7 research outputs found

    Algorithms, Protocols & Systems for Remote Observation Using Networked Robotic Cameras

    Get PDF
    Emerging advances in robotic cameras, long-range wireless networking, and distributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic remote "observatories" that can allow groups of peoples, via the Internet, to observe, record, and index detailed activity occurred in remote site. Equipped with robotic pan-tilt actuation mechanisms and a high-zoom lens, the camera can cover a large region with very high spatial resolution and allows for observation at a distance. High resolution motion panorama is the most nature data representation. We develop algorithms and protocols for high resolution motion panorama. We discover and prove the projection invariance and achieve real time image alignment. We propose a minimum variance based incremental frame alignment algorithm to minimize the accumulation of alignment error in incremental image alignment and ensure the quality of the panorama video over the long run. We propose a Frame Graph based panorama documentation algorithm to manage the large scale data involved in the online panorama video documentation. We propose a on-demand high resolution panorama video-streaming system that allows on-demand sharing of a high-resolution motion panorama and efficiently deals with multiple concurrent spatial-temporal user requests. In conclusion, our research work on high resolution motion panorama have significantly improve the efficiency and accuracy of image alignment, panorama video quality, data organization, and data storage and retrieving in remote observation using networked robotic cameras

    Computer vision and optimization methods applied to the measurements of in-plane deformations

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

    Get PDF
    Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object’s shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning e↵ectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    A Novel Approach to Imaging using a Dual Field-of-View Sensor

    Get PDF
    Most modern aircraft, such as missile systems and unmanned aerial vehicles have limited size, weight, power and cost (SWaP-C) capability. As the defence budget for military forces such as the UK and US continue to shrink, the emphasis on SWaP-C continues to strengthen. Military forces require smart weapons capable of precision strike, with a priority on safety. System manufacturers understand these requirements and limitations, and in response, develop miniaturised systems and components and also aim to consolidate these, into a single miniaturised solution. The growth of remotely operated aircraft, offers an ever present need for better, cheaper imaging systems. In general, sensors and seekers tend to be the biggest contribution to the cost and weight of an aircraft. Often, multiple imaging systems are needed dependent on the operational requirements. In this thesis, a novel dual field-of-view imaging system/seeker is proposed, which uses a single imaging sensor to superimpose both a wide field-of-view and a narrow field-of-view image of the same scene, co-boresighted. This allows multiple operational requirements to function simultaneously. The wide field-of-view allows for continuous monitoring and surveillance of an area, whilst the narrow field-of-view enables target detection, identification and tracking capabilities. Secondly, this thesis proposes a novel image separation technique to facilitate the separation of the superimposed imagery, using only the geometric relationship between the two different field-of-views. The separation technique is then extended to operate over sequential frames (i.e. video), and to function with fixed cameras that exhibit (un)desired camera motions, such as vibrations or "jitter". The image quality of the separation technique is broadly analysed over a range of images with varying image characteristics and properties. A novel image quality metric (IQM) was also proposed in this thesis, and was used to analyse the image quality of the recovered images, and its performance compared to already available IQMs. Finally, the separation technique is enhanced to operate with motion cameras, which exhibit motions such as pan, tilt, zoom and rotate etc. The separation technique, in most cases, was found to provide image recovery, comparable to current image enhancement techniques, and moreover, found to be far more robust to errors in registration, compared to current techniques. Initial hardware designs for the dual field-of-view imaging system, designed in conjunction with Prof. Andy Harvey from the University of Glasgow and Dr. James Babbington from Qioptiq Ltd., a lens design and manufacturing company, has also been presented

    Perceptual data mining : bootstrapping visual intelligence from tracking behavior

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 161-166).One common characteristic of all intelligent life is continuous perceptual input. A decade ago, simply recording and storing a a few minutes of full frame-rate NTSC video required special hardware. Today, an inexpensive personal computer can process video in real-time tracking and recording information about multiple objects for extended periods of time, which fundamentally enables this research. This thesis is about Perceptual Data Mining (PDM), the primary goal of which is to create a real-time, autonomous perception system that can be introduced into a wide variety of environments and, through experience, learn to model the activity in that environment. The PDM framework infers as much as possible about the presence, type, identity, location, appearance, and activity of each active object in an environment from multiple video sources, without explicit supervision. PDM is a bottom-up, data-driven approach that is built on a novel, robust attention mechanism that reliably detects moving objects in a wide variety of environments. A correspondence system tracks objects through time and across multiple sensors producing sets of observations of objects that correspond to the same object in extended environments. Using a co-occurrence modeling technique that exploits the variation exhibited by objects as they move through the environment, the types of objects, the activities that objects perform, and the appearance of specific classes of objects are modeled. Different applications of this technique are demonstrated along with a discussion of the corresponding issues.(cont.) Given the resulting rich description of the active objects in the environment, it is possible to model temporal patterns. An effective method for modeling periodic cycles of activity is demonstrated in multiple environments. This framework can learn to concisely describe regularities of the activity in an environment as well as determine atypical observations. Though this is accomplished without any supervision, the introduction of a minimal amount of user interaction could be used to produce complex, task-specific perception systems.by Christopher P. Stauffer.Ph.D
    corecore