64 research outputs found

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems

    On Multiscale Algorithms for Selected Applications in Molecular Mechanics

    Get PDF

    The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

    Get PDF
    The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity

    Structured Eigenvalue Problems

    Get PDF
    Most eigenvalue problems arising in practice are known to be structured. Structure is often introduced by discretization and linearization techniques but may also be a consequence of properties induced by the original problem. Preserving this structure can help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and efficiency of an eigenvalue computation. The purpose of this brief survey is to highlight these facts for some common matrix structures. This includes a treatment of rather general concepts such as structured condition numbers and backward errors as well as an overview of algorithms and applications for several matrix classes including symmetric, skew-symmetric, persymmetric, block cyclic, Hamiltonian, symplectic and orthogonal matrices

    A rational SHIRA method for the Hamiltonian eigenvalue problem

    Get PDF
    The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency

    Preconditioned Krylov solvers for structure-preserving discretisations

    Full text link
    A key consideration in the development of numerical schemes for time-dependent partial differential equations (PDEs) is the ability to preserve certain properties of the continuum solution, such as associated conservation laws or other geometric structures of the solution. There is a long history of the development and analysis of such structure-preserving discretisation schemes, including both proofs that standard schemes have structure-preserving properties and proposals for novel schemes that achieve both high-order accuracy and exact preservation of certain properties of the continuum differential equation. When coupled with implicit time-stepping methods, a major downside to these schemes is that their structure-preserving properties generally rely on exact solution of the (possibly nonlinear) systems of equations defining each time-step in the discrete scheme. For small systems, this is often possible (up to the accuracy of floating-point arithmetic), but it becomes impractical for the large linear systems that arise when considering typical discretisation of space-time PDEs. In this paper, we propose a modification to the standard flexible generalised minimum residual (FGMRES) iteration that enforces selected constraints on approximate numerical solutions. We demonstrate its application to both systems of conservation laws and dissipative systems
    corecore