description of RAOBS and the fundamental features of HRRR-AK, as well as 

the climate conditions of study sites are introduced in Section 1.3. A brief description of 

converting atmospheric physical parameters into total atmospheric delay and Precipitable 

Water Vapor (PWV) delay is provided in Section 1.4. In Section 1.5, the experiments 

focusing on determining the accuracy of using HRRR-AK products for atmospheric 

signal mitigations in various radar techniques are presented and discussed. The last 

sections discuss and summarize the presented work, compare results of this study to other 

related findings, and draw conclusions on the performance of operational HRRR-AK data 

for radar signal delay correction. 

1.3 Description of the Observations and Study Areas 

The HRRR-AK simulations and radiosonde data used in this study cover a time 

span from June 2010 to September 2011. In this section, it will provide a brief 

introduction to the radiosondes used in this study; the principles of HRRR-AK 

simulations together with their set-up environment and parameterization; climatological 

details and locations of five test sites across Alaska chosen for this research that cover a 

wide range of climatic conditions, which are routinely encountered in polar and sub-polar 

regions.  
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1.3.1 Radiosonde Observations (RAOBS) 

Radiosondes provide in-situ observations of the vertical profile of many 

meteorological variables during their rise through the atmosphere. These variables 

include atmospheric pressure, temperature, wind speed, and relative humidity [NWS, 

2010]. Typically, radiosondes are released twice a day at 00:00 UTC (15:00 Alaska 

Standard Time (AKST) in winter, 16:00 Alaska Daylight Time (ADKT) in summer) and 

12:00 UTC (03:00 AKST and 04:00 ADKT) [NWS, 2010]. In our research, radiosonde 

data was retrieved from the University of Wyoming's Department of Atmospheric 

Science [UW, 2012].  

The locations of the five radiosonde launch sites used in this study are shown in 

Figure 1.1 with their corresponding International Civil Aviation Organization (ICAO) 

location codes (four letter code). From north to south, site PABR is located north of 

Barrow, site PAFA is located southwest of Fairbanks, PANC is to the west of Anchorage, 

PASN is located in the southeast of St. Paul Island, and PANT is southwest of Annette 

Island. Two types of radiosondes were used during our studied time span. VIZ II B 

radiosondes were used at PABR (indicated by a gray dot in Figure 1.1), while the rest of 

our test sites (indicated by black dots in Figure 1.1) were using the VIZ Mark IIs GPS 

microsonde (VIZ Mark IIs for short in Figure 1.1) [Morton and Malingowski, 2012]. 

Both types of radiosondes are very similar in design and are using the same pressure, 

temperature and humidity sensors for recording the atmospheric conditions. Due to this 

similarity, we will refer to all radiosondes as VIZ radiosondes in the remainder of the 

paper.   

The radiosonde types used in this study have been reported to produce PWV with an 

accuracy of mmPWVRAOBS 21,   [Niell et al., 2001]. In Arctic regions, the reported 

accuracy of PWV measurements in Barrow, Alaska is mmPWVRAOBS 1,   by comparing 

VIZ observation to GPS products [Mattioli et al., 2007]. Several studies have reported 

inaccurate records of VIZ radiosondes in the upper troposphere, when temperatures are 

extremely cold [Wang and Zhang, 2008]. For InSAR observations, where atmospheric 
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delay signals are primarily dependent on water vapor distributions, measurement errors in 

the upper troposphere can be largely ignored due to the low proportion of total water 

vapor in upper troposphere [Chen et al., 1999]. England et al. [1993] have observed 

distinctive differences in moisture measurements above 8000 meters above sea level 

(ASL) among different radiosonde systems. Hence, only the first 8000 meters ASL of 

radiosonde data are used for the NWP performance analysis in this research. 

1.3.2 HRRR-AK Products and the Weather Research and Forecasting (WRF) 

Model 

The HRRR-AK, which is publicly available for Alaska, 

http://weather.arsc.edu/HRRR/, is initialized with the highly assimilated Rapid Refresh 

(RAP) data and uses the WRF 3.2 system for 24 hour atmospheric condition forecasting 

with 3 km lateral resolution and 51 vertical layers [ARSC, 2012]. The WRF model is a 

numerical weather prediction and atmospheric simulation system that has been designed 

for advancing the understanding and prediction of mesoscale weather systems both in 

research and in operational applications [Skamarock et al., 2008]. WRF belongs to the 

latest generation mesoscale weather prediction models. Four 24-hour HRRR-AK 

forecasts are produced by ARSC per day providing atmospheric conditions at user 

defined time steps [ARSC, 2012]. The meteorological initialization data, RAP, is 

provided by National Oceanic and Atmospheric Administration (NOAA) and is an hourly 

updated operational weather prediction system covering North America with 13-km 

lateral resolution and 50 vertical layers [NOAA, 2012]. The 11 km Alaska North 

American Mesoscale (NAM) model has also been utilized to extend lateral boundary 

conditions beyond the RAP forecast period. The combination of availability, high lateral 

and vertical resolution, and rapid temporal refresh rates makes HRRR-AK the ideal data 

set for model-based atmospheric correction of radar remote sensing data in an operational 

setting. 

1.3.3 Climate Conditions of Study Areas 

The spatial distribution of the radiosonde test sites was chosen to represent a wide 
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range of climate/weather conditions in Arctic and subarctic environments in order to 

provide a performance assessment of HRRR-AK that are representative for most high 

latitude regions. The sites provided a range of meteorological challenges that allowed for 

testing the robustness of HRRR-AK predictions for several climatic regions.  

According to the classification by the Alaska Climate Research Center (ACRC) 

[Bieniek et al., 2012], Alaska can be generally divided into four climate regions as 

highlighted in Figure 1.1 (gray capital letters). These are (i) the Arctic region, (ii) the 

interior region, (iii) the west coast region, and (iv) the south central/south east region. 

The dominating factor that differs among these climate regions is the seasonal change of 

solar radiation, atmospheric moisture conditions, the local topography, and the presence 

or absence of nearby ocean bodies [Benson et al., 1983]. Stafford, et al.[2000] 

summarized the climate properties of the above mentioned four climate zones. They state 

that the Arctic climate region, where station PABR is located, can be considered as the 

coldest and driest with average annual temperatures below 0 oC and the majority of 

precipitation coming from snow [Searby, 1968]. The interior climate region where 

Station PAFA is located is characterized as a highly continental climate of meteorological 

extremes, with high temperatures ranging from below -40 oC in the local winter to above 

+30 oC during local AK summer. PASN is located in the Bering Sea, which is considered 

to be a transitional zone of continental and coastal climates. The two radiosonde stations 

PANC and PANT are both located in the south central/south eastern climate region that 

are reported generally wet all year with annual mean temperatures between 0oC - 5oC and 

are affected by both oceanic and subarctic climates [Peel et al., 2007]. 

1.4 Theory of Atmospheric Effects on Radar Remote Sensing and Its Applications 

1.4.1 From Atmospheric Observations to Total Signal Delay 

For microwave remote sensing in geodetic applications, the atmosphere is considered 

an error source that biases measurements of the range between sensor and earth surface. 

The atmospheric delay losL  that is experienced by a microwave signal is equivalent to the 

integral of refractivity along the signal’s line-of-sight (LOS) [Smith and Weintraub, 
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1953]. Under the assumption of a spatially smooth atmosphere, losL  can be calculated 

from the zenith delay L using the signal’s incidence angle inc  according to 

inclos LL cos . As radiosondes measure the vertical profile of atmospheric conditions, 

vertical delay measurements L are used to assess the performance of HRRR-AK through 

a direct comparison of AKHRRRL   and RAOBSL .  

The zenith delay L can be further numerically approximated as a function of pressure 

(P, in hPa), water vapor pressure (e, in hPa) as well as temperature (T, in K) integrated 

along height h [Smith and Weintraub, 1953], resulting in Eq. (1.1), where 

hPakk 6.771  , hPakk 3.232  , and hPakk 25
3 1075.3   [Smith and Weintraub, 

1953; Davis et al., 1985]. The vapor pressure e can be computed from water vapor 

mixing ratio Q and pressure P [UK Meteorological Office, 1991], both of which are 

standard outputs of HRRR-AK and RAOBS. 
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The first term on the right side of Eq. (1.1) is the so-called hydrostatic delay (hydro., 

hydroL ), while the second and third term in Eq. (1.1) are the wet delay terms ( wetL ) related 

to the presence of water vapor. hydroL  in the zenith direction can alternatively be 

calculated from the local gravity gm in m/s2
, and surface pressure Ps in hPa as shown in 

Eq. (1.2) [Davis et al., 1985; Hanssen, 2001], in which ][053.287 11  kgKJRd . 

shydro PL  27.2  in mm with average local gravity gm ~ 9.8 m/s2 in Alaska. Eq. (1.2) 

utilizes the fact that the vertical atmospheric profiles of pressure P and temperature T are 
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An alternative method of calculating the zenith wet delay (ZWD) term wetL  in Eq. 

(1.1) is using PWV fields combined with a projection function  . In Eq. (1.3)   can be 

considered a dimensionless factor that is mapping PWV into zenith delays. Values for   

were determined from laboratory experiments [Bevis et al., 1992]. Computing wetL  via 

the projection function makes it easier to compare our findings to findings of other 

researchers that have often analyzed PWV fields from various sources and their potential 

for atmospheric correction. For instance, when cloud coverage is not obstructing the 

atmosphere underneath, PWV fields obtained from multi-spectral remote sensing, e.g. 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution 

Imaging Spectrometer (MERIS), were used to correct microwave remote sensing signal 

delays in previous studies [Li, Muller, Cross et al., 2009; Meyer et al., 2008]. 

We integrate vapor pressure and temperature in the vertical to obtain PWV and 

convert PWV to wetL  via Eq. (1.3). Relying on PWV, rather than the vapor and 

temperature profiles, ensures that the methods applied here can be used globally for any 

NWP or satellite derived atmospheric information, which often only provide PWV and 

not profile measurements. 
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PWV is derived from predictions of the HRRR-AK system via Eq. (1.4) and the 

performance of these predictions is analyzed through a comparison to RAOBS [Hanssen, 

2001; Bevis et al., 1992].  
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The variable l  in Eq. (1.4) is the density of liquid water, ][524.461 11  kgKJRv  is 

the gas constant for water vapor and vapor pressure e was computed via 
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62197.0
. Therefore, the PWV field is used together with the zenith delay 
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components zenith wet delay wetL  (ZWD) and hydrostatic delay hydroL  (ZHD) to assess 

the performance of the reconstructed atmospheric delay field from HRRR-AK. 

1.4.2 Relevant Atmospheric Parameters from a Microwave Remote Sensing 

Perspective 

The atmospheric phase screen that is observed in a SAR interferogram corresponds to 

the delay difference between two generally uncorrelated states of the atmosphere at two 

acquisition times [Hanssen, 2001]. It also corresponds to the combination of two different 

atmospheric signal composites that can be distinguished by their physical origin: 

1)  Turbulent mixing, resulting from turbulent convective processes in the atmosphere, 

creates three-dimensional heterogeneity in the refractivity field.   

2)  Vertical stratification is the result of different vertical refractivity profiles at the two 

SAR acquisitions. Stratification affects mountainous terrain and creates phase 

signatures that are correlated with topography. 

As a double-differencing method, InSAR is sensitive to spatial (meters to kilometres) 

and temporal (days to years) variations of atmospheric delays. Hence, the atmospheric 

signals with temporal-spatial correlation lengths comparable to the InSAR sensitivity 

range can cause relevant errors in InSAR observations. In current advanced radar 

interferometry techniques, the predominant part of the atmospheric signal in InSAR is 

caused by the turbulent space-time variation of water vapor in the lower troposphere 

[Hanssen, 2001]. Therefore, the performance of HRRR-AK for the correction of InSAR 

data is defined by its ability to predict atmospheric water vapor delays, while the quality 

of hydrostatic delay predictions is of only secondary importance.  

Circumstances are different when working with SAR geolocation techniques like 

tracking methods and absolute ranging. For these methods, the hydrostatic delay plays the 

leading role in atmospheric interferences, being approx.10 - 100 times greater than the 

wet delay, depending on the weather conditions. For example, the amount of hydrostatic 
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delay can be as much as 2.3 m at sea level, while the wet delay only amounts to about 0.3 

~ 0.4 m in some extreme cases [Eineder et al., 2011; Hanssen, 2001].  

Hence the significance of the two terms in Eq. (1.1) depends on the radar remote 

sensing applications. In the following analysis of error budgets, the uncertainty of the 

predicted wet delay will be used to analyze its effects on SAR interferometry, while the 

error in the one way zenith total delay (ZTD) is derived to analyze atmospheric correction 

of tracking and absolute ranging techniques. 

1.5 Performance Analysis of HRRR-AK Predictions 

In order to assess the accuracy of using HRRR-AK in the mitigation of atmospheric 

delays from radar remote sensing data, experiments were performed where a large 

number of HRRR-AK simulations were compared to the corresponding atmosphere 

profiles derived from RAOBS measurements. In the analysis, the HRRR-AK products 

were grouped according to a set of modeling and environmental parameters to determine 

the influence of these parameters on HRRR-AK accuracy. These grouping parameters 

include (i) model lead time, (ii) season of data acquisition, and (iii) sunlight (solar 

radiation) conditions. 

1.5.1 Applied Mathematical Model for Comparative Analysis 

By evaluating the agreement between PWV products from RAOBS and HRRR-AK 

simulations via linear relationship assumptions, the uncertainty pwv  of PWV products 

was determined and propagated to determine the wet delay uncertainty wetL,  using 

Eq.(1.5) and assuming a fixed value of 1 . 

pwvwetL  1
,


 

  (1.5) 

Similarly, the accuracy hydroL,  of hydrostatic delay predictions was determined 

using linear regression analysis of HRRR-AK-simulated and RAOBS-observed 

hydrostatic delays computed via Eq. (1.2). Combing the error contributions from the 

hydrostatic and wet delay together, the error budget of the ZTD L  can be expressed 
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following Eq. (1.6).  
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While Eq. (1.6) describes atmospheric delay errors in a single SAR acquisition, the 

differential delay information in an interferogram can be calculated from Eq. (1.6) via 

LifgL   2,  (1.7) 

To be able to compare RAOBS-observed and HRRR-AK simulated atmospheric data, 

the vertical RAOBS profiles were additionally resampled to match the vertical levels of 

the HRRR-AK model using linear interpolation methods. 

1.5.1.1Assessment of the Accuracy of Precipitable Water Vapor Predictions 

Both RAOBS and HRRR-AK delays were integrated along the vertical to provide 

pairs of integrated PWV products. For comparison and statistical analysis, a linear 

relationship between HRRR-AK-simulated ( AKHRRRPWV  ) and radiosonde-observed 

( RAOBSPWV ) PWV products was assumed and applied. Using linear regression models 

for such analysis has been suggested in previous studies [Li, Muller, Cross, et al., 2006; 

Niell et al., 2001], where free regression models were used to describe and analyze the 

relationship of radiosonde observations and multispectral remote sensing PWV 

measurements. In contrast to these studies, we applied a slightly modified approach that 

recognizes the physical properties of PWV measurements that prohibit negative values of 

PWV. Hence, in our analysis, the linear regression lines are forced through (0, 0) to 

guarantee physically meaningful results (Eq.(1.8)). 

RAOBSAKHRRR PWVaPWV   
(1.8) 

The best fitting regression model was found using a least-squares fitting approach, where 

the radiosonde measurements were assumed error free and the best fitting regression 

slope â  is found from Eq. (1.9) 
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 2
minargˆ RAOBSAKHRRR
a

PWVaPWVa     (1.9) 

Moreover, we apply robust regression techniques where outliers among the RAOBS are 

identified and discarded to provide unbiased estimates of HRRR-AK performance. Most 

outliers were caused by instrument failures in the upper troposphere. In a pre-processing 

step, we also discard radiosonde records with large data gaps below 8000m. 

In addition to the estimated slope â , a set of statistical parameters that describe the 

quality of the fitting model are derived. The coefficient of determination 2R  is used in 

this study to determine the goodness of fit between HRRR-AK and RAOBS data. It is 

calculated according to Eq. (1.10). 
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where N is the total number of data pairs, iRAOBSi PWVaf ,ˆ  , and   is the arithmetic 

mean. The standard deviation â̂  of the slope estimate is also analyzed. â̂  expresses 

how well the slope is defined and additionally allows to statistically compare the slope 

estimates at different locations or derived from different parameter settings in NWP 

simulations.  

A third parameter computed is the root-mean-square (RMS) of the residuals res  (see 

Eq. (1.11)). res is used to express the uncertainty of the PWV products due to random 

noise. Here we assume that non-linear systematic errors of RAOBS measurements or 

HRRR-AK model can be ignored, such that res  can be considered as the error bound 

for the evaluated parameters, respwv  ̂ .  
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The above outlined parameters only provide a full description of HRRR-AK performance 

if (1) the relationship between RAOBS and HRRR-AK parameters is linear and (2) if 

forcing our regression lines through zero does not result in non-stationary residuals. To 

avoid a misrepresentation of model performance, the RMS ( rms ) and bias ( rms ) of the 

point-by-point differences between RAOBS and HRRR-AK observations are calculated 

in addition to the above parameters. These additional parameters are free of linearity 

assumptions and allow for identifying non-stationary biases in the model predictions. 

1.5.1.2Assessment of the Accuracy of Hydrostatic Delay Predictions 

After resampling to identical vertical sampling locations, the pressure information of 

the bottommost layer of both HRRR-AK and RAOBS is extracted and used as surface 

pressure to derive the hydrostatic delay from HRRR-AK ( AKHRRRHydro  ) and RAOBS 

( RAOBSHydro ) via Eq. (1.2). A linear relationship, identical to the one described by Eq. 

(1.8), is assumed and applied for analyzing the quality of hydrostatic delay predictions 

( AKHRRRPWV   and RAOBSPWV  are replaced with AKHRRRHydro   and RAOBSHydro , 

respectively, in Eq. (1.8) ). Again, several parameters are used to describe the quality of 

the regression model including computing the estimated slope â  coefficient and its 

uncertainty â̂ , R2, and res  (used as the uncertainty of HRRR-AK hydrostatic delay 

products, assuming reshydroL  , ) as well as the RMS ( rms ) and the bias ( rms ) of the 

point-by-point differences. 

1.5.2 Results of Experiments 

1.5.2.1Performance of HRRR-AK as a Function of Model Lead Time 

Several HRRR-AK model runs with model lead times of 6 hours, 12 hours, 18 hours 

and 24 hours were computed and compared to RAOBS observations. Model lead time is 

the period from the model start time to the time stamp for which the model output is 

retrieved. Weather models need enough time to "spin up" from an initial state - often 

derived by interpolating form coarser to finer domains - to one in which the meteorology 
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has fully developed within the finer, computational domain [Skamarock, 2004]. For 

example, it is said typical model runs start with no precipitation and need some spin-up 

time to introduce it in a stable way. Choosing the appropriate model lead time is critical: 

If the lead time is chosen too short, the model may not have reached steady state, 

reducing the quality of the model output. Similarly, if the model lead time is selected too 

long, the quality of the model output may decrease as errors accumulated in capturing the 

large scale structure [Wang et al., 2011]. In order to determine if the optimal model lead 

time depends on the local climatic conditions, the data were analyzed for each of our test 

sites separately. With this setup, more than 600 HRRR-AK/RAOBS combinations were 

available for each experiment providing an excellent data base for statistical analysis. 

Figure 1.2 shows the influence of model lead time on PWV estimates by plotting 

correlation coefficient 2
pwvR  (Figure 1.2a) and estimated slope coefficient pwvâ  together 

with pwva,ˆ̂  (Figure 1.2b). In Figure 1.2a, a value close to one represents perfect linearity 

between HRRR-AK and RAOBS-derived total PWV. The overall 2
pwvR  values at all five 

sub-test sites are larger than 0.9 for all forecast periods, indicating a good agreement 

between PWV products from HRRR-AK and radiosonde observations. While the 

agreement to a linear relationship is good in all cases, the estimated slope values â show 

some variation with model lead time and location (see Figure 1.2b). From an analysis of 

Figure 1.2b we can conclude that (i) the value of pwvâ  is always larger than 1 indicating 

that HRRR-AK is overestimating water vapor content relative to RAOBS measurements; 

(ii) for all five stations, we observed a slight, yet statistically insignificant, reduction of 

pwvâ  when increasing the forecast simulation length, which indicates the HRRR-AK is 

slowly getting drier. The error bars in Figure 1.2b indicate the magnitude of â̂ , which is 

changing very little with model lead time.   

The study shows that overall ability of HRRR-AK to predict the water vapor field is 

not significantly degrading with increasing forecast length. The very stable 2
pwvR  and 
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pwvâ  (Figure 1.2) parameters show that the model does not develop a bias with time. 

The same linear regression procedures were also applied to assess the quality of 

hydrostatic delay products. The estimated 2
hydroR  and slope coefficients hyrdoâ  of 

hydrostatic delay products as well as corresponding uncertainties hydroa,ˆ̂  are shown in 

Figure 1.3. In Figure 1.3a, the 2
hydroR  values calculated from five test sites are larger than 

0.93 for all model lead times and locations, indicating a well-behaved linear relationship 

between RAOBS-observed and HRRR-AK-simulated hydrostatic delays. In Figure 1.3b, 

hyrdoâ  values are shown to be statistically identical to 1 and statistically independent on 

model lead time (tested at the 95% confidence level). 

More details on the derived HRRR-AK prediction performance are summarized in 

Table 1.1, showing the statistical parameters for all five stations at 6 hour and 24 hour 

forecast periods. In addition to the station-by-station analysis, a sixth segment is added at 

the bottom of the table that shows the average HRRR-AK performance across all test 

sites. pwv  in Table 1.1 is calculated from the RMS of the residuals res  assuming a 

linear regression model (see Eq. (1.11)). The wet delay accuracy wetL,  in Table 1.1 was 

calculated based on Eq. (1.5). wetL,  is less than 13 mm, when using products at 6 hour 

forecast period, and only increases slightly when increasing model lead time to 24 hours. 

The statistics of the hydrostatic delay (two sub-columns in column 5 of Table 1.1) show 

that the uncertainty of one way hydrostatic delay predictions hydroL,  is always less than 

5.40 mm and shows only a little dependence on model lead time. Considering that the 

hydrostatic delay could be as large as 2.30 m at sea level, these numbers show that hydroL  

can be estimated with a relative error of 0.3% from HRRR-AK products in high latitude 

regions.  

As shown by column 6 in Table 1.1, the variation of total atmospheric delay 

uncertainty L  with forecast period time is small. Together with wetL,  and hydroL, , the 
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overall L  determined via Eq. (1.6) at 6 hours model lead time ranges from 

9.00mm≤ L ≤13.20mm. For a 24 hour forecast duration, L  is very similar with 

10mm≤ L ≤14.30mm. Comparing column 4 and 6 in Table 1.1, the major source of error 

in the HRRR-AK simulations is the model’s relatively limited handling of PWV. 

The wet and total delay performance of HRRR-AK shows dependence on test site 

with dryer climates showing better performance than more humid climates (see last 

column of Table 1.1 for the range of atmospheric moisture across test sites). This is a 

direct consequence of the model’s limited performance in predicting PWV and is, as 

such, in line with expectations.  

To supplement the information in Table 1.1, which represents the deviation of 

HRRR-AK from a linear regression model, Table 1.2 adds the model-free point-by-point 

statistics for further analysis. As L  is almost entirely driven by errors in PWV, only the 

point-by-point statistics ( rmswet ,  and rmswet , ) of the wet delay are shown. The results in 

Table 1.2 show a significant reduction of model bias from 6 hours to 24 hours model lead 

time, indicating that the model is getting drier when the model lead time is increased. 

This is consistent with the results based on regression analysis, for which a decrease in 

slope with increasing lead time was reported.  RMS values reported in Table 1.2 are 

slightly larger than their regression-based counterparts in Table 1.1. This is expected as 

they include the full bias between observations and model while the regression-based 

variables only include residual biases after a best fitting regression line was removed. 

Hence, regression-based and regression-free error analyses are consistent.  

Taken together, when applying HRRR-AK to compensate for atmospheric effects in 

radar signals across the Alaska region, absolute geodetic range measurements can be 

obtained with an accuracy of better than 14.3 mm (max. L  in Table 1.1, PASN 24 hours 

products). Assuming a spatially stationary process, we can furthermore conclude that for 

the studied climate conditions InSAR atmospheric delay errors can be corrected with a 

residual error of better than mmLifgL 2.202,   . Most of the residual atmospheric 
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errors are due to the model’s limited ability to predict wetL, . This finding is in good 

agreement with other studies where NWP predictions were compared to PWV maps from 

InSAR and spaceborne multispectral scanners [Liu and Hanssen, 2009]. Due to the 

limited dependence on model lead time, only the HRRR-AK 12 hours products paired 

with corresponding RAOBS will be used for evaluating and analyzing seasonal 

influences and effects from sunlight condition on HRRR-AK performance. 

1.5.2.2Statistics of HRRR-AK Products With Seasonal Effects 

The quality of HRRR-AK products was also evaluated according to the seasonal 

dependence. Considering the special climate conditions of high latitude areas, where both 

spring and autumn are very short, we divided the annual climate into two parts, (1) the 

winter season with snow from November to May, and (2) the summer season from June 

to October based on a study of snowmelt dates in Barrow, AK [Stone et al., 2002].   

For performance analysis, regression models were calculated from HRRR-

AK/RAOBS comparisons for all five stations and for local AK winter and summer 

periods separately. In addition to the station-by-station analysis, also the average seasonal 

dependence of HRRR-AK across all test sites was calculated. The detailed statistics of 

the local AK summer analyses are listed in Table 1.3 and local AK winter cases are 

shown in Table 1.4. In both tables, column 2 and 3 address PWV and wet delays, while 

column 4 analyzes hydrostatic delay, and the total delays as well as the corresponding 

PWV ranges at the study sites are shown in last two columns.  

In Table 1.3, the coefficient of determination 2
pwvR  of PWV regressions is larger than 

0.75 for all five local AK summer cases. This indicates that the linear model of Eq. (1.8) 

explains at least three quarter of variance in all the data pairs. pwv  in the local AK 

summer time varies strongly throughout our five test sites with the maximum of 

76.2pwv mm  observed for PABR, corresponding to 00.18, wetL mm. Site PANC 

presents the best PWV performance of all local AK summer time cases, producing 
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smallest pwv , and wetL, . Considering the relative high humidity condition in this 

region [Stafford et al., 2000], PANC indicates the highest relative PWV accuracy of all 

analyzed HRRR-AK products. The regression of hydrostatic delay in Table 1.3 shows 

excellent fit with 2
hydroR  larger than 0.92 and hydroL,  smaller than 4.27 mm. By 

integrating the uncertainty of wet delay and hydrostatic delay together via Eq. (1.6), the 

total delay uncertainty L  for all local summer cases is ranging between 12.47mm and 

18.16mm, which is worse than the all year average performance of the model shown in 

Table 1.1. 

Table 1.4 shows the results of the HRRR-AK/RAOBS comparison during local AK 

winter conditions. Due to the dryer conditions during the winter months, the HRRR-AK-

simulated PWV products have smaller absolute errors with mm41.1mm57.0  pwv , 

corresponding to mm14.9mm17.3 ,  wetL . The simulated hydrostatic delay is again of 

high accuracy with mmhydroL 70.4,  , leading to an estimated L  of less than 10.30mm.  

Differences between local AK wintertime and summertime performance are 

pronounced in particular for the predicted wet delay component. Model overestimation 

(expressed by pwvâ >1) at sites PABR and PASN, as well as the residual signal variance 

pwv  at all test sites are larger during the local AK summer, where more water vapor is 

present in the atmosphere [Picon et al., 2003].  

The highest pwv  is observed in the local AK summertime for station PABR, whose 

water vapor field regression is shown in Figure 1.4a. It can be seen that, while significant 

noise exists about the regression line, the relationship between RAOBS and HRRR-AK 

still maintains a good linear correlation. Also, only a few outliers (points outside 95% 

prediction bound) are present even in this worst case scenario.  

To further investigate the cause for the limited PWV estimation performance of 

HRRR-AK, the atmospheric parameters that contribute to the wet delay were evaluated, 

including vapor mixing ratio Qv, temperature T, and pressure P (cf. Eq. (1.4)). The 
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vertical profiles of Qv, T and P at PABR for local AK summer cases are plotted in Figure 

1.5a-c respectively. Figure 1.5a, shows the residual of Qv after subtraction of RAOBS 

measurements from HRRR-AK predictions for a large number of observation epochs 

(gray solid thin lines). The mean value profile of these Qv residuals (solid black line in 

Figure 1.5a) indicates that HRRR-AK is underestimating RAOBS-observed Qv near the 

ground and slightly overestimates Qv in higher altitudes. The standard deviation profile of 

the Qv residuals (dashed black line) shows large noise levels in the lower troposphere 

where stronger differences between HRRR-AK predictions and RAOBS can be observed. 

As the standard deviation of the residuals is larger than the mean for all height levels, no 

significant biases can be shown for HRRR-AK-derived Qv data. In Figure 1.5b, vertical 

profiles of atmospheric temperature T are shown. The mean value profile shows a 

noticeable but statistically insignificant underestimation of T close to the ground and 

unbiased performance at higher altitudes. Pressure profiles (Figure 1.5c) demonstrate an 

overestimation across many height levels. Especially at near ground level, the residual 

mean is slightly larger than residual standard deviation suggesting a statistically 

significant overestimation. It is likely that the overestimation of Qv and P led to estimated 

slope value of pwvâ >1 and increases the uncertainty of PWV products of HRRR-AK 

(Table 1.3 column 2 and 3). 

In contrast to the wet delay predictions, the hydrostatic delay data shows no 

dependence on season. Regression slopes as well as residual delay variance hydroL,  are 

statistically identical for local AK summer and winter. hydroL,  is the largest for local 

winter data pairs at station PANT (shown in Figure 1.4b). The tight grouping about the 

best fitting regression line (see Figure 1.4b) shows small errors of HRRR-AK in 

predicting hydrostatic delay. 

Comparing term L  in Table 1.3 and Table 1.4, an evident seasonal dependence can 

be observed. This dependence comes from the wetL,  in local AK summer cases being 

approx. 1.5 ~ 2 times larger than in local AK winter. Overall, the one way total delays in 
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zenith direction among the five test sites can be predicted with accuracy better than 10.5 

mm in the local AK wintertime and better than 18.2 mm in local AK summer periods.  

The point-by-point statistics are listed in Table 1.5. Comparing the average total delay 

accuracy in summer (15.70 mm; last row Table 1.3) and in winter (8.16 mm; last row 

Table 1.4) with statistics in the last column of Table 1.5 (17.79 mm in summer and 8.74 

in winter), shows consistency between the regression-based and the regression-free 

statistics.  

Note that regression slopes estimated for hydrostatic delay are always statistically 

identical to 1 (95% confidence limit) while the slopes for wet delays pwvâ  are all 

statistically larger than 1 (with exception of wintertime data for station PABR). Li, 

Muller, Cross, et al. [2006] reported similar overestimating behavior when comparing 

PWV products from optical remote sensing to RAOBS observations and GPS products 

comparing RAOBS by Mattioli et al. [2007]. This may indicate that the differences 

between HRRR-AK and RAOBS data are caused by the RAOBS observations rather than 

the atmospheric model. However, further experiments are needed to confirm this 

conclusion. 

1.5.2.3Performance of HRRR-AK Products as a Function of Time of Day 

Kuo and Sun [1976] concluded that the atmosphere is usually stable at all vertical 

levels during the night, while during daytime, shortwave solar radiation is leading to 

unstable atmospheric conditions. This diurnal variation may cause a variation of HRRR-

AK performance with time of day.  

Additionally, most microwave remote sensing systems operate in sun synchronous 

orbits with mean local times in descending mode of either around 10:00 am (10:00 pm 

for ascending), e.g. Environmental Satellite (ENVISAT), or around ~ 6:00 am (6:00 pm 

for ascending), e.g. for TerraSAR-X and Cosmo-SkyMed. Hence, a study of daylight 

effects on the performance of HRRR-AK is useful to pre-determine achievable 

atmospheric correction accuracies for microwave remote sensing systems with different 
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acquisition modes.  

For this study, the data stack has been grouped into two categories: (i) night time data 

pairs (12UTC, 03AKST) and (ii) day time data pairs (00UTC, 15AKST). Due to the 

effects of the midnight sun on regions above the Arctic Circle (latitude higher than 66.56 

degree in north hemisphere), both test site PABR with latitude 71.3 degree and PAFA at 

latitude 65° North are suffering difficulty to classify data pairs acquired at different 

daylight condition. Hence, to keep the simplicity of grouping the RAOBS and HRRR-AK 

data pairs from different sunlight conditions, only the lower latitude stations, including 

PANC, PASN and PANT, were selected for this study, for which variations of sunrise 

and sunset times are less. A 12 hours model lead time was used and the statistics of PWV 

and radar signal delay products were computed and listed in Table 1.6 (nighttime cases) 

and Table 1.7 (daytime cases). 

Both nighttime and daytime data show good linear correlation behavior with 2
pwvR  

and 2
hydroR  values larger than 0.9. There is no statistically significant effect of sunlight on 

the uncertainty of one way total delay L  measurements (95% confidence level). While 

there are no effects on the total delay regression parameters, significant effects on the 

estimated PWV regression slopes pwvâ  and minor effects on the estimation uncertainty of 

wet delays wetL,  can be observed. Slopes pwvâ  are larger and wetL,  increases during 

daytime. In contrast to the wet delay components, the computed hydroL,  is slightly 

smaller for the day time cases.  

The point-by-point statistics of daylight effects are listed in Table 1.8. It shows that, 

on average, biases of the ZWD are about 4mm higher during day time than at night while 

ZHD biases are similar for day and night time conditions. This leads to ZTD day time 

biases that exceed nighttime biases by about 3 mm. RMS values show very similar 

behavior, with daytime RMS values exceeding nighttime values by 4 mm and 3 mm for 

ZWD and ZTD, respectively. The results from regression-based and point-by-point 
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analyses are again consistent, indicating that the regression approach did not introduce 

errors in our performance parameters.  

1.6 Discussion 

1.6.1 Comparison with other NWP products in delay related components 

prediction 

To investigate the performance of HRRR-AK relative to other NWP systems, we 

conducted a literature research of studies that assessed the performance of NWPs for 

signal delay correction. Four major global meteorological data were used in the identified 

studies (listed in column one in Table 1.9), including (1) reanalysis products from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) (e.g., ERA-Interim 

reanalysis products from ECMWF) [Cong et al., 2012], (2) the National Centers for 

Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) 

Reanalysis I (NCEP-I), (3) the NCEP-Department of Energy (DOE) reanalysis II (NCEP-

II), and (4) initial boundary conditions generated from the Meteorological Assimilation 

Data Ingest Systems (MADIS) via the assimilation system, e.g. Local Analysis and 

Prediction System (LAPS) [Foster et al., 2013]. 

In some of the studies, the meteorological data were fed into various NWP models as 

initial boundary conditions to produce ‘customized’ simulations, e.g. studies conducted 

by Pacione et al.[2001], Behrend et al. [2002], and Foster et al. [2013] as well as HRRR-

AK (Table 1.9). The other identified case studies, however, focused on the performance 

assessment of global meteorological data without customized refinements, e.g. the studies 

from Bock and Nuret [2009] and Cong et al. [2012]. The main NWP model that was used 

in these studies is the National Center for Atmospheric Research-PennState Mesoscale 

Model Version 5 (MM5).  

A comparison of HRRR-AK with other systems is complicated by the fact that 

previous studies used very inconsistent analysis parameters. As summarized in Table 1.9 

column one, a wide range of parameters was used to analyze NWP performance 

including PWV, ZWD and ZTD values. Also, for performance analysis, the studied 
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NWPs were compared to a range of reference data including GPS products and Very 

Long Baseline Interferometry (VLBI) (see column three of Table 1.9 for information on 

applied reference data). Moreover, two types of statistics are listed in column five of 

Table 1.9 including the standard deviation of difference between model and reference 

data marked by superscript ‘c’, while the rest were computed using the root-mean-square 

of differences. Additionally, the data time span of every study is listed in column six of 

Table 1.9 to help in understanding the representativeness of statistics from different 

studies.  

To facilitate a comparison of our results to these published data, the findings from our 

study are listed in Table 1.9 (see last three rows). We are listing the winter-summer 

statistics using 12 hours model lead times as well as the average HRRR_AK model 

performance of the 24 hours model lead time results (see numbers in brackets in the last 

three rows of Table 1.9). All HRRR-AK results in Table 1.9 have already been listed in 

previous tables. The bias of HRRR-AK PWV estimation is about the same level as 

NCEP-I and significantly better than that of most other reported models. The overall bias 

of HRRR-AK in ZWD and ZTD products is similar to other models initialized by 

ECMWF inputs. The average RMS of HRRR-AK simulation was found to be superior to 

the RMS of most of the other models shown in Table 1.9. Hence, the performance 

parameters found for HRRR-AK appear realistic in nature and indicate a slightly 

improved quality of HRRR-AK compared to similar models.  

1.6.2 Summary of findings 

In order to provide a thorough statistical analysis of the performance of the NWP 

HRRR-AK for atmospheric correction of microwave remote sensing data, this study 

performed a comparative analysis of atmospheric data from RAOBS measurements with 

predictions from the HRRR-AK model. Within this research, five test sites were selected 

over Alaska, to cover a wide range of climate types of subarctic and Arctic regions in the 

US. The performance of HRRR-AK in atmospheric artifacts correction for radar signals 

was assessed by comparing atmospheric parameters from HRRR-AK simulations and 

radiosonde observations, including vertical precipitable water vapor (PWV) and absolute 
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signal delays (see Section 1.4.2 and Section 1.5.1). The HRRR-AK accuracy analysis was 

based on linear regression models, point-by-point comparisons and utilized error 

propagation techniques. To assess how the model set-up parameters and physical 

conditions affect the HRRR-AK performance, a series of experiments were designed, 

analyzing the dependence of prediction performance on model lead times, seasonal 

effects, as well as sunlight conditions. Our analysis shows that HRRR-AK overestimates 

the amount of PWV compared to ROABS observations, indicated by significant 

deviations of best-fitting linear regression slopes from 1 (Eq.(1.8)). Uncertainties due to 

bias ( rmswet , ) and random errors of wet delay shows a significant reduction of model 

bias from 6 hours to 24 hours (Table 1.2), indicating the model getting drier when 

increasing model forecast period. Hence, a pre-calibration of HRRR-AK products is 

suggested that is able to reduce this bias. Uncertainties due to random errors (Table 1.1) 

showed only little dependency on model lead time. Both the accuracy of simulated PWV 

delays wetL,  as well as absolute signal delays L  showed no significant change with 

changing model lead times.  

At a model lead time of 24 hours, the uncertainties pwv  from random errors 

computed from HRRR-AK can be predicted with accuracies varying between 1.62mm 

and 2.08mm at different test sites. At 6 hours lead time, pwv  is slightly smaller and 

ranges from 1.31 mm to 2.0 mm (see Table 1.1). This is within the accuracy level of 

radiosonde observation itself (1~2 mm) [Niell et al., 2001]. The observed pwv  

corresponds to wet delay uncertainties of mmwetL 51.13,   for all tested model lead 

times. The uncertainty of the hydrostatic delay hydroL,  was determined to be less than 

5.4mm independent of climate region. Although hydrostatic delays dominate the total 

delay along the radar propagation path, its impact on the uncertainty of the one-way 

ZWD is relatively small compared to the wet delay influence wetL, . In summary, for 

different tested sets and model lead times setting L  from random errors can be 

simulated with an accuracy of better than 14.3 mm (Table 1.1) with 90% of the errors 
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contributed by water vapor.  

An analysis of seasonal influences on HRRR-AK performance used only data with 

model lead times of 12 hours and found that  the overall accuracy of one way total delay 

predictions in all climate conditions during the local AK winter time (< 10.3 mm) is 

better than the one in local summer (< 18.2 mm) as shown in Table 1.3 and Table 1.4. 

The regression slope analysis showed that for all regions (with the exception of 

wintertime data at site PABR) regression slopes were statistically significantly larger than 

1, together with the bias listed in Table 1.5 indicating a PWV overestimation of HRRR-

AK relative to RAOBS data. Similar estimation biases were reported in previous studies 

[Li, Muller, Cross, et al., 2006; Mattioli et al., 2007]. The causes for the observed PWV 

overestimation were further analyzed by examining the vertical profiles of the predicted 

atmospheric parameters Qv, P, and T (see Figure 1.5). These analyses suggest that biases 

in water vapor mixing ratios Qv and pressure P are the main reasons for model errors.  

An assessment of the dependencies of HRRR-AK performance on sunlight conditions 

was conducted using stations PANC, PASN, and PANT, which were selected due to their 

geographic locations. From this study, both daytime and nighttime data showed good 

linear correlation with RAOBS observations for both PWV and hydrostatic delay 

predictions (Table 1.6 and Table 1.7). The estimated average total delay error L  from 

random errors in the nighttime stack was ~1 mm smaller than the daytime data. 

Regarding the dependence of HRRR-AK on climate conditions, test site PANT, 

which is the southernmost test site with highest average water vapor records, shows 

slightly worse linear correlation to RAOBS measurements. This is further evidence that 

humidity has significant influence on HRRR-AK performance. However further studies 

are necessary to study this relationship. 

1.6.3 Error sources in methodology of assessment 

Besides the limitations inherent in the HRRR-AK product itself, there are 

methodology-related issues that may lead to an overestimation of the total HRRR-AK 

error budget in this study:  
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1)  Timing error in data comparison. The output of the HRRR-AK model can be 

considered as an instantaneous product that provides simulations of the atmosphere at 

user defined time steps. However, the radiosonde is recording atmospheric data over 

time while the balloon is rising from the ground to 15 km ASL. This ascent can take 

up to 1 hour [Niell et al., 2001]. This short timing inconsistency may introduce errors 

mostly into measurements of the highly turbulent atmospheric water vapor.  

2)  Drifting of the radiosonde balloon. The previous records show that radiosonde can 

drift as far as 200 km from the point of balloon release [NWS, 2010] as winds may 

lead to a tilted flight path rather than a rise in zenith direction. As the resolution grid 

of the HRRR-AK model is 3 km in lateral direction, this may lead to a drift through 

several model pixels. Since the atmosphere can be considered spatially smooth and 

the wind speed is much lower near the ground, the introduced errors may not be 

significant.     

3)  Inaccurate topography records between radiosonde and numerical weather 

simulations. Disagreements between the height of the bottom most layer in the 

HRRR-AK model and the recorded topography height in RAOBS data will introduce 

residuals in surface pressure estimates that increase the uncertainty of simulated 

zenith hydrostatic delays. As no significant biases of hydrostatic delays were found, 

we assume that this error was insignificant for our test sites.  

4)  Errors introduced by the projection parameter  .   is a projection parameter whose 

value weakly and inversely depends on the atmospheric surface temperature (see Eq. 

(1.3)). Despite this dependency, a fixed value of 5.6  was used in this study, 

corresponding to a surface temperature of 5oC [Bevis et al., 1992]. Specifically for 

Alaskan regions with highly variable and deviating climatic conditions, using a 

constant value for   could lead to biases. For instance,   is about 7.2 during the 

winter period of PABR, which could lead to an underestimation of PWV for this area. 

Given the low humidity conditions during Alaska winters, biases of ZWD in the 

winter season related to errors in   are still relatively small, e.g. less than 0.5mm for 

PABR during winter days with surface temperature of -30oC. 
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1.7 Conclusions and Suggestions 

Overall, the HRRR-AK products with less than 24 hours model lead time can be used 

for calibrating atmospheric delays in spaceborne SAR systems with an average residual 

error of less than ~13 mm (Table 1.1 last row) to 14 mm (Table 1.2 last column). These 

results are valid for sub-arctic and arctic conditions. The main performance limitation 

stems from inaccurate PWV delay predictions while the error contribution of hydrostatic 

delay components is small. Consequently, absolute ranging and correlation-based 

deformation measurements can be corrected with an average residual error of less than 

~13 to 14 mm. Differential ZTD in InSAR data can be corrected with residual errors of 

about 20 mm (Eq.(1.7)). Atmospheric correction using HRRR-AK data promises better 

performance during winter months (e.g., from November to May) compared to the period 

from June to October (summer). For Alaska-type climates, the performance difference 

between winter and summer is about a factor of 2 (see Tables 1.3 and 1.4). The weak 

correlation between non-systematic errors in ZTD and sunlight conditions suggests that 

the HRRR-AK product would provide statistically equal performance for atmospheric 

delay correction in ascending imagery and descending imagery. 
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Figure 1.1 Locations of the radiosonde stations across Alaska that are used in this 

research. The four-letter codes printed in bold are the ICAO indicators of the 

observations stations. The gray dot indicates the station using a VIZ II B radiosonde 

during the study period while black dots represent stations that were using VIZ Mark IIs 

GPS microsondes. The classified climate regions in Alaska are listed in gray capital 

letters. 

N
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Figure 1.2 Statistical analysis results of the effect of different HRRR-AK model lead times on 

the predictability of PWV at each of the test sites. To calculate these statistics, HRRR-AK-

derived PWV were compared to radiosonde observations at every station: (a) variation of 

correlation coefficient 2
pwvR ; (b) variation of pwvâ  and corresponding pwva,ˆ̂  shown as error 

bars. Black dashed line with left triangle for PABR; gray bold line with circle for PAFA; gray 

dashed line with cross for PANC; black dashed line with square for PASN; black dashed line 

with black diamond for PANT. 
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Figure 1.3 Statistical analysis results of the effect of different HRRR-AK model lead times on 

the accuracy of hydrostatic delay predictions at the five test sites: (a) variation of correlation 

coefficient 2
hydroR ; (b) variation of hyrdoâ  and corresponding hydroa,ˆ̂  shown as error bars. 

Black dashed line with left triangle for PABR; gray bold line with circle for PAFA; gray 

dashed line with cross for PANC; black dashed line with square for PASN; black dashed line 

with black diamond for PANT. 
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Figure 1.4 Examples of linear regression of HRRR-AK vs. RAOBS data for PWV and 

hydrostatic delay. (a) Linear regression of PWV data pairs at station PABR over summer 

period; (b) Linear regression of hydrostatic delay data pairs at station PANT over winter 

period. 
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Figure 1.5 Examples of vertical profiles of atmospheric parameters extracted from PABR 

summertime data pairs. (a) Vertical profile of Qv; (b) Vertical profile of T; (c) Vertical profile 

of P. Gray thin lines show the residuals of HRRR-AK simulated atmospheric parameters 

minus RAOBS corresponding records. Black solid lines are computed from the mean of 

residuals at corresponding height and black dashed lines are the standard deviation of 

residuals.  
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Table 1.1 Statistical analysis of one way zenith delay for several test sites in Alaska at 6 

hour and 24 hour model lead time settings. Statistics are relative to a linear best fitting 

regression model.  

Site 
name 

Lead 
time 

[hour] 

PWVa Wet delay Hydrostatic delay Total 
delay 

PWV range 
[mm] 

Min ~ Max 
(mean)c 

pwvâ  pwv   

[mm] 
wetL,  

[mm]b 
hydroâ  hydroL,   

[mm] 
L  

[mm] 

PABR 6 1.04 1.31 8.48 1.00 3.14 9.04 1.06~27.53 
(8.58) 

 24 1.03 1.62 10.55 1.00 4.43 11.44 

PAFA 6 1.10 1.90 12.38 1.00 3.65 12.90 1.09~30.88 
(12.12) 

 24 1.05 1.80 11.71 1.00 4.72 12.63 

PANC 6 1.06 1.47 9.56 1.00 4.09 10.40 0.81~33.74 
(12.83) 

 24 1.03 1.72 11.19 1.00 4.88 12.20 

PASN 6 1.09 1.62 10.53 1.00 3.19 11.00 1.72~34.73 
(11.93) 

 24 1.08 2.08 13.51 1.00 4.63 14.29 
PANT 6 1.07 1.91 12.41 1.00 4.23 13.11 1.50~37.03 

(14.57) 
24 1.04 1.99 12.95 1.00 5.36 14.02 

All 6 / 1.66 10.77 / 3.69 11.39 / 
24 / 1.85 12.00 / 4.81 12.93 / 

a The first row of the table denotes the main columns. For example, column 3 is presenting PWV statistics 
while pwvâ  and pwv  will be referred as sub-column of column 3 (the same as following tables).  
b

wetL,  , uncertainty of one way zenith wet delay was calculated via Eq. (1.5) 
c PWV conditions computed from radiosonde observations (the same as following tables) 
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Table 1.2 RMS(bias) of difference (HRRR-AK minus RAOBS) at 6 hour and 24 hour model 

lead time settings. The rows show RMS(bias) values of PWV for every analysed test site, 

overall PWV RMS(bias) for all test sites, overall RMS(bias) of delay components (unit, mm) 

(the same as Table 1.5 and Table 1.8): Zenith Wet Delay (ZWD), Zenith Hydrostatic Delay 

(ZHD) and Zenith Total Delay (ZTD) 

 PABR PAFA PANC PASN PANT All All ZWD All ZHD  All ZTD 
6 

hour 
1.36 

(0.31) 
2.35 

(1.34) 
1.71 

(0.87) 
2.05 

(1.19) 
2.21 

(1.18) 
1.97  

(0.98) 
12.79 
(6.37) 

4.19 
(1.34) 

13.46 
(7.71) 

24 
hour 

1.65 
(0.25) 

1.92 
(0.74) 

1.76 
(0.46) 

2.32 
(1.03) 

2.09 
(0.69) 

1.96 
(0.63) 

12.72 
(4.10) 

5.29 
(1.78) 

13.78 
(5.88) 

. 
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Table 1.3 Statistical analysis of one way zenith delay of summer cases at 12 hour model 

lead time setting. 

Site 
name 

PWV Wet delay Hydrostatic delay Total 
delay 

PWV range 
[mm] 

Min ~ Max 
(mean) 

 pwvâ  2
pwvR

 

pwv  
[mm] 

wetL,  
[mm] 

hydroâ 2
hydroR

 

hydroL,  
[mm] 

L  

[mm] 

PABR 1.09 0.75 2.76 17.91 1.00 0.97 2.99 18.16 3.04 ~ 27.53 
(12.94) 

PAFA 1.08 0.78 2.36 15.32 1.00 0.96 3.43 15.70 3.77 ~ 
30.88  
(17.62) 

PANC 1.04 0.85 1.84 11.96 1.00 0.97 3.54 12.47 4.94 ~ 33.10 
(18.28) 

PASN 1.08 0.85 2.29 14.89 1.00 0.98 3.29 15.25 6.00 ~ 34.73 
(16.65) 

PANT 1.06 0.78 2.45 15.91 1.00 0.92 4.27 16.47 6.61 ~ 37.55 
 (18.67) 

All  \ \ 2.35 15.30 \ \ 3.35 15.70 \ 
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Table 1.4 Statistical analysis of one way zenith delay of winter cases at 12 hour model 

lead time setting. 

Site 
name 

PWV Wet delay Hydrostatic delay Total 
delay 

PWV range 
[mm] 

Min ~ Max 
(mean)  pwvâ

 

2
pwvR  pwv  

[mm] 

wetL,

[mm] 
hydroâ

 

2
hydroR  hydroL,  

[mm] 
L   

[mm] 
PABR 0.98 0.95 0.57 3.71 1.00 0.99 2.90 4.71 1.06 ~ 15.11  

(4.21) 
PAFA 1.08 0.92 0.94 6.13 1.00 0.99 4.01 7.33 1.10 ~ 18.20  

(4.94) 
PANC 1.04 0.91 1.05 6.84 1.00 0.98 4.50 8.19 0.81 ~ 22.59 

(6.31) 
PASN 1.05 0.86 1.31 8.54 1.00 0.99 3.77 9.33 1.69 ~ 23.86  

(6.63) 
PANT 1.06 0.90 1.41 9.14 1.00 0.97 4.70 10.27 1.50 ~ 21.20  

(9.44) 
All  \ \ 1.09 7.10 \ \ 4.02 8.16 \ 
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Table 1.5 RMS (bias) of difference for winter and summertime acquisitions (HRRR-AK 

12 hours products minus RAOBS). 

 
PABR PAFA PANC PASN PANT All 

All 
ZWD All ZHD  All ZTD 

Local 
Winter 

0.58   
(-0.09) 

1.04 
(0.40) 

1.10  
(0.33) 

1.37 
(0.44) 

1.53 
(0.60) 

1.16 
(0.33) 

7.57  
(2.16) 

4.38 
(0.16) 

8.74   
(2.33) 

Local 
Summer 

3.01 
(1.35) 

2.78 
(1.66) 

1.97 
(0.85) 

2.69 
(1.47) 

2.70 
(1.30) 

2.65 
(1.33) 

17.25 
(8.61) 

4.34 
(2.30) 

17.79 
(10.92) 
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Table 1.6 Performance analyses of daylight effects to simulation, 12UTC (03AKST) 

night-time. 

Site 
name 

PWV Wet 
delay 

Hydrostatic delay Total 
delay 

PWV range 
[mm] 

Min ~ Max 
(mean) 

pwvâ  2
pwvR  pwv

[mm] 
wetL,

[mm] 
hydroâ  2

hydroR  
hydroL,  

[mm] 

L  

[mm] 

PANC 1.01 0.97 1.39 9.04 1.00 0.97 4.23 9.98 0.81~32.50 
(13.29) 

PASN 1.05 0.96 1.57 10.18 1.00 0.99 3.81 10.87 1.85~33.24 
(12.45) 

PANT 1.02 0.93 1.82 11.80 1.00 0.94 5.13 12.87 1.88~37.55 
(15.08) 

All  \ \ 1.59 10.36 \ \ 4.42 11.26 \ 
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Table 1.7 Performance analyses of daylight effects to simulation, 00UTC (15AKST) day-

time. 

Site 
name 

PWV Wet delay Hydrostatic delay Total 
delay 

PWV range 
[mm] 

Min ~ Max 
(mean) 

pwvâ

 

2
pwvR

 

pwv  

[mm] 
wetL,  

[mm] 
hydroâ

 

2
hydroR

 
hydroL,  

[mm] 
L   

[mm] 
PANC 1.06 0.96 1.50 9.74 1.00 0.98 4.03 10.54 1.05~33.10 

(12.35) 
PASN 1.11 0.94 1.75 11.40 1.00 0.99 3.33 11.87 1.69~34.73 

(11.35) 
PANT 1.10 0.91 2.05 13.35 1.00 0.96 4.40 14.06 1.50~37.05 

(14.15) 
All  \ \ 1.78 11.56 \ \ 3.96 12.22 \ 

 



51 
 

Table 1.8 RMS (bias) of difference in different daylight condition cases (HRRR-AK 12 

hours products minus RAOBS); ZWD: Zenith Wet Delay; ZHD: Zenith Hydrostatic 

Delay; ZTD: Zenith Total delay. 

  
PANC PASN PANT All All ZWD  All ZHD  

All 
ZTD 

Day time 
1.74 

(0.92) 
2.28 

(1.35) 
2.54 

(1.47) 
2.15 

(1.10) 
14.01 
(7.15) 

4.21 
(0.68) 

14.97 
(7.83) 

Night time 
1.39 

(0.20) 
1.70 

(0.65) 
1.85 

(0.49) 
1.66 

(0.49) 
10.80 
(3.21) 

4.84 
(1.73) 

11.80 
(4.94) 
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Table 1.9 Statistics (bias and RMS difference or standard deviation of difference) adapted 

from previous studies of different NWP products in predicting delay-related parameters, 

including PWV, ZWD and ZTD. RMS and bias computed from model minus reference 

data (unit, mm). Last three rows are the statistics of HRRR-AK listed as winter 

performance-summer performance (average performance). 

Initial Data / study 
field 

NWP model Ref. data Bias Standard 
dev. / RMS 

Time-span Literature 
source 

ECMWF/PWV MM5 GPS 4.0-5.6 2.3 - 6.7 c July - Oct., 
1999 

Table 5 
[Pacione et 
al., 2001]  

ECMWF/PWV a \ GPS 0  3.4 c 2005-2007 Table 4 
[Bock and 

Nuret, 2009]  
NCEP-I/PWV a \ GPS 0.7 5.4 c 2005-2007 Table 4 

[Bock and 
Nuret, 2009] 

NCEP-II/PWV a \ GPS 2.2 5.3 c 2005-2007 Table 4 
[Bock and 

Nuret, 2009] 
ECMWF/ZWD MM5 GPS 2.7 14.3  1999 Table 3 

[Behrend et 
al., 2002]  

ECMWF/ZWD MM5 VLBId 10.3 14.3  1999 Table 3 
[Behrend et 
al., 2002]  

ECMWF/ZTD b \ GPS \ 9.5 – 13.0 c Jan. 2008– 
Mar. 2010 

Section 3 
[Cong et al., 

2012]  
MADIS/ZTD MM5\LAPS GPS 10.5 14.3 c Jun. 2004 -

Aug. 2007 
Table 1 

[Foster et 
al., 2013]  

RAP or NAM 
/PWV  

WRF RAOBS 0.33-1.33 
(0.63) 

1.16-2.65 
(1.96) 

Jun.2010 – 
Sep. 2011 

HRRR-AK 

RAP or NAM 
/ZWD  

WRF RAOBS 2.16-8.61 
(4.10) 

7.57-17.25 
(12.72) 

Jun.2010 – 
Sep. 2011 

HRRR-AK 

RAP or NAM 
/ZTD  

WRF RAOBS 2.33-10.92 
(5.88) 

8.74-17.79 
(13.78) 

Jun.2010 – 
Sep. 2011 

HRRR-AK 

a The statistics of 6-hourly model outputs and the original unit was kg/m2 that has been converted to mm 
[Bevis et al., 1992]. 
b The bias of difference and NWP simulate model is not available and its standard deviation listed is as 
winter-summer.  
c Standard deviation of difference and the others is RMS. 
d.Very-Long-Baseline Interferometry (VLBI). 
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Chapter 2 Robust Atmospheric Filtering of InSAR Data Based on Numerical 

Weather Prediction Models 2 

2.1 Abstract 

Finding robust solutions for the mitigation of atmospheric phase delay patterns from 

Synthetic Aperture Radar Interferometry (InSAR) observations is currently one of the 

most active research topics in radar remote sensing. Recently, many studies have 

analyzed the performance of numerical weather prediction (NWP) models for this task, 

yet, despite significant efforts that were put into optimizing model parameterizations, 

most of these studies conclude that current NWPs are not able to robustly reproduce the 

atmospheric phase delay structures that affect SAR interferograms. 

Despite these previous findings, we have revisited the application of NWPs for 

atmospheric correction using a different analysis strategy. In contrast to earlier studies, 

which assessed the quality of NWP-derived phase screen data, we have studied NWPs 

from a statistical angle by analyzing whether they are able to provide realistic 

information about the statistical properties of atmospheric phase signals in InSAR data. 

The two main findings of this study are: (1) that NWPs are indeed able to robustly predict 

statistical properties of atmospheric phase screens; and (2) that NWPs underestimate 

these statistical properties by a scaling factor that depends on the area’s surface 

topography but not on its climatic conditions. Based on these findings, we developed a 

new concept for atmospheric mitigation that is using NWP-derived statistical parameters 

to condition the design of an optimal atmospheric phase filter. We found that this filter 

concept outperforms other more conventional filtering methods. 

2.2 Introduction 

Synthetic Aperture Radar (SAR) Interferometry (InSAR) is recognized as an 

                                                 
2 Gong W., Meyer J. F., Liu S. Z., and Hanssen R., Robust Atmospheric Filtering of InSAR Data based on 
Numerical Weather Prediction Models, manuscript prepared for submission to IEEE Transactions on 
Geoscience and Remote Sensing 
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important technique for the observation of surface deformation over large areas and long 

time spans. The capacity of InSAR has been demonstrated extensively in the last decade 

by a wealth of test studies where InSAR was used for monitoring a multitude of 

geophysical deformation signals [Amelung et al., 2000; Fielding et al., 1998; Hoffmann et 

al., 2001; Hooper et al., 2004; Lu et al., 2000; Meyer et al., 2007; Ryder et al., 2007; 

Singhroy et al., 2007; Wright et al., 2003]. While these studies showcase the great 

potential of this technology, they also indicate that the performance and reliability of 

InSAR is limited by the influence of the neutral atmosphere on InSAR phase observables.  

In differential interferograms, for which topography-related phase components were 

already removed, the task of atmospheric mitigation basically corresponds to the 

separation of atmospheric and deformation-related phase components. For this separation 

to succeed, the spatio-temporal properties of the atmospheric and deformation-related 

signals have to differ in some aspects. Furthermore, some information about either the 

deformation or the atmospheric signal needs to be available to design a separation 

concept. In geophysical applications, where the surface deformation is often unknown, 

two types of atmospheric information are integrated to enable this separation: (1) 

spatially explicit atmospheric phase delay maps or; (2) statistical parameters expressing 

the spatial and/or temporal properties of the atmospheric delay.  

Over the past decade, numerous solutions for the problem at hand have been proposed 

that can be grouped into the previously mentioned two categories: To derive statistical 

information about the atmosphere (category 1), it is usually assumed that the atmospheric 

signal is uncorrelated in time (as SAR images are usually acquired with more than 1 day 

time separation) [Emardson et al., 2003]. Furthermore, it is assumed that the atmospheric 

signal is an isotropic Gaussian process [Wei et al., 2010], whose correlation length can be 

described by the slope of its power spectral density (often derived using Kolmogorov’s 

theory of turbulent gases) [Knospe and Jonsson, 2010]. Based on these concepts, spatio-

temporal filters are designed and applied to redundantly sampled stacks of SAR data for 

atmospheric signal mitigation [Berardino et al., 2002; Ferretti et al., 2001; Hanssen, 

2001; Hooper et al., 2012]. There are several issues with this approach: (1) the 
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assumption of isotropic Gaussian behavior is very simplistic and typically violated; (2) 

while Kolmogorov’s theory is a reasonable approach to describe the spatial correlation 

properties of atmospheric signals, it does not provide information about their variance 

and co-variance. Hence, the influence of varying weather patterns cannot be modeled 

without additional information; (3) the previously outlined information is insufficient to 

determine the optimal length (in time) of the atmospheric filter. This issue is most severe 

if the temporal sampling realized by a SAR data stack is low. In this case, an incorrect 

filter length can lead to severe biases in the estimated surface deformation signals.  

Explicit atmospheric phase delay maps (category 2) for compensation of atmospheric 

distortions have been derived using external sensors such as Global Positioning System 

(GPS) stations [Webley et al., 2002; Xu et al., 2011] or observations from the spaceborne 

multi-spectral scanners Moderate-Resolution Imaging Spectroradiometer (MODIS) [Li et 

al., 2005] and Medium Resolution Imaging Spectrometer (MERIS) [Li et al., 2009; 

Meyer et al., 2008]. GPS-based methods usually are limited by a sparse spatial 

distribution of observation points (GPS), leading to undersampling of small scale 

atmospheric patterns. Methods based on multi-spectral scanners suffer from a large 

temporal difference between the acquisitions of the individual sensors (MODIS), or from 

dependencies on cloud-free conditions (MODIS and MERIS). Recently, Numerical 

Weather Prediction (NWP) models were added as a means to derive atmospheric phase 

delay maps (PSU/NCAR Mesoscale Model(MM5) [Puyssegur et al., 2007]; Weather 

Research and Forecasting Model (WRF) [Liu, 2012]; and Global atmospheric models 

[Doin et al., 2009]). These studies were motivated by recent improvements in the quality 

of NWPs and by the all-time and all-weather capability of their data. While NWP were 

applied successfully in isolated test cases, the overall conclusion from existing literature 

[Foster et al., 2013; Fournier et al., 2011] is that current NWPs are not able to robustly 

reproduce the atmospheric phase delay structures that affect SAR interferograms. 

To improve upon the current situation, we have revisited the application of NWPs. 

The selection of NWPs was motivated by the fact that weather model data is the only 

weather information that is available at reasonable resolution, at any time, and for any 
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location. Our study had two main goals: (1) The identification of signal properties in 

NWP data that are well correlated with the atmospheric signals in interferograms and, (2) 

the development of algorithms that enable the utilization of these signal properties for 

atmospheric correction.  

Through an extensive analysis of NWP data properties and through an assessment of 

these properties from an InSAR perspective, we have arrived at the following important 

and previously unanticipated conclusions: (1) While NWPs are often unable to provide 

reliable explicit phase delay information at the required accuracy, NWPs do provide 

robust information about the statistical properties of atmospheric phase screens (APS) in 

InSAR data. This study marks the first time that this capacity of NWPs was discovered; 

(2) with tested numerical prediction system, NWP underestimate these statistical 

properties by a scaling factor that depends on the area’s surface topography but not on its 

climatic conditions; (3) a new NWP-based optimal phase filter was developed that can 

robustly utilize potentially biased NWP-derived statistical information for atmospheric 

phase correction; (4) this new filter concept outperforms other conventionally applied 

filtering approaches; and (5) limited weather modeling skills are required for using our 

filtering technique as the statistical approach is less dependent on spatial resolution. For 

instance, high resolution (in space and time) operational weather forecasting data of the 3 

– 5 km grid class is becoming more and more operationally available (e.g., data of the 

High Resolution Rapid Refresh (HRRR) [Weygandt, 2009] or HRRR-AK models [ARSC, 

2012]) and is usually sufficient for our approach.  

The remainder of the paper is structured as follows: Some theory about the core 

issues in atmospheric correction of InSAR data is presented in Section 2.3 using the 

example of single master InSAR time series processing. An analysis of the performance 

of NWPs for predicting statistical properties of atmospheric phase screens follows in 

Section 2.4. Herein, the specifics of the analyzed NWP and proof for the ability of NWPs 

to predict the spatial variance of atmospheric phase screens are presented in Section 2.4. 

A concept for the utilization of the (potentially biased) statistics information in 

atmospheric phase filtering and the performance of this concept is analyzed in Section 
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2.5. A summary of the main findings together with a discussion of their significance can 

be found in Section 2.6. A set of acknowledgements conclude the paper. 

2.3 Spatial Variance of Time Series Interferograms 

2.3.1 Relevant Background on InSAR Time Series Processing 

Let ip,  be the unwrapped differential interferometric (d-InSAR) phase for scatter p 

in interferogram i that is composed from SAR echoes acquired at different time (  1, tip  

and  2, tip ) that can be decomposed into following signal elements [Hanssen, 2001] 

        
      noiseipatmiporbitipdefoiptopoip

topoipipipip

ttB

BttBt

,,,,,,,,,,

,,2,1,, ,











                   (2.1) 

in which  Btopoip ,,  is the (baseline-dependent) topography residual after subtracting a 

best available digital elevation model (DEM),  tdefoip ,,  is the (temporal baseline 

dependent) phase contributed by the scatterer’s movement along the line-of-sight (LOS) 

direction, orbitip ,,  is the phase introduced by inaccuracies in the satellite orbits, 

 tatmip ,,  is the difference in atmospheric delay at the two image acquisition times that 

can be further decomposed into slave component atmsip ,,  and
 

master component 

atmmip ,, , and noiseip ,,  is the phase noise term (e.g., system thermal noise and 

decorrelation noise). In geophysical applications, where temporal baselines are long to 

emphasize surface deformation, the d-InSAR phase is decorrelated in most pixels and can 

only be analyzed at a few so called phase stable scatterers. At the location of these 

scatterers, phase noise noiseip ,,  is small by definition and is therefore ignored in the 

following considerations.  

It is the goal of d-InSAR time series analysis to extract  tdefoip ,,  from the phase 

signal  Btip ,,   of N  interferograms (see Eq. (2.1)). Two different d-InSAR processing 

methodologies have been developed to achieve this goal that, among other things, differ 

in the strategies that are applied for selecting suitable interferograms: In Persistent 
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Scatterer Interferometry (PSI) [Ferretti et al., 2000; Hooper et al., 2012] interferograms 

are formed between one unique master image and all other images in a SAR data stack, 

while in Short Baselines Subset (SBAS) InSAR [Lanari et al., 2007] interferograms are 

selected from all possible image pairs based on their spatial and temporal baselines. Out 

of these two choices, we focus on PSI-type methods for the following explanations. Note, 

however, that the developed theory is largely independent of the chosen d-InSAR time 

series analysis method. 

In PSI, we construct a single-master stack of N  interferograms from a time series of 

1N SAR acquisitions. The phase  Btip ,,   of these interferograms is referenced to the 

acquisition time  0t  of the master image. For simplicity, we define 00 t  resulting in 

tt  . We separate  Btopoip ,,  from  tdefoip ,,  using their different dependencies on t  

and B . We also remove orbitip ,,  by detrending all interferograms using a best fitting 

plane. Hence, after these processing steps, the pre-processed interferograms reduce to: 

      iatmipdefoipip ttt   ,,,,,


(2.2) 

where i  is a nuisance term containing residuals of the largely eliminated signals 

 Btopoip ,, , orbitip ,, , and noiseip ,, . In the single master image stack, the atmospheric 

signal  tatmip ,,  in the N  interferograms is correlated, as all interferograms contain the 

atmospheric signal of the master image atmmip ,, . This correlation is commonly removed 

by estimating and subtracting atmmip ,,  from  tip,


 following one of the approaches 

described in [e.g., Hooper et al., 2012; Kampes, 2006] and resulting in 
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


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,,,,

,,,,
ˆ~ 

(2.3) 

with  atmmpiatmmpiii   ,,,, ̂ .  

To estimate  tdefoip ,,  from ip,
~ , we usually use the fact that, in most cases, 
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 tdefoip ,,  is correlated across the N  interferograms, while  tatmsip ,,  is statistically 

independent in time. Under these circumstances, the reconstruction of  tdefoip ,,  becomes 

a signal processing problem in time domain that can be solved by applying a temporal 

low-pass filter of length T  to  tip,
~ .  

        



t

iplpipdefoip Ttgtt
0

,,,, ,
~~ˆ


     (2.4) 

The output of the low pass filter in Eq. (2.4) is considered a good estimate of 

 tdefoip ,, , while the high pass signal  
hpip,

~  is an estimate of the atmospheric signal 

 tatmsip ,,̂  under the condition that i   is small.  

The problem with this approach is that some information on the correlation length of 

 tdefoip ,,  is needed to appropriately parameterize the shape and length of the applied 

low-pass filter in Eq. (2.4). In many cases, such information is not available and setting 

up the parameters of the low-pass filter becomes difficult. In fact, defining the parameters 

of the temporal low-pass filter has been identified as one of the main issues in PSI 

processing [Alshawaf, 2013]. 

Alternative approaches for removing  tatmsip ,,  from   tip,
~  usually involve the 

integration of external information about the atmospheric state during image acquisition 

time produced by NWP [Wadge et al., 2002]. These approaches use external atmospheric 

phase maps from a diverse set of sources to derive an estimate  tatmsip ,,̂  of the 

atmospheric phase delay and reduce it from the data. So far, none of the developed 

methodologies have proven reliable or accurate enough for operational atmospheric 

correction [Foster et al., 2013; Fournier et al., 2011].  

In the following we will develop an alternative idea for atmospheric correction that is 

based on using NWP produced external knowledge about the statistical properties of the 

atmospheric delay as a prior for determining filtering parameters in Eq. (2.4). 
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2.3.2 Spatial Variance of Pre-processed Interferograms 

2.3.2.1 Theory of Spatial Variance Composition 

Let us assume that  tip,
~  is the spatially unwrapped interferometric phase at phase 

stable scatterer p after removal of  Btopoip ,,  and orbitip ,, . Let us also assume that we 

have M  phase stable scatterers in N pre-processed single master interferograms and that 

pip ,
~  resembles a Gaussian process with zero spatial mean, whose signal power can be 

described by its spatial variance 2
i . We will use 2

*  to denote the spatial variance of the 

individual phase components in interferogram i , computed from all M  phase stable 

scatterers in the interferogram.  

In most situations the ground deformation signal is physically decoupled from the 

atmospheric phase delay patterns and we can assume that the phase components 

 tdefoip ,,  and  tatmsip ,,  are statistically independent. If we further assume that i   in 

Eq. (2.3) is negligible, then the spatial phase variance of interferogram i  ( 2
i ) can be 

written as:  

 

    
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(2.5) 

In Eq. (2.5), 2
,defoi  corresponds to the ground motion variance time series indicating 

changes in the deformation signal with time. If multiple independent deformation sources 

exist in a study area, 2
,defoi  is the superposition of the contributions from every source. 

2.3.2.2 Stochastic Constraints for Atmospheric Filter Design 

The estimation problem in Eq. (2.4) is the identification of the temporal low-pass 

filter  Ttg ,  that correctly recovers 2
,defoi  from 2

i . Hence, available statistical 
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information about either  tdefoip ,,  or  tatmsip ,,  can be used to constrain  Ttg ,  

and condition the estimation problem in Eq. (2.4). As in geophysical applications of 

InSAR,  tdefoip ,,  and it’s statistical properties are often unknown, we propose that prior 

information about 2
, atmosi   should be used to constrain  Ttg , . 

External information about the atmospheric phase delay patterns in image acquisition 

can be obtained from various sources, most of which are highlighted in Section 2.2. Due 

to reasons explained in the same section, we consider NWP models as the most 

appropriate external source of atmospheric information. Hence, in the following section, 

we analyze if NWPs are capable of providing reliable information about 2
,, atmsip   in 

order to support the atmospheric filtering process in Eq. (2.4). 

2.4 The Performance of NWPs in Predicting Atmospheric Phase Variance 

2.4.1 Atmospheric Spatial Variance and Empirical Model 

In order to determine if NWPs can provide reliable information about 2
,, atmsip  , we 

improve the approach proposed in [Gong et al., 2011] that analyze linear correlations 

between atmospheric signal spatial variance derived from SAR interferograms  
ifgatmi

2
,  

and NWP products  
nwpatmi

2
, .  

    iifgatminwpatmi a   2
,

2
,  (2.6) 

Parameter a in Eq. (2.6) is the slope coefficient of the best fitting linear regression line 

and i  is the model residual that is assumed unbiased and Gaussian distributed. In 

contrast to conventional regression analyses, Eq. (2.6) has no offset parameter in order to 

avoid negative values on the right side of Eq. (2.6) that hold no physical meaning. We 

estimate the slope coefficient â  using least-squares regression analysis and calculate the 

coefficient of determination 2R  to evaluate the NWP performance. If 1ˆ a , the NWP 

reproduces  the same power as the equivalent atmospheric signal observed by SAR. 2R  
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allows us to quantify the goodness of fit between  
ifgatmi

2
,  and  

nwpatmi
2
, . We apply 

regression analysis to several test sites around the globe to establish whether or not 

NWPs are able to estimate 2
,, atmsip  . 

2.4.2 Real Data Analysis 

We re-analyze the study results of Liu [2012], who investigated the performance of 

NWP to predict the spatial patterns of APS by comparing InSAR- and NWP-derived 

atmospheric phase delay signals over four test sites, including Mexico City, Mexico, the 

Big Island in Hawaii, USA, The Netherlands and a test site in south Australia (South 

Aus.). From their results, Liu [2012] suggested limited pixel-wise correlation between 

interferogram-derived and predicted APS. In contrast to the study by Liu [2012], we 

analyzed their data for the accuracy of the captured atmospheric phase variance.  

To maintain an equivalent atmospheric signal, both NWP and interferometric APS 

data were processed to identical resolutions. Also, both data were detrended using a 

linear regression surface. Due to the presence of strong surface subsidence signals in and 

around the test site at Mexico City [Osmanoğlu et al., 2011], affected areas were masked 

out during processing. 

2.4.2.1 Study Areas 

The study areas were selected to be geographically distanced from each other and 

represent unique climate and topography conditions. They can be categorized into two 

main groups based on their terrain properties, including (1) flat regions (South Australia 

and the Netherlands) and (2) mountain regions (Big Island in Hawaii and scenes over 

Mexico City). In the flat regions, the captured atmospheric signal is dominated by 

turbulent mixing processes in the atmosphere, while in mountain areas, differences in the 

vertical refractivity profiles during acquisition of master and slave image can add 

topography-correlated signals to the observed interferometric phase [Hanssen, 2001]. The 

detailed topography and climate conditions of all test sites are well described in Liu 

[2012]. As an indicator of the level topographic variation within each test site, the 
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standard deviation of surface topography DEM  was calculated from Space Shuttle 

Topography Mission (SRTM) Digital Elevation Models (DEMs) covering the SAR 

frames. DEM  is listed in the last column of Table 2.1. 

2.4.2.2 APSs Isolation from Interferograms and NWP Products 

Environment Satellite (ENVISAT) Advance SAR (ASAR) images in descending 

orbit direction acquired between 2003 and 2009 were processed, together with SRTM 

DEM information and precise orbit information provide by European Space Agency 

(ESA), to generate unwrapped differential atmospheric phase screens (APSs).There are 

six to nine InSAR APSs per test sites as listed in the Table 2.1. The acquisition times of 

SLCs favor the October to April time period due to the preferable coherence conditions 

during the local winter season of test sites. The baseline criteria for interferograms 

selection were set to limit perpendicular baselines to 300B m and temporal baselines 

to 70tB  days in order to minimize non-atmospheric signal components, maximize 

coherence, and ease phase unwrapping [Liu, 2012]. Multi-looking was applied both 

before and after phase unwrapping: The prior one (25px in azimuth and 5px in range) is 

for improving unwrapping quality, while the second multi-looking is performed to match 

the resolution of the NWP outputs at 1 km. Spatial phase ramps were removed to reduce 

orbit residual. Examples and more details on the APS processing procedure can be found 

in [Liu, 2012].  

Three dimensional (3D) atmospheric models for all test sites were simulated using the 

WRF model (version 3.1), which generates 3D fields of the main atmospheric parameters 

temperature, total pressure, partial water vapor pressure and cloud water physical 

parameters every 10 minutes. Final Analyses (FNL) data, provided by the National 

Centers for Environment (NCEP), were used as initial boundary conditions for all WRF 

runs [UCAR, 2013a]. A simple four nests domain forecast initialized at 27 km and nested 

down to 1 km in lateral sampling was applied. Furthermore, the system was set up to 

generate 3D atmospheric data with 28 vertical layers and at 10 minute time steps.  The 

details of the WRF physical parameterization can be found in Liu [2012]. The refractivity 
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index of each grid cell is computed from the predicted 3D atmospheric parameter fields 

using an approach published in Liu [2012] and Hanssen [2001]. The 2D atmospheric 

signal delay map is obtained from an integration of the refractivity profiles along the 

satellite’s line-of-sight direction. Finally, a deramping is applied to the WRF delay maps 

to maintain signal equivalency to InSAR derived APS. The detrended delay maps from 

InSAR and NWP are used to compute  
ifgatmi

2
,  and  

nwpatmi
2
, . 

2.4.2.3 Linear Regression Analysis of Spatial Atmospheric Variance 

A least-squares regression model was applied to all computed  
ifgatmi

2
,  and 

 
nwpatmi

2
,  data pairs at every test site. The best fitting regression slopes, computed 

according to Eq. (2.6), are shown in Figure 2.1. The results for scale factor â  and goodness 

of fit parameter 2R  per site are shown in Table 2.1. 

Table 2.1 and Figure 2.1 reveal two main relevant findings: (1) The plots in Figure 

2.1 and the 2R  values in Table 2.1 indicate excellent correlation between  
ifgatmi

2
,  and 

 
nwpatmi

2
, , with a minimum 67% of the data being explained by Eq. (2.6) for all four sub-

test sites. This fair correlation indicates that the NWP model is providing reliable 

information about the statistical properties of atmospheric phase screens affecting InSAR 

data. (2) While the data show a significant linear relationship between  
ifgatmi

2
,  and 

 
nwpatmi

2
, , the estimated regression slope â  is (1) usually smaller than 1 (indicating an 

underestimation of the atmospheric variance by WRF) and (2) differs for different test 

sites. To investigate the causes for the observed behavior, we analyze â  further in the 

following section. 

2.4.2.4 Variability of the Linear Scale Factor â  

(1) Dependence of â  on scene parameters 

Comparing the value of slope coefficient estimates and DEM standard deviation, 

Table 2.1 indicates that the estimated slope values â  correlates with the amount of 
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topography at the test sites (quantified by the DEM standard deviation DEM ). Hence, a 

second ordinary linear regression analysis  

0ˆˆˆ aaa DEMtopo   (2.7) 

was carried out to further analyze this relationship. The regression results are plotted in 

Figure 2.2. It is evident from the regression parameters ( 2R value of approx. 0.9) that 

there is a significant linear relationship between â  and DEM . The best fitting regression 

line (gray line in Figure 2.2) has a slope of 63.0ˆ topoa  and an intercept of 37.0ˆ0 a . 

Hence, in the absence of topography ( 0DEM ), the parameter â  of Eq. (2.6) is 

expected to be 37.0ˆ a  increasing linearly from there with DEMtopoa ˆ . Hence, 

according to these results, the underestimation behavior of the NWP is particularly 

pronounced for the turbulent delay components of APS, which dominate in flat terrains. 

The positive value of topoâ  indicates that underestimation is less pronounced for stratified 

delay signals, which increase in importance with increasing DEM . Note that the 

uncertainties of the slope estimates â  (determined from Eq. (2.6)) were used for solving 

Eq. (2.7) and are plotted in Figure 2.2 as error bars. 

Based on the derived dependence described in Eq. (2.7) and the known information of 

DEM , the predicted scale factor â  can be computed for every test site. Together with 

external  
nwpatmi

2
, , it is further applied to predict the empirical value of InSAR 

atmospheric spatial variance (  
predifgatmi ,

2
, ) regardless of test sites location as shown in 

Figure 2.3. This allows us to plot all measurements together and compare them directly. 

The gray dashed line (non-biased line through origin) is the optimal fit of the data pairs, 

and it has coefficient of determination R2 of 0.66 that indicates a fair linear fit to non-

biased line. The result suggests its usefulness of the empirical model (Eq. (2.7)) as a tool 

for  
predifgatmi ,

2
,  prediction based on the knowledge of the NWP simulated  

nwpatmi
2
,  

and the terrain condition within the study area. 
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(2) Dependence on NWP parameterization 

In previous research [Skamarock, 2004], it was shown that the performance of NWPs 

for producing small scale atmospheric turbulence signals can depend on the model 

parameterization. To study the sensitivity of our correlation parameter â  to changes of 

model parameters we conducted re-runs of the NWP model over the test sites Hawaii and 

Mexico City. In a first re-run, we used a new version of WRF (version 3.5 instead of 3.1) 

for calculating  
nwpatmi

2
, . WRF 3.5 differs from earlier version in many aspects of 

physics, dynamics, initialization, nesting and nudging processing as well as some bugs 

have been fixed [UCAR, 2013b], which might affect the model behavior. For this test, the 

same boundary condition, model parameterizations, and model forecast periods (4-11 

hours depending on test site) that were applied in WRF 3.1 runs were used.  

The results of this analysis are listed in Table 2.2. From the 2R  values at both test 

sites, we can confirm the previously noted linear correlation between  
ifgatmi

2
,  and 

 
nwpatmi

2
, . Compared to the results listed in Table 2.1, the estimated scale factors in this 

re-run are slightly smaller and the 2R  values are improved when using the updated 

model. 

In a second set of re-runs, we increased the model lead times from 4 - 11 hours to 16 - 

28 hours in addition to changing the model version to WRF v3.5. As before, physical 

parameter settings and boundary conditions remained unchanged. The regression results 

for these simulations are listed in the second column of Table 2.2. From Table 2.2 we 

observe a decrease of estimated slope values with increasing model forecasting period. 

Considering the major contribution of atmospheric phase only interferograms is from the 

wet delay [Hanssen, 2001], as shown in Table 2.2 the longer forecast period provides 

smaller slope estimates that indicates NWP simulated wet delay component is getting less 

with the increasing of model lead times, which also confirms our previous results [Gong 

et al., 2013]. 

These results show that the exact value of scale factor â  does depend on the model 
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parameterization. Hence, when attempting to use NWP-derived APS information in 

atmospheric correction of InSAR data, it is important to use the same model setup for all 

NWP runs associated with a given data stack. A change of model setup will degrade the 

correlation between  
ifgatmi

2
,  and  

nwpatmi
2
,  and, hence, reduce the usefulness of NWP 

data.   

2.4.3 Sub-conclusions 

Our results show that NWP models can provide valuable information about the 

statistical properties of APS captured in InSAR data. We have shown that there is a linear 

relationship between  
ifgatmi

2
,  and  

nwpatmi
2
,  that is robust across a wide range of test 

sites. We have also shown that the regression slope â  is not a fixed value but rather 

depends on the surface topography of the area of interest and on the parameterization of 

the used NWP model. Hence, while NWPs like WRF are able to robustly describe the 

temporal variation of  
ifgatmi

2
,  within a data stack, there is an unknown scaling factor 

that needs to be estimated when we attempt to predict  
ifgatmi

2
,  from  

nwpatmi
2
, .  

For all tested parameterizations, NWP is consistently underestimating  
ifgatmi

2
,  

(corresponding to 1ˆ a ) mostly due to an underestimation of the turbulence component 

of atmospheric delay. Further tests are needed to understand the underestimation 

phenomenon in NWP fine resolution products observed in this study. 

2.5 A Robust Optimal Atmospheric Phase Filter Based on NWP Data 

Based on the results presented in Section 2.4, a concept for the utilization of statistical 

atmospheric information in atmospheric phase filtering is introduced in this section.  

To conduct a separation of atmospheric and motion-related phase component in an 

optimized way, the shape of filter kernel in Eq. (2.4) is a key point. As mentioned in 

Section 2.2, determining the proper design of the temporal atmospheric phase filter 

without making unjust assumptions about the temporal behavior of the motion signal 
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remains a difficult issue. Hence, in our approach, we interpret atmospheric phase filtering 

as the process of accurately extracting  defoip ,,  from the phase ip,
~  of post processed 

interferograms. Following this paradigm, we propose to constrain the parameter of the 

temporal low-pass filter  Ttg ,  in Eq. (2.4) using NWP-produced atmospheric 

variance information  
nwpatmi

2
, . In the following, we describe how NWP data can be 

integrated into solving Eq. (2.4) given the sub-conclusions in Section 2.2. 

2.5.1 Optimal Atmospheric Phase Filtering through Correlation Maximization 

For simplicity, we use a temporal low-pass filter of Gaussian shape in Eq. (2.4), 

reducing the optimization problem in Eq. (2.4) to the estimation of the filter length 

parameter T  that optimizes the separation of defoip ,,  from  tip,
~  given  

nwpatmi
2
, . Here, 

filter length T  corresponds to the half width of the kernel. To avoid confusion, hereafter 

T  will be referred to as window size of the Gaussian low pass filter.  

Following the pre-processing steps in Sections 2.3 and 2.4, the phase time series ip,

~  

is derived (see Eq. (2.3)). For a time series of N interferograms, we find the optimal 

global window length T̂  of the atmospheric phase filter  Ttg ˆ,  by searching for the 

parameters T̂  and Tâ  that optimize the linear correlation between spatial variance 

 hpi
2 of high passed signal  

hpip,
~  and  

nwpatmsi
2
,   as shown in Eq. (2.8).  

       
2

1 0
,

2 ˆ,
~~1

, 
 











M

p

t

iphpi Ttgt
M ip


 (2.8) 

Mathematically, we minimize the L2 norm of atm  (Eq. (2.9b)) by applying a grid 

search over the parameters T̂  and Tâ constrained by Eq. (2.6) (Eq. (2.9a)). 

   hpiTnwpatmsiatm a 22
, ˆ        (2.9a) 
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min
2
 atm (2.9b) 

Note that the slope parameter Ta  is treated as an unknown in the algorithm in response to 

our finding that Ta  is not known a-priori. 

The search space for T  is bounded within  ul TT ,  that is gridded by the satellite 

revisiting time. The lower bound lT  is selected to be one satellite repeat cycle so that if 

images are acquired regularly, there are at least three samples within the window size of 

the Gaussian window. The upper bound uT  is selected to limit the numbers of iterations; 

e.g. 280 days is used in following experiment that can be other larger numbers. The 

window size within  ul TT ,  that satisfies Eq. (2.9) is T̂ . No error bounds are introduced 

for Ta  as our experiments show that Ta  generally converges quickly towards Tâ . 

Using the proposed approach, three major products can be obtained: (1) the estimated 

deformation time series defoip ,,̂ ; (2) the parameters of an optimal global low pass filter; 

and (3) an estimate of the phase variance time series  
ifgdefoi

2
, , which provides 

information on important temporal properties of the unknown deformation fields within 

the study area that can be useful for further post processing steps such as  deformation 

filed modeling. 

2.5.2 Performance Assessment Using Synthetic Data 

To demonstrate and evaluate the performance of our optimal atmospheric phase filter 

(OAPF), we first report on simulated experiments. For this experiment, a stack of 

numerically simulated single master interferograms as well as synthetic NWP differential 

delay maps were created using the following approach. 

2.5.2.1 Synthetic Data Preparation 

The series of synthetic pre-processed interferogram (according to Eq. (2.3)) were 

generated based on the parameters of the current X-band spaceborne SAR system, 

TerraSAR-X, with 11 days revisiting time. A total of 5000 persistent scatterers spread 



70 

across an area of 1000 × 1000 pixel2 were simulated per image. If regularly sampled at 11 

day intervals, the stack contains 74 interferograms spread over more than 2 years time 

span. To approximate real acquisition conditions, e.g. gaps in the time series, only 55 of 

the 74 images are used in the experiment.  

Four independent motion fields with similar spatial correlation lengths but different 

motion intensity were simulated within the study area. The velocity of their linear 

deformation trends was kept within ±1 cm/yr to simulate small deformation conditions. 

The simulated interferometric phases were pre-processed according to Eq. (2.3) resulting 

in ip,
~ .  

Time series of simulated APS  tatmip ,,  were generated using fractal theory 

[Kampes, 2006]. To obtain synthetic NWP products  
nwpatmsip ,, , an atmospheric error 

signal ( atmsi , ) was synthetically generated using a fractal algorithm such that 

 
nwpatmsip ,,  is the summation of atmsi ,  and atmsip ,, . Hence, atmsi ,  is spatial 

correlated rather than random noise and satisfies physical reality. Finally,   
nwpatmsi

2
,   is 

computed from  
nwpatmsip ,,  and scaled to simulate the scale effect that was observed in 

the experiment of Section 2.4. 

This data simulation approach is to guarantee the synthetic data reflects physical 

reality and is commensurate with the main steps in real data processing. The synthetically 

generated  
ifgatmsi

2
,   per pre-processed interferogram is similar to the real data shown in 

Section 2.4. For instance, the spatial phase variance  
ifgatmsi

2
,   for the Mexico case is 

ranging from 0.42  to 1.72 rad2 for C-band interferograms [Liu, 2012], which is similar to 

the range of our simulated data (see Figure 2.4). In Figure 2.4, the best linear fit for 

2
, atmsi   and  

nwpatmsi
2
,   data pairs is denoted by dashed gray line with a scaling factor of 

0.62 and R2 is 0.69 for 55 images. 
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2.5.2.2 Synthetic Data Processing Using the Optimal Atmospheric Phase Filter 

To evaluate the performance of the optimal atmospheric phase filter, we conduct two 

comparative analyses: First, we compare the filtered deformation time series  
lpip,

~  

produced by our optimal phase filter to the true deformation time series defoip ,, . 

However, as defoip ,,  cannot be estimated perfectly from a small number of noisy 

observations, a comparison of  
lpip,

~  to defoip ,,  provides a slightly biased evaluation of 

the filter’s performance.  

Therefore, we perform a second, more realistic comparison that takes advantage of 

the fact that the true deformation time series defoip ,,  is known. Under these conditions, 

we can define an ideally filtered time series as the one that minimizes the mean-square-

error (MSE) ideallp _ :   

    
  



 

M

p

t

idealdefoipideallp Ttg
M ip1

2

0
,,_

ˆ,
~1

,
 (2.10) 

Using Eq. (2.10), we can determine window size idealT̂  that is generating the best 

possible approximation of  defoip ,,  based on the data in time series ip, . We denote the 

spatial variance of the low passed signal through ideal filter  idealTtg ˆ,  as   ideallpi _
2 . Our 

optimal filter performs ideally if its output is identical to   ideallpi _
2 . 

Figure 2.5 provides an example of a comparison of   ideallpi _
2  (black plus markers) 

and   Tlpi ˆ_
2  (gray square markers). For completeness, also the true (noise free) 

deformation time series 2
,defoi  (gray solid line) and the variance of the original unfiltered 

data 2
i  (gray line with cross markers) are shown. Analysis of Figure 2.5 allows for a 

comparison of the overall performance of our optimal filter in estimating  tdefoip ,,  from 
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ip,
~ . It can be seen that, despite the considerable contamination of the original time series 

with atmospheric signals, the optimal filter is effective in extracting  tdefoip ,, . 

Furthermore, the filter output  
Tlpip ˆ_,  is almost identical to the ideal filter result 

defined by  
idealTlpip _, . Thus, our optimal filter is capable of reconstructing the 

deformation time series with the assistance of  
nwpatmsip ,,  without requiring any prior 

information about the properties of the deformation signal. 

2.5.3 Assessment of convergence properties 

As for any iterative process, convergence to the true solution is not guaranteed in our 

algorithm. In order to evaluate how robustly the algorithm converges to the correct 

solution for the sought filter parameter T , we have conducted an extensive Monte Carlo 

experiment [Metropolis and Ulam, 1949]. 

In these experiments, we define the filter parameter T  to be successfully estimated, if 

the difference between the estimate T̂  produced by the optimal filter and the filter length 

idealT  is less or equal 22 days ( 22ˆ  idealTT  days). In numerical simulations we study 

the likelihood of convergence to the true solution as a function of the quality of the prior 

information  
nwpatmsi

2
,  , quantified by the R2 between data pairs of  

ifgatmsi
2
,   and 

 
nwpatmsi

2
,   (low R2 corresponds to low quality prior information). We expect the 

likelihood of convergence to decrease with decreasing quality of  
nwpatmsi

2
,  .  

The results of the analysis are shown in Figure 2.6 that shows varying degrees of R2 

versus the likelihood of convergence given the above defined criterion (the left y-axis). 

For each R2 condition, we generated 60 statistically independent stacks of synthetic data 

using the approach outlined in Section 2.2, and every marker in Figure 2.6 represents the 

average performance within these 60 data points. For instance, the R2 value of 0.7 

represents the average performance when ]7.0,6.0(2 R . The gray dotted line with 
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circles shows the success rate in determining T̂  as a function of 2R .  The black dotted 

line with crosses shows the residual ratio res  that indicates the difference between the 

output of the optimal filter and the ideal filter that is mathematically described by Eq. 

(2.11). There, 
Tlp ˆ_

  and ideallp _  are the mean-square-error between defoip ,,  and the 

output of the optimal phase filter and the ideal filter, respectively.   

 ideallpideallpTlpres __ˆ_
    (2.11) 

For all analyzed conditions, the difference between the optimal filter and the ideal 

filter was less than 2%, indicating the NWP-aided optimal filtering approach doesn’t 

introduce significant errors under current evaluation criteria. The black dotted line in 

Figure 2.6 also suggests that res  is independent of 2R (values of res  are quantified on 

the second y-axis of Figure 2.6). However, as expected, Figure 2.6 shows that the 

convergence rate of the optimal phase filter does depend on 2R . For example, the success 

rate is higher than 70%, if the 2R  between  
nwpatmsi

2
,   and  

ifgatmsi
2
,   is higher than 

0.7. 

2.6 Conclusions 

This study investigated the InSAR data and NWP products over four test sites to 

evaluate the quality of NWP predicted atmospheric delay statistics and assessed 

performance of developed algorithms by analyzing the synthetic data sets. We addressed 

two interrelated scientific issues:  

(1) Based on extensive comparisons of NWP and InSAR data with different climate 

and topography conditions, we determined that NWP models can provide valuable 

information about the statistical properties of APS captured in InSAR data. Specifically, 

we have shown that there is a linear relationship between  
ifgatmi

2
,  and  

nwpatmi
2
,  that is 

robust across a wide range of test sites. We have also shown that the slope â  of the best 

fitting regression line is usually smaller than 1, indicating an underestimation of  
ifgatmi

2
,  
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by NWPs, and that can â  additionally vary as a function of surface topography and NWP 

model parameterization. 

(2) Based on these findings, we developed a new NWP-based optimal atmospheric 

phase filter (OAPF) that can robustly utilize potentially biased NWP-derived statistical 

information for atmospheric phase correction. We have determined the performance of 

this new filter concept and have shown that it comes very close to the theoretically 

achievable filter optimum. In extensive Monte Carlo simulations, we furthermore 

determined that the converging rate of the OAPF is higher than 70%, even if the quality 

of atmospheric prior information is low.  

While our filter concept was exemplified using PS-InSAR concepts, the processing 

flow can be easily adjusted to other time series InSAR techniques like SBAS processing. 
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(a) Hawaii case 

 
(b) Mexico Case 

 
(c) Netherland case 

 
(d) Southern Australia case 

Figure 2.1 Regression lines per test site; x-axes denotes spatial variance (Var.) of 

atmospheric signal in Interferogram (IFG.) and y-axes denotes the one in NWP products; 

from (a) to (d), each plot demonstrates the regression result at the corresponding test site; 

bold dark gray line denotes the best linear fit; black circles are the data pairs and dashed 

light gray lines are the 95% prediction bounds for the linear fit  
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Figure 2.2 Linear relationship between DEM standard deviation (DEM SD.) DEM and 

estimated scale factor â  in Eq. (2.6). Error bars indicate the uncertainty of the â  

estimates. 
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Figure 2.3 Empirical  
predifgatmi ,

2
,  with the scale factor â  predicated from model in Eq. 

(2.7) and the external  
nwpatmi

2
,  vs. InSAR contained  

ifgatmi
2
, . The black markers are 

data pairs and gray dashed line denotes reference line without bias and offset; x-axis is 

the true value of the atmospheric spatial variance derived by interferograms (Var. IFG); 

y-axis is predicted value from NWP products and the empirical function (Eq. (2.7)). 
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Figure 2.4 Example of synthetic data (black cross markers); (  
ifgatmi

2
, (x-axis) and 

 
nwpatmsip ,, (y-axis); the best linear fit scale line is denoted by black dotted line).   
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Figure 2.5 Comparison of 2
i , 2

,defoi  and its estimates   ideallpi _
2  and   Tlpi ˆ_

2 . In the 

plot’s legend, Input denotes the spatial variance to the contaminated interferometric 

phase; True denotes the spatial variance of the deformation truth; Ideal denotes the spatial 

variance of the low-passed signal via ideal filter; OAPF denotes the spatial variance of 

the low-passed signal via the optimal filter. 
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Figure 2.6 Dependence of convergence rate of the optimal phase filter algorithm on the 

quality of  
nwpatmsi

2
,  , quantified by the 2R (x-axis) between  

nwpatmsi
2
,   and 

 
ifgatmsi

2
,  . The left y-axis values correspond to gray dashed line with circles for the 

success rate of determining T̂ ; the right y-axis relates to the black dashed line and 

denotes the residuals ratio res in [%]. 
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Table 2.1 Results of linear regression of spatial variance at four test sites including 

Hawaii, Mexico city (Mexico), the Netherlands (NL) and South Australia (South Aus.). 

R2 is the goodness-of-fit parameter; DEM. SD denotes the standard deviation of DEM 

with each test site. 

Site Name 
Slope â  R2 Sample No. DEM SD. [km] 

Hawaii 0.99  (0.57, 1.41) 0.67 8 0.98 

Mexico 0.68  (0.54, 0.83) 0.83 6 0.51 

NL 0.27  (0.19, 0.35) 0.72 9 0.017 

South Aus. 0.52  (0.42, 0.61) 0.94 6 0.035 
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Table 2.2 Results of linear regression of spatial variance using WRF 3.5 and two different 

model lead times (column 1: 4-11 hours; column 2: 16-28 hours) for test sites Hawaii and 

Mexico City. 

 Previously used lead times  Longer lead time 

 Hawaii Mexico Hawaii Mexico 

Slope â  
0.91 

(0.64, 1.17) 
0.65 

(0.54, 0.76) 
0.62  

(0.49, 0.74) 
 0.59  

 (0.44, 0.74) 

R2 0.82 0.93 0.87 0.67 
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Chapter 3 Subtle Motion Long Term Monitoring of Unimak Island from 2003 to 

2010 by Advanced Time Series SAR Interferometry 3 

3.1 Abstract 

A seven year time series of satellite radar images over Unimak Island, Alaska has 

been processed using advanced model-free Persistent Scatterer Interferometry (PSI) 

techniques for a long term geodynamic study. Data processing was assisted by predicted 

radar signal delay maps derived from numerical weather prediction model to optimally 

extract the deformation only signals from atmosphere contaminated phase records. The 

reconstructed deformation time series maps are compared with historical and current 

Global Positioning System (GPS) measurements as well as Small Baseline Subset 

(SBAS) InSAR results for quality assessment and geophysical interpretation. Westdahl 

volcano, Fisher caldera and Shishaldin volcano have been actively erupting or producing 

ground deformation within recent decades (from the 19 century to present). A Mogi 

source model estimate for Westdahl volcano suggests a magma source 3.5 km north of 

Westdahl peak with a depth of chamber center at about 7.0 km beneath sea level through 

the entire study time span. The magma chamber volume change rate is slowing down 

compared to previous study results. The deformation field over Fisher caldera is 

consistent and linear across the full time period analyzed. It has continuous subsiding 

with a maximum velocity of approx. 16 mm/year in the Line-of-sight (LOS) direction. 

From the data analyzed here, very little deformation evidence could be found close to the 

Shishaldin peak. However, a region approx. 15 km east of Shishaldin and the other one at 

the Tugamak range show evidence of the movement towards the satellite with a temporal 

correlation with the 2004 Shishaldin eruption. The cause of these movements is 

unknown. 

                                                 
3  Gong, W., F. J. Meyer, C.W. Lee, Z. Lu, and J. Freymueller, Subtle Motion Long Term Monitoring of 
Unimak Island from 2003 to 2010 by Advanced Time Series SAR Interferometry, prepared for submission 
to Journal of Geophysical Research 
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3.2 Introduction and Motivation 

Many volcanic eruptions are preceded by pronounced ground deformation in response 

to increasing pressure from magma chambers, or to the upward intrusion of magma 

[Dvorak and Dzurisin, 1997] trigged by deep magma intrusion. This has been considered 

as one of the main precursor indicators before an eruption begins [Dzurisin, 2003]. 

Surface deformation measurements can be used to determine the location and shape of a 

volcanic pressure source beneath the surface [Segall, 2010]. Due to its independence 

from daylight and weather conditions, predictable repetition cycle, and high spatial 

resolution, Synthetic Aperture Radar (SAR) Interferometry (InSAR) distinguishes itself 

as a suitable tool to conduct a long-term deformation monitoring over volcanoes. InSAR 

measures the uplift or subsidence movement associated with eruptions or magma 

intrusions as a phase change between repeated acquisitions captured in interferograms. 

Advanced InSAR techniques can extract these signals with cm-accuracy [Hanssen, 

2001]. It is especially suitable for the monitoring of remote regions, for which 

maintaining in situ geodetic measurements are difficult. 

In this paper, we document the observed deformation patterns over Unimak Island, 

the largest island of the Aleutian Island chain in Alaska [Wood and Kienle, 1990] (see 

Figure 3.1). It is home to several volcanoes including Roundtop, Isanotski, Shishaldin, 

Fisher, Westdahl and Pogromni from east to west. Three of these volcanoes (Shishaldin, 

Fisher and Westdahl) have recorded historical activity, for instance the latest eruption of 

Shishaldin was in 2004 [Neal et al., 2005] and Westdahl last erupted in 1991 [Lu et al., 

2003]. Fisher has been less active than its neighbors since the 19th century, however 

previous studies observed continuing subsidence around the center of Fisher caldera, 

which is likely due to hydrothermal activity underneath [Mann and Freymueller, 2003]. 

Unimak Island is also seismically active. There were more than approx. 890 volcanic-

tectonic earthquakes recorded during the period 2003 to 2010 around Westdahl and 

Shishaldin according to the Alaska Volcano Observatory [2009] volcano database. 

Therefore, Unimak Island is of particular interest to geoscientists.   
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The remoteness of Unimak Island has limited its geophysical studies, e.g. there were 

no GPS measurements around the active volcanoes in Unimak Island during 2001 to 

2008 and seismic equipment failure led to a seismic data outage during the period of 

2006 to 2008 [Buurman, 2013]. Hence, radar interferometric satellite remote sensing 

techniques were used to retrieve the surface deformation history of Unimak Island for the 

period of 2003 to 2010.  

The value and applicability of InSAR for geodynamic monitoring applications is 

limited by temporal decorrelation, especially for non-urban areas, due to unstable and 

complex ground coverage, as well as electromagnetic path delay variations when the 

radar signal propagates through the atmosphere (ionosphere and neutral atmosphere), 

both reducing the sensitivity and accuracy of the technique [Hanssen, 2001]. Particularly 

problematic artifacts in radar images (e.g. C-band and X-band) are caused by seasonal to 

daily and other changes of weather conditions that can be significant on tall volcanic 

edifices [Gong et al., 2010]. Also, snow coverage often limits the amount of useful 

coherent data in sub-arctic environments [Lu and Freymueller, 1998]. Thus, in the 

present study, an advanced InSAR technique, namely Persistent Scatterer InSAR (PSI), is 

used for deformation history reconstruction from C-band SAR image time series. The 

obtained results are further analyzed through volcano source model inversion.  

Current advanced InSAR techniques can reduce the severity of aforementioned 

limitations [Hooper et al., 2012], however their application to regions lacking prior 

knowledge of deformation has to be carefully handled in order to find the optimal balance 

between noise reduction and preservation of the deformation signal. Hence, in this study, 

both atmospheric artifacts and other non-deformation phase artifacts are treated through 

an advanced method that is combining information provided by a Numerical Weather 

Prediction (NWP) model [Gong et al., 2011] with deformation model-free PSI techniques 

[Hooper et al., 2012]. To further support our result, we also applied Small Baseline time 

series InSAR methods to the same SAR data set for comparison. 

The extracted deformation result is validated by comparison to historical (1998-2001) 

and current GPS measurements within the limited temporal overlap period from 2008-
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2010. Afterwards, the PSI-extracted deformation time series are used for volcano source 

model inversion over Westdahl and for a geophysical interpretation of the rest of the 

active volcanoes in Unimak Island.   

Section 3.3 will briefly introduce the precious geodetic study history of Unimak. The 

details of the PSI method as well as the extracted time series are presented in Section 3.4, 

which also provides information about the input data set, including SAR imagery and 

auxiliary atmospheric delay maps from meteorological numerical simulations. In the 

same section, a brief introduction on the SBAS technique is presented and its results are 

compared to the PSI derived deformation measurements. In Section 3.5, for the three 

active volcanoes (Westdahl, Fisher and Shishaldin), PSI outputs are firstly compared with 

historical (1998 to 2001) and current (after 2008) GPS measurements and then used for 

the volcanic geophysical interpretation; the results over Westdahl Volcano are further 

used for volcanic source model inversion. A general discussion of the deformation on 

Unimak Island is summarized and finalized in the last section. 

3.3 Unimak Island and Its Previous Geodetic Studies 

Surface deformation on Westdahl Volcano was studied in previous efforts both from 

radar satellite remote sensing and GPS studies. InSAR techniques have been applied to 

study the post-eruption inflation from 1993 to 1998 [Lu et al., 2000] and 1991 to 2000 

[Lu et al., 2003] after its eruption in 1991. These studies suggested Westdahl Volcano 

was inflating in an exponentially decaying fashion. Mann and Freymueller [2003] used 

GPS measurements acquired from 1998 to 2001 to analyze Westdahl’s surface motion 

and characterized its magma chamber properties. The GPS determined volcanic source 

depth of Westdahl [Mann and Freymueller, 2003] is deeper than that of the InSAR result, 

nevertheless it suggested the volume change was slowing down compared to InSAR 

results from 1993 to 1998 [Lu et al., 2000]. Both previous studies showed that the rate of 

magma supply to the pressure source has been gradually slowing down but was still 

ongoing as of 2001. There is a slight inconsistency in the horizontal location of the source 

chamber, with the GPS study finding a location slightly north of the InSAR study. 
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However, both studies suggested that a point source model [Mogi, 1958] was sufficient 

for modeling the deformation at Westdahl volcano.  

Fisher caldera, which contains several active fumaroles and two large lakes, is one of 

the largest calderas in the Aleutian Islands [Lu, 2007] and is located east of Westdahl. 

The southern part of Fisher is covered by a thick layer of tephra, which offers the 

potential of achieving excellent coherence in our radar interferometric studies. Previous 

studies showed subsidence of up to 3cm during the period of 1993 to 1995 [Lu, 2007] 

measured with InSAR techniques and 1998 to 2001 from GPS measurements [Mann and 

Freymueller, 2003] (square markers in Figure 3.1), which may be due to the contraction 

of the magma body underneath and the depressurization of the corresponding 

hydrothermal system.   

In the center of Unimak Island, Shishaldin Volcano, a stratovolcano that is the highest 

peak of the island, has 28 recorded eruptions during recorded history. The last four 

eruptions were in 1995, 1997, 1999 and 2004 [Alaska Volcano Observatory, 2009]. 

However, previous satellite InSAR studies observed no signification deformation in the 

coherent region for the two eruptions in the 1990s [Moran et al., 2006], which suggests 

rapid magma re-filling and transportation that compensated for the pre-eruption inflation, 

and a very shallow depth magma chamber [Lu, 2007; Moran et al., 2006]. 

3.4 Techniques, Background and Data Processing 

In this study, special attention has been paid to separate the deformation field from 

non-deformation artifacts in the InSAR data processing of this study. Strong atmospheric 

artifacts have been observed in this region that can mimic volcano inflation. For example, 

atmospheric delays contaminated the deformation map and interfere with geophysical 

interpretation and inversion around Shishaldin Volcano [Gong et al., 2010].  

The PSI technique can largely overcome the problem of ground decorrelation in areas 

of natural ground cover over a long time interval. We apply a deformation model free PSI 

method given its reliable performance for applications in the natural environment 

[Hooper et al., 2012]. The processing parameter optimizations in PSI data processing, 
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especially the optimal temporal filter determination, need to be carefully carried out to 

ensure that most accurate results are generated to preserve the subtle deformation field 

[Gong and Meyer, 2012]. Thus, the NWP produced atmospheric delay map statistics at 

the image acquisition time are used to assist PSI processing (Chapter 2).  

In this study, 23 scenes of Environmental satellite (ENVISAT) Advanced Synthetic 

Aperture Radar (ASAR) data acquired in descending mode during the period of July, 

2003 to August, 2010 are used for deformation history reconstruction. Specifically, only 

the snow-free season scenes, mainly acquired from May to October, are used in the 

experiment due to their favorable seasonal ground coverage condition that improves the 

interferometric coherence. The image acquired on September 22, 2006 was discarded 

from the PSI processing due to its large spatial baseline. 

3.4.1 Advanced Time Series InSAR Processing Strategy 

3.4.1.1 Phase Components Decomposition 

The unwrapped differential interferometric phase components at pixel p in 

interferogram i can be written as Eq. (3.1) [Ferretti et al., 2000; Hooper et al., 2012].  

noiseipatmiporbitipdefoiptopoipip ,,,,,,,,,,,   (3.1) 

where topoip ,,
 
is the residual due to the inaccuracy of the terrain model used in the 

differential interferogram formation, defoip ,,  is the contribution of ground deformation, 

orbitip ,,
 
denotes the residual error from the satellite orbits, atmip ,,  is the atmospheric 

distortion that consists of a slave component atmsip ,,  and a master component atmmip ,, , 

and the last term noiseip ,,  is the phase noise component (e.g. system thermal noise and 

decorrelation noise) that is presumed to be relatively small for a phase stable pixel in PSI 

studies.  

Phase components topoip ,,  and atmmip ,,  are removed following the standard model 

free PSI processing [Hooper et al., 2007; Kampes, 2006]. As the main purpose of this 

study is for volcanic motion monitoring, orbitip ,,  is modeled by a long wavelength plane 
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ramp and subtracted from ip, . After removing those components (referring as pre-

processing in this paper), the remaining phase signal ( ip,
~ ) contains atmsip ,, , defoip ,, , 

and the nuisance term ip,  as shown in Eq. (3.2). ip,  contains residuals of the largely 

eliminated signals of topoip ,, , atmmip ,, , and orbitip ,,  .  

ipnoiseipatmsipdefoipip ,,,,,,,,
~     (3.2) 

Afterwards, defoip ,,  is separated by applying an atmospheric filter optimization with 

the assistance of NWP produced atmospheric delay maps [Gong and Meyer, 2012] (see 

Chapter 2). 

21 single master interferograms were formed and processed for deformation 

monitoring and 89,778 phase stable pixels were found through PSI processing. The 

corresponding image acquisition time, baseline information and spatial variances of 

differential atmospheric delays computed from NWP products (varaps) are listed in Table 

3.1. The data set shows strong atmospheric distortions (e.g. August 13, 2004 and October 

17, 2005) and large time gaps ranging from 245 to 420 days over winter that leads to a 

small data stack over a large time span with severe atmospheric artifacts. 

3.4.1.2 Advanced Atmospheric Signal Mitigation 

The Weather Research and Forecast (WRF) model [Skamarock et al., 2008] (version 

3.5) was used to model the atmosphere in three dimensions (3D). Initial boundary 

conditions from National Center for Environmental Prediction (NCEP) Final (FNL) data 

[UCAR, 2013] were used as input for the WRF runs. We use an approximately 9 hour 

forecasting period and 1km horizontal resolution setup for model outputs. The refractivity 

index is computed at each resolution grid cell and integrated in the satellite Line of Sight 

(LOS) direction to produce integrated absolute atmospheric delay maps. Afterwards, the 

simulated atmospheric phase screens (APSs) are computed through differential delay 

maps corresponding to the SAR image acquisition times, and the temporal mean is 

subtracted from every simulated APS to approximate the master component subtraction; 
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a linear planar trend also is removed from the simulated APSs. In the end, the NWP 

simulated APSs are resampled to the 300m resolution grid in radar coordinates then 

finally used to compute 2
,nwpi  that assists the extraction of defoip ,,  from ip,

~ . 

After pre-processing, the conventional PSI separates defoip ,,  from ip,
~  (Eq. (3.2)) 

through a spatial-temporal low-pass filter based on the expectation that atmospheric 

signals are temporally decorrelated and spatially correlated over a small scale, while 

deformation signals are correlated both in time and space [Hanssen, 2001]. In order to 

implement the temporal filter optimization as described in previous studies [Gong and 

Meyer, 2012], the pre-processed PSI phases are resampled to the 300m resolution grid in 

radar coordinates so that the multi-looked phase '
,

~
ip  has the same resolution as the NWP 

produced delay maps and has minimum noiseip ,,  contribution. The mathematical 

representation of temporal low pass filtering is written in Eq. (3.3), in which t is the 

temporal baseline for each interferogram and  Ttg ,  is a low pass temporal filter with 

length T. The low pass signal  
lpip

'
,

~  is the estimate of the deformation component. 

      



t

iplpip Ttgt
0

'
,

'
, ,

~~


 (3.3) 

The optimal low pass filter length T̂  is chosen to maximize the linear correlation 

between 2
,nwpi  and the spatial variance ( 2

,hpi ) computed from high passed signal 

 
hpip

'
,

~ , where    
lpipiphpip

'
,

'
,

'
,

~~~    . After applying an iteration approach, the optimal 

low pass filter length T̂  (175 days) is determined through the same algorithms as 

described by Gong et al. [manuscript in preparation]. Afterwards, the optimal temporal 

filter length T̂  is applied to control the standard model free PSI processing [Hooper et 

al., 2012]. Finally, the estimated deformation time series is shown in Figure 3.2, which 

shows subtle but continuous areas of deformation across Unimak. The detailed evaluation 

and geophysical interpretation of the results will be presented in Section 3.5. 
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3.4.2 Small Baseline Time Series InSAR 

As mentioned before, within the study time span there are few other geodetic 

observations for validation, thus we also applied the Small Baseline Subset (SBAS) 

InSAR technique to the same data set for PSI deformation maps validation. In this case, 

the SBAS result is used as a reference only, as comparison of the techniques for the 

deformation detection and long term monitoring is beyond our scope. A technique 

comparison can be found in previous literature [Shanker et al., 2011]. The SBAS method 

first divides the unwrapped interferograms into two stacks, including a low quality  and a 

high quality subset. The latter are used for correcting the phase unwrapping errors in the 

low quality interferograms then both used together for displacement estimation. The 

implementation steps include the small baseline interferogram generation and selection, 

phase unwrapping, phase inversion through singular value decomposition (SVD) and 

mitigation of non-deformation signals through mathematical modeling and iteration 

processing (for detail please refer to [Lee et al., 2010]). In the processing, 42 small 

baseline interferograms were generated, within which 21 interferograms were selected as 

the high quality subset and one frame was discarded due to its un-favorable coherence 

conditions. In the end, the displacements at the 21 single-look-complex images (SLCs) 

acquisition time (all referring the earliest acquisition) were processed and recovered. In 

Figure 3.3, the recovered linear deformation velocity maps in geographic coordinates 

from PSI and SBAS are plotted in the similar grid size for visual comparison. Figure 3.3a 

only has the phase stable pixels plotted, while Figure 3.3b is an un-masked map that 

includes most of the low quality points plotted as well. 

In Figure 3.3, both methods detected common deformation features with similar 

deformation velocity as denoted by the color counter: a subtle movement towards satellite 

around Westdahl and a stronger subsidence region over Fisher caldera. The snow and ice 

cover in the high elevations (e.g. the tops of Shishaldin and Westdahl) and vegetation at 

lower elevation (e.g. the northwest region of Unimak Island) [Alaska Volcano 

Observatory, 2009] hamper the PSI from targets extraction. Those regions behave as low 

confidence pixels in the SBAS derived deformation velocity map. Overall, the PSI 
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reconstructed the average velocity map shows similar quality to the one from SBAS 

method at coherent pixels.  

Figure 3.4 shows an example of point wise comparison for Fisher caldera that 

compares the extracted maximum subsidence captured by the PSI and SBAS methods. A 

coherent target in SBAS method has been selected randomly in the center of Fisher 

caldera and the surrounding region, an area of approx. 200 m radius was searched for PSI 

points and 5 targets are found within the searching area. The averaged time series of the 

SBAS (gray dashed line with square marker) and PSI points (black dashed line with 

circle marker) are plotted in Figure 3.4. All the time series are relative to the image 

acquired on September 7, 2007 and are spatially referenced to the spatial average of 

overall displacement computed from each measurement separately. The time series agree 

well with each other with a correlation coefficient of approx. 0.99 and only larger 

residual between each other at the beginning of the time series.  

3.5 Geophysical Study Based on InSAR Result 

Based on the deformation time series maps in Figure 3.3 and velocity fields in Figure 

3.6, we can identify subtle movements towards the satellite around Westdahl and observe 

subsidence type signals over Fisher caldera. Moreover, it is notable that the area of the 

Tugamak Range as well as the east side of Shishaldin also show a very subtle 

deformation (Figure 3.3) while the rest of the island is relatively less active in producing 

ground deformation. In this section, the PSI results are further compared to historical and 

current GPS measurements, and are used jointly with them for a geophysical 

interpretation. Focusing on Westdahl volcano, a point source model inversion is applied 

and presented in Section 3.6. 

3.5.1 Comparison with In Situ Geodetic Measurement 

There are two sets of GPS velocity measurements available over Unimak, including 

the historical GPS data covering the time from 1998 to 2001 and current GPS 

measurement covering the time from 2008 to present. The two data sets involve different 

sites and there were no measurements between 2001 and 2008. It is possible that the rate 



97 

of deformation was different during the two time periods. The PSI results are compared 

to both of them to better understand the overall deformation history. 

3.5.1.1Comparison with GPS Measurement Before 2001 

There were 7 GPS campaign sites around Westdahl and 5 around Fisher Caldera 

during the period from 1998 to 2001, plotted in Figure 3.1 as square markers [Mann and 

Freymueller, 2003]. The GPS measurements were computed in the International 

Terrestrial Reference Frame 1997 and velocities were referenced to the site KATY at the 

east end of the island [Freymueller and Beavan, 1999]. The details of the comparison 

between the GPS and PSI measured LOS motion velocities are shown in Table 3.2 

together with the GPS sites’ location, the number of selected PSI points nearby and the 

average distance from the PSI points to each GPS station. The distance thresholds are 

determined adaptively with 50 m per step to guarantee at least two PSI points are chosen. 

The PSI results from 2003 to 2010 are adjusted so that the mean LOS displacement over 

each image is zero (Table 3.2). Note, that the SAR image has no sensitivity to the ground 

motion parallel to the satellite track (azimuth direction) because it records only the 

motion in the LOS direction, perpendicular to the descending satellite track (shown in 

Figure 3.1). Hence, the 3D velocity of GPS records as well as its uncertainty (see Table 

3.2) given by Mann and Freymueller [2003] was projected into the SAR LOS direction 

for comparison with PSI measurements.  

The uncertainties of the PSI results are the standard deviation of the velocities at the 

PSI points within the given distances. Two GPS sites (WESS, PANK) are not included in 

Table 3.2 because there were not sufficient PSI points in nearby areas, or the site was 

outside of the image spatial coverage. GPS sites named with the prefix ‘WE’ as well as 

site SCAP surround Westdahl peak and the prefix ‘FC’ denotes the sites around Fisher 

Caldera.  

First of all, the bias introduced by the different reference frames of the PSI and GPS 

velocities needs to be removed. However, due to the fact that the majority of PSI points 

are close to active volcanoes and there is no SAR image coverage over the GPS reference 

point KATY at the east end of the island, we applied an alternative method to determine 
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the reference difference between the GPS and PSI velocities. We computed the difference 

between the velocities of GPS site FC02 and its surrounding PSI points and assume this 

difference is only from the spatial reference difference. This method is implemented 

based on the following considerations: (a) the GPS result for FC02 has very high quality 

and the smallest average distance to the surrounding PSI points; (b) this area has a high 

PSI point density in the original SAR images and a high deformation-to-noise ratio; and 

(c) as suggested in previous studies [Mann and Freymueller, 2003], Fisher caldera is 

subsiding linearly. As shown in the PSI and SBAS comparison in Figure 3.4, the 

deformation rates over Fisher caldera from both studies are linear in time. Thus, if there 

is any difference caused by the reference frame difference between PSI and GPS results, 

it should be linear in time. Therefore, the velocity offset of about 0.1 mm/year (PSI minus 

GPS) caused by the reference frame difference is calculated and the corrected PSI 

velocities are listed in the sixth column of Table 3.2. Such a small correction is not a 

surprise, because the GPS study [Mann and Freymueller, 2003] suggested that most of 

the island did not move relative to KATY. 

Comparing the corrected PSI velocities after 2003 and GPS measurements from 

1998-2001 (Table 3.2 column 6), the inflation rate of Westdahl volcano is decreasing. 

Most of the region is still moving towards the satellite (the LOS direction), with a 

velocity less than one centimeter per year. The subsidence rate of Fisher caldera is faster 

and more consistent compared to Westdahl region. Around Fisher caldera, the difference 

between the PSI velocities and the historical GPS measurement is less than 2 mm/ year 

except for FC05. This difference is well within the error bound of the GPS results. 

3.5.1.2Comparison with GPS Measurement After 2008 

Since 2008, the Plate Boundary Observatory (PBO) includes a continuous GPS 

network [UNAVCO, 2013] on Unimak Island that mainly covers Westdahl and Shishaldin 

volcanoes. Site locations are plotted in Figure 3.1 and the corresponding geographic 

information is listed in Table 3.3. There are 13 sites available with three years (2008 -

2010) of overlap with the PSI study time period. This section compares the time series 

computed from PSI and GPS. The time series are compared in Figure 3.6 for Westdahl 
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and Figure 3.7 for Shishaldin. The number of PSI points near each GPS site is listed in 

Table 3.3, including their average distance from the GPS site. 

In Figure 3.6 and Figure 3.7, the time series of GPS daily measurements projected 

into the LOS direction are given by dashed gray lines and the 10 day average is 

represented by bold black lines; the time averaged GPS measurements with 

corresponding error bounds at the SAR acquisition dates are highlighted by blue lines 

with cross markers and the time series inverted from PSI techniques are denoted by red 

lines with circle markers. The GPS error bounds in the LOS direction are computed from 

the uncertainties of the GPS 3D positions and the PSI error bound is the standard 

deviation of the PSI points surrounding the GPS instrument locations. Due to impacts of 

snow accumulation on the GPS antenna [Freymueller, Personal Communication], GPS 

records during the winter period (December to next year May) for AV27, AV29 AV35, 

AV37 and AV39 are removed from figures and analysis. Given that all the SAR 

acquisitions are during the local Alaska summer period, this only affects AV37 and 

AV39 by reducing one or two GPS records from the overlapping sample set.    

All the time series are referenced to the earliest date of the temporal overlap between 

the PSI and GPS. The PSI time series are referenced so that the spatial average 

displacement in the every interferogram frame is zero, while the PBO GPS measurements 

are relative to a North America fixed reference frame based in ITRF2008 (NAM08). To 

put the PSI and GPS in the same reference frame, the linear rates of the GPS and PSI 

from 2008 to 2010 are computed separately from their measurements at the common time 

interval. The rate differences (GPS rate minus PSI) are shown in Figure 3.5 by square 

markers and the posterior error bound is denoted by black vertical bars. Site AV40 is 

excluded from this comparison due to large residuals in the PSI processing, and will be 

discussed later in  this section. The remaining 12 sites are used to compute the weighted 

average velocity shift between the GPS and PSI (0.98 mm/year) shown in Figure 3.5 

denoted by the dashed gray line. This average rate difference is taken as the spatial 

reference frame difference between the GPS and PSI, and is removed from PSI 

displacement time series. The PSI results given in Figure 3.6, Figure 3.7 and Table 3.3 
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are measurements after the spatial reference compensation. This reference frame 

difference determination method is applied due to the difficulty in defining a proper 

reference area in the PSI measurements given that most of PSI points are near active 

volcanoes and is based on the following assumptions: (1) The reference frame difference 

is assumed to be linear in time; and (2) all linear rate differences between the GPS and 

PSI are due to the different reference frame or random noise. 

In Figure 3.6, the PSI and GPS measurements are plotted together for interpretation. 

The time series are given as one-way displacement, with motion toward the satellite 

(satellite direction is shown in Figure 3.1) being positive. Around Westdahl Volcano, the 

station AC10 hardly shows any linear trend during the overall time span (Figure 3.6). For 

instance, the AC10 time series in Figure 3.6b indicates a slight movement away from the 

satellite before 2009, which is also confirmed in the SBAS derived deformation rate map 

in Figure 3.3b. The AC10 GPS time series shows that the site moves towards the west 

and slightly to the south. The negative trend in the LOS velocity is caused by the site 

moving away from the satellite. Both the sites AV24 and AV25 demonstrate an overall 

linear trend with total motion toward the satellite of approximately 20 mm from 2003 to 

2010. For sites AV26 AV27 and AV29, the continuous deformation with total motion 

toward the satellite is more obvious, about 30 to 50 mm over 7 years. For site AV26, the 

InSAR measurements accumulating from 2009 to 2010 show a lower slope than GPS. 

These motions are upward and away from the volcano, so both the GPS and PSI confirm 

the inflation of Westdahl since 2003. 

The comparison of sites around Shishaldin is shown in Figure 3.7, where an 

interesting phenomenon is captured by the PSI measurements. First of all, the time series 

of sites AV34, AV35, AV38 demonstrates a negative trend before the middle of the year 

2004 followed by a positive trend after that. This matches the time of the 2004 Shishaldin 

eruption from Feb 17 to May 14 [Alaska Volcano Observatory, 2009]. However, these 

sites are located more than 15 to 30 km away from Shishaldin. The sites on Shishaldin 

volcano, AV36, AV37 AV39 and AV40 show no change in motion at that time. The first 

three sites would be expected to record a stronger volcanic motion from a volcanic source 
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underneath Shishaldin if that caused the deformation at AV34, AV35 and AV38. Thus 

the cause of these motions is not clear. The motion signals at AV37 and AV39 are rather 

similar, while the PSI measurements at AV39 are relatively nosier. Neither the GPS nor 

PSI provides any indication of a co-eruption signal. An earlier study showed that 

Shishaldin volcano did not have significant co-eruptive ground motions during both its 

1995-1996 and 1999 eruptions [Moran et al., 2006]. This study covered the areas around 

the sites AV36, AV37 and AV39. Thus, the behavior we see in our study confirms that 

within the same area there is no obvious volcanic motion. Site AV40 is close to the coast 

south of Shishaldin. As shown in Figure 3.3a, the point density over this region is very 

low and far away from the other PSI points, which might introduce phase unwrapping 

errors in the reconstructed deformation time series around AV40 as shown in Figure 3.7g. 

The observations after 2007 seem to be stable, however. 

3.5.2 Comparison with Different PSI Parameter Setting 

We also compare the GPS measurements with PSI time series computed using 

different temporal filter settings. The same procedure for reference frame difference 

compensation was applied to the results from the 70 days setting. The statistics, residual 

offset and standard deviation (sd.) at every GPS site, computed from the GPS and PSI 

time series over the common time interval are listed in the last two pairs of columns of 

Table 3.3. From the residual offset, it’s notable that there is more underestimation for site 

AV26 both for 70 days and optimal window setting.  

As listed in the last column of Table 3.3, the optimized window provides smaller 

residual standard deviations at 10 out of 13 GPS sites with an average improvement of 

less than 1 mm per site. This suggests that the window length has only a small effect on 

the results at the GPS site locations. Outside the GPS temporal coverage, an example of a 

70 days window setting result is shown in Figure 3.7h, which introduced two different 

linear trends in 2004 and 2005 that might be artificial features introduced from the failure 

in atmospheric anomaly reduction. This indicates the optimal filter is able to balance the 

noise-reduction and the motion recovery, while there is only very small improvement in 

this study. 
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3.6 Source Model Inversion of Westdahl Volcano 

In this section, we apply a volcano source model inversion to the PSI-derived motion 

time series maps of Westdahl Volcano. According to the study of Mann and Freymueller 

[2003], there is no significant strain accumulation due to the locked subduction zone 

across the entire island, so the contribution from non-volcanic sources over the Westdahl 

region is assumed to be small. Hence, without compensating deformation from any other 

source, the one-way displacement time series derived from PSI are used as input for 

estimation of a volcano source model.   

Previous studies [Mann and Freymueller, 2003; Lu et al., 2003; Lu et al., 2000] 

suggested that a Mogi source [Mogi, 1958] is sufficient for describing the volcanic 

deformation at Westdahl volcano. The Mogi model treats the magma chamber as a 

spherical point source with the assumption of an elastic homogeneous half-space. The 

point source approximation is valid if the chamber radius a << source depth d. The 

volume change ∆V of the source leads to horizontal displacement and ground elevation 

change d (e, n, u) at the free surface. A rectangular region around Westdahl volcano was 

selected for the inversion and the PSI results were multi-looked by a factor of 4 in range 

and 20 in azimuth to further reduce noise. We define a three dimensional local Cartesian 

coordinate system with axes pointing east-north-up and the upper left of the cropped 

region as the origin (shown in Figure 3.8). Given a chamber location of xo (xeo, xno, xuo), 

the predicted displacement d (e, n, u) at point x (xe, xn, xu = 0) due to the volume change 

∆V can be written as Eq. (3.4) [Dzurisin, 2007].   
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in which R is the radial distance between the surface point x to the chamber center and   

is the source physical constant that is a function of Poisson’s ratio   of the half-space and 

can be simply written as   1 . The suggested value of   = 1/4 is used in our study 

[Dzurisin, 2007; Mctigue, 1987]. On the right side of Eq. (3.4), it is noticeable that the 
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horizontal displacement is scaled by the distance between the source and surface point, 

while the vertical displacement is scaled by the source depth. Based on the original 

definition of the Mogi model, the topography of our study area is not considered in the 

inversion.  

The inversion was realized through the MATLAB nonlinear least squares 

optimization toolbox routine ‘lsqnonlin’. There are seven unknown parameters for the 

model, the four source model parameters (xeo, xno, xuo, ∆V) and three phase ramp 

parameters (North-South slope, East-West slope, and static-residual). The static 

parameter also accounts for any difference between the model velocity reference and the 

PSI stack velocity reference. The original PSI displacement time series are used for the 

inversion, which have the average displacement field being zero within the cropped 

imagery. The average displacement of the model is subtracted from the model predictions 

during the inversion process, minimizing the difference between PSI measurements and 

Mogi model numerical simulations. Moreover, the displacement time series derived from 

PSI processing should already minimize non-deformation artifacts. For instance the orbit 

residual, which behaves as a large scale ramp signal throughout the image, should be 

relatively small.  

The bounds used for the constant parameter of the ramp can have a significant impact 

on the inversion. This parameter reflects the average difference between the reference 

frame of the data and model, plus the impact of any non-volcanic motions. Two sets of 

inversions are applied to PSI displacement time series: the first one is to determine the 

horizontal location of the Mogi model and the second one is to optimize the remaining 

volcano source parameters. The source model parameters are given relaxed bounds that 

extend beyond the detected source centers in previous studies [Lu et al., 2003; Mann and 

Freymueller, 2003], e.g. the initial bounds of depth are from 3 to 12 km and the 

corresponding ramp parameter setting will be discussed below. This procedure is required 

because of the difficulties of InSAR measurements in estimating all seven parameters in 

the inversion, which are: (1) the area close to Westdahl peak has no data due to loss of 

coherence (as shown in Figure 3.2); (2) InSAR measurements only provide displacements 
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in the LOS direction; and (3) there is only subtle deformation (less than 10 mm/year) 

observed around Westdahl. 

The first inversion is applied to the seven-year average displacement rate. The 

average rate is least affected by noise in the time and therefore provides the most accurate 

estimates of average source location. It has minimized the temporal uncorrelated residual 

left from PSI processing. The slope ramp parameters are fixed to zero in this case and the 

static-residual is given large bounds from -50 to 50 mm.    

The horizontal location of the best fitting Mogi source is at 164.65W±0.04km 54.55N 

± 0.05km (red circle in Figure 3.8), less than 3.5 km north of Westdahl peak (black cross 

sign), or the InSAR suggested volcano source location from the period 1991 to 2000 [Lu 

et al., 2003]. Our estimate is within 125m southwest of the location determined in the 

previous GPS study for the period 1998 to 2001 by Mann and Freymueller [2003] (black 

plus sign in Figure 3.8).   

The depth and ∆V estimates show the volcano source is located 7.0 ± 0.18 km 

underneath seal level with 4.3 ± 0.1 × 106 m3/yr of volume change. This result is approx. 

200 meters above the previous GPS study at 3.2
2.12.7 

  km [Mann and Freymueller, 2003] 

and the annual ∆V from our study is about two thirds of the GPS result at 3.3
8.17.6 

  ×106 

m3/yr. The difference in source depth is not significant at the 95% confidence level, thus 

the source location at Westdahl appears to vary. However, the difference in ∆V is 

significant. 

For the second inversion, we keep the horizontal source location fixed and invert the 

time series of displacements. As shown in Figure 3.2, the differences between the 

computed cumulative displacements at different months within the same year are very 

small. Hence, we have averaged the displacement results for every study year and applied 

an inversion for source parameters to the yearly averages. The yearly increment inflation 

signal isn’t used for the inversion study due to the subtle deformation signal as well as the 

low signal-to-noise ratio (SNR). Instead the cumulative displacement time series relative 

to the first acquisition year (2003) is used as inputs of the second set of inversion.  
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The first attempt of the inversion for time series had only horizontal location fixed. 

The static residual bound is set to the same as in the first inversion. We relax the bounds 

on the slope parameters within a small bin -0.5 to 0.5 mm/km to adjust the larger non-

volcanic signals in the yearly averages. This is needed because (1) fixing the source 

location will reduce the flexibility of inversion; and (2) the SNR of the yearly averages is 

not as good as that of the full time span temporal average in the first inversion.   

The estimates of ∆V, source depth and static residuals from the first attempt of the 

second inversion are listed in Table 3.4, where the average value of the static-residual and 

slope trend in the center of the cropped image are provided. There are variations of the 

estimated source depth, particularly in the first three years (2004 to 2006), which is also 

correlated to the center point residual (Table 3.4). This hampers the inversion from 

estimating the other volcano source parameters.  

Hence, by assuming the vertical location of volcano source also remains stable 

through the study time span, we use the source depth from the first inversion and only 

attempt to compute the ∆V and the three ramp parameters from the yearly cumulative 

displacement time series. Results are shown in Table 3.5. Comparing to the standard 

deviation of ∆Volume estimates listed in Table 3.4, there is a clear reduction (Table 3.5) 

for the inversion with fixed source depth. The value of the static residual at central point 

is in a range of 0 to 5 mm (Table 3.5), which is not surprising given predicted 

deformation signals and InSAR measurements have the same spatial reference. The 

estimates on the two slope ramp parameters are within the initial search bounds setting 

for all cases but the one in 2008. 

The inverted cumulative ∆V is modeled as a function of time. Lu, et.al [2003] 

proposed that ∆V is an exponential decaying function of time. With all the cumulative ∆V 

estimates referenced to the first SAR acquisition time on July 25, 2003, their model can 

be written as Eq. (3.5).  

  kQeV jtk
j  

01   (3.5) 
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where t is the time interval between July 25, 2003 and the rest of acquisitions,   is the 

constant defined in Eq. (3.4), 0Q  is the initial magma flux into the reservoir and k is a 

physical parameter that describes the frictional loss factor, magma viscosity, steady state 

change in magma reservoir volume, and length as well as the radius of the conduit (1/k is 

the so called time-constant) [Dvorak and Okamura, 1987; Lu et al., 2003]. Similar to 

previous studies, k is treated as a single parameter and estimated with 0Q  by searching 

through the parameter space of k. The best fitting solution for Eq. (3.5) is found at k = 

0.20 and 0Q = 33.8 (×106 m3/yr), which has an R2 of 0.96, indicating an excellent fit to Eq. 

(3.5). The modeled cumulative ∆V is plotted in Figure 3.9a with a black dashed line and 

the cumulative ∆V time series estimated from Mogi source inversion are denoted by gray 

dots with corresponding error bounds denoted by gray bars. A linear regression through 

the origin is also applied to the same data set, which provides the estimate of the 

weighted linear rate of volume change in time of 3.5 ± 0.5 ×106 m3/yr with R2 of 0.83.  

Thus, the cumulative ∆V time series is better explained by the exponential model than 

the linear model. For better comparison to the previous study, we also take the same 

reference date as proposed by Lu et al. [2003], and use their model estimates (k = 0.17 

and 9.2 (×106 m3/yr)) into our measurements. However, the R2 indicates a poor fit. A 

hypothesis can be made here that a single exponential decaying function is sufficient to 

explain the volume change of Westdahl over the full time span since the 1991 eruption.  

Moreover, from both Table 3.5 and Figure 3.9a, it is noticeable that there might be 

three stages of volume change with two obvious breaks in 2006 and 2009, where the 

refilling of the magma source nearly stopped before restarting in the year after. This 

episodic pulse hypothesis resembles what was at Okmok volcano, where three distinct 

inflation episodic pulses could be identified observed [Fournier et al., 2009]. A 

speculation can be made here that the volcanic inflation at Westdahl is pulsed, rather than 

decaying steadily. We applied the model with three separate linear functions through the 

origin to the same data set to model the linear rates in these different stages, the result is 

plotted in Figure 3.9b, from the left to the right the computed values of ∆V rate are 5.6 × 
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106 m3/yr, 3.8 × 106 m3/yr and 3.2 × 106 m3/yr. By taking into account the previous 

volume change rate estimate from previous studies, e.g. the GPS result of 3.3
8.17.6 

  ×106 

m3/yr from 1998 to 2001[Mann and Freymueller, 2003], this again implies that the rate of 

volume change is decreasing with time and explains the good fit to the exponential 

decaying model. 

3.7 Geophysical Discussion 

Based on the deformation time series maps extracted and analyzed above, the 

deformation observations from 2003 to 2010 over the three active volcanoes in Unimak 

can be summarized as follows:  

Although Westdahl Volcano is still inflating, its average LOS velocity over coherent 

areas is now less than 1cm/yr. This is much smaller than the approximate rate of 2cm/yr 

from 1998 to 2001 [Mann and Freymueller, 2003]. The point source model inversion 

indicates a magma source 3.5 km northeast of Westdahl peak with an inflation source 

center at approx. 7.0 km below sea level. The location agrees well with the previous GPS 

studies from 1998 to 2001 [Mann and Freymueller, 2003]. The volume change time 

series shows a clear slowing of inflation at Westdahl since 1998. Our result supports the 

model proposed by Lu et al. [2003] that the magma refilling rate of Westdahl can be 

modeled by an exponentially decaying function. However, a single exponential function 

does not fit all the data from the 1990s to 2010. Our results also suggest that the slowing 

of volume change rate with time of Westdahl is characterized by two noticeable pauses at 

2006 and 2009 where only little magma was added into the volcano system. While 

consistent with the GPS results, the source model location estimated in this study differs 

from previous InSAR results published in [Lu et al., 2003]. This difference also impacts 

the temporal model of volcanic change. It is necessary to study other geological or 

geophysical data to confirm and understand if this discrepancy is caused by a shift of the 

volcano source from underneath Westdahl peak to approx. 3.5 km north of it, or if the 

difference between the estimates can be explained by other reasons. Also, one should also 
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re-examine the historical SAR data [Lu et al, 2003] and SAR acquisitions used in this 

study to jointly estimate the change of volcano source parameters in time. 

The step-linear rate model fit the volume change estimates very well. Together with 

the previous study on the volume change [Lu et al., 2003], we can consider a scenario of 

magma refilling between any two eruptions of Westdahl (Figure 3.10): after an eruption 

stops, the volcano source begins to refill in pulses, producing several longer term 

exponentially decaying processes.  

The motion field over Fisher caldera is more consistent and linear with time, and 

subsidence has continued with a maximum LOS velocity of approx. 16 mm/year. This 

result has been confirmed through both PSI InSAR and SBAS InSAR techniques, which 

are both in good agreement with historical GPS results from 1998 to 2001 [Mann and 

Freymueller, 2003]. This suggests that the volcano pressure source underneath the Fisher 

caldera is stable and causes continuous deformation. Mann and Freymueller [2003] 

suggest that the subsidence and contraction over the center of the Fisher caldera can be 

explained by a historical magma both degassing and cooling, which can be modeled by 

rectangular dislocation source at shallow depth. Our results support this conclusion.   

Shishaldin Volcano has a more active eruption record compared to the other two 

volcanoes discussed above, however with a puzzling lack of deformation. A previous 

attempt to use the InSAR technique at Shishaldin volcano was not able to detect 

significant deformation [Moran et al., 2006], which suggests a fast re-filling system and 

shallow magma source. However, the deformation detected in regions east of Shishaldin 

(approx. 15 km away) and north of Fisher caldera (the Tugamak range, approx. 30 km 

away) contain some deformation signals, also confirmed by GPS measurements after 

2008 [UNAVCO, 2013]. They are also temporally correlated to Shishaldin eruption. At 

the current time, we do not have enough information to conclude if these signals are due 

to a deep volcanic pressure source underneath Shishaldin, nor do we have enough 

information to explain the absence of a deformation signal around Shishaldin peak. 
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3.8 Summary and Conclusions 

We present a study that is using advanced satellite radar interferometry methods for 

long-term volcano monitoring at Unimak Island, Alaska. An advanced time series InSAR 

technique was developed by integrating an external numerical weather prediction model 

with PSI Interferometry techniques to optimally mitigate atmospheric artifacts. The PSI 

reconstructed velocity map was compared to SBAS processed results, and the PSI 

deformation time series were compared to both historical and current GPS time series 

measurements. The results demonstrate that this InSAR method is able to mitigate 

atmospheric signals with high quality and improve the quality of the reconstructed 

deformation time series.  

The PSI-derived deformation fields are used for geophysical interpretation for three 

active volcanoes, namely Westdahl, Fisher and Shishaldin. The conclusions listed below 

can be made from our quantitative study.  

(1) Westdahl volcano is still inflating but at a lower rate than in the period before 2001. 

The study confirms the magma source location suggested by a previous GPS study 

[Mann and Freymueller, 2003] and is approximately 3.5 km north of Westdahl peak. 

Its magma source can be described by a Mogi model, whose volume change is 

varying in an exponentially decaying manner. Although this confirms the descriptions 

made in previous literature [Lu et al., 2003], our study hypothesizes that a single 

exponential function is insufficient to model its volume change through the full time 

span after its eruption in 1991 through the end of our study period in 2010.   

(2) Fisher Caldera continues subsiding with a linear and constant rate since the 1990s that 

is caused by its historical magma source degassing.  

(3)     Shishaldin volcano shows no observable deformation signals near its peak. However, 

deformation fields more than 30 km away from Shishaldin peak on the Tugamak 

range and approx. 15 km towards the east of Shishaldin are observed. However, the 

source of those movements is not clear. Further studies on Shishaldin and these 

regions are suggested. 
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Figure 3.1 The location of the three studied volcanoes, Westdahl, Fisher and Shishaldin, 

and historical/current GPS sites in Unimak Island with shade relief topographic map as 

background. The satellite line-of-sight (LOS) direction and flight direction (azimuth) are 

denoted on the middle-bottom. The GPS observation sites between 1998 and 2001 [Mann 

and Freymueller, 2003] are denoted by black squares from south to north they are SCAP, 

WFAR, WESE, WESN, WPOG, WEFC, FC01, FC03, FC02, FC05, FC04; the ones that 

have records after 2008 are denoted by black circles with white filling, from the west to 

the east circle markers filled with white color denote GPS sites AC10, AV25, AV24, 

AV27, AV29, AV26, AV35, AV36, AV39, AV37, AV38, AV40 and AV34.  

N 
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Figure 3.2 Deformation time series from 2003 to 2010, reconstructed from PSI data 

processing, all the values referenced to the average deformation of the all point stack. 
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 (a) velocity map from PSI processing       (b) velocity map from SBAS processing 

Figure 3.3 Velocity map provide from both PSI and SBAS method (x-axis-right point to east; 

y-axis-up to north) 

 

N 

(a) (b) 
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Figure 3.4 Subsidence (displacement in millimeters) observed in the center of Fisher 

caldera, from 2003 to 2010; SBAS is the result derived from Small Baseline Subset 

method and PS is the one from Persistent Scatterer Interferometry. 
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Figure 3.5 Shift in velocity (mm/year) computed from GPS and PSI with different spatial 

reference frame. 
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(a) AC10 

 
(b) AV24 

 
(c) AV25 

 
(d) AV26 

 
(e) AV27 

 
(d) AV29 

Figure 3.6 Comparison of GPS and PSI LOS motion time series measurements around 

Westdahl; x-axes date format is mm/dd/yyyy. 

(a) (b) 

(c) (d) 

(e) (f) 
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(a) AV34 
 

(b) AV35 

(c) AV36 (d) AV37 

(e) AV38 (f) AV39 

(g) AV40 (h) AV34 with 70 days filter 

Figure 3.7 Comparison of GPS and PSI LOS motion time series measurements close to 

Shishaldin; x-axes date format is mm/dd/yyyy. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 3.8 The result of point source model inversion results: the horizontal location and 

predicted annual inflation is plotted over background shaded relief topography; x (point 

to south) and y (point to east) axes are in kilometers with origin at upper left; the 

displacement references to origin. 

N 
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(a) Modeling of cumulative volume change with exponential decaying function 

 

(b) Modeling of cumulative volume change with step linear function 

Figure 3.9 Volume change estimates and temporal model; x-axes are the averaged time 

interval within every year and reference July 25, 2003. The dashed line is the best fit of 

exponential decay model and step linear model 

(a) 

(b) 
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Figure 3.10 Magma refilling processing after an eruption of Westdahl volcano. Black 

curve sketch of the overall cumulative volume change over time. The dashed gray lines 

denote the rest period in magma refilling that leads to a change of ∆V velocity.  
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Table 3.1 Single master interferogram information 

No. Date B  [m] Bt [day] fDC [Hz] varaps [rad2] 

1 June 20, 2003 -660 -1540 294 0.58 

2 July 25, 2003 -775 -1505 254 0.09 

3 Aug. 29, 2003 -258 -1470 218 0.62 

4 June 04, 2004 -69 -1190 179 0.32 

5 July 09, 2004 -521 -1155 185 0.30 

6 Aug. 13, 2004 -626 -1120 167 10.57 

7 Sep. 17, 2004 427 -1085 187 0.26 

8 Oct. 22, 2004 -94 -1050 235 1.29 

9 June 24, 2005 106 -805 160 0.29 

10 July 29, 2005 -56 -770 211 0.21 

11 Sep. 02, 2005 405 -735 211 1.14 

12 Oct. 07, 2005 -687 -700 258 4.00 

13 June 09, 2006 -674 -455 207 0.52 

14 July 14, 2006 342 -420 224 0.14 

15 
Sep. 07, 2007 

(master) 
0 0 0 0 

16 July 18, 2008 -261 315 229 0.24 

17 Aug. 22, 2008 -58 350 223 0.46 

18 Sep.26, 2008 -728 385 205 0.23 

19 Aug. 07, 2009 -404 700 222 0.58 

20 Sep. 11, 2009 186 735 219 0.13 

21 July 23, 2010 -721 1050 229 0.82 

22 Aug. 27, 2010 -373 1085 228 0.54 
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Table 3.2 GPS velocity (mm/year) in LOS direction during 1998 to 2001 and PSI 

velocity during 2003 to 2010; a GPS LOS uncertainty is computed from its 3D 

uncertainties in one sigma; b PSI uncertainty is the standard deviation of the velocities at 

selected points. 

Site  Lat. Lon. GPS V-LOS a PSI V-LOS b 
PSI V-LOS 
corrected 

No. 
PSI 

Mean 
distance [m] 

SCAP 54.4 -164.74 5.3 ± 4.7 1.2 ± 0.5 1.3 ± 0.5 3 131 

WESE 54.54 -164.54 5.0 ± 5.6 4.8 ± 0.1 4.9 ± 0.1 3 246 

WESN 54.57 -164.58 19.9 ± 5.6 5.4 ± 0.5 5.4 ± 0.5 4 216 

WPOG 54.6 -164.68 2.2 ± 3.7 1.3 ± 0.2 1.4 ± 0.2 2 430 

WFAR 54.53 -164.78 1.3 ± 3.7 -0.3 ± 0.6 -0.2 ± 0.6 2 99 

WEFC 54.61 -164.54 10.3 ± 3.8 2.5 ± 0.5 2.6 ± 0.5 2 235 

FC01 54.62 -164.44 -3.8 ± 5.6 -1.9 ± 0.6 -1.8 ± 0.6 3 219 

FC02 54.68 -164.37 -11.6 ± 3.8 -11.7 ± 0.6 -11.6 ± 0.6 4 33 

FC03 54.65 -164.34 -11.1 ± 2.8 -10.7 ± 0.7 -10.6 ± 0.7 5 138 

FC04 54.74 -164.32 -2.8 ± 3.8 -3.6 ± 0.4 -3.5 ± 0.4 4 236 

FC05 54.69 -164.42 6.6 ± 4.7 -2.9 ± 0.03 -2.8 ± 0.03 2 74 
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Table 3.3  Statistical analysis of the displacement residuals from PBO GPS and PSI in the 

overlap dates; residuals computed from GPS minus PSI. Locations of GPS sites can be 

found in Figure 3.1.  

Site 
name Lat. Long. 

Height 
[m] 

Points 
No. 

Mean 
distance 

[m] 

Residual offset [mm] Residual SD [mm] 
Opt. 
Win. 70days 

Opt. 
Win. 70days 

AC10 54.52 -164.89 170.45 3 115.61 0.77 0.76 2.74 2.78 

AV24 54.59 -164.75 481.72 4 60.77 0.08 0.28 4.78 4.98 

AV25 54.53 -164.78 651.94 3 78.19 6.00 5.87 6.55 6.43 

AV26 54.57 -164.58 577.59 2 103.23 11.46 11.67 12.26 12.44 

AV27 54.49 -164.72 977.91 3 413.48 0.67 0.13 3.01 3.46 

AV29 54.47 -164.59 971.88 2 887.67 0.88 0.59 5.40 5.40 

AV34 54.72 -163.71 636.38 2 366.69 0.41 -0.27 8.95 11.56 

AV35 54.85 -164.39 646.98 4 357.12 4.30 4.32 6.12 6.36 

AV36 54.77 -164.13 648.40 3 36.02 0.20 -0.04 7.70 7.84 

AV37 54.71 -164.00 796.03 3 312.40 3.64 3.84 5.06 5.97 

AV38 54.83 -163.78 492.29 3 29.58 2.74 2.23 5.14 4.91 

AV39 54.81 -164.00 797.38 2 522.42 -0.71 -1.93 5.16 6.28 

AV40 54.64 -163.74 413.94 2 589.40 6.79 6.83 8.56 9.36 
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Table 3.4  Time series of volcano source model inversion result from 2004 to 2010 with 

fixed horizontal location only; sd. denotes Standard deviation; ∆Volume denotes volume 

change; EW denotes East-West direction; SN denotes South-North direction. 

 2004 2005 2006 2007 2008 2009 2010 
Depth (km) 10.70 5.00 5.27 7.88 8.67 8.81 9.64 

Depth sd. (km) 0.92 0.31 0.30 0.28 0.25 0.28 0.29 

∆Volume  (106 m3) 10.62 9.34 9.85 17.61 24.86 26.21 36.47 

∆Volume sd. (106 m3) 1.73 0.24 0.26 0.70 0.93 1.10 1.66 

Static-residual (mm) -7.62 0.58 7.83 1.24 -1.89 2.87 16.46 

EW slope (mm/km) 0.24 0.00 -0.16 0.16 0.50 0.27 -0.25 

SN slope (mm/km) 0.18 0.02 -0.17 -0.11 -0.22 -0.24 -0.37 

Center point residual 
(mm) 

2.08 0.99 0.38 2.53 4.50 3.59 2.43 
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Table 3.5 Time series of volcano source model second inversion with fixed depth at 7 km 

and fixed horizontal location; sd. denotes Standard deviation; ∆Volume denotes volume 

change; EW denotes East-West direction; SN denotes South-North direction. 

  2004 2005 2006 2007 2008 2009 2010 
∆Volume  (106 m3) 5.49 11.31 11.68 14.73 18.72 18.75 22.55 

∆Volume sd. (106 m3) 0.43 0.51 0.49 0.46 0.48 0.54 0.65 

Static-residual (mm) -9.26 1.77 8.93 -0.08 -3.49 -0.19 11.19 

EW slope (mm/km) 0.27 0.01 -0.15 0.18 0.50 0.31 -0.17 

SN slope (mm/km) 0.23 -0.04 -0.22 -0.06 -0.15 -0.14 -0.21 

Center point residual 
(mm) 

2.10 0.98 0.38 2.54 4.51 3.62 2.49 
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Chapter 4 Conclusion and Future Work 

4.1 Conclusions  

Motivated by the need to improve current radar remote sensing techniques, especially 

radar interferometry (InSAR), for long term monitoring and geodetic studies, this study 

focused on the development of InSAR techniques and geophysical applications on 

optimizing the quantity and quality of deformation signals extracted from InSAR time 

series stacks to facilitate volcano monitoring and the study geophysical signatures. 

Specifically, the focus was on developing methods of mitigating atmospheric artifacts in 

interferograms by combining auxiliary atmospheric delay maps derived by Numerical 

Weather Prediction (NWP) models with advanced time-series InSAR processing scheme 

models for volcano long term monitoring.  

In the first chapter, statistics produced by the atmospheric delay maps have been 

studied quantitatively and extensively. NWP models are widely seen as a promising tool 

for the mitigation of atmospheric delays as they can provide knowledge of the 

atmospheric conditions at SAR imageries acquisition times. However, there was an 

absence of thorough statistical analysis of using NWP productions in radar signal 

correction. The first chapter provided a quantitative analysis of the accuracy of 

operational NWP products for signal delay correction in satellite radar geodetic remote 

sensing. The study focused on the temperate, subarctic and Arctic climate regions due to 

a prevalence of relevant geophysical signals in these areas. The operational High 

Resolution Rapid Refresh over the Alaska region (HRRR-AK) model [ARSC, 2012], run 

by the Arctic Region Supercomputing Center (ARSC), was used and evaluated. Five test 

sites were selected over Alaska (AK), USA, covering a wide range of climatic regions 

that are commonly encountered in high latitude regions. The performance of the HRRR-

AK NWP model for explicitly correcting absolute atmospheric range delays of radar 

signals was assessed by comparing HRRR-AK simulations to radiosonde observations. 

The predicted accuracy of the HRRR-AK in atmospheric delay corrections was derived 

and calculated based on error propagation theory. From this study, it was concluded that 
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the HRRR-AK operational products are a good data source for correcting signal delays of 

spaceborne geodetic radar observations, if the geophysical signal to be observed is larger 

than 20mm. It was also concluded that these corrections can be performed with a 

statistically identical performance across all seasons. The residual errors after delay 

correction are largely due to the uncertainties of predicted atmospheric water vapor 

concentrations. 

In the second chapter, in order to detect subtle ground deformation, an advanced 

method was developed to find robust solutions to mitigate atmospheric phase delay 

distortions in SAR interferogram time series. NWPs were studied from a statistical point 

of view by analyzing the capability of the NWP in providing realistic information of 

atmospheric statistical properties. This was accomplished by comparing NWP derived 

and InSAR extracted atmospheric phase screens. The two main findings of this study 

include (1) NWPs are able to robustly predict statistical properties of atmospheric phase 

screens and (2) NWPs underestimate these statistical properties by a scaling factor that 

depends on the area’s surface topography but not on its climatic conditions. Based on 

these findings, a new concept for atmospheric mitigation was built that is using NWP-

derived statistical parameters to condition the design of an optimal atmospheric phase 

filter in time series InSAR processing. The proposed scheme was tested via synthetic data 

sets and its efficiency and convergent dependence was evaluated through Monte Carlo 

experiments, both of which suggest a reliable performance of the algorithm. The 

algorithm’s scheme is especially suitable for the applications with limited prior 

knowledge of the deformation signal. 

In the final chapter, seven years of satellite radar images over Unimak Island, Alaska, 

have been processed using advanced Persistent Scatterer Interferometry (PSI) techniques. 

The data processing integrated the Persistent Scatterer Interferometry method and 

auxiliary numerical predicted radar signal delay statistics to optimally reconstruct the 

deformation history. The study was focused on characterizing geophysical signatures 

over three active volcanoes, Westdahl, Fisher and Shishaldin on Unimak Island, all of 

which have been actively erupting or producing ground motion within recent decades. 
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Comparisons were made between the reconstructed deformation time series and GPS 

measurements (historical records from 1998 to 2001 [Mann and Freymueller, 2003] and 

current records from 2008 to 2010 [UNAVCO, 2013]). They have been used together for 

interpretation of geophysical activity on Unimak Island. The result shows that the derived 

deformation field series over Unimak Island matches well with the GPS geodetic records 

(see Section 3.5.1).  

Particularly, the volcano source model study was implemented for Westdahl to 

determine the model parameters of a Mogi source model. The result suggests that the 

horizontal location of the source center is approximately 3.5 km north of Westdahl peak 

with a depth of about 7.5 km below sea level, which agrees with the GPS result from 

Mann and Freymueller [2003] from 1998 to 2001. The volume change rate continued to 

slow down over time and is lower than that from previous studies for earlier periods [Lu 

et al., 2000; Mann and Freymueller, 2003]. The volume change time series fits well the 

exponential decaying model of volume change as proposed in a previous InSAR study 

[Lu et al., 2003], but a single exponential decay model cannot explain all time periods. 

The volume change at the Westdahl after its eruption in 1991 can be described through 

multiple exponential decaying functions. The Fisher caldera is deforming consistently 

and linearly in time. It has been subsiding with a maximum detected deformation velocity 

of approx. 16 mm/year in the LOS direction. Such activity is triggered by historical 

magma source degassing of its thermal system [Mann and Freymueller, 2003]. There was 

no evident deformation found near Shishaldin peak. Deformation signals east of 

Shishaldin peak and the Tugamak Range were detected, but the source of those 

movements is not clear.   

It is my hope that my research will not only contribute to the development of satellite 

SAR time series data processing, but also contribute to the long term monitoring of 

volcanoes in Alaska and to a better understanding of the processes of arc volcanism.  

4.2 Future Work and Improvements 

I can see several potential topics for future work and new research avenues based on 

my thesis work, as listed below. 
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(1) Conduct a further study on integrating operational Numerical Weather Prediction 

(NWP) products into the optimized atmospheric phase filter (OAPF) developed in 

Chapter 2. The NWP products studied in Chapter 2 were customized with a user-defined 

lateral spatial resolution of 1 km. If operational NWP products can be used directly, it 

will simplify the procedure for obtaining atmospheric delay statistics, e.g. no special 

knowledge would be required in running numerical weather forecast models, and the 

computational cost for creating atmospheric information could be reduced. However, the 

resolution of current operational NWP products is coarser than the customized runs used 

in the thesis. Hence, their performance needs to be assessed. For instance, current high 

resolution operational NWP products can provide atmospheric conditions hourly with a 3 

km lateral resolution, e.g. the High-Resolution Rapid Refresh (HRRR) [NOAA, 2012] for 

lower 48 US and HRRR for Alaska (HRRR-AK) [ARSC, 2012], used in Chapter 1. A 

preliminary study by Gong et al. [2011] showed that user-customized NWP products 

with 3 km spatial resolution were able to satisfy the linear correlation between NWP-

provided and InSAR-derived atmosphere spatial variance described in Chapter 2. Thus, a 

further in-depth study on integrating current operational NWP products with similar 

resolution condition into the OAPF is necessary. This study would provide the potential 

to develop a prototype time series InSAR (TS-InSAR) plug-in for atmospheric correction 

that can be directly used by end-users for various purposes, without requiring extensive 

experience in TS-InSAR data processing and/or weather modeling. 

(2) Apply the OAPF theory to the other TS-InSAR approaches. In the thesis, the 

OAPF was applied and tested with one of the TS-InSAR methods, the Persistent Scatterer 

SAR Interferometry (PSI) method. The OAPF algorithm can be modified to assist other 

deformation model-free TS-InSAR approaches, such as Small Baseline Subset (SBAS) 

InSAR methods. SBAS approaches have been applied to diverse applications and rely on 

different ground resolution elements as compared to PSI methods [Hooper et al., 2012]. 

The choice of PSI or SBAS is based on the conditions of ground scatterers in the study 

area, the number, type and distribution of available data sets, and the application purpose. 
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Hence, integrating OAPF into current SBAS would potentially extend the usefulness of 

the OAPF and improve the current SBAS algorithms. 

(3) Integrate the GPS measurements and PSI results for the overlapping time period, 

2008 to 2010 for a joint source model inversion at Westdahl volcano. A proper weighting 

scheme of the GPS and PSI deformation data needs to be determined for a joint inversion 

of these two data sets. For example, researchers have optimally combined GPS and 

InSAR measurements by considering both the spacing of GPS networks and deformation 

signal characteristics [Wei et al., 2010]. The GPS measurements contain three 

dimensional deformation measurements at a limited number of locations, while InSAR 

measurements provide deformation signals at coherent targets with a much higher spatial 

density, but in the line-of-sight direction only. Hence, I expect a joint inversion would 

improve the accuracy of volcanic source parameter estimation of Westdahl. For instance, 

the inversion would rely less on the initial bounds setting of the ramp parameters, given 

InSAR measurements are contaminated by slope-ramp residuals while GPS records are 

not.  

(4) A further study on the region east of Shishaldin volcano and the Tugamak range is 

necessary. As concluded in Chapter 3, the source of the deformation in these two regions 

is unclear. Although detected deformation signals appear to be correlated in time with the 

Shishaldin eruption in 2004, the region around Shishaldin peak lacks observable 

deformation signals. Given the high activity Shishaldin volcano, e.g. with 1 eruption (in 

2004) and 9 periods of lesser activity since 2000 [Alaska Volcano Observatory, 2009], a 

continuing study combining all available geodetic measurements (e.g., from current SAR 

missions and continuous GPS) and other geological or geophysical observations, e.g. the 

seismic data, is needed.   
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