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1 Introduction

The analysis of conical domains with polyhedral corners reveals that the solution to a given
boundary value problem with smooth data might not be smooth in the sense of Sobolev
regularity; it is composed of a singular and a regular part. The specific structure of the
solution to elliptic boundary value problems was studied by Kondrat’ev (1967). He showed
that, under certain conditions, the solution can be expressed by an asymptotic series with
members of the form

|x|α
s∑

k=0

1

k!
(log |x|)kus−k(x/|x|)

in a neighbourhood of the conical point, where the so-called singular exponent α is an
eigenvalue of an operator pencil, u0 is the corresponding eigenelement and u1, . . . , us are
the generalized eigenelements corresponding to α. The terms r := |x| and x/|x| denote the
distance to the corner and the projection of x to the unit sphere, respectively.

We are, in particular, interested in the boundary value problem for the Laplace operator
and the linear elasticity problem near polyhedral corners and search solutions of the form

U = |x|αu(x/|x|). (1)

It is well-known that the determination of α and u leads to a quadratic eigenvalue problem.
In the case of the Laplace problem, a substitution allows to reduce the corresponding
eigenvalue problem to a linear eigenvalue problem for the Laplace-Beltrami operator with a
symmetric spectrum. For the linear elasticity problem, the reduction to a linear eigenvalue
problem is not possible, but the spectrum of the corresponding eigenvalue problem has a
considerable structure, see Leguillon (1995); Kozlov, Maz’ya, and Roßmann (2000); Apel,
Sändig, and Solov’ev (2002b). These spectral properties allow an efficient computation
of eigenpairs and therefore of the corner singularities. Engineers use the knowledge of
the corner singularities, for instance, to predict the onset of cracks in brittle material, see
Leguillon (1995); Leguillon and Sanchez-Palencia (1999); Leguillon (2002).

In the analysis community, it is common to apply a Mellin transformation for the
deduction of the eigenvalue problem, see Kufner and Sändig (1987). Alternatively, the
structure (1) of the solution can be directly inserted into the given problem. A good
overview is given by Kozlov, Maz’ya, and Roßmann (2000). We concentrate on the second
way and follow the ideas of Leguillon (1995). We could not find a reference, where the
detailed deduction of the eigenvalue problems is given; usually the main ideas are merely
outlined, see Beagles (1987); Leguillon (1995); Apel, Sändig, and Solov’ev (2002b). This
is why we develop the eigenvalue problems corresponding to the Laplace and the linear
elasticity problems step by step in this paper. But this is not the only purpose of this
paper.

To use the approach (1) for the solution U , we have to parametrize a ball centered at the
corner with the radial variable r (distance from the origin) and spherical parameters ξ1, ξ2.
The question is, how to choose ξ1 and ξ2. It lies in the nature of spherical domains to use
spherical coordinates, as it was done, for instance, by Leguillon (1995) and Apel, Sändig,
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and Solov’ev (2002b). The difficulties caused by the singularity of this parametrization
are known and require a careful usage, see Mu (1996); Layton (2002); Apel and Pester
(2004). From the numerical point of view, other parametrizations might be preferable, for
example, a stereographic projection (Fichera (1975); Steger (1983)) or the projection of a
refined icosahedron onto the sphere (Baumgardner and Frederickson (1985); Mu (1996)).
Unfortunately, they also produce difficulties somewhere; the stereographic projection pro-
duces an infinite parameter domain and it is not clear how a subdomain of an icosahedron
has to look like so that arbitrary subdomains of the sphere can be treated. We refer to
Apel and Pester (2004) for a more detailed discussion of this problem.

The essence of this paper is that we leave the specific choice of the parametrization
open to the user and use a general approach to present the deduction of the eigenvalue
problems associated with the Laplace and the linear elasticity problems. This allows for a
continuation of the (numerical) analysis of the eigenvalue problems in the same generality.
Furthermore, we dealt with the necessity of the symmetry properties of the elasticity
tensor. As a byproduct we detected that some of these properties – although accepted
among engineers and claimed in many standard books on continuum mechanics and linear
elasticity – are not only unnecessary, but also sometimes invalid or should at least be
handled with care. We demonstrate this in an example.

Section 2 is of introductory nature; we give an overview of nomenclature in differential
geometry and tensor calculus. We summarize the terms that are essential for our purposes.
Details can be found in any standard book on differential geometry (e.g. Peschl (1973);
Schöne (1987)) or tensor calculus (e.g. Leipholz (1968); de Boer (1982)). In Sections 3 and
4, we derive the eigenvalue problems that are associated with the Laplace and the linear
elasticity problems. The spectra of both eigenvalue problems have a symmetric structure
which can be exploited in numerical algorithms for a fast computation of the eigenvalues.
We show this for the linear elasticity problem by proving important properties of the
sesquilinear forms that define the corresponding eigenvalue problem. In Section 4.2, we
analyse the assumptions that are used for the analysis of the linear elasticity problem and
discuss their necessity and validity.

Throughout the paper, we write scalars in italic type, vector functions in underlined
italic type and special vectors (or points) in boldface roman type.

2 Spherical nomenclature and tensor calculus

2.1 Covariant and contravariant tensor bases

We consider the three-dimensional space R3. Each point X ∈ R3 can be represented by
three parameters ξ1, ξ2, ξ3:

X = X(ξ1, ξ2, ξ3).

The covariant and the contravariant tensor bases are given by gi, gi, respectively:

gi :=
∂

∂ξi

X and gi with gi · gj = δij, i = 1, 2, 3.
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The gradient and the Laplace operator are given by

∇ =
3∑

i=1

gi ∂

∂ξi

and ∆ = ∇ · ∇.

2.2 Parametrization of the unit ball

Let x(ξ1, ξ2) be any parametrization of a subset of the unit sphere S2 ⊂ R3, i.e., let
‖x(ξ1, ξ2)‖ = 1 for all (ξ1, ξ2) in a given parameter domain G ⊂ R2. Any vector X ∈ R3

is then represented by the three parameters ξ1, ξ2, ξ3, where ξ3 = r describes the radial
variable (or distance from the origin). Hence, X = X(ξ1, ξ2, ξ3) = r · x(ξ1, ξ2).

For abbreviation, we write x,i instead of ∂x/∂ξi. The covariant tensor basis reads

gi = rx,i (i = 1, 2) and g3 = x.

Note that x⊥x,i (that is x · x,i = 0) for i = 1, 2, since ‖x‖2 = x · x = 1.
The contravariant tensor basis {gi}3

i=1 satisfies

gi · gj = δij and g3 = g3 = x. (2)

We use the index S to indicate that we restrict our considerations to the unit sphere
(r = 1):

gi
S := gi(ξ1, ξ2, 1) = rgi(ξ1, ξ2, r), i = 1, 2.

For a point x = x(ξ1, ξ2) ∈ S2, the (spherical) gradient of u is given by

∇Su :=
2∑

i=1

∂u

∂ξi

gi
S . (3)

Let gij := gi · gj be the so called first metric fundamental terms and let gij := gi · gj,
i, j = 1, 2, 3. We define the 2× 2-matrices

G := (gij)
2
i,j=1 and G̃ := (gij)2

i,j=1.

We conclude that G = r2(x,i · x,j)
2
i,j=1 = r2GS , where

GS := (x,i · x,j)
2
i,j=1

is the matrix containing the first metric fundamental terms of the unit sphere. It turns
out that G̃ = G−1 = 1

r2 G
−1
S . We denote the elements of G−1

S by gij
S .
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2.3 Volume and surface elements

The volume element dΩ is given by dΩ = |[g1,g2,g3]| dξ1 dξ2 dξ3, where [·, ·, ·] denotes the
scalar triple product. Since g3‖g1 × g2 and ‖g3‖ = 1, we have g3 = ±(g1 × g2)/‖g1 × g2‖.
Hence,

|[g1,g2,g3]| = |(g1 × g2) · g3| = (g1 × g2) ·
(g1 × g2)

‖g1 × g2‖
= ‖g1 × g2‖ = r2‖x,1 × x,2‖,

and therefore
dΩ = r2 dS dr, where dS := ‖x,1 × x,2‖ dξ1 dξ2

is the surface element of the unit sphere.

2.4 Tensor calculus

2.4.1 First- and second-order tensors

A tensor is a multilinear form over a vector space V over R equipped with fixed bases. We
consider only three-dimensional vector spaces.

The first-order tensors are the vectors themselves, once a basis {bi}3
i=1 in V is chosen.

They can be written as linear combinations of the basis vectors bi:

τ =
3∑

i=1

τibi.

Usually, real coefficients τi are sufficient. For the application in linear elasticity, however,
complex coefficients are necessary, see Section 4. The (inner) product of two first-order
tensors is given by

τ · σ =
( 3∑

i=1

τibi

)
·
( 3∑

j=1

σjcj

)
:=

3∑
i,j=1

τiσj(bi · cj),

where · in the last sum denotes the usual inner product of vectors in R3.
Second-order tensors are linear combinations of pairs of basis vectors, in general

τ =
3∑

i,j=1

τijbicj,

where {bi}3
i=1 and {ci}3

i=1 are two fixed bases in the vector space V . A bilinear form over
V is given by

u · τ · v =
( 3∑

i=1

uibi

)
·
( 3∑

k,h=1

τkhckdh

)
·
( 3∑

j=1

vjej

)
:=

3∑
i,j,k,h=1

uivjτkh(bi · ck)(dh · ej),
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where u, v are first-order tensors and where τ is a second-order tensor. For second-order
tensors, we define the binary operator ·

· by

τ ·
· σ =

( 3∑
i,j=1

τijbicj

)
·
·

( 3∑
k,h=1

σkhdkeh

)
:=

3∑
i,j,k,h=1

τijσkh(bi · eh)(cj · dk).

By analogy, tensors and products of higher order can be introduced.

2.4.2 The vector product of tensors

The ‘vector’ product for tensors is well-defined, see, for example, de Boer (1982). For our
purposes, we need only the vector product of first-order tensors which equals the usual
vector product, possibly with complex coefficients:

τ × σ =
( 3∑

i=1

τibi

)
×

( 3∑
j=1

σjcj

)
=

3∑
i,j=1

τiσj(bi × cj),

where {bi}3
i=1 and {ci}3

i=1 are bases in R3. Obviously, the properties

τ × σ = −(σ × τ), (c τ)× σ = τ × (c σ) = c (τ × σ)

are satisfied also for complex tensors τ , σ.

2.4.3 The transposed tensor

Let τ =
∑3

i,j=1 τijbicj be a second-order tensor. Such as for matrices, the transposed

tensor τ> should fulfil the equality

u · τ · v = v · τ> · u

for all first-order tensors u, v. One easily checks that this is true, if

τ> =
3∑

i,j=1

τijcjbi.

Using the definition of the product of second-order tensors, one readily verifies that

τ ·
· σ = σ ·

· τ = τ> ·
· σ> and τ> ·

· σ = σ> ·
· τ. (4)

We denote the transposed conjugate complex tensor by τH :

τH := τ> =
3∑

i,j=1

τ ijcjbi.

We say that the tensor τ is real, if τij = τ ij for any real bases {bk}, {ck} of R3. Then
τH = τ>.
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3 The Laplace problem

Let X = X(ξ1, ξ2, ξ3) be a point in R3 with the radial variable ξ3 = r = ‖X‖ (distance to
the origin). We consider a conical domain K ⊂ R3 and its intersection SK with the unit
sphere, so that

K = {X = X(ξ1, ξ2, r) ∈ R3 | r > 0, x = x(ξ1, ξ2) = X/‖X‖ ∈ SK}.

We consider the homogeneous Dirichlet problem for the Laplace operator

∆U = 0 in K, U = 0 on ∂K \ {0}. (5)

Note that U ≡ 0 is not the only solution, because we consider an infinite cone. If ∂K = ∅,
that is, SK = S2, we omit the boundary condition. The function U is a real-valued scalar
function mapping from K to R. Its gradient is a first-order tensor. We write the function
U = U(X) as U = U(ξ1, ξ2, r), where we omit the introduction of a new symbol for U . As
stated in the introduction, the singular part of the solution has the form

U(X) = U(ξ1, ξ2, r) = rαu(ξ1, ξ2), (6)

see Kondrat’ev (1967) or Kozlov, Maz’ya, and Roßmann (2000). The function U has not to
be an L2-function in the common sense. For a discussion of the regularity of such functions,
see Kufner and Sändig (1987) and Kozlov, Maz’ya, and Roßmann (2000) for details.

Recall gi
S(ξ1, ξ2) = gi(ξ1, ξ2, r) = r−1gi(ξ1, ξ2, 1) for i = 1, 2 and

∇Su :=
2∑

i=1

∂u

∂ξi

gi
S ,

where the symbol ∇S is used to emphasize that this gradient lives only on the unit sphere.
We require that the function u and its spherical gradient ∇Su are quadratically inte-

grable with respect to the surface element dS and denote the space of all such functions
by H1(SK),

H1(SK) :=
{

u : SK → R
∣∣∣ ∫

SK
u2 +∇Su · ∇Su dS < ∞

}
.

We define the bilinear form

a(U, V ) :=

∫
K
∇U · ∇V dΩ

for U, V ∈ V0, where the functions in V0 vanish on ∂K and are smooth enough that the
integral in the bilinear form exists. We consider the weak formulation of problem (5): Find
U ∈ V0, such that for all V ∈ V0

a(U, V ) = 0.

For the validity of the divergence theorem on the sphere, we refer to work on spherical
calculus including Malvern (1969) and Freeden, Gervens, and Schreiner (1998).
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We search for solutions U of the form (6) and use a similar approach for the test
functions V :

V (X) = Φ(r)v(ξ1, ξ2),

where Φ ∈ C∞0 (R+) is a scalar function with bounded support. We conclude that

∇V (X) =
2∑

i=1

Φ(r)v,ig
i + Φ′(r)vg3 = Φ(r)r−1∇Sv + Φ′(r)v(ξ1, ξ2)x.

Consequently, using rα instead of Φ(r) and u instead of v, we obtain that

∇U = rα−1∇Su + αrα−1u(ξ1, ξ2)x

and therefore with (2)

∇U · ∇V = rα−2Φ(r)(∇Su · ∇Sv) + αrα−1Φ′(r)uv.

Finally, we have that

a(U, V ) =

∫ ∞

0

∫
SK

[
rα−2Φ(r)(∇Su · ∇Sv) + αrα−1Φ′(r)uv

]
r2 dr dS

=
( ∫ ∞

0

rαΦ(r) dr
)( ∫

SK
∇Su · ∇Sv dS

)
+

( ∫ ∞

0

rα+1Φ′(r) dr
)( ∫

SK
αuv dS

)
.

Partial integration and the assumption Φ ∈ C∞0 (R+) yield∫ ∞

0

rα+1Φ′(r) dr = −(α + 1)

∫ ∞

0

rαΦ(r) dr (7)

and consequently

a(U, V ) =
( ∫ ∞

0

rαΦ(r) dr
)
·
( ∫

SK
∇Su · ∇Sv − α(α + 1)uv dS

)
.

Since a(U, V ) = 0 in K, we divide by the integral over r and obtain∫
SK
∇Su · ∇Sv − α(α + 1)uv dS = 0.

This is the weak formulation of the eigenvalue problem

−∆Su = α(α + 1)u in SK, u = 0 on ∂SK, (8)

where ∆S = ∇S · ∇S denotes the Laplace operator of the unit sphere (also known as
Laplace-Beltrami operator). The substitution λ = α(α + 1) shows that this problem can
be reduced to a linear eigenvalue problem on the sphere.
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Remark 3.1. Another interesting substitution is λ = α + 1
2

although it seems to be a bit
peculiar. The weak formulation of the eigenvalue problem reads now

λ2

∫
SK

uv dS =

∫
SK
∇Su · ∇Sv +

1

4
uv dS

and satisfies all the assumptions summarized by Pester (2004) which ensure a symmetric
structure of the spectrum. This means, in particular, that with λ also −λ is an eigenvalue,
and therefore, the spectrum of problem (8) is symmetric with respect to the axis Reα = −1

2
.

4 The linear elasticity problem

4.1 The formulation with tensors

We consider a conical domain K ⊂ R3 and its intersection SK with the unit sphere S2 as
described in the previous section. But now, we study complex-valued vector functions U
and V which map from K to C3. The gradient of a vector function is a second-order tensor.

We define the sesquilinear form

a(U, V ) :=

∫
K

ε(V ) ·
· A ·

· ε(U) dΩ,

where A is a constant tensor of order four (the so-called elasticity tensor) and ε(·) is the
Green strain tensor,

ε(U) =
1

2

(
∇U + (∇U)>

)
(9)

based on the displacement function U . The term V denotes the conjugate complex vector of
V . We consider the generalized form of the homogeneous elasticity problem: Find U ∈ V0,
such that for all V ∈ V0

a(U, V ) = 0,

where the space V0 consists of vector functions that vanish on ∂K\{0} and that are smooth
enough so that the integral in the bilinear form exists. As in the previous section, it is not
required that U is an element of [L2(K)]3.

We require that the tensor A is real and defines an inner product on the space of
second-order tensors, that is, in particular,

τ> ·
· A ·

· σ = σ> ·
· A ·

· τ (10)

and
M1 (τH ·

· τ) ≤ τH ·
· A ·

· τ ≤ M2 (τH ·
· τ) (11)

for all (real or complex) second-order tensors τ , σ and for some positive constants M1, M2.
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Remark 4.1. It is sufficient to require the boundedness and ellipticity condition (11) only
for real second-order tensors, since in combination with (10) the complex version is a
consequence of the real one. This can be proven by applying the real version of (11) to the
real and imaginary parts of τ = τR + i τI : We have

τH ·
· A ·

· τ = τ>R
·
· A ·

· τR + τ>I
·
· A ·

· τI + i (τ>R
·
· A ·

· τI − τ>I
·
· A ·

· τR)

= τ>R
·
· A ·

· τR + τ>I
·
· A ·

· τI ,

which is, by assumption, bounded by τ>R
·
· τR + τ>I

·
· τI = τH ·

· τ .
Note that the restriction of (10) to real tensors τ , σ is also sufficient to imply the

validity of (10) for complex tensors.

Using (10) and (11), one easily verifies that the form

〈τ, σ〉A :=

∫
SK

σH ·
· A ·

· τ dS

defines an inner product on the space of all functions whose images are second order tensors
(and for which the integral exists).

As in the previous section, we consider X = X(ξ1, ξ2, ξ3) ∈ R3 with the radial variable
ξ3 = r (distance from the origin) and write

U = U(X) = U(ξ1, ξ2, ξ3).

The solutions U of physical interest can be expanded in terms rαu(ξ1, ξ2) with the
singular exponent α ∈ C, see the argumentation of Section 1, Kondrat’ev (1967) or Kozlov,
Maz’ya, and Roßmann (2000). We use a similar approach for V :

U(ξ1, ξ2, ξ3) = rαu(ξ1, ξ2), V (ξ1, ξ2, ξ3) = Φ(r)v(ξ1, ξ2),

where u, v ∈ [H1(SK)]3 are vector functions on the sphere and where Φ ∈ C∞0 (R+) is a
scalar function with bounded support.

With similar arguments as in the previous section, one obtains that

∇U = rα−1∇Su + αrα−1xu and ∇V = Φ(r)r−1∇Sv + Φ′(r)xv.

Here, ∇Su =
∑2

i=1 gi
S∂u/∂ξi and ∇Sv =

∑2
i=1 gi

S∂v/∂ξi are special second-order tensors,
defined on the unit sphere.

For abbreviation, we define

εS(u) :=
1

2
(∇Su + (∇Su)>), ε3(u) :=

1

2
(xu + (xu)>). (12)

Then, we get from (9) that

ε(V ) ·
· A ·

· ε(U) =
(
r−1Φ(r)εS(v̄) + Φ′(r)ε3(v̄)

)
·
· A ·

·

(
rα−1εS(u) + αrα−1ε3(u)

)
9



=
(
r−1Φ(r)εS(v̄)

)
·
· A ·

·

(
rα−1εS(u)

)
+

(
Φ′(r)ε3(v̄)

)
·
· A ·

·

(
rα−1εS(u)

)
+

(
r−1Φ(r)εS(v̄)

)
·
· A ·

·

(
αrα−1ε3(u)

)
+

(
Φ′(r)ε3(v̄)

)
·
· A ·

·

(
αrα−1ε3(u)

)
= rα−2Φ(r)

(
εS(v̄) ·

· A ·
· εS(u) + εS(v̄) ·

· A ·
· αε3(u)

)
+ rα−1Φ′(r)

(
ε3(v̄) ·

· A ·
· εS(u) + ε3(v̄) ·

· A ·
· αε3(u)

)
.

We introduce the sesquilinear forms

aSS(u, v) :=

∫
SK

εS(v̄) ·
· A ·

· εS(u) dS, aS3(u, v) :=

∫
SK

ε3(v̄) ·
· A ·

· εS(u) dS,

a3S(u, v) :=

∫
SK

εS(v̄) ·
· A ·

· ε3(u) dS, a33(u, v) :=

∫
SK

ε3(v̄) ·
· A ·

· ε3(u) dS.

With relation (7), one obtains

a(U, V ) =
( ∫ ∞

0

rαΦ(r) dr
)
·

·
(
aSS(u, v) + αa3S(u, v)− (α + 1)aS3(u, v)− α(α + 1)a33(u, v)

)
.

Since a(U, V ) = 0 in K, the division by the integral over r yields

aSS(u, v) + αa3S(u, v)− (α + 1)aS3(u, v)− α(α + 1)a33(u, v) = 0.

This is an operator eigenvalue problem for α and u. The analysis of the spectral properties
of this eigenvalue problem reveals that it is useful to substitute α by λ − 1

2
. Then, under

certain conditions, the spectrum is symmetric with respect to the real an the imaginary
axes; see Remark 4.8. We obtain the quadratic operator eigenvalue problem for λ, u: Find
(λ, u) ∈ C× [H1(SK)]3, such that for all v ∈ [H1(SK)]3

λ2a33(u, v)− λ(a3S(u, v)− aS3(u, v))

= aSS(u, v)− 1

2
(a3S(u, v) + aS3(u, v)) +

1

4
a33(u, v).

Substituting

m(u, v) := a33(u, v),

g(u, v) := aS3(u, v)− a3S(u, v),

k(u, v) := aSS(u, v)− 1

2
(a3S(u, v) + aS3(u, v)) +

1

4
a33(u, v),

we obtain the quadratic operator eigenvalue problem

λ2m(u, v) + λg(u, v) = k(u, v). (13)

10



Definition 4.2. Let H0(SK) be the space of all functions over SK that are quadratically
integrable with the spherical surface element. Recall that H1(SK) was the space of all
functions whose derivatives are quadratically integrable over SK as well.

We set H := [H0(SK)]3 and V := [H1(SK)]3. These spaces are equipped with the norms

‖u‖0 :=
( ∫

SK
(xu)H ·

· (xu) dS
)1/2

=
( ∫

SK
u · u dS

)1/2

and

‖u‖1 := =
(1

4
‖u‖2

0 + |u|21
)1/2

with |u|1 :=
( ∫

SK
(∇Su)H ·

· (∇Su) dS
)1/2

.

In addition, we introduce the norms

‖u‖H :=
( ∫

SK
ε3(u) ·

· ε3(u) dS
)1/2

and

‖u‖V :=
( ∫

SK
(εS(u)− 1

2
ε3(u)) ·

· (εS(u)− 1

2
ε3(u)) dS

)1/2

for u in H or V , respectively.

The factor 1/4 in the 1-norm was introduced for convenience by Apel, Sändig, and
Solov’ev (2002b) (although, accidentally placed in front of the 1-seminorm instead of the
0-norm). See also Kozlov, Maz’ya, and Roßmann (2000) for a definition of the norms ‖ · ‖0

and ‖ · ‖1 on curved surfaces. Due to (4), the H1-norm can also be written as

‖u‖1 =
( ∫

SK
(∇Su−

1

2
(xu))H ·

· (∇Su−
1

2
(xu)) dS

)1/2

, (14)

since (∇Su)H ·
· (xu) = 0 (or gi

S · g3 = 0 for i = 1, 2) and therefore the terms with the
minus sign vanish.

For our purposes, the norms ‖ · ‖H and ‖ · ‖V are useful, too, as they allow the proof
of important properties of our sesquilinear forms m, g and k. It turns out that the norms
‖ · ‖H and ‖ · ‖V are equivalent to the norms ‖ · ‖0 and ‖ · ‖1. Before we verify this, we will
show that the norms that we introduced are rightly called norms, this means that they
satisfy the norm properties. At least the positive definiteness of the V -norm is not obvious.

Lemma 4.3. The expressions ‖u‖H and ‖v‖V defined in Definition 4.2 satisfy the norm
properties.

Proof. The form 〈τ, σ〉 :=
∫
SK

σH ·
· τ dS defines an inner product and

√
〈τ, τ〉 is therefore

a norm. Together with the linearity of εS(u) and ε3(u), we can conclude all the norm
properties from this, apart from the positive definiteness concerning u.

11



It remains to show that ‖u‖H = 0 or ‖u‖V = 0 if and only if u ≡ 0. With (4), this can
be done easily for the H-norm:

‖u‖2
H =

1

2

∫
SK

(xu)H ·
· (xu) + (xu) ·

· (xu) dS

=
1

2

∫
SK

(x · x)(u · u) + (x · u)(x · u) dS

=
1

2

∫
SK

u · u + |x · u|2 dS = 0 ⇐⇒ u ≡ 0.

Concerning the V -norm, we consider the second-order tensor∇U = rα−1∇Su+αrα−1xu
for α = −1

2
and obtain that

ε(U) ·
· ε(U) =

1

4
(∇U + (∇U)>) ·

· (∇U + (∇U)>)

=
1

4

(
r−3/2[∇Su + (∇Su)> − 1

2
(xu + (xu)>)]

)
·
·

·
·

(
r−3/2[∇Su + (∇Su)> − 1

2
(xu + (xu)>)]

)
= r−3(εS(u)− 1

2
ε3(u)) ·

· (εS(u)− 1

2
ε3(u)).

The right hand side (except for the factor r−3) is contained in the V -norm and vanishes if
and only if the V -norm vanishes. Furthermore, the right hand side vanishes if and only if
the expression ε(U) ·

· ε(U) on the left hand side vanishes. We show that this happens if
and only if U ≡ 0, which is equivalent to u ≡ 0.

We know that ε(U) ·
· ε(U) = ε(U)H ·

· ε(U) vanishes if and only if ε(U) = 0. This
means that no deformations are applied, but only rigid body motions (translations and
rotations) are performed. Consequently U has the form U = c0 + c1 ×X, where c0 and c1

are constant vectors. Exploiting the structure of U and X, we obtain that

r−1/2u(x) = U = c0 + c1 × rx = c0 + r(c1 × x).

The comparison of the coefficients corresponding to the r-terms yields for r0 that c0 = 0,
for r1 that c1 × x = 0 for all x ∈ SK, which means c1 = 0, and for r−1/2 that u(x) ≡ 0.
Consequently, the positive definiteness of ‖u‖V can be concluded. Note that this is only
possible due to our special approach U = r−1/2u.

Theorem 4.4. The norms ‖u‖H and ‖u‖V are equivalent to the norms ‖u‖0 and ‖u‖1,
respectively, i.e., there are positive constants c0, C0 and c1, C1 so that

c0‖u‖0 ≤ ‖u‖H ≤ C0‖u‖0 and
c1‖u‖1 ≤ ‖u‖V ≤ C1‖u‖1.

12



Proof. The H-norm satisfies

‖u‖2
H =

1

2

∫
SK

u · u + |x · u|2 dS =
1

2
‖u‖2

0 +
1

2

∫
SK
|x · u|2 dS,

which we obtained already in the proof of Lemma 4.3. We know for the last addend that
0 ≤ |x · u|2 ≤ (x · x)(u · u) = u · u (recall x · x = 1). Hence, 1

2
‖u‖2

0 ≤ ‖u‖2
H ≤ ‖u‖2

0.
Concerning the V -norm, we set γ(u) := ∇Su− 1

2
xu and obtain from (4) that

‖u‖2
V =

1

4

∫
SK

(γ(u) + γ(u)>) ·
· (γ(u) + γ(u)>) dS

=
1

2

∫
SK

γ(u)> ·
· γ(u) + γ(u) ·

· γ(u) dS

=
1

2

∫
SK

γ(u)H ·
· γ(u) + γ(u) ·

· γ(u) dS.

To estimate the second addend, we consider the inner product 〈τ, σ〉 :=
∫
SK

σH ·
· τ dS;

in particular, we have that 〈τ, σ〉 ≤ |〈τ, σ〉| ≤
√
〈τ, τ〉

√
〈σ, σ〉 (Cauchy-Schwarz). We set,

in particular, τ := γ(u) and σ := γ(u)>. Note that 〈γ(u), γ(u)>〉 =
∫
SK

γ(u) ·
· γ(u) dS is

always real. Using (4), we obtain that∫
SK

γ(u) ·
· γ(u) dS = 〈γ(u), γ(u)>〉 ≤

√
〈γ(u), γ(u)〉

√
〈γ(u)>, γ(u)>〉

=
( ∫

SK
γ(u)H ·

· γ(u) dS
)1/2( ∫

SK
(γ(u)>)H ·

· γ(u)> dS
)1/2

=
( ∫

SK
γ(u)H ·

· γ(u) dS
)1/2( ∫

SK
γ(u)H ·

· γ(u) dS
)1/2

=

∫
SK

γ(u)H ·
· γ(u) dS.

Consequently, we conclude from (14) that

‖u‖2
V ≤

∫
SK

γ(u)H ·
· γ(u) dS = ‖u‖2

1.

For the estimate in the other direction, we employ Korn’s second inequality which states
that ∫

ΩK

ε(U) ·
· ε(U) ≥ CKorn‖U‖2

1,ΩK

for some open, bounded domain ΩK ⊂ R3 with Dirichlet boundary of positive measure. In
this case, we denote by H0(ΩK) and H1(ΩK) the usual Sobolev spaces equipped with the
usual Sobolev norms in [H0(ΩK)]3 and [H1(ΩK)]3:

‖U‖2
0 =

∫
ΩK

U · U dΩ, ‖U‖2
1 = ‖U‖2

0 +

∫
ΩK

∇UH ·
· ∇U dΩ.
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Note the difference to Definition 4.2, where the norms were defined only on a two-dimen-
sional manifold.

We show that in our case, where we assume that U has the structure r−1/2u, the
Dirichlet boundary condition can be omitted. To this end, we follow the proof of the
second Korn’s inequality in the book of Braess (1997).

Assume, the inequality is wrong. This means that for all constants c > 0, there is a
function U 6= 0 (possibly depending on c) so that 0 ≤

∫
ΩK

ε(U) ·
· ε(U) dΩ < c‖U‖2

1,ΩK
.

Without loss of generality, we can assume that ‖U‖1,ΩK = 1 (otherwise divide U and
thereby the inequality by ‖U‖1,ΩK). This means that we can construct a sequence Un with∫

ΩK

ε(Un) ·
· ε(Un) dΩ <

1

n
and ‖Un‖1 = 1.

Obviously, the sequence {Un} is bounded in the space [H1(ΩK)]3 and therefore possesses a
subsequence that converges in [H0(ΩK)]3, since H1(ΩK) is compactly embedded in H0(ΩK)
(Rellich’s theorem). For convenience, we denote this subsequence again by {Un} and obtain
that ‖Un − Um‖2

0 becomes arbitrarily small for large enough m and n. Form Korn’s first
inequality, we conclude that

C1,Korn‖Un − Um‖2
1

≤
∫

ΩK

(ε(Un)− ε(Um)) ·
· (ε(Un)− ε(Um)) dΩ + ‖Un − Um‖2

0

≤ 2

∫
ΩK

ε(Un) ·
· ε(Un) dΩ + 2

∫
ΩK

ε(Um) ·
· ε(Um) dΩ + ‖Un − Um‖2

0

≤ 2

n
+

2

m
+ ‖Un − Um‖2

0.

Since [H1(ΩK)]3 is complete, the sequence Un converges to some element U∗ ∈ [H1(ΩK)]3

with
∫

ΩK
ε(U∗)

·
· ε(U∗) dΩ = 0 and ‖U∗‖2

1 = 1.

We learnt already in the proof of Lemma 4.3 that ε(U) ·
· ε(U) vanishes if and only if

U = c0 + c1 ×X. We want to use Korn’s second inequality only in that case, where the
left hand side contains our V -norm, that is, where U has the structure U = r−1/2u. Note
that the integrals in the 0- and 1-norms exist for this structure, if we assume 0 6∈ ΩK. In
the proof of Lemma 4.3, we showed that U = c0 + c1 ×X finally yields U ≡ 0 which is a
contradiction to ‖U‖1 > 0.

This means that for all functions u ∈ V and U = r−1/2u Korn’s inequality is also valid,
if we have no Dirichlet boundary. In order to combine this fact with a relation between
the norms ‖u‖V and ‖u‖1, we take a closer look on the terms in Korn’s inequality.

Let ΩK ⊂ K be the three-dimensional domain

ΩK := {X = X(ξ1, ξ2, r) ∈ K | R1 < r < R2}

with fixed positive constants R1, R2. We require 0 < R1 < R2 < ∞ to ensure that the
integral CR1,R2 :=

∫ R2

R1
r−1 dr is finite.

14



Recall dΩ = r2 dS dr. We conclude that

CR1,R2‖u‖2
V =

∫ R2

R1

∫
SK

r−3(εS(u)− 1

2
ε3(u)) ·

· (εS(u)− 1

2
ε3(u)) r2 dS dr

=

∫
ΩK

ε(U) ·
· ε(U) dΩ ≥ CKorn‖U‖2

1,ΩK

≥ CKorn|U |21,ΩK
= CKorn

∫
ΩK

∇UH ·
· ∇U dΩ

= CKornCR1,R2

∫
SK

(∇Su−
1

2
(xu))H ·

· (∇Su−
1

2
(xu)) dS.

Dividing by CR1,R2 , we get from (14) that

‖u‖2
V ≥ CKorn‖u‖2

1,

where CKorn depends on R1 and R2. As we are free in the choice of R1 and R2, the constant
CKorn can be chosen as the supremum of all such constants for R1, R2 ∈ R+.

It is a known result (or follows from Rellich’s theorem) that the space V is compactly
embedded into the space H, if these spaces are provided with the norms ‖u‖0 and ‖u‖1.
Using Theorem 4.4, we obtain the following corollary.

Corollary 4.5. Let the spaces H and V be equipped with the norms ‖ · ‖H and ‖ · ‖V ,
respectively, as defined in Definition 4.2. Then, the space V is compactly embedded into
the space H.

We introduced the H- and the V -norms, because their structure goes better with the
structure of the sesquilinear forms that define the eigenvalue problem (13). In the following
theorem, we present important properties of the sesquilinear forms. Due to Theorem 4.4,
the norms can be replaced by the norms ‖ · ‖0 and ‖ · ‖1 with the effect that we cannot
determine all the constants in the estimates below.

Theorem 4.6. Let the spaces H and V be equipped with the norms ‖ · ‖H and ‖ · ‖V ,
respectively. Then, the sesquilinear forms m, g, k satisfy the following properties.

(i) The sesquilinear forms m and k are Hermitian, g is skew-Hermitian,

m(u, v) = m(v, u), g(u, v) = −g(v, u), k(u, v) = k(v, u).

(ii) Let d(u, v) := a3S(u, v)− 1
2
a33(u, v). Then g(u, v) = d(v, u)− d(u, v) and

M1‖u‖2
H ≤ m(u, u) ≤ M2‖u‖2

H for u ∈ H,

|m(u, v)| ≤ M2‖u‖H‖v‖H for u, v ∈ H,

M1‖u‖2
V ≤ k(u, u) ≤ M2‖u‖2

V for u ∈ V ,

|k(u, v)| ≤ M2‖u‖V ‖v‖V for u, v ∈ V ,

|d(u, v)| ≤
√

m(u, u)
√

k(v, v) for u ∈ H, v ∈ V ,

|d(u, v)| ≤ M2‖u‖H‖v‖V for u ∈ H, v ∈ V ,

where M1 and M2 are the constants in the positive definiteness assumption (11).
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Proof. The relations

aSS(u, v) = aSS(v, u), aS3(u, v) = a3S(v, u), a33(u, v) = a33(v, u),

are obvious from (10) and the definitions of the forms aSS , aS3, a3S , a33, since ε3 and εS are
symmetric tensors. Assertion (i) and the representation of g in (ii) are simple consequences.

The first assertion for m(u, u) =
∫
SK

ε3(u) ·
· A ·

· ε3(u) dS =
∫
SK

ε3(u)H ·
· A ·

· ε3(u) dS
in (ii) follows from (11). Consequently, m defines an inner product on H and the Cauchy-
Schwarz inequality yields the second assertion for m.

We know for k that

k(u, u) =

∫
SK

εS(u) ·
· A ·

· εS(u)

−1

2

(
ε3(u) ·

· A ·
· εS(u) + εS(u) ·

· A ·
· ε3(u)

)
+

1

4
ε3(u) ·

· A ·
· ε3(u) dS

=

∫
SK

(
εS(u)− 1

2
ε3(u)

)
·
· A ·

·

(
εS(u)− 1

2
ε3(u)

)
dS

=

∫
SK

(
εS(u)− 1

2
ε3(u)

)H
·
· A ·

·

(
εS(u)− 1

2
ε3(u)

)
dS.

and obtain the boundedness and ellipticity properties for k from (11) and from the Cauchy-
Schwarz inequality. On page 9, we defined the inner product 〈τ, σ〉A =

∫
SK

σH ·
· A ·

· τ dS.
The Cauchy-Schwarz inequality implies

|〈τ, σ〉A| ≤
√
〈τ, τ〉A

√
〈σ, σ〉A

We choose τ := ε3(u) and σ := εS(v)− 1
2
ε3(v) and conclude from the symmetry properties

of the tensors ε3 and εS that

|d(u, v)| = |〈τ, σ〉A| ≤
√

m(u, u)
√

k(v, v).

The second estimate for d follows from the estimates for m and k.

Remark 4.7. Replacing ‖u‖H and ‖u‖V by ‖u‖0 and ‖u‖1, respectively, we obtain exactly
the properties that were already written down for a special case (spherical coordinates)
by Apel, Sändig, and Solov’ev (2002b). Nevertheless, there is a small discrepancy: the
derivation in the cited paper is not correct; they involve sesquilinear forms whose structures
differ from ours, but obtain the same constants as we do in spite of other norms, because
invalid assumptions and conclusions were made. This mistake was caused by long standing
wrong symmetry assumptions on the elasticity tensor A in the standard literature on the
linear elasticity problem. We discuss details of this misapprehension in Section 4.2.

Remark 4.8 (Spectral symmetry properties). Considering the adjoint eigenvalue
problem, one readily verifies that if λ is an eigenvalue of (13), then so is −λ. If −λ and
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λ are eigenvalues, too, we speak about a Hamiltonian eigenvalue symmetry or a Hamilto-
nian structure of the eigenvalue problem, meaning that the eigenvalues are symmetric with
respect to the real and imaginary axes as is the case for Hamiltonian matrices.

The proof of the Hamiltonian structure of a given eigenvalue problem requires a closer
consideration of spectral operator theory and embedding theorems. Sufficient conditions that
guarantee the Hamiltonian structure were summarized by Pester (2004). A more general
framework including an introduction to the spectral theory for operator pencils is given
by Kozlov, Maz’ya, and Roßmann (2000). According to Pester (2004), the Hamiltonian
structure of problem (13) follows from Theorem 4.6.

The advantage of an eigenvalue problem with Hamiltonian structure is that its dis-
cretized form can be transformed into an eigenvalue problem of a Hamiltonian, skew-
Hamiltonian or symplectic matrix, so that adapted Arnoldi or Lanczos algorithms allow fast
computations of the eigenvalues and eigenelements. For details, we refer to Freund (1994);
Benner and Faßbender (1997, 2000); Mehrmann and Watkins (2001); Apel, Mehrmann,
and Watkins (2002a); Watkins (2004).

4.2 The symmetry and boundedness conditions on A

Let {bk}3
k=1 be a basis in R3 and let the fourth-order tensor A be developed four times

into this basis so that

A =
3∑

i,j,k,h=1

aijkhbibjbkbh.

We required that A is real, that is, aijkh ∈ R. Let {ck}3
k=1 and {dk}3

k=1 be two further
bases of R3 and τ =

∑3
i,j=1 τijcidj, σ =

∑3
i,j=1 σijcidj. The symmetry assumption (10)

can be written as
aijkh = ahkji, (15)

since then, exchanging the order of summation, one verifies that

τ> ·
· A ·

· σ =
3∑

p,q=1

τpqdqcp
·
·

3∑
i,j,k,h=1

aijkhbibjbkbh
·
·

3∑
s,t=1

σstcsdt

=
3∑

p,q,i,j,k,h,s,t=1

τpqaijkhσst(cp · bi)(dq · bj)(bh · cs)(bk · dt)

=
3∑

p,q,i,j,k,h,s,t=1

τpqahkjiσst(cp · bh)(dq · bk)(bi · cs)(bj · dt)

=
3∑

s,t=1

σstdtcs
·
·

3∑
i,j,k,h=1

aijkhbibjbkbh
·
·

3∑
p,q=1

τpqcpdq

= σ> ·
· A ·

· τ.
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We can choose {ck} = {dk} biorthogonal to {bk} and τ and σ so that τ = cpdq and
σ = csdt (i.e. τij = δipδjq and σij = δisδjt) for fixed p, q, s, t ∈ {1, 2, 3}. Thus, we obtain
that τ> ·

· A ·
· σ = apqts and σ> ·

· A ·
· τ = astqp, which yields the equivalence of (15) and

(10).
If we assume that {bk} = {ck} = {dk} is an orthonormal basis in R3, the boundedness

and ellipticity condition (11) can be written as

M1

3∑
i,j=1

|τij|2 ≤
3∑

i,j,k,h=1

aijkhτ ijτhk ≤ M2

3∑
i,j=1

|τij|2 ∀τij ∈ C.

These two conditions provide that 〈·, ·〉A defined on page 9 is an inner product. Since
in linear elasticity the generalized Hooke’s law σ = A ·

· ε with the (symmetric) Cauchy
stress tensor σ and the (symmetric) Green strain tensor ε is considered, it makes sense
from the mechanical point of view to require in addition that A also operates within the
subspace of symmetric second-order tensors, that is, symmetric tensors are mapped by A
to symmetric tensors.

Usually, the additional but unnecessary conditions aijkh = ajikh and aijkh = aijhk are
required, or rather incorrectly concluded from the relation σ = A ·

· ε, see Leipholz (1968);
Malvern (1969). Both tensors are symmetric (σij = σji, εkh = εhk) and allow the conclusion

σij =
3∑

k,h=1

aijkhεkh =
3∑

k,h=1

aijhkεhk =
3∑

k,h=1

aijhkεkh

!
= σji =

3∑
k,h=1

ajikhεkh.

Note that this neither implies aijkh = ajikh nor aijkh = aijhk although argued in several
articles on linear elasticity including the literature cited above. We can choose εkh = εhk =
1 for fixed k, h and zero for all other combinations, so that we merely obtain that

aijkh + aijhk = ajikh + ajihk. (16)

The latter relation is exactly what guarantees that symmetric tensors are mapped to sym-
metric tensors.

As correctly explained by Malvern (1969), we could assume that aijkh = aijhk =
1/2(aijkh+aijhk), since we have always the combination aijkhεkh+aijhkεhk = (aijkh+aijhk)εkh

in the sum; but this assumption can only be made, if we never apply A to unsymmetric
tensors. In particular, all skew-symmetric tensors would be mapped to the zero-tensor,
which is a contradiction to the positive definiteness of A. The relation aijkh = ajikh would
finally follow from aijkh = aijhk with (15).

It is legitimate to assume these symmetry properties if we never apply A to unsymmetric
tensors; but they are not true in general (see the example below) and might collide with
other assumptions. We found that a mistake caused by this discrepancy occurred in the
paper by Apel, Sändig, and Solov’ev (2002b)
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We omitted these additional symmetry assumptions, because they are unnecessary and
rather restrictive. Therefore, the sesquilinear forms defining the eigenvalue problem (13)
have a more sophisticated structure than, for example, in the papers by Leguillon (1995)
or Apel, Sändig, and Solov’ev (2002b).

Example 4.9. We consider the St. Venant–Kirchhoff material. The relation of the stress
and the strain tensors is then given by

σ = A ·
· ε = 2µε + λtr (ε)I.

This means that

A =
3∑

i,j,k,h=1

(2µgihgjk + λgijgkh)gigjgkgh

(recall gij = gi · gj = gji). Obviously, A is a fourth-order tensor which satisfies our
symmetry property (15) and it also maps symmetric second-order tensors to themselves
because

aijkh + aijhk = 2µ(gihgjk + gikgjh) + 2λgijgkh = ajikh + ajihk.

The spare symmetry properties aijkh = ajikh and aijkh = aijhk, however, are not satisfied.

5 Conclusion

We studied elliptic boundary value problems near polyhedral corners. The computation
of the singularities of the corresponding solutions is related to the determination of the
eigenpairs of an associated eigenvalue problem which is defined on the surface of a ball
centered at the corner. Therefore, it is necessary to parametrize the ball. Each specific
parametrization, however, causes trouble in some detail of possible further analysis. This
is why we omitted a specification of the parametrization in our calculations so that all
results are valid in their generality and for all parametrizations of the sphere.

For two examples (the Laplace and the linear elasticity problems), we derived the
associated eigenvalue problems. Both have interesting spectral properties. Concerning
the linear elasticity problem, we introduced new norms in the Sobolev spaces [H0]3 and
[H1]3 that simplified the proof of important properties of the sesquilinear forms defining
the corresponding eigenvalue problem. These properties imply a symmetric structure of
the spectrum of this eigenvalue problem, so that adapted Lanczos and Arnoldi algorithms
allow a fast computation of the singularities.

We were able to show a relation between our norms and a strain tensor corresponding to
a carefully chosen displacement function. This trick allowed us to conclude that our norms
are equivalent to the norms with which the spaces [H0]3 and [H1]3 are usually equipped.
During the verification of our results, we revealed a long standing mistake in the literature
on linear elasticity, where arguable properties of the elasticity tensor are claimed. Although
acceptable in most situations, these properties are not always valid; we showed this in an
example for the St. Venant–Kirchhoff material.
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Steger, L. K., 1983. Sphärische finite Elemente und ihre Anwendung auf Eigenwert-
probleme des Laplace-Beltrami-Operators. Ph.D. thesis, Ludwig-Maximilian-Universität
München.

21



Watkins, D., 2004. On Hamiltonian and symplectic Lanczos processes. Lin. Alg. Appl. 385,
23–45.

22


