382 research outputs found

    Opportunistic Information Dissemination in Mobile Ad-hoc Networks: adaptiveness vs. obliviousness and randomization vs. determinism

    Full text link
    In this paper the problem of information dissemination in Mobile Ad-hoc Networks (MANET) is studied. The problem is to disseminate a piece of information, initially held by a distinguished source node, to all nodes in a set defined by some predicate. We use a model of MANETs that is well suited for dynamic networks and opportunistic communication. In this model nodes are placed in a plane, in which they can move with bounded speed, and communication between nodes occurs over a collision-prone single channel. In this setup informed and uninformed nodes can be disconnected for some time (bounded by a parameter alpha), but eventually some uninformed node must become neighbor of an informed node and remain so for some time (bounded by a parameter beta). In addition, nodes can start at different times, and they can crash and recover. Under the above framework, we show negative and positive results for different types of randomized protocols, and we put those results in perspective with respect to previous deterministic results

    A Distributed Routing Algorithm for Internet-wide Geocast

    Get PDF
    Geocast is the concept of sending data packets to nodes in a specified geographical area instead of nodes with a specific address. To route geocast messages to their destination we need a geographic routing algorithm that can route packets efficiently to the devices inside the destination area. Our goal is to design an algorithm that can deliver shortest path tree like forwarding while relying purely on distributed data without central knowledge. In this paper, we present two algorithms for geographic routing. One based purely on distance vector data, and one more complicated algorithm based on path data. In our evaluation, we show that our purely distance vector based algorithm can come close to shortest path tree performance when a small number of routers are present in the destination area. We also show that our path based algorithm can come close to the performance of a shortest path tree in almost all geocast situations

    Comparison among Different Routing Protocols of Vehicular Ad Hoc Networks

    Get PDF
    To improve highway transport security VANET Vehicular Ad Hoc Network is used which is a developing technology incorporating ad hoc network cellular technology and wireless LAN VANETs are different from other type ad hoc networks by their cross network constructions node association features and new application setups The approach of an effective routing protocol for VANETs is vital as VANETs show various distinctive networking research challenges In this paper we discuss the research challenges of routing in VANETs and compare recent routing protocols of VANET

    FAR: Face-Aware Routing for Mobicast in Large-Scale Sensor Networks

    Get PDF
    This paper presents FAR, a Face-Aware Routing protocol for mobicast, a spatiotemporal variant of multicast tailored for sensor networks with environmental mobility. FAR features face-routing and timed-forwarding for delivering a message to a mobile delivery zone. Both analytical and statistical results show that, FAR achieves reliable and just-in-time mes-sage delivery with only moderate communication and memory overhead. This paper also presents a novel distributed algorithm for spatial neighborhood discovery for FAR boot-strapping. The spatiotemporal performance and reliability of FAR are demonstrated via ns-2 simulations

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy

    Design and evaluation of two geocast protocols for vehicular ad-hoc networks

    Get PDF
    Vehicular ad-hoc networks (VANETs) offer a large number of new potential applications. One of the envisioned applications is of course Internet access, which can be provided with the help of some roadside basestations. Many of the applications benefit from multi-hop relaying of information, thus requiring a routing protocol. Characteristics unique to VANETs (such as high mobility and the need for geographical addressing) make many conventional ad hoc routing protocols unsuitable. In this paper we design and evaluate two different, so called, geocast protocols for VANETs. One protocol is designed for fast communication across a large area. The purpose of the other protocol is to provide a routing service for a future reliable transport protocol (enabling Internet applications). We evaluate the performance of the protocols using realistic network and traffic models

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Providing over-the-horizon awareness to driver support systems

    Get PDF
    Vehicle-to-vehicle communications is a promising technique for driver support systems to increase traffic safety and efficiency. A proposed system is the Congestion Assistant [1], which aims at supporting drivers when approaching and driving in a traffic jam. Studies have shown great potential for the Congestion Assistant to reduce the impact of congestion, even at low penetration. However, these studies assumed complete and instantaneous availability of information regarding position and velocity of vehicles ahead. In this paper, we introduce a system where vehicles collaboratively build a so-called TrafficMap, providing over-the-horizon awareness. The idea is that this TrafficMap provides highly compressed information that is both essential and sufficient for the Congestion Assistant to operate. Moreover, this TrafficMap can be built in a distributed way, where only a limited subset of the vehicles have to alter it and/or forward it in the upstream direction. Initial simulation experiments show that our proposed system provides vehicles with a highly compressed view of the traffic ahead with only limited communication
    corecore