56,454 research outputs found

    An Improved Corpus Comparison Approach to Domain Specific Term Recognition

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Topic-based mixture language modelling

    Get PDF
    This paper describes an approach for constructing a mixture of language models based on simple statistical notions of semantics using probabilistic models developed for information retrieval. The approach encapsulates corpus-derived semantic information and is able to model varying styles of text. Using such information, the corpus texts are clustered in an unsupervised manner and a mixture of topic-specific language models is automatically created. The principal contribution of this work is to characterise the document space resulting from information retrieval techniques and to demonstrate the approach for mixture language modelling. A comparison is made between manual and automatic clustering in order to elucidate how the global content information is expressed in the space. We also compare (in terms of association with manual clustering and language modelling accuracy) alternative term-weighting schemes and the effect of singular value decomposition dimension reduction (latent semantic analysis). Test set perplexity results using the British National Corpus indicate that the approach can improve the potential of statistical language modelling. Using an adaptive procedure, the conventional model may be tuned to track text data with a slight increase in computational cost

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    Deep Dialog Act Recognition using Multiple Token, Segment, and Context Information Representations

    Get PDF
    Dialog act (DA) recognition is a task that has been widely explored over the years. Recently, most approaches to the task explored different DNN architectures to combine the representations of the words in a segment and generate a segment representation that provides cues for intention. In this study, we explore means to generate more informative segment representations, not only by exploring different network architectures, but also by considering different token representations, not only at the word level, but also at the character and functional levels. At the word level, in addition to the commonly used uncontextualized embeddings, we explore the use of contextualized representations, which provide information concerning word sense and segment structure. Character-level tokenization is important to capture intention-related morphological aspects that cannot be captured at the word level. Finally, the functional level provides an abstraction from words, which shifts the focus to the structure of the segment. We also explore approaches to enrich the segment representation with context information from the history of the dialog, both in terms of the classifications of the surrounding segments and the turn-taking history. This kind of information has already been proved important for the disambiguation of DAs in previous studies. Nevertheless, we are able to capture additional information by considering a summary of the dialog history and a wider turn-taking context. By combining the best approaches at each step, we achieve results that surpass the previous state-of-the-art on generic DA recognition on both SwDA and MRDA, two of the most widely explored corpora for the task. Furthermore, by considering both past and future context, simulating annotation scenario, our approach achieves a performance similar to that of a human annotator on SwDA and surpasses it on MRDA.Comment: 38 pages, 7 figures, 9 tables, submitted to JAI

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation
    • …
    corecore