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Abstract

Motion segmentation is the process of dividing video frames into regions which have
different motions, providing a cut-out of the moving objects. Such a segmentation
is a necessary first stage in many video analysis applications, but providing an
accurate, efficient motion segmentation still presents a challenge.

This dissertation proposes a novel approach to motion segmentation, using the
image edges in a frame. Using edges, a motion can be calculated for each object.
Edges provide good motion information, and it is shown that a set of edges, labelled
according to the object motion that they obey, is sufficient to completely determine
the labelling of the whole frame, up to unresolvable ambiguities. The areas of
the frame between edges are divided into regions, grouping together pixels of similar
colour, and these regions can each be assigned to different motion layers by reference
to the edges. The depth ordering of these layers can also be deduced. A Bayesian
framework is presented, which determines the most likely region labelling and depth
ordering, given edges labelled with their probability of obeying each of the object
motions.

An efficient implementation of this framework is presented, initially for segment-
ing two motions (foreground and background) using two frames. The Expectation-
Maximisation algorithm is used to determine the two motions and calculate the
label probability for each edge. The frame is then segmented into regions. The best
motion labelling for these regions is determined using simulated annealing.

Extensions of this simple implementation are then presented. It is demonstrated
how, by tracking the edges into further frames, the statistics may be accumulated to
provide an even more accurate and robust segmentation. This also allows a complete
sequence to be segmented. It is then demonstrated that the framework can be
extended to a larger number of motions. A new hierarchical method of initialising
the Expectation-Maximisation algorithm is described, which also determines the
best number of motions.

These techniques have been extensively tested on thirty-four real sequences, cov-
ering a wide range of genres. The results demonstrate that the proposed edge-based
approach is an accurate and efficient method of obtaining a motion segmentation.

i





Acknowledgements

I have to thank my supervisor, Roberto Cipolla, for his guidance and inspiration, and

thanks go to all the members of the Vision group at CUED for their friendship and

for providing such an enjoyable and stimulating working environment. In particular,

I must thank Tom Drummond for countless discussions and periods of brain-bashing.

Without those, this work might well have taken a very different form.

The research described in this dissertation was funded by the EPSRC, with a

CASE award from AT&T Laboratories, Cambridge. I am indebted to Andy Hopper

and AT&T for their timely and generous support, both financial and technical. I

would like to thank Ken Wood for his encouragement and for being willing to read

drafts of this work from an early stage. Thanks also go to Dave Sinclair for ideas

and direction when starting this PhD.

My two colleges, Jesus and Robinson, have both provided additional funding, as

well as an inspirational surroundings.

iii





Declaration

This dissertation is the result of my own original work and does not include anything

done in collaboration with others, apart from where acknowledged in the text. It

has neither been submitted in whole nor in part for a degree at any other university.

It contains 117 figures and approximately 64,000 words, including appendices, bib-

liography, footnotes, tables and equations. The following publications were derived

from this work:

Conference presentations

P. Smith, T. Drummond and R. Cipolla. Edge tracking for motion segmen-

tation and depth ordering. In Proc. 10th British Machine Vision Conference,

volume 2, pages 584–593, Nottingham, September 1999.

P. Smith, T. Drummond and R. Cipolla. Motion segmentation by tracking

edge information over multiple frames. In Proc. 6th European Conference on

Computer Vision, volume 2, pages 396–410, Dublin, Ireland, June/July 2000.

P. Smith, T. Drummond and R. Cipolla. Segmentation of multiple motions

by edge tracking between two frames. In Proc. 11th British Machine Vision

Conference, volume 1, pages 342–351, Bristol, September 2000.

v





Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 What is motion segmentation? . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why do motion segmentation? . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Video coding and compression . . . . . . . . . . . . . . . . . . 2

1.2.2 Video indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Video interpretation and annotation . . . . . . . . . . . . . . 4

1.2.4 Other applications . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 A survey of motion estimation and segmentation 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Motion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The pixel-based approach . . . . . . . . . . . . . . . . . . . . 12

2.2.2 The feature-based approach . . . . . . . . . . . . . . . . . . . 16

vii



viii CONTENTS

2.2.3 Pixel vs feature-based methods . . . . . . . . . . . . . . . . . 19

2.3 Motion segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Motion field segmentation . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Layered motion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Layered motion extraction . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Enforcing spatial coherency . . . . . . . . . . . . . . . . . . . 26

2.3.5 Using intensity information . . . . . . . . . . . . . . . . . . . 26

2.3.6 The region merging approach . . . . . . . . . . . . . . . . . . 29

2.3.7 The depth of objects . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Edge-based motion segmentation 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Edges for motion estimation . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Edges and motion estimation . . . . . . . . . . . . . . . . . . 36

3.2.2 Edges and motion segmentation . . . . . . . . . . . . . . . . . 38

3.3 Edges and regions for motion segmentation . . . . . . . . . . . . . . . 41

3.3.1 Prior assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Conditions for a correct segmentation . . . . . . . . . . . . . . 42

3.3.3 Edge labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Region labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 Depth ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Unsolvable ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Missing occluding boundary . . . . . . . . . . . . . . . . . . . 46

3.4.2 No T-junctions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Bayesian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Parameters and maximum likelihood solution . . . . . . . . . 48

3.5.2 Estimating the motions Θ . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Estimating the labellings R and F . . . . . . . . . . . . . . . 50

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Implementation for two motions, two frames 55

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Finding edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Estimating motions from edges . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 The aperture problem . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Finding a match . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Motion models . . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS ix

4.3.4 Lie group formulation . . . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Solution by re-weighted least squares . . . . . . . . . . . . . . 66

4.4 Multiple motion estimation using EM . . . . . . . . . . . . . . . . . . 68

4.4.1 Dominant vs simultaneous multiple motion estimation . . . . 68

4.4.2 The Expectation-Maximisation algorithm . . . . . . . . . . . . 71

4.4.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.4 Expectation: Calculating edge probabilities. . . . . . . . . . . 74

4.4.5 Maximisation: Calculating motions . . . . . . . . . . . . . . . 79

4.4.6 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Finding regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Choice of segmentation scheme . . . . . . . . . . . . . . . . . 82

4.5.2 Voronoi seeded image segmentation . . . . . . . . . . . . . . . 83

4.6 Labelling regions and finding the layer order . . . . . . . . . . . . . . 85

4.6.1 Region probabilities from edge data . . . . . . . . . . . . . . . 86

4.6.2 Region prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.3 Solution by simulated annealing. . . . . . . . . . . . . . . . . 89

4.6.4 A word on probabilistic region labelling . . . . . . . . . . . . . 92

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Evaluation 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Test sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Qualitative and quantitative results . . . . . . . . . . . . . . . . . . . 96

5.4 Foreman sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Tennis sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Coastguard sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Car sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Ensemble results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.9 Comparative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.9.1 Pixel-based approaches . . . . . . . . . . . . . . . . . . . . . . 111

5.9.2 Region-based approaches . . . . . . . . . . . . . . . . . . . . . 114

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Extension to multiple frames 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Accumulating evidence: Continued tracking . . . . . . . . . . . . . . 120

6.2.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



x CONTENTS

6.2.3 Combining statistics . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Using cumulative statistics to segment a frame . . . . . . . . . . . . . 123

6.4 Templated segmentation of a sequence . . . . . . . . . . . . . . . . . 124

6.5 Deformable segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.1 Segmenting a new frame: Propagating edges . . . . . . . . . . 126

6.5.2 Accumulating evidence: Propagating sample points . . . . . . 128

6.5.3 Accumulating edge probabilities . . . . . . . . . . . . . . . . . 129

6.5.4 Continued deformable segmentation of a sequence . . . . . . . 131

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.1 Foreman sequence . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.2 Tennis sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6.3 Coastguard sequence . . . . . . . . . . . . . . . . . . . . . . . 139

6.6.4 Car sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6.5 Ensemble results . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 An application: Background mosaicing . . . . . . . . . . . . . . . . . 147

6.7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Extension to multiple motions 151

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Recursive Splitting EM . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.1 Initialising an extra model . . . . . . . . . . . . . . . . . . . . 153

7.2.2 Determining the best number of models . . . . . . . . . . . . 156

7.2.3 Implementation for edge-based motion segmentation . . . . . . 157

7.3 Region labelling under multiple motions . . . . . . . . . . . . . . . . 159

7.4 Global optimisation: EMC . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5 ‘One region’ constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Implementation overview . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7.3 Library sequence . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.7.4 Car & Van sequence . . . . . . . . . . . . . . . . . . . . . . . 168

7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



CONTENTS xi

8 Conclusion 173

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.3 Suggestions for further work . . . . . . . . . . . . . . . . . . . . . . . 175

8.4 A final word: Edges vs pixels . . . . . . . . . . . . . . . . . . . . . . 176

A Parameter estimation 179

A.1 Motion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.2 Least squares solution . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.3 M-estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.4 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.5 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B Maximum likelihood estimation via EM 187

B.1 The EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Estimation of mixture model parameters . . . . . . . . . . . . . . . . 188

B.2.1 Finding the weights c` . . . . . . . . . . . . . . . . . . . . . . 190

B.2.2 Finding the model parameters θ` . . . . . . . . . . . . . . . . 190

B.3 The M-stage for edge motion parameters . . . . . . . . . . . . . . . . 191

C The independence of sample points 193

C.1 Introduction: Edges and sample points . . . . . . . . . . . . . . . . . 193

C.2 Errors under different motions . . . . . . . . . . . . . . . . . . . . . . 193

C.2.1 The effect of assuming independence . . . . . . . . . . . . . . 194

C.3 Errors along an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D Complete multiple-frame results 197

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.1.1 Image sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.1.3 Presentation of results . . . . . . . . . . . . . . . . . . . . . . 198

D.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Bibliography 233

Author Index 249





List of Tables

4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Parameters used for Canny edge detection . . . . . . . . . . . . . . . 59

4.3 Planar transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 The hierarchy of two-dimensional transformations . . . . . . . . . . . 63

4.5 Motion estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 The EM algorithm for multiple motion estimation using edges . . . . 73

4.7 Multiple motion estimation . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Optimisation of region labelling and layer ordering . . . . . . . . . . . 89

4.9 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Percentage of pixels correctly segmented using two frames . . . . . . 110

6.1 EM initialisation for frames after the first two . . . . . . . . . . . . . 121

6.2 Deformable segmentation of a new frame . . . . . . . . . . . . . . . . 131

6.3 Percentage of pixels correctly segmented over multiple frames . . . . . 146

7.1 Recursive splitting EM . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Selecting the best number of motions: Minimum Description Lengths 166

A.1 M-estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.2 Matrix normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.1 Correlation of sample point distances under each motion . . . . . . . 194

xiii





List of Figures

1.1 Example of motion segmentation . . . . . . . . . . . . . . . . . . . . 2

1.2 Example edge-based segmentations from this dissertation . . . . . . . 7

2.1 Pixel-based motion estimation . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Feature-based motion estimation . . . . . . . . . . . . . . . . . . . . 16

2.3 Layered motion example sequence . . . . . . . . . . . . . . . . . . . . 23

2.4 Region merging example . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Image intensity and edges in a frame . . . . . . . . . . . . . . . . . . 37

3.2 A per-pixel motion labelling . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Segmented image regions . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Tracking and labelling edges . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Labelling regions from edges . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Labelling a T-junction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Unsolvable ambiguity: Missing occluding boundary . . . . . . . . . . 47

3.8 Unsolvable ambiguity: No T-junction . . . . . . . . . . . . . . . . . . 47

4.1 Foreman segmentation from two frames . . . . . . . . . . . . . . . . . 56

4.2 The aperture problem . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Edge tracking example . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Sample points in a frame . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Evaluating edge probabilities . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Edge statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



xvi LIST OF FIGURES

4.7 Sample point likelihood ratio . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Probability of a good match . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 EM convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Edge probabilities as EM converges . . . . . . . . . . . . . . . . . . . 81

4.11 Example region segmentation . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Region labelling solution with a flat prior . . . . . . . . . . . . . . . . 87

4.13 Region statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 Region prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Solutions under different layer orderings . . . . . . . . . . . . . . . . 90

4.16 Region labelling as simulated annealing converges . . . . . . . . . . . 90

4.17 Probabilistic region labelling . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Foreman sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Foreman segmentation from two frames . . . . . . . . . . . . . . . . . 98

5.3 Tennis sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Tennis segmentation from two frames . . . . . . . . . . . . . . . . . . 101

5.5 Coastguard sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Coastguard segmentation from two frames . . . . . . . . . . . . . . . . 103

5.7 Car sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Car segmentation from two frames . . . . . . . . . . . . . . . . . . . . 105

5.9 Examples from the AT&TV sequences . . . . . . . . . . . . . . . . . 107

5.10 Comparison with Wang and Adelson: FlowerGarden sequence . . . . . 112

5.11 Comparison with Ayer and Sawhney: FlowerGarden sequence . . . . . 112

5.12 Comparison with Weiss and Adelson: FlowerGarden sequence . . . . . 112

5.13 Comparison with Ayer and Sawhney: Tennis sequence . . . . . . . . . 113

5.14 Comparison with Elias: Tennis sequence . . . . . . . . . . . . . . . . 113

5.15 Comparison with Elias: Coastguard sequence . . . . . . . . . . . . . . 113

5.16 Comparison with Moscheni and Dufaux: Foreman sequence . . . . . . 115

5.17 Comparison with Moscheni and Dufaux: Tennis sequence . . . . . . . 115

5.18 Comparison with Dufaux et al. : Tennis sequence . . . . . . . . . . . 115

5.19 Comparison with Moscheni and Bhattacharjee: Tennis sequence . . . 116

5.20 Comparison with Bergen and Meyer: Foreman sequence . . . . . . . . 116

6.1 Detection of sample point occlusion . . . . . . . . . . . . . . . . . . . 122

6.2 Foreman sequence: Cumulative statistics . . . . . . . . . . . . . . . . 123

6.3 Templated segmentation of the Foreman sequence . . . . . . . . . . . 125

6.4 Templated segmentation of the Tennis sequence . . . . . . . . . . . . 125

6.5 Templated segmentation of the Car sequence . . . . . . . . . . . . . . 125



LIST OF FIGURES xvii

6.6 Propagation of edges to the next frame . . . . . . . . . . . . . . . . . 127

6.7 Propagation of sample points between frames . . . . . . . . . . . . . 128

6.8 Cumulative statistics for propagated edges . . . . . . . . . . . . . . . 130

6.9 Foreman segmentation of the next frame . . . . . . . . . . . . . . . . 133

6.10 Segmentation of the Foreman sequence . . . . . . . . . . . . . . . . . 135

6.11 Tennis segmentation of the next frame . . . . . . . . . . . . . . . . . . 137

6.12 Segmentation of the Tennis sequence . . . . . . . . . . . . . . . . . . 138

6.13 Coastguard segmentation of the next frame . . . . . . . . . . . . . . . 140

6.14 Segmentation of the Coastguard sequence . . . . . . . . . . . . . . . . 141

6.15 Car segmentation of the next frame . . . . . . . . . . . . . . . . . . . 143

6.16 Occluded sample points in the Car sequence . . . . . . . . . . . . . . 144

6.17 Segmentation of the Car sequence . . . . . . . . . . . . . . . . . . . . 144

6.18 Mosaic of the background to the Car sequence . . . . . . . . . . . . . 148

6.19 Mosaic of the background to the Simpsons sequence . . . . . . . . . . 149

7.1 Initialisation by splitting . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Initialising with too few models . . . . . . . . . . . . . . . . . . . . . 154

7.3 Fitting three motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Three-motion edge probabilities and region labels . . . . . . . . . . . 160

7.5 Constrained edge labels . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6 Overview of the EMC algorithm . . . . . . . . . . . . . . . . . . . . . 162

7.7 Example EMC solution . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.8 Implementation for multiple motions . . . . . . . . . . . . . . . . . . 165

7.9 Library sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.10 Library segmentation from two frames . . . . . . . . . . . . . . . . . . 167

7.11 Car&Van sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.12 Car&Van segmentation from two frames . . . . . . . . . . . . . . . . . 169

C.1 Markov chain transition probabilities. . . . . . . . . . . . . . . . . . . 196





CHAPTER 1

Introduction

1.1 What is motion segmentation?

Motion is an important cue in vision. Visual motion attracts the attention—it

identifies something that is happening, something that is changing. To a moving

observer, motion offers additional information since the relative motion between

the observer and objects identifies their spatial relationship to each other. In the

context of Computer Vision the analysis of the changes between two images of the

same scene, or across a sequence of video frames, is a prelude to many important

areas of research which try to recreate these human visual processes.

A segmentation of an image is a division into separate areas, usually to some

purpose, so that each different segment has a distinct meaning. A motion segmen-

tation is the division of a video frame into areas obeying different motions. Each

moving object in the scene should exhibit a different motion on the image plane of

a camera, and the aim is to cut-out each of these objects in the image. This divides

the image into semantically meaningful regions upon which higher-level analysis may

be performed.

Such a segmentation is illustrated in Figure 1.1, which shows an ideal segmenta-

tion of a sequence used throughout this dissertation. Here the man moves in front of

the background and so a motion segmentation would identify the area of the image

occupied by him as separate from the rest of the image. Having done this, these two

areas of the image can be analysed separately, or compared, in a range of different

applications.
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Figure 1.1: Example of motion segmentation. The man moves against the background,
and this relative motion is used to segment the image into two different regions. The
motion is determined for each region, and in this case is marked with an arrow (the
background is stationary).

1.2 Why do motion segmentation?

Motion segmentation is not an end in itself, but is an enabling technology, motivated

by a variety of different applications. A survey of the most common applications

is presented here. Video is increasingly being stored in digital form: produced by

portable digital ‘camcorders’; or recorded from broadcast television with a digital

recorder or a TV capture card in a personal computer;1 or downloaded from the

Internet. Many of the applications described below, using motion segmentation

techniques, are already beginning to leave the research laboratories and starting to

enter the marketplace.

1.2.1 Video coding and compression

The storage space occupied by digital video is a major concern, and some form of

compression is almost always required. A typical television signal contains 720×576

pixels at 25Hz, and so at a conservative 12 bits per pixel this uncompressed signal

requires a data rate of 124 million bits per second. By comparison, an audio compact

disc requires only 1.4 million bits per second. The capability to provide video on

CD-sized objects has required two innovations: Digital Versatile Discs (DVDs) with

1Digital video recorders are now commercially available, for example systems from TiVo (http:
//www.tivo.com) or ReplayTV (http://www.replaytv.com).
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a capacity 13 times greater than that of CDs; and video compression. DVD-Video

uses MPEG-2 compression [81, 99], which provides a compression ratio of around

40:1. Naturally, customers will continue to demand even higher quality for even less

bandwidth, and here motion segmentation can provide assistance.

Video compression is achieved by observing that successive frames in a video

sequence are usually very similar. The content of one frame can largely be predicted

by extrapolating from the previous frame and so, rather than store each frame in-

dividually, the next in a sequence may be encoded by describing just the changes

between the frames. Existing video compression schemes (e.g. MPEG-1 [80, 99] and

MPEG-2) are block-based—the image is segmented into a regular array of rectangles.

The motion of each block is described, and then any remaining pixel changes within

the block. Motion segmentation can help here because it enables usefully-shaped ar-

eas, i.e. the entire moving object, to be considered rather than arbitrary rectangular

blocks. This enables more sophisticated coding techniques to be applied.

One such technique is to provide a mosaic of the background—a single image of

the backdrop to the scene, made by stitching together the background region of each

frame [75, 121]. This may be coded once and then only the foreground objects and

residuals need to be coded per frame. This approach can in fact yield a higher quality

backdrop than that in the original sequence, since the information from the various

frames can be combined to make a super-resolution image of the background [77].

The MPEG-4 standard [82, 129] is designed to use this layered approach (background

plus foreground objects). It was initially designed for multimedia presentations, but

automatic motion segmentation techniques enable conventional videos to be encoded

using this standard.

The semantics of the scene may also be used to provide higher rates of com-

pression in cases where, perhaps, the overall frame quality is not as important as

representing some particular areas well. One example of this is video telephony over

low bandwidth links. In this case it is important to represent the speaker, partic-

ularly their head, at full frame-rate and high resolution, whereas the background

does not require this level of quality. A motion segmentation of the sequence can

direct the bandwidth to the areas where it is most required.

1.2.2 Video indexing

Once video compression has enabled a large number of videos to be stored on a per-

sonal computer, or on the World Wide Web, this introduces the additional problem

of searching this repository to find a particular video, or part of a video. Powerful
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tools exist to index and search text archives, most notably the World Wide Web

(using search engines such as Google or Alta Vista).2 The automatic retrieval of

images is an active research field, with many systems proposed, including IBM’s

‘QBIC’ [55] and Berkeley’s ‘Blobworld’ [34]. The aim of video indexing is to be able

to perform similar indexing and searching on video sequences.

Video indexing applications already exist which use text queries derived from

closed captions (e.g. Virage’s ‘VideoLogger’,3 and AT&T’s ‘AT&TV’ [98]), but the

real interest is in schemes which consider the image content. By performing a

motion segmentation of a frame, the moving objects and the background can be

analysed independently. A simple implementation can consider a single frame from

a sequence: queries can be posed in terms of the shape, colour or texture in exactly

the same way as for a query on a still image, only now they may be phrased as

properties of the background, or a foreground object.

The use of a mosaic of the background (as also used for image coding applica-

tions) is commonly proposed, for example in [57, 73]. By forming a single image

of the backdrop to the scene, this generates another still image which may be used

to identify the context of the scene. Perhaps more importantly, however, the fore-

ground objects’ frame-to-frame motions may be marked on this single image and

described against this common frame of reference (this is called either a ‘synoptic

frame’ [57], or a ‘synopsis mosaic’ [73]). Object motions and their interactions can

then form part of the video description. This mosaic representation also provides

an intuitive means of summarising and browsing through a sequence.

1.2.3 Video interpretation and annotation

The analysis of object motion, and of the interaction between different objects, is

an essential stage in providing a higher-level interpretation of the sequence. This is

useful not only for the purposes of indexing and retrieving a sequence, but also in

other expert systems.

There have been a number of systems developed for automatically annotating

(and commentating on) sports events, including soccer matches [3, 72, 161], Amer-

ican football [71], and basketball [120]. In a more serious domain, summarising

video-taped presentations has been considered [86]. A major commercial application

of motion analysis and interpretation techniques is surveillance, typically identify-

ing unusual behaviour. Example applications include traffic monitoring [32, 53], or

2See http://www.google.com and http://www.altavista.com
3http://www.virage.com.products/videologger.html
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interactions in car parks [114] or on university plazas [108]. A key element to all of

these applications is semantic event detection. This requires first identifying motion

events—changes in the motion of a foreground object, or the joining or splitting of

two areas with two different motions—and then inferring some meaning to these

events, labelling important incidents with some warning or commentary.

Not all of the authors referenced above present a complete system—many con-

centrate on the analysis after the motion segmentation, but all these systems require

the identification of the motions in the scene and the location and extent of each of

those motions. They all require a motion segmentation.

1.2.4 Other applications

One other application has already been mentioned, that of resolution enhancement.

A video sequence gives a series of views of the same object. If each of these similar

views can be identified and the relevant sections of the frames registered (by using the

known image motion to map them to a common co-ordinate frame), the combined

information can be used to generate an enhanced image [77]. A related application

is that of video restoration. Where a video film has become degraded, perhaps by

noise or something more severe, such as dirt or scratches, these errors must first

be detected (by comparison with the expected image predicted from neighbouring

frames), and then repaired by using the relevant areas from other frames [90, 100].

A further application is that of sequence interpolation, which is particularly

useful for frame-rate conversion. The European video standard is 25Hz, whereas in

Asia and North America it is 30Hz, and so to convert European videos for these

markets, 6 images need to be generated for each 5 images in the original. This

requires interpolating between most pairs of frames. If the image segmentation and

the segment motions are known for these frames, the appropriate fraction of each

motion may be applied to each segment. This approach may also be used to generate

slow motion sequences.

If a high-quality cut-out motion segmentation can be achieved, it can be used

in the video special effects industry as an alternative to the ubiquitous ‘blue screen’

which is currently used. The actors can be removed and placed in front of a new

background, regardless of the original background. This process is occasionally done

at present without a blue screen, by using a hand segmentation. Automatic motion

segmentation techniques can automate or semi-automate this process.
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1.3 Synopsis

1.3.1 Contributions

This dissertation concentrates on the initial motion segmentation problem, with the

emphasis on both providing an accurate cut-out of foreground objects and obtaining

this without excessive computation cost. To achieve this, a new approach is proposed

which uses only the edges in the image. The dissertation makes the following novel

contributions:

• The theory linking image edges and regions is developed. It is shown that

edges, and region reasoning, are both necessary and sufficient to determine a

complete segmentation, up to unsolvable ambiguities.

• A Bayesian approach to this new edge-based motion segmentation is derived.

• An implementation of this Bayesian edge-based motion segmentation tech-

nique is presented for the analysis and segmentation of two motions between

two frames.

• The segmentation implementation uses a new image segmentation scheme de-

veloped by Sinclair [130]. Its integration with a motion segmentation scheme

is novel, and an improvement has been made over the basic scheme.

• The use of multiple frames is advocated, to improve edge labels and resolve

ambiguities. A novel approach is presented which allows deforming objects

to be accurately segmented and to propagate, and accumulate, edge statistics

between frames.

• This implementation is extended to segment multiple motions. A novel ini-

tialisation stage for the EM algorithm is presented, which avoids local minima

and identifies the correct number of models (joint work with Tom Drummond

and Rob Fergus). The Expectation-Maximisation (EM) algorithm [43] is also

extended to include a constraint step for a global optimisation.

The implementations are tested on a wide range of video sequences, with excellent

results. Figure 1.2 highlights some of the best of these.
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Figure 1.2: Example edge-based segmentations from this dissertation. A selection of
results produced by the system described in this dissertation, taken from Chapter 6 and
Appendix D.
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1.3.2 Thesis outline

This dissertation is organised as follows:

Chapter 2 contains a survey of existing techniques. Motion estimation is intro-

duced, including both pixel- and feature-based techniques, and then a review

of motion segmentation schemes is presented. The literature shows that pixel-

based schemes dominate motion segmentation, despite feature-based schemes

also being effective for motion estimation. It indicates that the use of im-

age edges and regions is necessary for an accurate segmentation, and that an

approach using edge features would be robust and computationally efficient.

Chapter 3 presents the major contribution of this dissertation—the use of edges

for motion estimation and accurate layered motion segmentation. It is shown

that if the edges in the image are labelled according to their motions, this

is sufficient to label the entire image. The rest of the image is divided into

regions using a static segmentation of the frame, and the logical reasoning

which enables these regions to be labelled from the edges is developed. It is

shown that such reasoning is necessary for a complete segmentation, as this

enables the relative depth ordering to also be identified. A Bayesian framework

is presented which allows a maximum likelihood segmentation of the frame to

be performed.

Chapter 4 describes an implementation of the Bayesian framework developed in

the previous chapter. This novel algorithm segments a frame from a video se-

quence into two motions (foreground and background) using information from

two frames (the frame to be segmented, and the next in the sequence). Two

maximisation stages are required to find the Maximum Likelihood segmenta-

tion: this implementation uses Expectation Maximisation (EM) to find the

edge motions, and then simulated annealing to label image regions. Nonethe-

less, the implementation is efficient, segmenting a frame in a few seconds on

conventional hardware.

Chapter 5 evaluates the performance of the two-motion, two-frame implementa-

tion. Four test sequences are considered in detail, and results from a further

thirty sequences are also considered. A comparison with some other motion

segmentation schemes is also presented.

Chapter 6 extends the two-frame approach of the previous chapters to use infor-

mation from more frames. This improves the reliability of the edge labelling,
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resolves motion ambiguities, and enables the segmentation of a sequence of

frames. An important contribution is the means by which edges and motion

probabilities from previous frames can be propagated into the new frame to

assist both the motion estimation and segmentation.

Chapter 7 outlines how the implementation of the previous chapters can be ex-

tended to segment more than two motions. This requires the development of a

new robust initialisation scheme for EM (to avoid local maxima), together with

labelling constraints to resolve ambiguities. These constraints are integrated

into the EM loop to give an ‘EMC’ algorithm, which is also described. The

identification of the number of motions present, using the Maximum Descrip-

tion Length principle, is also performed as part of the initialisation scheme. It

is shown that the edge-based segmentation framework can be generalised to

segment a sequence containing any number of motions.

Chapter 8 contains a summary of the dissertation and presents avenues for further

research.





CHAPTER 2

A survey of motion estimation and

segmentation

2.1 Introduction

There is a large body of existing work on the subject of motion segmentation, and

on the wider issue of motion estimation—the measurement of motion in the image.

At some point in the process, all motion segmentation schemes must also determine

the motion in the scene, and in most cases the process is sequential: first motion

estimation, and then motion segmentation. This survey gives an overview of the

motion estimation process, and the different approaches available. The different

approaches to motion segmentation are then considered.

2.2 Motion estimation

Almost all work on image sequences begins by trying to find out how the image

changes with time, analysing how different elements in the frame move. This subject

of motion estimation has been considered by many authors over the past twenty

years; excellent reviews have been presented by S. M. Smith [135], and Barron et al.

[8], so this section discusses only the most popular techniques.

Motion estimation techniques fall into two broad categories, referred to here as

pixel-based and feature-based. Pixel-based schemes consider a minimisation of image
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quantities (typically image gradients) over every pixel in the image.1 This gives an

estimate of the motion of each pixel in the image (e.g. Figure 2.1). Feature-based

schemes concentrate on measuring the motion in areas where it can be measured

reliably (e.g. Figure 2.2, later in this chapter). This motion can then, if necessary,

be used to guide the estimation process in other regions of the image. There are

strong proponents of each approach in the literature; a recent debate on the subject

produced complementary papers from Torr and Zisserman [148] (pro-features) and

Irani and Anandan [74] (pro-pixels). A transcript of the debate may be found in

[152, pages 294–297].

In addition to two main approaches described above, the MPEG-1 and MPEG-2

video coding schemes [80, 81, 99] use a block-based approach to motion estimation.

Here, the image is arbitrarily divided up into small blocks (typically 16× 16 pixels).

For each block, a translational motion is estimated by making a search in the next

frame for the most similar block, as described by Jain and Jain [83]. A block-

based scheme only provides a coarse motion field, which is insufficient for motion

segmentation. In addition, the emphasis in these techniques is on obtaining the

best coding performance, rather than best representing the motion of the underlying

object. Block-based techniques are, however, used as an intermediate stage in some

pixel-based approaches, and these are described in the relevant parts of this chapter.

2.2.1 The pixel-based approach

The Brightness Change Constraint Equation

The starting point for most pixel-based techniques is the ‘brightness constancy con-

straint’ [65]. This makes the assumption that the intensity of points in the scene

only changes slowly over time. This is only strictly true for Lambertian surfaces

under time-invariant illumination, but is usually a satisfactory approximation.2 In

perhaps the best known work on pixel-based motion estimation, Horn and Schunk

[66] expressed this constraint by saying that, to first order, the rate of change of

intensity must be zero:
d

dt
I (x, y, t) = 0 (2.1)

1These schemes are commonly referred to in the literature as direct methods and their output
as optic flow. However, the precise definition of these terms varies from author to author, and so
in order to avoid confusion the term pixel-based will be the only one used in this dissertation.

2A Lambertian (or diffuse) surface is one which scatters light equally in all directions, so its
appearance depends only on the illumination, and not on the viewing direction.
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Figure 2.1: Pixel-based motion estimation. A motion field is computed across the whole
image using spatiotemporal image gradients. Smoothing is required to determine a rea-
sonable motion in areas of low gradient. (From Black and Anandan [17].)

which is accurate for small motions. They express this as the total derivative

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 (2.2)

or

Ixu + Iyv + It = 0 (2.3)

where (Ix, Iy) are the spatial derivatives of the image brightness, It is the differ-

ence between consecutive frames, and u(x, y) and v(x, y) are the components of

the motion. Equation (2.3) is commonly known as the brightness change constraint

equation (BCCE).

Equation (2.3) can be rewritten in vector form, using v = (u v)T ,

∇I · v = −It (2.4)

which highlights the problem with gradient based methods: that the BCCE only

provides a constraint on the component of motion perpendicular to the image gra-

dient, ∇I. This is an instance of the well-known ‘aperture problem’ [94], discussed

further in Section 4.2 and, as a result of this, the BCCE cannot on its own fully

determine the motion field. In motion estimation problems this is typically resolved

either by smoothing or by parameterising the motion, both of which are described

below.
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Smoothness constraints

In [66], Horn and Schunk resolved the aperture problem by an additional constraint

which encouraged a smooth isotropic variation in the motion field. They defined

an energy function which combined the BCCE with a second smoothness term, and

found the motion field by an iterative approach.

This isotropic smoothness constraint has the clear disadvantage that it will per-

form poorly where there is a discontinuity in the motion field (either due to a sud-

den change in depth, or to an independently moving object). In these cases it will

smooth over the discontinuity, which is particularly unwelcome in the case of motion

segmentation when these discontinuities are exactly what need to be detected.

In [106], Nagel addressed this problem by introducing an ‘oriented smoothness’

constraint. He introduced a different smoothing cost term, which only penalises

motions along the intensity gradient. Thus discontinuities are better preserved, and

smoothing is only encouraged perpendicular to the gradient i.e. in the direction

which is not constrained by the BCCE.

However, it is clear that the BCCE can only go so far in determining the motion

on a pixel-by-pixel basis. It is only well defined in areas of the image with high

gradient, and then it is the results from these areas which must then be spread

into the other areas of the image. The computation of a dense flow field is an

underconstrained problem, and to determine the field some assumptions must be

made. Smoothness is only one possible assumption.

Parameterised motion

An explicit assumption which could instead be made is to model the motion field

for an object as a 2D parametric motion. All of the pixels which belong to an object

should move in a similar manner, and this parametric modelling of the image motion

is reasonable between the frames of a video sequence [5, 9, 78, 107]. Representing

the vector of motion parameters by α, this approach describes the image motion

components u and v motions by the functions U(x, y, α) and V (x, y, α) respectively.

The BCCE (2.3) then becomes

IxU(x, y, α) + IyV (x, y, α) + It = 0 (2.5)

This can be solved directly for α by standard parameter estimation techniques,

given sufficient pixel measurements (i.e. at least as many pixels as there are pa-
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rameters).3 Parameterised motion models are a powerful solution to the motion

estimation problem. They are used in the majority of existing motion segmentation

schemes, usually as part of a layered model, described in Section 2.3.2.

Image mosaicing

The pixel-based approach is commonly used in image mosaicing applications. Here

the parameterised camera motion for a sequence is recovered.4 This allows the

images to be converted to a common co-ordinate frame, and to be stitched together

into one large image. These mosaics have a number of applications, among them

motion segmentation, where they are used to represent an image of the background,

and foreground objects may be detected as outliers to these. Examples of this work

can be seen in papers by Irani [73, 75, 76] and Sawhney and Ayer [121], while Szeliski

presents a good overview of image mosaicing in [138].

Coarse-to-fine estimation

The BCCE (2.3) relies on a first-order expansion of the intensity function and is

only a good approximation when the motion is small (i.e. less than one pixel).

This is insufficient for video sequences, which typically have a motion of several

pixels. The motion range can be significantly enhanced by using an iterative coarse-

to-fine approach, as, for example, suggested by Anandan in [2]. Here, the image

is repeatedly filtered and sub-sampled to produce a Laplacian pyramid (Burt and

Adelson [29]); typically three or four levels are used. The induced image motion

decreases as the resolution decreases, and at the coarsest resolution level the motion

estimation performs well, so it is here that the initial motion is estimated. Once

the motion has been found at this level, the results are projected into the next

resolution level and the motion refined. The process is repeated at each level of the

pyramid until the motion field for the original full-resolution image is found. A more

complete description of the coarse-to-fine approach can be found Bergen et al. [9].

Using this approach, motions of 10–15% of the image size can be accommodated

[74]. This is then sufficient for video sequences, and forms a sound basis for dense

motion estimation from video. With an initial estimate from some other approach

(e.g. a feature-based approach), even larger motions may be handled.

3The parametric motion model most commonly used in motion estimation and segmentation is
the affine model, which uses six parameters encompassing translation, rotation and shear [51, 64].
More details can be found in Section 4.3.3.

4The change between images from a camera fixed in space, but zooming and rotating, can
be described by an eight parameter model: a 2D projective transformation, also known as a
homography or collineation [51, 64, 138].
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Figure 2.2: Feature-based motion estimation. Corner features are identified and these are
matched between images to identify their motion. This gives a sparse representation of
pixel motion, but only uses pixels whose motion can be well-determined. (Corners found
using the Harris corner detector [62], matched using cross-correlation and filtered with
the Median Flow filter [134].)

2.2.2 The feature-based approach

The pixel-based approaches discussed above rely on the image gradient to constrain

the motion. This means that the motion can only be well resolved in areas of

high image gradient, and the motion in other areas of the image must be found by

smoothing, or by fitting a parametric model. Feature-based approaches acknowledge

this problem by concentrating only on the areas of the image that are likely to yield

good motion information. If necessary, the motion estimated from these features

may then be used to guide estimation in the rest of the image.

In contrast to the global minimisation of the pixel-based approaches, which solves

for both motion and correspondence simultaneously, feature-based methods separate

the two. Features of interest are first detected and correspondences found (using

image quantities such as cross-correlation), and then the motion is found.

Feature extraction

Feature-based methods concentrate only on areas of the image which can be well-

localised and tracked between images—features such as edges or corners in the im-

age. The first stage in feature-based motion estimation is to identify these image

structures.

The two main classes of features commonly used are edges and corners [51, 64].

‘Edges’ are one dimensional image features—they are a chain of pixels where there is

a sharp change in the image intensity in one direction. The standard algorithm for

detecting edges is the one proposed by Canny [33], although there are many others.

More popular than edges, however, are ‘corners’, which are the points where the

image edge has high curvature. Because they are highly localised, and the image
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changes rapidly with a small motion in any direction, these features are ideal for

correlation matching. This makes corners excellent for motion estimation since, by

identifying a corner’s position in the next frame, its image motion can be exactly

measured. As a result, this literature review concentrates on corner features; motion

estimation from edges is discussed in Chapter 4.

Several methods have been proposed for the identification of corners. The

method of choice is usually that developed by Harris [62], but for a survey and

comparison of possible techniques, see Schmid et al. [123] or S. M. Smith [135].

Typically hundreds of feature points are identified in each image, and these features

are then matched between images. For example, Figure 2.2 shows corner features,

marked by the black dots, and their detected motion.

Feature matching

The extracted features are used to estimate the motion, and in order to do this the

inter-frame motion (image displacement) of each feature must be measured. Each

feature in the first image must be compared with features in the next image to find

the location to which it has moved. Usually, for speed, a search is only made over

a small window centred on the earlier location.

The best match is found by comparing a small neighbourhood around the feature

point (a few pixels in size) with a similar neighbourhood around each possible match.

The cross-correlation is usually used to score matches but there are many other

measures of similarity that could be used. P. Smith et al. [134] present a survey and

comparison of the main matching methods.

One of the advantages of features is that they are invariant to a wide range of

photometric and geometric changes—they change little as the illumination or view-

point changes. A corner or an edge will still be detected as a corner or an edge under

a range of different viewing conditions (as demonstrated by Schmid et al. [123]).5

Even with quite large changes, cross-correlation should (in general) still identify the

correct match. Techniques have also been developed which enable features to be

matched under severe distortion, for example by Pritchett and Zisserman [113].

Motion estimation

Given the image displacements of each of the feature points, the motion may be

estimated. In feature-based methods a dense motion field is not calculated and

5In contrast, pixel-based techniques using the BCCE assume that the illumination only changing
slowly with time, and are so are far less invariant to such changes.
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instead the motion means one of two things: either the parametric image motion,

or the 3D camera motion, both of which may be calculated directly.

The 2D parametric image motion may easily be calculated from matched points

by a simple minimisation of the error between the predicted and actual image loca-

tion in the next image, for example:

Error(α) =
∑

all corners x,y

[
(x′ − (x + U(x, y, α)))

2
+ (y′ − (y + V (x, y, α)))

2
]

(2.6)

where a feature at (x, y) is matched to (x′, y′) in the next frame, and U() and V () are

the image motions as defined earlier. This error function can be minimised directly

to find the parameters α.

As with the pixel-based methods, the image motion may be used to form an image

mosaic, and a number of authors advocate a feature-based rather than a pixel-based

approach. These include Pritchett and Zisserman [113] and Cham and Cipolla [35],

both of whom also tackle the issue of matching highly dissimilar images. Zoghlami

et al. [164] also use feature matching, although they use a more sophisticated model

of a corner.

Feature points are commonly used in 3D reconstruction, where they are used to

estimate the fundamental matrix [50, 63].6 This is another form of motion estimate,

since it can provide the position of the camera for each image (leaving either a

projective or Euclidean ambiguity [96, 111]). Standard techniques for calculating the

fundamental matrix include that of Zhang et al. [163], and Torr and Murray [146].

Robust estimation

It is vitally important in feature-based methods to use robust estimation, since a

considerable number of the corner matches identified by cross-correlation will be

incorrect [134]. Since the motion that is being fitted is either parametric or is oth-

erwise constrained (for example by the fundamental matrix), it becomes relatively

easy to detect and remove outliers. Nevertheless, this is still an essential part of the

process. A good survey of techniques is provided by Torr and Murray [146].

The most successful approaches are Fischler and Bolles’s RANSAC algorithm

[54] and Rousseeuw’s Least Median of Squares [118]. This latter technique is used

for, example, by Zhang et al. in [163]. Various improvements have been made to

6‘3D reconstruction’ in this context is the process of making a three-dimensional model of the
viewed scene. The fundamental matrix encodes a relative camera positions and also the internal
camera parameters, such as the focal length.
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these, notably by Torr and Zisserman [149] and Cham and Cipolla [35], both of

which develop a probabilistic version of RANSAC.

2.2.3 Pixel vs feature-based methods

Feature-based methods have a several advantages over pixel-based methods for mo-

tion estimation. By concentrating on only a fraction of the total image area, the

computation cost for feature-based methods is far lower. In addition, the areas

which are used are those which have a high degree of invariance to change between

images, and so more reliable results can be obtained.

A major advantage of feature-based methods is that they lend themselves to

statistical techniques and modelling. It is possible to model the noise and typical

errors in feature-matching and, with discrete features, statistical independence is

usually a valid assumption. As a result, ‘least squares’, which assumes independent

Gaussian errors, is a valid approach and techniques such as bundle adjustment [151]

and RANSAC may be applied. The validity of these approaches in pixel-based

methods is much less certain.

Where pixel-based methods do have advantage is that they produce an imme-

diate dense labelling of the image. Feature-based methods only label the feature

points, giving a sparse representation. This may then be used to initialise a dense

labelling, but a pixel-based approach is often deemed to be more elegant. For motion

segmentation the task is to label each pixel in the frame according to their motion,

thus requiring a dense labelling of the image. As a result, pixel-based methods are

the most popular in the field of motion segmentation, despite the advantages offered

by feature-based approaches.

2.3 Motion segmentation

Motion segmentation is the act of labelling pixels in a frame (or frames) from a se-

quence according to the motion that they obey. There are several ways of achieving

this. One is to take a dense motion field (such as is produced by the pixel-based

motion estimation techniques described above) and cluster together pixels with sim-

ilar motions. However, the most successful techniques use a layered representation

[159, see later in this review], where the pixel motion is constrained to obey one

or another parameterised motions. Both of these approaches are described below.

As a segmentation, many techniques also make use of the image structure to assist
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the motion segmentation, either in combination with the motion estimation or as a

separate pre- or post-processing stage.

Conceptually, segmentation has been compared to Gestalt grouping. Gestalt

theory [89] maintains that visual stimuli appear as grouped entities based on the

principles of similarity, proximity, symmetry, continuity and closure. The motion

segmentation schemes in the literature generally only recognise the first two of these

principles, clustering together neighbouring pixels which share a similar motion or

intensity. Much work remains to be done to automatically provide segmentations

which are consistent with human perception.7 In particular, most motion segmen-

tation approaches consider only local measures. It will be argued in Chapter 3 that

a motion segmentation necessarily also requires non-local reasoning.

2.3.1 Motion field segmentation

Finding surfaces

Early work on motion segmentation concentrated on segmenting a dense motion

field. Adiv [1] clustered together pixels which appeared to obey the same planar

motion (using the Hough transform [7]). These planar surfaces were then further

merged into objects obeying the same 3D motion. Murray and Buxton [105] also fit

models to the flow field, using a set of planar facets.

However, this direct use of the motion field is rather näıve, as it employs none

of the constraints that are known about the motion or the image. In particular, the

motion field is calculated as a first stage and, as with many pixel-based methods,

is assumed to be smooth over the image. The motion is only well determined in

regions of high image gradient, and only in the direction of the image gradient, which

makes the smoothing necessary. This smoothing means that when there are different

moving objects present (as would be expected in motion segmentation applications),

the discontinuities in the motion field at the object boundaries are also smoothed.

As a result, the object boundary can only be approximately identified unless some

explicit modelling of the boundary is used at the time the flow field is produced.

Modelling discontinuities

Black [15] has published a number of papers addressing the issue of obtaining a

good motion field in the presence of motion discontinuities. This naturally involves

7Although different observers may perceive, or require, a different segmentation. See the recent
paper by Martin et al. for a study into the human labelling of static scenes [95].
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identifying these discontinuities. His approach [16, 17] combines the standard motion

constraint equation with spatial smoothness and ‘temporal coherency’ constraints.8

The former encourages neighbouring pixels to be similar, the latter tracks patches

over a number of images and states that the motion should only change slowly. These

are all thrown into a global minimisation scheme. By tracking patches, he identifies

areas of occlusion and disocclusion (areas where two patches coincide, or areas where

there are no tracked patches). These regions are marked as much more uncertain,

and smoothing is not performed across them. This results in a much improved flow

field (this was the example used in Figure 2.1), but the precise localisation of the

boundary is still not possible.

Piecewise fitting

A fundamental realization for motion segmentation is that the motion field should

contain several disparate motions, and the most successful approaches consider fit-

ting multiple motions, spread over different areas of the image. In [49], Etoh and

Shirai initialise an array of different motions across the frame and allow these to

‘learn’ their own local smooth motion field, and the region to which this applies.

This process is assisted by also considering the colour of pixels. As shall be seen

later, this consideration of image colour or intensity information in addition to the

motion field provides valuable assistance to motion segmentation schemes.

Other authors divide the image into small patches and fit motions to these to

determine motion boundaries: these occur in patches which are best explained by

two motions, rather than one. Jepson and Black [85] consider the motion in 32× 32

blocks in the image, and robustly fit two motions. They then determine whether the

two motions should be merged, giving either one or two motions per block. Bergen

et al. [10, 11] also consider the problem of robustly fitting one or two motions to

small image blocks. These approaches identify the blocks which contain the object

boundaries, but do not perform well at exactly localising the boundary within a

block.

This multiple-motion approach may be taken further, considering the whole im-

age as one block, and is the basis for the layered motion representation discussed

below. Approaches using this layered representation produce the best motion field

estimates in motion segmentation applications.

8His spatial constraint uses a Markov Random Field [36, 59], discussed later.
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Feature-based motion segmentation

Pixel-based approaches are by far the most popular for motion segmentation, but

some authors have advocated a feature-based approach. The classic work in this

field is that of Torr [143], who uses the RANSAC algorithm [54] to divide corner

matches into clusters obeying different rigid 3D motions. Once these motions are

estimated, the pixels may be densely labelled according to the motion that they best

fit. S. M. Smith’s ASSET-2 system [136] is a real-time implementation of corner

finding and matching for motion segmentation. In this system, an estimate of the

shape is made by taking the convex hull around the corner features identified with

each object.

Both of these approaches produce a good motion estimate and feature labelling,

but only attempt a simplistic dense labelling. Labelled corners provide only a sparse

representation of the segmentation, and this is insufficient for a complete labelling.

2.3.2 Layered motion

Wang and Adelson [158] argue that motion segmentation at the pixel level is too

abstract, and that it is necessary to to consider the objects. In Figure 2.3, extracted

from [158], two moving objects are shown, and the frames in the sequence can be

composed as an animator would produce them—as the superposition of two separate

layers, each undergoing a different motion. In their layered motion representation

these two layer motions are estimated and then the binary support map is deter-

mined, which is the layer to which each image pixel belongs. This approach was

also proposed by Darrell and Pentland [42].

In the layered framework, the motion field is smooth across the pixels in a single

layer, but the motion in different layers is independent. This representation inher-

ently allows motion discontinuities to occur between layers. In addition, each layer

represents a different object in the sequence, so the assignment of pixels to layers

also provides the motion segmentation. This framework forms the basis of many

current motion segmentation schemes, and has proven to be very effective.

As well as providing a motion segmentation, layered representations may also

be used to generate a good, dense, optic flow field in cases where it is not exactly

described by the parametric motion. A smoothed per-pixel flow is calculated as

a small offset to the global motion for the layer, as for example in work by Hsu

et al. [67], and Black and Jepson [19]. This explicitly models and maintains the

discontinuities between layers. Layered approaches have also been adopted for 3D
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Figure 2.3: Layered motion example sequence. (from Wang and Adelson [158].) The
hand rotates while the background moves down and to the left.

modelling from stereo images, building a model similar to theatre sets, from a series

of 3D planes [6, 147].

2.3.3 Layered motion extraction

The majority of motion segmentation literature in recent years make use of the lay-

ered representation described above, and there are a number of different approaches

to extracting the different layer motions. The extraction of multiple motions is a

circular problem—a motion cannot be estimated until a region of support is known,

but identifying the region of support relies on the motions being known. There

are three main solutions to this problem: motion clustering, the dominant motion

approach, and simultaneous motion estimation.

Motion clustering

In their original papers on the layered representation, Wang and Adelson [158, 159]

divide the image into rectangular regions, and estimate a single affine motion in

each region to provide a list of likely layer motions. If any region crosses an object

boundary, the motion fitted will exhibit a large residual error, and these motions

are eliminated. The candidate motions are then grouped in affine parameter space

by k-means clustering [140] to provide the final layer motions. Darrell and Pentland

[42] also form candidate layer motions but then find the subset of their candidate

layer motions which ‘best’ describes the complete frame motion using the Minimum

Description Length (MDL) principle [116, and see Section 7.2.2].

Once the layer motions have been determined, the regions of support can be

identified. The approach proposed in most schemes, and which is simple and ef-

fective, is to label each pixel with the motion under which the intensity error is

minimised. To label a pixel, it is projected into the next frame according to each

layer motion and the image intensity at that new location is compared with the in-

tensity in the original frame. It is then assigned to the layer under which it finds the
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closest match. This works well apart from in areas of smooth intensity, where the

pixel labelling is ambiguous. These areas are the same ones which caused problems

to the pixel-based schemes, and the solution requires (again) smoothing, or further

image information. Both of these approaches are discussed later.

Dominant motion

A very popular approach is the dominant motion technique [5, 30, 40, 78, 107, 121,

122]. This scheme calculates one motion at a time, firstly fitting one motion to all the

image pixels (the dominant motion). Once this motion has been estimated, the pixels

are tested to find the region of support for this motion. These pixels are removed and

the remaining pixels (the ‘non-conforming regions’ in the terminology of Odobez,

Csurka and Bouthemy [40, 107]) are identified as belonging to independent objects.9

This dominant motion process can be repeated recursively on the non-conforming

pixels to separate out further independent objects if desired.

The two key elements to this approach are the estimation of one motion in the

presence of others, and the identification of conforming pixels. In [78], Irani et al.

use a hierarchical approach, using the observation that the fitting of a translational

motion is robust to other moving objects (Burt et al. [30]). First the dominant

2D translation in the image is calculated and its region of support is identified. A

higher-order parametric 2D motion (e.g. affine) is then calculated for this region and

the region of support for this new motion is then calculated across the whole image.

Most dominant motion estimation implementations make use of robust methods

[146] to fit the motion. Many authors recommend the use of M-estimators [70, and

also Appendix A], which reduce the effect of gross outliers in parameter estima-

tion. Examples using M-estimators include Sawhney and Ayer [121], Odobez and

Bouthemy [107] and Huang et al. [68]. Other robust estimators may also be used;

Ayer et al. [5], and Meier and Ngan [97] use Least Median of Squares [118] as their

robust estimator.

Identifying whether a pixel is ‘conforming’ or ‘non-conforming’ is a non-trivial

task, since with only one motion proposed, a direct comparison cannot be made

between different motion hypotheses. A simple threshold based on an intensity

comparison is also not considered to be robust enough [78, page 7]. Irani et al. in

[78] calculate a dense motion field in both images and define a ‘motion measure’ and

9It is commonly assumed that the dominant motion represents the background motion (the
motion layer furthest from the camera). This is often the case, but should not be relied upon in a
general sequence (see the Car sequence in Chapter 5).
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a ‘reliability’ which are calculated for each pixel and used to identify conforming

pixels. In [107], Odobez and Bouthemy use a statistical regularisation approach.

The labelling of pixels can be made more reliable by considering several different

frames. Giaccone and Jones [60] label their pixels using motion information across

three frames using a probabilistic classification. A multiple-frame approach to pixel

labelling (‘temporal integration’) is also encouraged by Irani et al. in [78].

The dominant motion approach works very well when most of the frame consists

of background pixels. In some applications (e.g. [107]), it is sufficient to estimate

one motion and remove these background pixels. However, this technique can per-

form poorly in cases where there is no one dominant motion—where the foreground

objects are large, or there are many motions. Further problems with this approach

are discussed in Chapter 4.

Simultaneous motion estimation

The problems associated with robustly finding one motion at a time, and labelling

conforming pixels according to one motion at a time, may be avoided by estimating

all the motions simultaneously. Pixels may then be labelled by a direct compari-

son with all the proposed motions. This is an approach followed by a number of

authors [4, 27, 48, 121, 122, 160], all of whom use the Expectation-Maximisation

(EM) algorithm [43] to perform this simultaneous estimation. This begins with an

initial guess of the motions and then iteratively determines the regions of support

(by comparing the pixel intensities under each possible motion), and estimates the

motions given these regions of support.

The number of motions present must also be determined initially (rather than

recursively as in the dominant motion case). This may be done by fitting too many

motions and merging similar motions, as proposed by Weiss and Adelson [160], but

the usual approach is to try different numbers of motions and use the Minimum De-

scription Length principle [116] to determine the best number of motions. This is a

scheme supported by Ayer and Sawhney in [4, 121], and also adopted by Brady and

O’Connor [27] and by Elias [47, 48]. The approach places the motion segmentation

problem on a sound statistical footing, providing the maximum likelihood segmen-

tation. These approaches work well, although care must be taken to avoid local

maxima in the EM process.10

10In common with many iterative schemes, each step EM takes is in a direction which is locally
favourable. This can result in it finding a solution which is locally the best, while not considering
a better solution elsewhere. See Chapter 7 for a discussion of this, and a proposed solution.



26 A survey of motion estimation and segmentation

2.3.4 Enforcing spatial coherency

Given a set of motions, the assignment of pixels to layers requires determining which

motion they best fit, if any. This can be done by comparing their colour or intensities

under the proposed motions, but this presents several problems. Pixels in areas of

smooth intensity are ambiguous as they can appear similar under several different

motions and so, as with the optic flow techniques discussed earlier, some form of

smoothing is required to identify the best motion for these regions. Pixels in areas of

high intensity gradient are also troublesome, as slight errors in the motion estimate

can mean that a pixel of a very different colour or intensity is observed, even under

the correct motion. Again, some smoothing is usually required.

Markov Random Fields

A common solution is to use a Markov Random Field (MRF) [36, 59], which en-

courages pixels to be labelled the same as their neighbours. Weiss and Adelson [160]

suggest this as a possible approach, and Bouthemy et al. have produced a number of

approaches making use of MRFs to help smooth the motion field [24, 40, 107]. In a

paper which preceded the formalising of the layered approach, Murray and Buxton

[105] modelled the flow field as a set of planar facets, and pixels were assigned to

these planes with the help of a spatiotemporal MRF, which encouraged coherency

between neighbours, and consistency across frames.11

These schemes can work well, but can often lead to the foreground objects ‘bleed-

ing’ over their edge by a pixel or two if the relative weights of the clustering term

and the motion term are imbalanced—if the system is keener to accumulate more

pixels than change motion. It is possible to include knowledge of discontinuities into

MRFs, but it has already been acknowledged that it is not possible to accurately

identify the location of these discontinuities from the motion field alone.12 In order

to produce accurate motion boundaries, additional information is required. This

can be provided by the pixels present in the image.

2.3.5 Using intensity information

All of the techniques considered so far try to solve the motion segmentation problem

using only motion information. This, however, ignores the wealth of a priori infor-

mation that is present in the form of the existing image structure; Weiss and Adelson

11Markov Random Fields are also popular in other fields which require the statistical modelling
of spatial systems, for example image and video reconstruction [59, 100].

12Markov random fields can handle discontinuities by allowing sites to be unconnected to their
neighbours, for a certain cost. For examples, see [14] or [105].
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[160] argue that there is an excessive reliance on motion data in the field of motion

segmentation. Some approaches which make use of further image information are

described below.

Discontinuous Markov Random Fields

Markov Random Fields, as mentioned above, are a popular means of encouraging

spatial coherency [24, 40, 107, 160]. However, spatial coherency is not required

at segmentation boundaries, so it is desirable to modulate the MRF probabilities

according to the prior likelihood of there being a discontinuity at that location.

This can be achieved by considering the local image colour—a motion discontinuity

is more likely where there is also a colour discontinuity (different objects are often

different colours). Boykov et al. [25] describe how such an intensity term may be

introduced, and demonstrate good boundary localisation in their 3D reconstruction

examples.

In [14], Black proposes a scheme using a pixel labelling which combines three

terms: motion, image intensity and boundary locations. Spatial coherence is en-

couraged in motion and intensity via an MRF, but the boundary locations are also

iteratively estimated and the smoothness constraints may be violated at these loca-

tions. Such approaches are effective, but do add to the computation time. It will

also be seen in Chapter 3 that there are circumstances where local measurements

alone are not sufficient to correctly determine a labelling.

Normalized cuts

Shi and Malik’s normalized cuts framework [126, 128] is a general image segmenta-

tion scheme. This treats segmentation as a graph partitioning problem, where the

image pixels are nodes on a graph and each node is connected to each other node by

an ‘edge’.13 Each edge is weighted according to some measure of similarity between

the pixels. Their ‘normalized cut’ is the means of segmenting this graph in such a

way that both maximises the similarity within groups, and maximises the dissimi-

larity between groups. It relies on finding the eigenvectors of an n×n matrix, where

n is the number of nodes (pixels). Even though this matrix is sparse, this approach

is clearly computationally expensive, taking about 2 minutes for a 100× 120 image

on a 200MHz PC [128] (although they state that for larger images a multi-resolution

approach can reduce the implementation time significantly).14

13This has nothing to do with the one-dimensional image features also referred to as edges.
14In practice, to make their scheme useable, they only form connections to a random selection

of pixels in the local neighbourhood, using only 10% of the possible connections.
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For motion segmentation, they present a scheme [127] which assigns edge weights

according to the similarity of the (pixel-based) motion vector at each pixel. This

only considers the motion information, but they point out that a measure of the

pixel intensity could also be included. Their results are good, although without the

intensity information, some bleeding is observed around the edges, as with the MRF

approaches discussed earlier.

Alternative image segmentation techniques using graph cuts are proposed by

a number of other authors, including Ishikawa and Jermyn [79] and Boykov and

Jolly [26], although their applicability has not yet been demonstrated in motion

segmentation scenarios.

Using edge features

If the moving objects are to be seen at all, they must be a different colour or

intensity to their background, and as a result the boundary edge will be visible in

the image. Constraining the motion field using these image edges is an obvious

approach, but one that has been neglected in the literature. One work, by Meier

and Ngan [97] does make explicit use of edges in their final segmentation. They

perform a dense labelling of the foreground pixels (which they assume are those

pixels which do not obey the dominant motion) but then use this to label edge

features as foreground. The pixels interior to the foreground edges are then filled in

by simple scanning technique. This approach is limited to segmenting objects from

a dominant background, but their use of edges ensures very good results in these

cases, with highly accurate motion boundaries. This promising work is yet to be

followed up, and it will be seen in this dissertation that edges should play a far more

important role in motion segmentation than merely cleaning up a dense labelling.

Using image regions

The most popular intensity-based approach involves, as with the layer-based ap-

proach, taking a step back and working at a higher level than individual pixels. It

has been acknowledged at various intervals throughout this review that it is very

difficult to determine the motion of pixels in areas of smooth intensity, and that

the motion in these areas must invariably be found by extrapolating from nearby

features. These smooth areas of the image can be determined prior to any mo-

tion analysis by performing an initial segmentation based purely on intensity (or

colour) to combine these smooth areas into individual regions. This provides an

over-segmentation of the image, compared with that desired for a motion segmenta-
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(a) (b) (c)

Figure 2.4: Region merging example. (a) Frame to be segmented; (b) Regions of similar
image intensity; (c) Regions merged according to their motion, giving the final motion
segmentation. (From Bergen and Meyer [12].)

tion. The motions of these regions, rather than the pixels, can then be determined

and these regions clustered together according to their motions. Similar approaches

have also been proposed for 3D reconstruction, for example by Tao and Sawhney

[139].

2.3.6 The region merging approach

In region merging approaches to motion segmentation, the image is first segmented

into regions according to the image structure. Each region is then associated with

a motion and this motion is used to merge regions belonging to the same object

(for an example, see Figure 2.4). This implicitly resolves the problems identified

earlier, which required smoothing of the optic flow field, since the static segmentation

process will group together neighbouring pixels of similar intensity and they will

automatically be labelled with the same motion. Regions will be delimited by areas

of high gradient (edges) in the image and it is at these points that changes in the

motion labelling may occur.

The static segmentation scheme used as the initial stage in these algorithms is

not of great concern, so long as it provides a reasonable over-segmentation of the

image containing regions of similar intensity. A segmentation using the watershed

algorithm [157] is a popular choice (see [12, 27, 110], and Figure 2.4(b)).15 It is

important, however, that the static segmentation is as accurate as possible since the

final motion boundaries will be a subset of the static region boundaries.

15The watershed algorithm treats the image as a ‘landscape’, where the height at each pixel
is given by the magnitude of the image intensity gradient. Regions are then created by filling
this landscape with ‘water’, forming pools which eventually join as they pass over ridges in the
landscape—the ‘watersheds’.
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As with the per-pixel optic flow methods, the region merging approaches esti-

mate the motion either by motion clustering, or a dominant motion approach, or

simultaneous motion estimation.

Motion clustering

Since each image region consists of a number of pixels, it is usually possible to

reliably estimate the parametric motion for a single region from its pixels.16 Many

authors estimate a different motion for each region and then merge regions which

have similar motions. One of the first papers to consider a static segmentation,

by Thompson [141], followed this approach, although he only calculated a region’s

motion from the pixels along its edge (since the pixels in the interior of a region

are, by definition, similar in intensity and so produce unreliable motion estimates).

In rather more recent papers, Dufaux et al. [46] perform region merging by k-

means clustering in motion parameter space. Moscheni et al. have developed a

graph-based region merging scheme [101–103] which uses a Modified Kolmogorov-

Smirnov test to generate the weighting of the links between regions. Bergen and

Meyer [12] consider an exhaustive set of pair-wise region merges, keeping the ones

with reasonable residuals.

By estimating the motion in each region independently, the estimated motions

can sometimes be inaccurate, particularly in small regions. It is perhaps because

of this that these techniques frequently mislabel regions or split the image into too

many regions. A more reliable approach is that of Tweed and Calway [153], who

estimate an array of motions from rectangular blocks in the image and then use

these to label the statically-segmented regions.

Dominant motion

The dominant motion approach has been used less for region merging situations than

for the pixel-based layer estimation described earlier. In [5], Ayer et al. estimate

the dominant motion over all pixels and classify the (statically segmented) regions

which obey that motion as one object before repeating. Huang et al. [68] follow a

similar approach. In [57], Gelgon and Bouthemy perform motion clustering but also

calculate the dominant motion in the scene, in order to parameterise and describe the

camera motion (by assuming that this is the cause of the dominant motion). As with

the pixel-based dominant motion schemes, these work very well when segmenting one

16A reliable estimate requires that each region is large enough, and has sufficient local structure,
to enable the motion to be estimated. This is usually, although not always, the case.
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relatively small foreground object from the background, but perform more poorly

when all the moving objects are similar sizes.

Simultaneous estimation

Simultaneous estimation is also sometimes used, with the Expectation-Maximisation

(EM) algorithm being the usual choice. Weiss and Adelson [160] suggest this (as well

as their MRF approach mentioned earlier). In [27], Brady and O’Connor use the

initial segmentation to constrain the EM solution by using an additional ‘contextual’

step in the iteration. They also use the Minimum Description Length principle [116]

to determine the best number of motions. In [110], Patras et al. use an iterative

approach similar to EM, alternating the labelling of regions and motion estimation,

and also adopt an MRF approach to assist a coherent motion labelling of regions.

Apart from the usual local maxima problems, these also work well. All of the region

merging schemes produce a good ‘cut out’ if the regions are correctly labelled.

2.3.7 The depth of objects

The various motion segmentation schemes discussed above provide regions of pixels,

or layers, which correspond to objects with different motions. What is not generally

considered is the relative depth ordering of these layers, i.e. which is the background

and which are foreground objects. If necessary, it is sometimes assumed that the

largest region or the dominant motion is the background (for example in [57, 78]).

Pixel occlusion is commonly considered, but only in terms of a problem which upsets

the pixel matching and so requires the use of robust methods.

The layer ordering may be identified by examining this pixel occlusion between

frames. Wang and Adelson [158] and Bergen and Meyer [12], identify the occasions

when a group of pixels on the edge of a layer are outliers to the layer motion and

use these to infer that the layer is being occluded by its neighbour. Tweed and

Calway [153] use similar occlusion reasoning around the boundaries of regions as

part of an integrated segmentation and ordering scheme. These all perform well.

Depth ordering has recently begun to be considered as an integral part of the

segmentation process. Black and Fleet [18] have built a model of the optic flow

in the region of occlusion boundaries, and this also allows occluding edges to be

detected and the relative ordering to be determined. Gaucher and Medioni [56] study

the velocity field to detect motion boundaries and infer the regions and occlusion

relationships from these.
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The study of occlusion is assisted by considering the motion between several

frames in the sequence. Giaconne and Jones [60] use three frames, with a Markov

chain [61] to describe the process of pixels being occluded or disoccluded. In the

general motion segmentation problem, while good results can be obtained when only

using two frames (e.g. [12, 107]), the use of multiple frames, for example by Ayer

et al. [5], Irani et al. [78], or Elias [47] also provides much greater robustness.

Occlusion has also been considered in the context of two or more views of a

static scenes, for the purposes of forming a 3D model of the scene. Of particular

relevance to this dissertation are a few papers considering edges. Paletta et al. [109]

labelled edges in an image as one of three types: surface markings; face junctions;

or occluding boundaries, by modelling the pixels on either side as two planes and

comparing these planes, with good results. The detection of edge junctions in images

was considered by Malik [92] and Broadhurst and Cipolla [28]. They consider the

case where an occluding edge in the image chops across another edge in the image,

forming a T-junction in the image. This then allows the foreground object to be

identified. A similar approach is described in Section 3.3.5 of this dissertation for

the purpose of identifying the relative depths of motion layers.

2.4 Summary

Most existing motion segmentation schemes consider the motion at every point in

the frame, since the segmentation requires a labelling for every pixel in the frame.

However, the per-pixel motion is an underconstrained problem and some smoothing

or modelling is required. The most successful approach for motion segmentation is

the layered representation, where each layer represents a different moving object.

All the pixels on that layer obey the same smooth parametric motion but motion

discontinuities can occur at layer boundaries. This is a good model of the image

motion, and will be adopted in this dissertation.

The challenge with motion segmentation schemes is not the estimation of the

layer motions, but the assignment of pixels to different labels. Schemes which are

purely motion-based provide a poor cut-out—their localisation of the object bound-

ary can be in error by several pixels. Schemes which also consider the image intensity,

usually in the form of a static segmentation, provide a much more accurate cut-out.

This region merging approach is only a recent development and is worthy of more

study, as the following chapters will show.

Considering every pixel in the frame is often slow, particularly when combined

with iterative labelling schemes such as a Markov Random Field. Feature-based
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approaches to parametric motion estimation are popular, both for efficiency and

robustness, but features are not currently considered for dense motion estimation

since corner features only provide a sparse representation.

This dissertation considers a feature-based approach to motion segmentation,

providing both an efficient implementation and access to robust statistical methods.

It will be shown that edge features, as opposed to corners, do provide a represen-

tation sufficient to label the frame. By making explicit use of the image edges,

the motion boundary can be accurately localised, and a region merging approach is

followed to label the other pixels.

The relative depth ordering of motion layers is not often considered in the lit-

erature, with the assumption that the dominant layer is the background. This

dissertation argues that the layer ordering should be considered as an integral part

of the segmentation process, and shows that reasoning between the labelling of edges

and regions is necessary for a complete segmentation.





CHAPTER 3

Edge-based motion segmentation

3.1 Introduction

This chapter presents the theoretical foundations of edges and regions for motion

segmentation. The previous chapter presented the current state-of-the-art in motion

segmentation, where it was seen that almost all existing techniques estimate the

image motion on a per-pixel basis and then cluster together pixels or regions with

similar motions. An accurate segmentation requires an accurate identification of

the motion boundaries—the edges of the flow field and also the edges in the image;

edges are fundamental to an accurate motion segmentation. However, from the

review in Chapter 2 it is seen that no existing approach makes particular use of

image edges. This chapter develops a novel approach to layered motion segmentation

which concentrates solely on the edges in the image.

This thesis of ‘edge-based motion segmentation’ is based upon three assertions,

which will be proved in this chapter:

Good motion information is only available for edges. Edges are the only fea-

tures in the image which can be reliably detected and tracked, and it is only

edge pixels which can be accurately labelled according to a motion (Section

3.2).

Edges are sufficient for a motion segmentation. They provide enough infor-

mation to complete the labelling of the other pixels in the image, up to un-

solvable ambiguities (Section 3.3).
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Edge and region reasoning is necessary for a motion segmentation. The

reasoning required for an accurate motion segmentation is non-local and non-

symmetric between foreground and background. It is only by considering

larger-scale features—edges and regions—that an accurate layered segmenta-

tion can be determined (also Section 3.3).

This chapter concludes by drawing the logical reasoning of the earlier sections into

a Bayesian framework which allows the most likely segmentation to be deduced in

real sequences

3.2 Edges for motion estimation

Motion segmentation consists of two parts: motion estimation across the image and

then a motion segmentation of the image. This section explains that edges in a

frame are the only source of good motion information and it is only at edges that

either of these two stages in the process can be accurately performed.

3.2.1 Edges and motion estimation

Edges are image features, and are defined to occur at areas of high image gradient,

as shown for example in Figure 3.1. A good motion estimate can only be obtained

in these areas of high gradient—it is only in these areas that a small movement in

the image gives a change in appearance. Corner features (where the image changes

in two directions) are commonly used for motion estimation, but they are too sparse

for the remaining pixels in the image to be filled in, as is required for a segmentation.

Edges are macroscopic features (they have a long extent), and it will be shown in

Section 3.3 that they do provide enough information to label the remaining image

pixels.

Concentrating motion estimation only on these edge pixels yields a number of

advantages:

Invariance Pixel-based methods assume that the image intensity of each observed

point in the world does not change between frames. By contrast, feature-based

approaches simply require that the feature is extracted in both frames, and

that it maintains a similar appearance. The matching and tracking of features

therefore has a wide range of invariance to both photometric and geometric

changes, and so these schemes are more widely applicable.
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(a) (b)

(c)

Figure 3.1: Image intensity and edges in a frame. (a) A frame from the Foreman sequence;
(b) An image of the intensity gradient (using the Sobel gradient operator [137]), where
darker areas indicate a high gradient; (c) Edges in the image—connected chains of high
image gradient (using Canny [33]).
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Reliable detection Because of its long extent, an edge detected in one frame is

likely to also be present in the next, in full or in part. In contrast, individual

corner features are less likely to be detected frame after frame. As a result,

edges can be reliably tracked between frames and their motion estimated.

Robust motion estimation Each edge in the image can be reasonably assumed

to correspond to a 3D contour—part of an object—in the world. In this case,

all of the pixels along an edge will obey that object’s motion and, between

frames, a similar image motion. This motion can be estimated by combining

motion estimates made at a number of places along the edge. This approach is

robust to errors which may occur along part of its length. No such clustering of

measurements is appropriate in pixel-based methods without some high-level

analysis of the scene; the use of edges provides this.

Statistical models The edge motion is found by locating a matching edge pixel in

the next frame and measuring the image displacement at a number of points

along its length. Statistical models can be developed which describe these

displacements, and the probability that an edge fits a particular motion. While

the pixel-based case may also be modelled, it is complicated greatly by the

smoothing used, and the different influences of different pixels. In particular, in

the pixel-based case, the smoothing across pixels means that it is inappropriate

to assume that the motion detected at each pixel is independent of that at other

pixels.

Computational efficiency The edge pixels shown in Figure 3.1(c) account for

only 3.6% of the total number of pixels in the image. By analysing only these

pixels the time taken for the motion estimation process can be significantly less

than for a pixel-based approach. Alternatively, more sophisticated techniques

(such as non-linear optimisations) may be applied, which would otherwise be

prohibitively time-consuming.

These advantages are in addition to the fundamental thesis that edges are nec-

essary and sufficient to the motion segmentation problem.

3.2.2 Edges and motion segmentation

A motion segmentation is the act of labelling pixels according to their motion. The

motions are first estimated, and then each pixel must be assigned to one of the layers

on the basis of the motion that it best fits. Figure 3.2 demonstrates the problems of
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(a) (b)

Figure 3.2: A per-pixel motion labelling. Given two motions: the head motion and the
background motion, each pixel is labelled. (a) Pixels labelled according to their probability
of obeying the each motion, where white is the background motion and black pixels are
more likely to belong to the head; (b) The confidence of each pixel (the probability of its
most likely label), ranging from 0.5 (white) to 1 (black). Compare (b) with Figure 3.1
and it is clear that the pixels with the best information are those near edges.

trying to do this on a per-pixel basis. Here, two motions have been estimated (by

the method presented later in this dissertation): one for the head and one for the

background. Each pixel in one frame is projected into the next according to each of

the motions, and is labelled with its probability of obeying each motion.1

Figure 3.2(a) shows the resulting pixel label probabilities, where the whiter a

pixel, the higher the probability of obeying the background motion, and darker

pixels obey the foreground. The head can be discerned, but it can be seen that

there are many grey areas where the pixel labelling is uncertain.2 This is made

clearer in Figure 3.2(b) where now each pixel is labelled according to the probability

of it obeying its most likely label i.e.

label = max(P (head) , P (background)) (3.1)

which gives an image of the labelling confidence, from 0.5 to 1 (white to black).

It is clear that areas of smooth intensity (such as the hat) are the most uncertain

1The probability is calculated by assuming that the pixel colour (red, green and blue compo-
nents) is unchanged between frames apart from isotropic Gaussian noise of standard deviation 3
(out of a dynamic range of 255). The probability of it being the same pixel in the new location is
calculated, for each motion model. These are normalised to give the probability of each motion.

2Two sequence-specific artifacts are also visible in both images, and should be ignored. The
square blocks visible in the image are the coding artifacts of the MPEG-1 format that has been
used to code this motion sequence. The flat expanse at the bottom-right covers the pixels where
(to the nearest pixel) both motions are exactly the same.
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Figure 3.3: Segmented image regions. An example of a static segmentation of the Fore-
man image from Figure 3.1(a). Regions consist of pixels with similar colour, and edges in
the image form region boundaries. (Using the method of Sinclair [130, and see Chapter
4]).

areas. A white pixel on the hat moves to another white pixel under either motion,

and the same is true in any areas where groups of pixels share a similar colour. If

Figure 3.2(b) is compared with Figure 3.1(c), it can be seen that the only areas with

high labelling confidence are the edges in the image, areas with significant image

structure. Only edge pixels can be confidently labelled according to their motion,

and obtaining an accurate labelling in other areas of the image is not possible from

motion alone. In order to label these areas, some additional prior knowledge is

required.

A common approach to enforce better coherence in pixel-based methods is to ap-

ply local smoothing, or use a Markov Random Field (MRF) to encourage uncertain

pixels to adopt the labelling of their neighbours. Unfortunately, not all pixels should

obey the motion of their neighbours—pixels on the boundary of an object should

only conform with some of their neighbours. In order to correctly enforce this, some

non-local reasoning is required to identify these boundaries and the correct labelling

(this is discussed further in Section 3.3.4). A better approach is to mark each area

of smooth intensity as an individual region and label all the pixels in that region as

one. An initial static segmentation, as shown for example in Figure 3.3, divides the

image intensity structure into such regions of smooth intensity. Naturally, the edges

of these regions are the pixels where the intensity changes rapidly and, again, these

are the edges in the image.

The edges in the image are the only areas which can be reliably labelled according

to their motion. By dividing the image areas between edges into regions based on

colour, a prior clustering of pixels is performed which enables coherent groups of



Section 3.3 Edges and regions for motion segmentation 41

similar pixels to be labelled as one, but still allows clean discontinuities at potential

boundaries, the edges.

3.3 Edges and regions for motion segmentation

This section develops the theory linking the labelling of edges and regions; this

approach to motion segmentation is the core contribution of this dissertation. It

is shown here that, as well as being good sources of motion information, edges are

sufficient and necessary for an accurate motion segmentation.

3.3.1 Prior assumptions

There are a number of fundamental assumptions which underly this theory. These

are valid in virtually all real sequences, but should be stated here for completeness:

Edge formation Edges in an image are generated as a result of the structure of

objects. Edges in an image may also be due to material or surface properties

(texture or reflectance). It is assumed that edges due to the latter two types

do not occur; this is a valid assumption in many sequences, but can cause

problems otherwise.3 The most important edges formed are those which are

the occluding boundary (outline) of objects in the image—these are the edges

of the object, which demarcate the area to be segmented.

Edge motion As an object moves, all of the edges associated with the object move,

and hence edges in one frame may be compared with those in the next and

partitioned according to different real-world motions.

Layered motion It is assumed that the motion in the sequence is layered, i.e. one

motion takes place completely in front of another. Typically the layer farthest

from the camera is referred to as the background, with foreground layers in

front of this.4

It is further assumed that the pixel (and thus edge) motion on each motion

layer may be reasonably described by a simple parametric motion model.5

3See the Car sequence in Chapter 5 for an example of surface reflections.
4This is almost always the case. However, for example, a person walking behind a lamppost

(which is part of the ‘background’) may be considered a violation of this assumption. Another
example is shown in the Coastguard sequence considered in Chapter 5, where it is shown that minor
violations of this assumption do not greatly affect the solution.

5The criterion here is that a parametric motion will describe the motion to within a few pixels.
The errors under a parametric motion are investigated both in Chapter 4 and Chapter 6.
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3.3.2 Conditions for a correct segmentation

There are two further conditions which must be met for an accurate segmentation:

Visible occluding boundary The occluding boundary of foreground objects must

be visible as an edge in the image. If this edge cannot be seen (i.e. both the

object and its background are the same colour) then one image region will span

both the foreground and background. Without an image edge it is difficult to

tell where in this region the correct object boundary is.6

Foreground and background edges must intersect The edge labelling is only

sufficient for a complete region labelling if there is some edge interaction be-

tween the two motions. If not, the labelling of some regions will be ambiguous,

and the relative depth ordering of the motion layers cannot be determined.

Both of these are an example of an unsolvable ambiguity. As will be discussed later,

situations which cause these ambiguities are unsolvable under any segmentation

scheme. In all other cases, edges are sufficient.

3.3.3 Edge labels

It is assumed that the frame to be segmented has already had a static segmentation

performed (as opposed to a motion segmentation). This divides the frame into

regions which consist of adjacent pixels of similar colour (i.e. containing no motion

information), and these are bounded by image edges (which provide good motion

information). There are many static segmentation schemes in the literature, and

Figure 3.3 shows the output of one such scheme, by Sinclair [130] (described in

Chapter 4). This section considers the relationship between the motion labelling of

edges, and that of regions. First, it considers the labelling of edges from regions.

Each region which represents part of a foreground object moves with that fore-

ground motion.7 Being foreground, it occludes the background and so all of its edges

6Where there is no image or motion information, additional information must be used to infer
the existance and location of these edges. If an edge is fragmented it may be completed by assuming
continuity, and an ‘illusory contour’ formed. These approaches will not be considered here, as they
are rarely required, but are a suggested avenue for further research in Chapter 8.

7Although phrased in terms of ‘foreground’ and ‘background’, this does not restrict this the-
ory to only two motions. The terms should be read as referring to the relative foreground and
background—considering the interaction between two motion layers (of perhaps many overall) in
an area of a frame. One of these layers will be closer to the camera than the other and is, relatively,
the foreground.
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Edge tracking labels edges
as motion 1 or motion 2

Frame 1 Frame 2

Figure 3.4: Tracking and labelling edges. Edges are tracked between frames and labelled
as motion 1 (red) or motion 2 (green). All of the edges of the foreground regions (the ball)
move with the foreground motion (green). The other edges are where two background
edges meet, and they move with the background motion.

are visible and also have the foreground motion. A region which obeys the back-

ground motion may be bounded by some of these foreground edges, but if it were

entirely surrounded by foreground edges it would be indistinguishable from a fore-

ground region. Where two background regions meet, the edge obeys the background

motion.

Consider the example shown in Figure 3.4. Here, the background remains sta-

tionary and the ball moves to the left between frames. There are three foreground

regions, the segments of the ball, and all of their edge obey the foreground mo-

tion. The other edges, between background regions, obey the background motion.

All regions which are unambiguously background will have at least one background

edge.

A motion labelling of regions, and knowledge of the relative depth ordering of

layers, therefore completely defines the motion labelling of the edges, according to

the following labelling rule:

Labelling Rule. The layer to which an edge belongs is that of the nearer of the two

regions which it bounds.

The next sections consider the reverse, and more useful, process of labelling

regions and finding the relative depth ordering from an edge labelling.

3.3.4 Region labels

Image regions can be labelled from an edge labelling by considering the implications

of the Labelling Rule given above. Any region completely surrounded by edges of
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Completely surrounded by
background edges, so
must be background

Completely surrounded by
foreground edges, so
must be background

Edges both foreground
and background, so must
be background

Figure 3.5: Labelling regions from edges. Edges which are entirely surrounded by edges
of one motion must themselves obey that motion. Regions with edges of both label must
belong to the further of the motion layers, the background (red in this case).

one label must themselves obey that motion. The remaining case, regions which

are bounded by edges of different motions, must obey the motion of the furthest of

those edges. Otherwise, edges on the layer obeying that motion would have been

occluded by the region in question.

If the relative depth ordering of the motions is known (i.e. which edges are

‘foreground’ and which are ‘background’), the region labelling is trivial. Consider

the edge labelling in Figure 3.4, for which the region labelling process is outlined

in Figure 3.5. Only regions entirely surrounded by the edges of the foreground

motion—the segments of the ball—can be foreground. All other regions (those

entirely surrounded by background edges, or by edges of both labels) must be back-

ground.

In the case where the depth ordering is known, an edge labelling is therefore

sufficient to perform a complete dense labelling of the image. The next section will

show that an edge labelling is in fact sufficient to determine the depth ordering,

which is a necessary condition for a complete segmentation of an unknown scene.

Referring back to Figure 3.5, it can be seen that foreground and background

edges are not symmetrical:

Background edges always separate two background regions.

Foreground edges may be the boundary to one foreground region (if it is an

occluding edge), or to two foreground regions (if it is an internal edge).

This non-symmetric behaviour—the various interpretations of a foreground edge—

are the cause of the non-local reasoning mentioned earlier in this chapter.

Pixels near a foreground edge may perhaps only be foreground on one side of the

edge, or on the other side, or pixels on both sides may be foreground. If it is known

(for example from edges elsewhere in the frame) that the region on one side of a

foreground edge belongs to the background, then pixels on the other side of the edge
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Motion 2

Motion 1

Case 1

Motion 2 is
background

Case 2

Motion 1 is
background

Figure 3.6: Labelling a T-junction. Where edges of different motion labellings meet there
is only one consistent layer ordering. In Case 1, motion 2 (green) is labelled as background,
which means that all regions must be background, which is inconsistent with the red edge.
Selecting motion 1 (red) as the background motion (Case 2) gives a consistent solution.

must be labelled as foreground. This pixel labelling cannot be known from purely

local reasoning—just because a pixel is near a foreground edge, it does not mean

it is foreground. The näıve MRF approach is therefore not appropriate and some

higher level reasoning must be applied; edges and regions provide this. Edge and

region reasoning are therefore necessary to determine the correct region labelling,

local measures are not enough.

This asymmetry in the edge labelling enables the relative depth ordering to also

be determined from the edges, making them sufficient for a complete region labelling

and depth ordering.

3.3.5 Depth ordering

The depth ordering of layers relies on there being some interaction between edges

of different motions. This occurs when foreground regions and edges occlude back-

ground edges, leaving T-junctions at which edges with different motion labels meet.

Figure 3.6 highlights such a T-junction (extracted from Figure 3.4). It is always the

case that, of the three edge fragments meeting at the junction, two have the same

motion (this is proved later in this section).

With two possible foreground motions in this case, there are two possible inter-

pretations of the edges in such a T-junction: either the red motion is foreground,

or the green motion is foreground. However, in all such T-junctions, one and only

one of these possibilities is consistent with the logical reasoning developed above.8

Figure 3.6 demonstrates the consequences of each of these two possibilities. In Case

1, red is assumed to be foreground and green background and so all regions divided

by a green edge must also be background. This implies that all three regions here

8T-junctions were also considered by Malik in [92] in the context of stereo images. However,
these were explicitly identified in the image by edge matching, rather than being identified from
edge labels. In Malik’s case he developed theory enabling the relative depth to be extracted; this
is not possible here since there is an ambiguity between the size of the motion of a layer and its
depth.
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are background, which is inconsistent with a red (foreground) edge being present.

Alternatively, Case 2 is where red is background. Here, only the top two regions

must be background. The green (foreground) edge is therefore an occluding edge,

and the bottom region is foreground. This is completely consistent with the edge

labels, and so green must be the foreground motion and this region labelling the

correct dense solution.

This theory of T-junctions may be formalised by the following theorem, which

draws on the labelling rules developed earlier.

Theorem. No junction may have a single foreground edge. At edge junctions where

two different layers meet, two of the edges must belong to the foreground motion.

Proof. If one edge at a junction obeys the foreground motion then one of the regions

that it bounds must have the foreground motion. A foreground region has all of its

edges labelled as foreground. Each region at the junction is bounded by two of

the junction’s edge segments. The foreground region must therefore have two edge

segments meeting at the junction, and both of these must be foreground.

This theorem is sufficient to deduce the layer ordering. Of the three edges at a

T-junction, the motion which appears twice is the foreground motion. By this form

of reasoning, or by the hypothesise-and-test approach initially described, the edge

labels therefore completely determine both the depth ordering, and consequently

the complete dense region labelling of a frame.

3.4 Unsolvable ambiguities

Section 3.3.2 stated two conditions for a correct segmentation: the occluding bound-

ary must be visible, and edges from different layers must intersect (i.e. there must

be T-junctions). This section investigates what happens if either of these conditions

are not met.

3.4.1 Missing occluding boundary

When part of the foreground object is the same colour as the background, no oc-

cluding edge will be visible for that part of the object. This will therefore not

be included in any initial region segmentation of the image, and any region which

should have belonged to that part of the object will be subsumed into the neigh-

bouring background region. Figure 3.7 illustrates such a case, where the left-hand

edge of the ball is no longer present. In these cases this combined region will, by
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Figure 3.7: Unsolvable ambiguity: Missing occluding boundary. If part of the occluding
boundary is missing (shown by the dashed line here), part of the foreground will become
merged with the background.

Case 1 Case 2

FB BF

Figure 3.8: Unsolvable ambiguity: No T-junction. If there is no interaction between the
edges of the two objects, there are two possible interpretations of the edge labelling. Either
of the two motions could be foreground, resulting in slightly different region labelling
solutions. In case 1, the ball is the foreground object (F); in case 2 the green edges are
on the background (B), viewed through a rectangular window in the red foreground.

virtue of having both background and foreground edges, be labelled as background,

leaving a reduced foreground object.

Unless this edge is visible (i.e. there is a difference between the foreground and

background pixels at this point), it is not possible to distinguish this part of the

foreground from the background under any motion segmentation scheme, either

edge- or pixel-based. In these cases the object could only be segmented with some

higher-level knowledge, such as a model of the expected shape of the object.

3.4.2 No T-junctions

Where there is no interaction between edges of different motions in the image (no

T-junctions), the layer ordering is ambiguous. Figure 3.8 shows a case where the

background edge occluded by the ball is no longer present and, with no T-junctions,

there are two possible interpretations. One interpretation is that the ball is the fore-

ground object, moving in front of a featureless background (Case 1). Alternatively,

the disc is simply part of the texture on a larger moving object visible through a

rectangular window in the foreground (Case 2). Both of these interpretations are

completely consistent with the edge labelling.
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Situations such as this, where there is genuinely no image structure occluded by

the foreground object, are ambiguous under any motion segmentation scheme. The

system presented here can identify the lack of T-junctions and acknowledge that

there is an ambiguity.

3.5 Bayesian formulation

The previous sections determined that a segmentation using edges and regions is

necessary and sufficient for a dense motion segmentation of a sequence. Edges are

good features for motion estimation for a number of compelling reasons, including

the opportunity to perform rigorous statistical analysis of their motion labelling.

This section develops the statistical framework which enables a dense labelling to

be performed from labelled edges.

In a real sequence a complete and self-consistent edge labelling cannot usually

be determined, due to noise, and to objects and motions which do not conform

fully to the assumptions outlined earlier in this chapter. In this case, each edge

can be labelled with a probability of their obeying each motion, but not a definite

labelling.9 Given these probabilities, a ‘best’ segmentation must be determined, and

this section uses Bayesian methods [58, 84] to find the solution with the maximum

a posteriori (MAP) probability. This not only considers how well an interpretation

explains the measured data, but also allows prior expectations of a sensible solution

to be incorporated.

3.5.1 Parameters and maximum likelihood solution

There are a large number of parameters which must be solved to give a complete

motion segmentation: the labelling for each image region and the ordering of the

different layers. Given that the task is one of labelling the regions of a static seg-

mentation, finding their motion, and determining the layer ordering, the complete

model of the segmentation M consists of the elements M = {Θ,F,R}, where

Θ is the parameters of the motion models,

F is the foreground-background ordering of the motion layers,

R is the motion label (layer) for each region.

9Chapter 4 describes how these probabilities may be estimated.
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The region edge labels are not an independent part of the model, as they are com-

pletely determined by R and F, as defined by the Labelling Rule of Section 3.3.3.

Given the image data D (and any other prior information assumed about the

world), the task is to find the model M with the maximum probability given this

data:

arg max
M

P (M|D) = arg max
RFΘ

P (RFΘ|D) (3.2)

where both P (M|D) and P (RFΘ|D) are the probability of the model given the

data. This can be further decomposed, without any loss of generality, into a motion

estimation component and region labelling:

arg max
RFΘ

P (RFΘ|D) = arg max
RFΘ

P (Θ|D) P (RF|ΘD) (3.3)

At this stage a simplification is made: it is assumed that the motion parameters

Θ can be maximised independently of the others, i.e. the correct motions can be

estimated without knowing the region labelling (just from the edges). This relies on

the richness of edges available in a typical frame, and the redundancy this provides.

Usually, there is only one set of motions which can be found to fit these edges,

and estimating these motions independently of the region labelling will approach

the global maximum.10 If desired, a global optimisation may be performed once an

initial set of motions and region labelling has been found, and this is discussed in

Chapter 7. Given this simplifying assumption, the expression to be maximised is

arg max
Θ

P (Θ|D)

︸ ︷︷ ︸
a

arg max
RF

P (RF|ΘD)

︸ ︷︷ ︸
b

(3.4)

where the value of Θ used in term (b) is that which maximises term (a). The two

components of (3.4) can be evaluated in turn: first (a), the motions, and then (b),

the region labelling and layer ordering.

3.5.2 Estimating the motions Θ

The first term in (3.4) estimates the motions between frames (Θ encapsulates all

the motions). Thus far this statistical formulation has not specified how the most

likely motion is estimated, and neither are edges included. As explained earlier in

this chapter, edges are robust features to track—they provide the only good motion

10Pathological cases are, of course, possible where there is not one obvious set of motions. For
example, a sequence with predominantly horizontal edges where all motions are also horizontal.
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information—and they provide a natural link to the final image segmentation, being

fundamental to the segmentation process.

The edges must be introduced into the statistical model, where they are expressed

by the random variable e which gives the labelling of an edge—the motion that each

edge obeys. This is a necessary variable, since in order to estimate the motion models

from the edges it must be known which edges belong to which motion. However,

simultaneously labelling the edges and fitting motions is a circular problem: the edge

labelling is needed to estimate the motions, while a motion estimate is required to

label the edges. One method of resolving this is by expressing it in terms of the

classic Expectation-Maximisation (EM) algorithm [43], which iteratively estimates

the motions, refining the current estimate Θn:





P (e|ΘnD) E-stage

arg maxΘn+1

∑
e log P (eD|Θn+1) P (e|ΘnD) M-stage

(3.5)

Starting with an initial guess of the motions, the expected edge labelling is

estimated (the E-stage). This edge labelling can then be used to maximise the

estimate of the motions (the M-stage), and the process iterates until convergence.

The EM algorithm is described in more detail in Chapter 4, which describes an

implementation of this framework.11

3.5.3 Estimating the labellings R and F

Having obtained the most likely motions, the remaining parameters of the model

M can be maximised. These are the region labelling R and the layer ordering F,

which provide the final segmentation. Once again, the edge labels are used as an

intermediate step. Given the motions Θ, the edge label probabilities are estimated,

and from Section 3.3 the relationship between edges and regions is known. Term

(3.4b) is augmented by the edge labelling e, which must then be marginalised,

11As with all iterative schemes, the problem of local maxima is a concern with EM. However,
the results in this dissertation show that under two motions this does not present a problem,
and Chapter 7 describes a new initialisation scheme which ameliorates the problem for a greater
number of motions.
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giving12

max
RF

P (RF|ΘD) = max
RF

∑
e

P (RF|eΘD) P (e|ΘD) (3.6)

= max
RF

∑
e

P (RF|e) P (e|ΘD) (3.7)

where the first expression in (3.6) can be simplified since e encapsulates all of the

information from Θ and D that is relevant to determining the final segmentation R

and F, as shown in earlier in this chapter.

The second term, the edge probabilities, can extracted directly from the motion

estimation stage—it is the result of the E-stage of the EM algorithm, (3.5). The

first term in (3.7) is more difficult to estimate, and it is easier to recast this using

Bayes’ Rule [58, 84], giving

P (RF|e) =
P (e|RF) P (RF)

P (e)
(3.8)

This decomposes the probability of the region labelling and depth ordering, given

the edge labels, into the probability of the edges given R and F, and two prior

probabilities. The prior probability of an edge labelling, P (e), does not change over

the maximisation (3.7), which is only over R and F. The joint prior of R and F may

be separated (i.e. they are independent) since whether a particular layer is called

‘motion 1’ or ‘motion 2’ does not change its labelling. This leaves

P (RF|e) ∝ P (e|RF) P (R) P (F) (3.9)

Any foreground motion is equally likely, so P (F) is constant, but the middle

term, P (R), is not constant since some configurations of region labels are more

likely than others (for example, regions belonging to one object are all expected to

be adjacent to each other). This term must therefore be kept, and is used to encode

likely labelling configurations. Substituting back into (3.7), this leaves the following

12The term P (e|ΘD) in (3.6) could be expressed in terms of marginalising the joint distribution
over R, F and e, i.e.

P (e|ΘD) =
∑

R

∑

F

P (eRF|ΘD)

However, this is not necessary as it is simpler to evaluate P (e|ΘD) directly (see Chapter 4). Indeed,
the decoupling of {R,F} and {Θ, D} by means of the intermediate variable e, as expressed by
(3.7), is the crucial stage which makes this problem tractable. The edges are this intermediary,
and are fundamental to the solution.
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expression to be evaluated:

max
RF

∑
e

P (e|RF) P (R) P (e|ΘD) (3.10)

The P (e|RF) term is very useful. The edge labelling e is only an intermediate

variable, and is entirely defined by the region labelling R and the foreground motion

F (via the Labelling Rule of Section 3.3.3). This probability therefore takes on a

binary value—it is 1 if that edge labelling is consistent with the R and F, and 0 if it

is not. The sum in (3.10) can thus be removed, and the e in the final term replaced

by the function e (R,F) which provides the correct edge labels for given values of

R and F:

max
RF

P (e (R,F)|ΘD)︸ ︷︷ ︸
a

P (R)︸ ︷︷ ︸
b

(3.11)

The variable F takes only a small, discrete set of values (for example, in the case

of two layers, only two: either one motion is foreground, or the other). Equation

(3.11) can therefore be maximised in two stages: F can be fixed at one value and

the expression maximised over R, and the process then repeated with other values

of F and the global maximum taken. This is the same hypothesise-and-test process

as outlined in Figure 3.6.

The maximisation over R can be performed by hypothesising a complete region

labelling and then testing the evidence (3.11a)—determining the implied edge labels

and then calculating the probability of this edge labelling given the motions. Then

this is combined with the prior (3.11b), calculating the likelihood of that particular

labelling configuration. This should be attempted for each possible set of region

labels, but an exhaustive search is impractical. In the implementation presented

in Chapter 4, a search of likely region labellings is made using simulated annealing

[59, 88].

3.6 Summary

Edges are fundamental to the process of motion segmentation. They are the only

areas of the image which provide good motion information, and they also allow

robust statistical techniques to be used, and an efficient implementation. A motion

labelling of edges is sufficient for an entire labelling of the image, using regions from

a static segmentation. The edges can be used both to label the image regions and

determine relative depth ordering of the motion layers, up to unsolvable ambiguities.
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Edge and region reasoning is also necessary for an accurate segmentation since some

motion labelling decisions are non-local and non-symmetric.

A Bayesian formulation is presented within which the segmentation of a frame

may be performed. The motions are first estimated and a probabilistic labelling of

edges made. Region labellings and possible depth orderings are then hypothesised

and tested against the edge label probabilities in order to find the most likely seg-

mentation. The following chapters present implementations and evaluations of this

framework.





CHAPTER 4

Implementation for two motions,

two frames

4.1 Overview

In the previous chapter it was established that edges should be used for motion

segmentation. The relationship between regions and edges was determined, and

a Bayesian framework for edge-based motion segmentation was presented. This

chapter presents an implementation of this framework for the case where there are

two motions present (the background and one foreground object). This is a common

case, and also the simplest motion segmentation scenario. Image data are used from

the frame to be segmented, and one further frame.

The system progresses in two clear stages, as demonstrated in Figure 4.1. The

first is to detect edges, find motions, and label the edges according to their prob-

ability of obeying each of the two motions (Figure 4.1(b)). These edge labels are

sufficient to label the rest of the image.

In the second stage the frame is divided into regions of similar colour using these

edges. The motion labels for these regions which best agree with the edge labelling

is then determined according to the framework of Chapter 3. Table 4.1 gives an

outline of this implementation.
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(a) (b)

(c) (d)

Figure 4.1: Foreman segmentation from two frames. (a) Frame 1; (b) Edges labelled
by their motion. The foreman moves his head very slightly to the left between frames;
(c) Maximum a posteriori region labelling; (d) Final foreground segmentation. (See also
Table 4.1.)
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(a) Find edges in image

(b) Find motions and label edges
Initialise motions Θ0

Repeat (EM Loop)

• Calculate edge probabilities P (e|ΘnD)

• Estimate the motions Θn

until convergence

(c) Find the best region labelling and layer ordering
Find regions
For each possible layer ordering:

• Initialise region labelling

• Refine by simulated annealing
Repeat

– Try relabelling individual regions

– Keep new labelling if total probability is greater

until convergence

Select most likely segmentation over all layer orderings

(d) Output final segmentation

Table 4.1: System overview. Summary of the edge-based motion segmentation scheme
(see also Figure 4.1). As defined in Section 3.5, Θn represents the set of motion parame-
ters and P (e|ΘnD) the probabilities of the edge obeying each motion, given the motion
and image data.

4.2 Finding edges

Edge detection is a subject which has received much study, due to the large number

of vision applications which use edges and lines as primitives on the way to higher

level goals. Most edge detection methods either find maxima in the first image

derivative (introduced by Canny [33]), or find zero-crossings in the Laplacian of a

Gaussian of the image, as proposed by Marr and Hildreth [93]. Convolution masks

may also be used to evaluate the local image gradient, such as the Sobel filter [137].

Bouthemy [23] also used convolution masks, to determine spatiotemporal edges—

determining both the location and motion of edges.1 However, a combined approach

1A series of video frames may be stacked together to make a 3D volume (x, y, t), i.e. two spatial
axes and one temporal axis. An edge visible across all the frames (moving or otherwise) forms
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such as this, while elegant, requires compromises to be made (in the case of [23],

only straight edges undergoing translational motion are modelled). Separating the

edge detection and motion estimation stages allows more sophisticated techniques

to be used at each stage.

As the standard edge detector in use today, the Canny edge detector is used in

the system presented here. Edge detection is performed in a grey-scale version of

the input image. Other edge detection schemes would be equally applicable, and a

colour edge detector (for example that used by Sinclair in [130]) would be a useful

addition to the implementation presented here.

The Canny edge detector begins by applying Gaussian smoothing to the image

(here using σ = 1), and then computes image gradients. Non-maximum suppres-

sion is applied to pick out only the ridges in the gradient image and then hys-

teresis thresholding used to remove weak edges. Hysteresis thresholding uses two

thresholds—edgels must be above the lower threshold in order to be considered, and

connected chains of these edgels are detected, but a chain is only accepted if at some

point along this chain there is an edgel which is above the higher threshold.2 This

reduces the fragmentation in the output edges that occurs if a single threshold is

used.

In the implementation used here, it is important that each edge obeys the same

motion along its length. Where there is a sudden change in edge direction, this

might indicate a structural change, and a possible change in motion. To allow these

different parts of the edge to be labelled differently, the candidate chains of edgels

are split at points where the direction of the edge gradient changes too rapidly. Each

of these split, thresholded chains is, in this implementation, an ‘edge’.

Various parameters must be set to achieve the most useful set of edges. The edge

detector should extract as much as possible of the foreground object’s occluding

boundary, and the edges due to structure. Edges due to texture and lighting effects

(shadows and surface reflections) are either difficult to track or do not obey the

motion assumptions and so are undesirable. These edges are usually less distinct

than structural edges, and as a result, conservative thresholds are used which allow

only the strong edges to be detected. The thresholds shown in Table 4.2 are found,

empirically, to be suitable in almost all cases. Figure 4.1(b) shows a typical set of

edges extracted using these parameters.

a surface in this space. Detecting this surface allows both the edge’s location and motion to be
determined.

2Edgels are ‘edge elements’ i.e. pixels on an edge
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Parameter Value
Smoothing σ 1
Upper hysteresis threshold 30
Lower hysteresis threshold 10
Maximum direction change 20◦

Table 4.2: Parameters used for Canny edge detection. Values based on an 8-bit greyscale
image. Conservative values are used to avoid edges due to texture and lighting effects.

a b
c

A1

A2

Figure 4.2: The aperture problem. It is impossible from local measurements (e.g. within
the circle), to tell where either edge point A1 or A2 moves to. Point c is the correct
match for A1, but all that can be determined from edge measurements is the component
of motion normal to the edge.

4.3 Estimating motions from edges

4.3.1 The aperture problem

Edges are perceived to provide a poor solution to the motion-estimation problem

because of the aperture problem [94], demonstrated in Figure 4.2. Here the object

moves up and to the right and an attempt is made to match an edgel A1 to its new

location by seeking locally (within the circle). The correct match is at position c,

but since an edge is only a one dimensional feature, the edgel could equally well find

a match at positions a, b or c. What all these points have in common is that they

are the same perpendicular distance from the edge, so although the exact motion

cannot be determined from an edgel, it is possible to determined the component of

the motion normal to the edge. As pointed out by Buxton et al. [31], this is sufficient

to determine a parametric motion. In this case, for a layered motion segmentation,

this is all that is required.

The fact that the motion can be determined from only the normal component

gives edges an advantage over corner features. Feature-based motion estimation
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(a) (b)

Figure 4.3: Edge tracking example. (a) Edge in initial frame, with sample points. (b) In
the next frame, where the image edge has moved, a search is made along the edge normal
from each sample point to find the new location. The best-fit motion is the one that
minimises the squared distance error between the sample points and the image edge.

(a) (b)

Figure 4.4: Sample points in a frame. (a) Sample points initialised every 5 pixels along
the edges from Figure 4.1(b); (b) Matches found from by searching normal to each edge,
showing each sample point’s displacement in red. The background motion is approxi-
mately zero, while the head moves a few pixels to the left (see the left-hand brim of the
hat). A few mismatches are also observed.

provides a speed advantage over pixel-based approaches, but in order to avoid the

aperture problem many researchers turn to two-dimensional image features, ‘cor-

ners’, whose matches can be exactly determined. Using corners, however, slows the

system again since, in order to find the exact match, a search is usually required

over all the possible locations within a search window. Using edges takes advantage

of the aperture problem by accepting that an exact match cannot be found, but that

any point on the edge is an acceptable match if the minimisation then just uses the

perpendicular distance. This means that only a one-dimensional search is needed to

find the new edge location, which is much faster.
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4.3.2 Finding a match

In order to reduce the calculation cost further, sample points are assigned at regular

intervals along the edge, as in Figure 4.3(a), and the motion of these sample points

is considered to be representative of the whole edge motion. In this implementation,

sample points are placed one every five pixels along an edge, as shown in the example

in Figure 4.4(a). This density of sample points is found to give good tracking

performance while, clearly, being five times faster than tracking every edge point.

Figure 4.4(a) shows 804 sample points, which is a typical number.

From each sample point a search is made to determine the motion of the edge

(Figures 4.3(b) and 4.4(b)). As discussed above, the only measurement that is rel-

evant is the motion normal to the edge. This may be determined by only searching

normal to the edge but, as shown in Figure 4.2, one could equally well search in any

reasonable direction and then project onto the edge normal. For speed and simplic-

ity, therefore, the search is made along the closest compass direction to the normal

i.e. in both directions along one of the vectors ( 1
0 ), ( 0

1 ) or ( 1
1 ), as demonstrated for

edgel A2 in Figure 4.2. The search length ρ is chosen to be at the upper end of the

observed inter-frame motion. In the sequences tested, this rarely exceeds 10 pixels,

so a generous value of ρ = 20pixels is used.

To find a match, the colour image gradient at the original location is compared

with that at each of the proposed new locations along the search track.3 Comparisons

are only made at integer locations in the pixel grid, giving a match to the nearest

pixel; no sub-pixel interpolation has been found to be necessary. The gradient is

evaluated independently in the red, green and blue components of the image using

a 5× 5 convolution kernel calculated for this work:





[ −0.7358 −0.5353 0.0000 0.5353 0.7358
−1.0705 −0.7788 0.0000 0.7788 1.0705
−1.2131 −0.8825 0.0000 0.8825 1.1231
−1.0705 −0.7788 0.0000 0.7788 1.0705
−0.7358 −0.5353 0.0000 0.5353 0.7358

]
x direction

[ −0.7358 −1.0705 −1.2131 −1.0705 −0.7358
−0.5353 −0.7788 −0.8825 −0.7788 −0.5353
0.0000 0.0000 0.0000 0.0000 0.0000
0.5353 0.7788 0.8825 0.7788 0.5353
0.7358 1.0705 1.2131 1.0705 0.7358

]
y direction

which as well as taking differences in the x or y direction, also provides some (trun-

cated) Gaussian smoothing, using σ = 2. Smaller convolution kernels, such as that

proposed by Sobel [137], were found to suffer from noise in some sequences.

The gradients are calculated at both the original location in the first image and

3A correlation of image intensities over a small window would also be appropriate, although
not as invariant to changes in illumination.
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the proposed location in the second. The match score S is taken to be the sum of the

squared differences between these gradients, summed over the three colours, and over

both the x and y directions. If a match is found above a threshold (Smax = 100, 000

using the given kernels and 8-bit colour values), then the normal distance for this

sample point, dk, is taken to be the dot product between this vector and the unit edge

normal. If S is smaller than the threshold at each proposed location (if, perhaps,

the edge is occluded in the second frame), ‘no match’ is returned.

4.3.3 Motion models

To fully describe the observed image motion, a description of the three-dimensional

motion of the objects would be required, together with the depth of all points in

the scene and a model of the camera imaging process—in other words a full 3D

reconstruction. This is completely general but highly complex and ill-conditioned,

due to the vast number of unknowns. However, some attempts have been made in

this direction, for example in [9] and [122], which begin with a 2D motion model

and then build up to the local depth parameters.

A more practical approach is to use a 2D parametric transformation to describe

the motion on the image plane. This 2D problem, with its small number of pa-

rameters, is highly overdetermined, efficient and numerically stable. Such models

are valid when either the camera translation magnitude is small with respect to the

depth of the objects, or where there is only a small amount of depth variation in the

scene [9, 78]. In these cases the scene can be considered to be approximately planar.

At least one of these situations can be reasonably assumed when considering the

small motion between neighbouring frames of a video sequence, and this parametric

approach works well in the system presented in this dissertation.

Many common transformations in two-dimensional projective space may be rep-

resented by a 3×3 matrix operating on a two-dimensional homogeneous co-ordinate

(x y 1)T , with the convention that the third value in the co-ordinate is always

scaled back to a value of one.4 As a result, scaled versions of the matrix produce

identical transformations and so there are 9− 1 = 8 dimensions to this group. The

eight independent modes of deformation are typically expressed as shown in Table

4.3, with the transformation matrices given in the Mi column.

This group of 2D projective transformations has a number of important sub-

groups, as shown in Table 4.4. A few pixel-based techniques (e.g. [30]) assume

that, locally, the only motion is translation. Many approaches to parametric motion

estimation use the 2D affine subgroup (e.g. [37, 107, 158]), while some use a full

4See [51, 64, 124] for introductions to homogeneous co-ordinates and projective geometry.
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Deformation Example Mi Gi Li

1 x translation
[

1 0 m
0 1 0
0 0 1

] [
0 0 1
0 0 0
0 0 0

] (
1
0

)

2 y translation
[

1 0 0
0 1 m
0 0 1

] [
0 0 0
0 0 1
0 0 0

] (
0
1

)

3 Rotation about origin
[

cos m − sin m 0
sin m cos m 0

0 0 1

] [
0 −1 0
1 0 0
0 0 0

] (−y
x

)

4 Dilation about origin
[

em 0 0
0 em 0
0 0 1

] [
1 0 0
0 1 0
0 0 0

] (
x
y

)

5 Pure shear
[

em 0 0
0 e−m 0
0 0 1

] [
1 0 0
0 −1 0
0 0 0

] (
x
−y

)

6 Pure shear at 45◦
[

cosh m sinh m 0
sinh m cosh m 0

0 0 1

] [
0 1 0
1 0 0
0 0 0

] (
y
x

)

7 Finite x vanishing point
[

1 0 0
0 1 0
m 0 1

] [
0 0 0
0 0 0
1 0 0

] (
x2

xy

)

8 Finite y vanishing point
[

1 0 0
0 1 0
0 m 1

] [
0 0 0
0 0 0
0 1 0

] (
xy
y2

)

Table 4.3: Planar transformations. The eight planar transformations in the 2D projective
group P(2), and their corresponding transformation matrices Mi, generators Gi and vector
fields Li.

Group Modes (see Table 4.3)
1 2 3 4 5 6 7 8

Translation X X
Euclidean X X X
Similarity X X X X
2D Affine (GA(2)) X X X X X X
2D Projective (P(2)) X X X X X X X X

Table 4.4: The hierarchy of two-dimensional transformations. The subgroups of 2D pro-
jective transformations.
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projective parameterisation (e.g. [1]). For further reading about this hierarchy in

motion estimation, see Bergen et al. [9]. The implementation described in this

dissertation allows the user to select any of these modes to be allowed in the model.

In practice, the affine subgroup is found to work well in segmenting almost all of

the sequences tested (see Appendix D).

4.3.4 Lie group formulation

The 2D projective transformation group, and its subgroups (Table 4.4) are mathe-

matical groups under matrix multiplication, i.e. they are closed and associative, and

have inverses and the identity within the group (or subgroup). Each of these is also

a Lie group.

A Lie group is a group which is also a smooth manifold (it locally has the

topology of Rn everywhere). Lie groups provide a useful way of describing the image

transformations in a generic way by means of the vector fields that they generate in

the image. A more complete discussion of of Lie groups and algebras, with a more

precise definition, is available in [156] or [119]. The application of Lie groups to edge

tracking was introduced by Drummond and Cipolla in [44].

The transformation matrices Mi in Table 4.3 each describe one-dimensional fam-

ily of transformations on R2, parameterised by m, mapping a point (x, y) to the

transformed point (x′, y′). In each case, setting m to zero generates the identity

transformation. Linearising about the identity (differentiating w.r.t. m) creates a

series of vector fields, which are the (linearised) motion due to each of the transfor-

mation modes:

Li =
dMi(m)

(
x
y
1

)

dm

∣∣∣∣∣
m=0

(4.1)

These vector fields may be seen in the final column of Table 4.3. The fields for

modes 7 and 8 are non-linear due to the transformation affecting the last element

of the homogenous position vector (the projective component), which must then be

normalised back to one.

The tangent space to the Lie group at the identity is fundamental to the study

of Lie groups, and is known as the Lie algebra. The basis for this space is given by

the matrices

Gi =
dMi(m)

dm

∣∣∣∣
m=0

(4.2)

which are referred to as the generators of the Lie group. The generators for the

group P(2) may be seen in Table 4.3. Since differentiation is linear, (4.1) may also
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be written as

Li = Gi




x

y

1


 (4.3)

A point α = (α1 . . . αn)T in the Lie algebra (with basis G1 . . . Gn) is mapped into

the Lie group by the exponential map [119, 156]

A = e
P

i αiGi (4.4)

but since eX = I+X+ 1
2
X2+. . ., for small transformations α, this can be approximated

by a linear sum of the generators:

A ≈ I +
∑

i

αiGi (4.5)

In the case of the projective P(2) group and the affine GA(2) subgroup, this approx-

imation will still yield a matrix in the group.

An image point x undergoing a transformation A maps to the point x′ according

to (4.5):

x′ = Ax

≈ Ix +
∑

i

αiGix

≈ x +
∑

i

αiLi (4.6)

In other words, the displacement of a feature location between two frames is a linear

sum of the vector fields at that location.

The power of the Lie group formulation comes in its generality. As long as

an independent mode of transformation can be expressed as a group generator, its

weighting may be included as another linear term in expression (4.5). The intuitive

parameterisations which follow from this formulation assist in the interpretation of

the results, and make the application of prior constraints particularly straightfor-

ward (see later). In addition, by expressing each of the modes in the hierarchy of 2D

projective transformations (Table 4.4) as an independent vector field, and the over-

all transformation as a linear sum of these (4.6), individual transformation modes

may be included or discarded simply by selecting which Li to use. Other modes of

deformation can also be added into the framework, or constraints may be placed

between the motions of different objects, as described in [45].



66 Implementation for two motions, two frames

4.3.5 Solution by re-weighted least squares

Given the Lie group formulation, the motion estimation task is one of estimating the

weighting αi for each of these deformation modes (i = 1 . . . nd), which can be done

by comparing the observed deformation with that predicted by (4.6). As discussed

earlier, due to the aperture problem, only the motion normal to the edge can be

determined, and so a measurement is taken at each sample point k to find the normal

distance to the image edge, dk (Figure 4.3(b)). The expression to be minimised at

each sample point is the distance between this and the projection of the fields onto

the unit normal n̂k:

Error = dk −∑
jαj

(
Lj

k · n̂k
)

(4.7)

Least squares solution

Over the whole set of K sample points, the ensemble of errors (4.7) may be expressed

in matrix-vector form, and the least squares estimate of α given by

arg min
�

‖d− Nα‖2
2 (4.8)

where

d =




d1

d2

...

dK




N =




L1
1 · n̂1 L1

2 · n̂1 . . . L1
n · n̂1

L2
1 · n̂2 L2

2 · n̂2 . . . L2
n · n̂2

...
...

. . .
...

LK
1 · n̂K LK

2 · n̂K . . . LK
n · n̂K




α =




α1

α2

...

αn




(4.9)

for which the least squares solution is given by the pseudo-inverse

α =
(
NTN

)−1
NTd (4.10)

This dissertation calculates α in the typical manner, defining M = NTN and v = NTb

and solving

α = M−1v (4.11)

The elements of M and v are directly calculated from the measurements. See Ap-

pendix A for full details, or Table 4.5 for a summary.

M-estimators: Iterative re-weighted least squares

The least squares solution is the maximum likelihood estimator for sample points

whose errors are independent and normally distributed. In this dissertation it is

found that this is not the correct model and that the errors tail off more slowly,
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resembling a Laplacian distribution (see Section 4.4.4, particularly Figure 4.6). Such

distributions can be handled within the least squares framework by iterative re-

weighting to implement an M-estimator [70, and Appendix A.3]. The re-weighting

function used in this dissertation is

w
(
dk

)
=

1

c + |dk| (4.12)

with a value of c = 1. The measurements are multiplied by this factor, reducing

the influence of gross outliers. This M-estimator is the maximum likelihood esti-

mator for distributions which behave as a Laplacian for most values of dk, but a

Gaussian for small values of dk (which avoids the discontinuity that would occur

if a pure Laplacian were used). Since the motion estimation is iterative, as part

of an Expectation-Maximisation loop (see Section 4.4.2), iterative re-weighted least

squares is a natural solution.

Translation prior: Regularisation

It is found from experience that the majority of motions in video sequences are

translational. Rather than restrict the motions to the translation subgroup, it is

found to be more useful merely to place a prior on the solution. This may be

achieved by a regularisation of the solution (Appendix A.4). The term λR is added

to the covariance matrix M = NTN, where R is the diagonal matrix

R =




0

0

1
. . .

1




nd×nd

(4.13)

and λ is selected to make the prior of similar magnitude to the data. This is achieved

by using

λ = 1
nd

Tr (M) (4.14)

where nd is the number of vector fields (dimensions) and the function Tr() returns

the trace of a matrix. λ is thus the mean of the diagonal elements.

Solution by SVD with normalisation

Finally, the re-weighted least squares solution is calculated using Singular Value

Decomposition (SVD) [112], with the matrix normalised to increase the conditioning
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(Appendix A.5). The complete motion estimation subsystem is outlined in Table

4.5.

At each iteration of the motion estimation, a new search is made for the real edge

starting from the sample point positions given by the current motion estimates. The

distance dk measured at each iteration is therefore itself a residual measurement—

the error between the real location and the current motion estimate.5 The system

outlined in Table 4.5 calculates a correction term α(k) to minimise this residual

further, where (k) is the iteration number. Clearly, these correction terms should

tend to zero as the iteration process progresses. Once the iteration has converged,

the maximum likelihood estimate for the motion is given by the sum of the α(k)

terms over all the iterations:

Motion estimate θ =
∑

iterations

α(k) (4.15)

4.4 Multiple motion estimation using EM

4.4.1 Dominant vs simultaneous multiple motion estimation

Motion estimation becomes a more difficult proposition where there are independent

moving objects in a sequence. If it were known a priori which edges belonged to

which object then the motion for each object could be estimated independently

using just the correct edges, using the method described in Section 4.3 above. Of

course, the edge labelling is not known a priori—the reason why the motions are

being estimated is in order to then label the edges according to their motion.

The dominant motion technique is a popular method for solving this circular

problem [5, 40, 75, 78, 107]. Under this scheme, one motion is robustly fitted to

all the data, and any features or pixels which are identified as ‘conforming’ to this

‘dominant motion’ (according to some criteria) are labelled as part of that motion

segment and are removed from the estimation process. The process is then repeated

with the remaining features or pixels in order to find the other motions. While this

technique works well in some cases, particularly when much of the frame does obey

one motion (for example when a large area of the scene is background), it relies

heavily on the ability of the motion estimation scheme to correctly extract one of

the motions in the scene when presented with very noisy data (i.e. containing all

motions). For reliable results, this is dependent on the use of robust estimators.

5Because dk is already a residual measurement, this is the value used in calculating the re-
weighting factor wk.
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• Make measurements
For each sample point k

– Transform k according to current motion estimate

– Compute unit normal to edge, n̂k

– Search along closest compass direction for an edge

– Compute residual error

dk = (distance to edge) · n̂k

• Calculate weighted measurement matrices
For i, j = 1 . . . n

– Let Mij = vi = 0

– For each sample point k

wk =
1

1 + |dk|
vi = vi + dk

(
Li · n̂k

)
wk

Mij = Mij +
(
Li · n̂k

) (
Lj · n̂d

k
)
wk

• Regularise (translation prior)
For i = 3 . . . n

Mii = Mii +
1

n

n∑

k=1

Mkk

• Calculate normalisation factors
For i = 1 . . . n

Si =
1√
Mii

• Pre-normalise
For i, j = 1 . . . n

v′i = viSi

M ′
ij = MijSiSj

• Compute α′ = M0�1v′ using SVD

• Post-normalise
For i = 1 . . . n

αi = α′iSi

Table 4.5: Motion estimation algorithm. See Section 4.3.5 and Appendix A for further
details; the entire table is iterated until convergence. When used as part of the EM
algorithm (see Section 4.4.5), the edge responsibilities must also be considered—see Table
4.7.
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One robust approach is to use an M-estimator, as introduced in Section 4.3.5

and Appendix A [68, 107, 121]. However, while M-estimators are very effective at

providing a maximum-likelihood estimation for non-Gaussian (but known) distribu-

tions, they fare much less well with gross outliers. In their survey paper on robust

estimation [146], Torr and Murray found that M-estimators are poor for more than

20–25% outliers in the data set. In other words, unless over 75% of the data obey

one motion (and are matched correctly), the M-estimator will not yield a good so-

lution. It is unreasonable to expect this to be the case in all motion segmentation

scenarios.

The most effective robust methods are based on random sampling: either Least

Median of Squares (LMedS) [118], or RANSAC [54]. Under these schemes a number

of trials are made, using random subsets of the data, in the hope that one of those

subsets will contain no outliers and thus will yield good results. Torr and Murray

[146] recommend LMedS and find that it works well for at least up to 50% outliers.

While these schemes do work well (e.g. [5, 145]), one problem is selecting a reasonable

subset. Ideally, this should contain the minimal set of points necessary (to reduce

the probability that one of these is an outlier). This minimal set is difficult to define

in the case of edge motions since the conditioning of the solution depends on the

direction as well as the number of normal motions found. Even with point features,

the solution can be ill-conditioned if the points are poorly selected. In [163], Zhang

et al. suggest a bucketing technique whereby the image is divided into a number

of bins and only one point can be taken from each bin. However, in the case of

more than one motion this may make the problem worse, as each moving object

may only be represented in a few bins. A random-sampling approach was tested for

the edge-based motion segmentation scheme in this dissertation, but it was found

that this problem of selecting a suitable subset was a major complication.

When it comes to feature or pixel labelling, dominant motion schemes tend to

use a greedy approach. All features or pixels which match the first motion (up to a

threshold) are labelled as that motion and are removed from the process even if, later,

a motion is found which they would fit better. An obvious solution to this is to, at the

end of the process, reassign features or pixels by comparing with all possible motions.

And once this has been done, these motions could then be re-estimated to better

fit their altered regions of support. However, this is then essentially simultaneous

multiple motion estimation, with the initial greedy algorithm as an initialisation

stage.

Simultaneous multiple-motion estimation avoids some of the problems of the

dominant motion approach by modelling the complete system from the start. If it

is desirable to segment the sequence into two motions then two motions are fitted
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from the start rather than fitting first one single-motion model and then another.

This brings its own problems as the number of motions must be determined a priori ,

and fitting a larger number of parameters will always be a more difficult problem.

However, a simultaneous approach is selected for this dissertation, and selecting the

correct number of motions is discussed in Chapter 7. The current chapter assumes

that it is known that there are two motions to be fitted.

It is possible to place all the parameters (motion parameters and the feature/pixel

labelling) into one vast minimisation scheme, but the classic solution to these circu-

lar labelling/estimation schemes is the Expectation-Maximisation (EM) algorithm

[43] which alternately minimises the two sets of parameters. This is the approach

followed by, for example, Jepson and Black in fitting Gaussian mixture models to

dense motion fields [85], and by Sawhney and Ayer [121], amongst others, for motion

segmentation. EM has also proved to be a good solution to the problem of multiple

edge motions presented in this dissertation. Furthermore, the EM algorithm ties

in naturally with the statistical framework developed in this dissertation since it

produces, and makes use of, a labelling probability for each edge.

4.4.2 The Expectation-Maximisation algorithm

Introduced by Dempster et al. in 1977, the Expectation-Maximisation algorithm

[13, 43] is a general method for finding the maximum likelihood estimate of the

parameters of a distribution when there is missing data (in this case the motion

labels for each of the edges). For a distribution governed by a set of parameters Θ,

and a set of data Z = {z1, . . . , zN} drawn from this distribution, the likelihood of

this data, L [Θ; Z], is given by:

L [Θ; Z] = P (Z|Θ) (4.16)

=
N∏

i=1

P (zi|Θ) if the data are independent (4.17)

The case considered by Dempster et al. is when the data set is incomplete, i.e. only

data X is observed, out of the complete data set Z = {X, Y }. This can occur either

due to missing data or if it is not possible to observe Y (it is a hidden parameter).

The likelihood then becomes

L [Θ; Z] = L [Θ; X, Y ] = P (X,Y |Θ) (4.18)

and it is this expression which must be maximised for the maximum likelihood

estimate of Θ. It is important to realise that the value of function L [Θ; X,Y ] is a
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random variable since the missing information Y is unknown and random, and this

likelihood function can be considered a function of X and Θ, which are known. It

is therefore necessary to consider the expected value of (4.18), E [L [Θ; X,Y ]].

The EM algorithm casts this expectation as part of an iterative update scheme,

considering at each iteration the function L [Θ; X,Y ] given by the values Θ(i−1),

from the previous iteration, and X. This conditional expectation is defined as

Q
(
Θ, Θ(i−1)

)
= E [

logL [Θ; X, Y ] |X, Θ(i−1)
]

(4.19)

This is maximised to give an improved estimate for Θ:

Θ(i) = arg max
Θ

Q
(
Θ, Θ(i−1)

)
(4.20)

If the unknown data Y is a series of discrete states yj (as is the case with the

labelling of edges), then the expectation can be expressed as the sum over the state

probabilities:

Q
(
Θ, Θ(i−1)

)
= E [

logL [Θ; X,Y ] |X, Θ(i−1)
]

(4.21)

=
∑
y

logL [Θ; X,y] P
(
y|X, Θ(i−1)

)
(4.22)

In this form the iterative nature becomes clear: the labelling probabilities (also

known as responsibilities), P
(
y|X, Θ(i−1)

)
, can first be calculated given the current

parameters (this calculation of expectations is known as the the E-stage). Then the

expected likelihood (4.22) is maximised (the M-stage), given these values of y, to

give an updated estimate of Θ.

In this dissertation, the known data are the edges and the sample point matches,

the missing data are the motion labels for each edge, and the parameters to be

estimated are those of the two motions. Using the notation of Chapter 3, the

maximisation of (4.22) can be written as

arg max
Θn+1

∑
e

log P (eD|Θn+1) P (e|ΘnD) (4.23)

The final term represents the edge label probabilities, which are calculated in the E-

stage by referring to the sample point errors (see Section 4.4.4). Given these, (4.23)

is maximised using weighted least squares (Section 4.4.5). The process is outlined

in Table 4.6.
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• Initialise motions Θ0

• Repeat (EM Loop)

– E-Stage
Calculate edge label probabilities P (e|ΘnD)

– M-Stage
Estimate the motions Θn+1 given the current edge
label probabilities

• until convergence

Table 4.6: The EM algorithm for multiple motion estimation using edges. See Table 4.1
for context.

4.4.3 Initialisation

The most difficult part of any iterative algorithm is the initialisation, and EM is

no exception. Given the circular nature of the problem and the algorithm, it must

be started by some guess, either of the parameters or the labelling. While the EM

algorithm is guaranteed to improve the likelihood at each step [43], it can only

improve upon this initial guess and if this is too far from the true maximum then

there is a danger EM will converge to a local maxima.6

In developing the work for this dissertation, various heuristic initialisation tech-

niques have been tried, for example using the null motion and the mean motion as

the two initial motion guesses. However, the danger of using heuristics is that they

must be appropriate to the task, and if used inappropriately they can be counter-

productive. Consider the case, with a null/mean motion initialisation, where both

foreground and background are moving with a similar, large motion. All edges will

therefore obey the mean motion, and will continue to throughout the iterations—the

two independent motions will never be detected. For the two motion case considered

in this chapter it has been found that such heuristics are not necessary, and the eas-

iest way to achieve a reasonable initial motion estimate is through a random initial

edge labelling. Chapter 6 introduces a more sophisticated initialisation technique

for the cases where there are more than two motions.

The random initialisation starts by measuring the motion of each sample point.

Taking each of the sample points in frame 1, a match is found in frame 2 for each of

the sample points by searching, from their initial location, for a distance ρ in each

direction normal to the edge (ρ = 20 pixels). The edges are then randomly divided

6In fact, while the edge-based system of this dissertation does find a maximum, it does not do
so monotonically (see Section 4.4.6).
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Figure 4.5: Evaluating edge probabilities. The edge is considered under both possible mo-
tion models and the error distances under each motion are used to estimate the probability
of a good match.

into two groups, and the sample point residuals from the two groups are used to

estimate two initial motions (according to Section 4.3). Then the EM can begin at

the E stage, which estimates the probabilities that the edges obey these motions.

The advantage of a random initialisation is that it provides, to a high probability,

two motions which are plausible across the whole frame, giving all edges a chance

to contribute an opinion on both motions.

4.4.4 Expectation: Calculating edge probabilities.

The first stage in the EM iteration is to calculate the edge responsibilities, P (e|ΘnD).

That is, for each edge, the probability of its assignment to each of the possible mo-

tions. The obvious data to use to estimate this are the sample point errors, already

used to calculate the motions. An ensemble of small errors clearly indicates a more

likely fit than a motion which has large residual errors.

Figure 4.5 demonstrates the process. The edge is transformed according to each

motion model and a search is made from each sample point for a match. The set

of distances under motion 1 (one residual per sample point) will be referred to as

data D1, while the error distances under motion 2 are D2. If a sample point does

not find a match under a motion then that is considered as a special distance code,

which is included in the data set for that motion in the same way as if a match had

been found.

It is a reasonable assumption that these two sets of sample point errors encap-

sulate all of the information from Θn and D that is necessary to label the edge, and

hence the edge label probability can be written as

P (e|ΘnD) = P (e|D1D2) (4.24)

Calculating the probability that the edge fits one motion rather than another,

i.e. evaluating (4.24), is a standard case for using Bayes’ rule. This is used when

comparing how well the observed data are modelled according to each of the possible

hypotheses [58, 84]. In this case the observed data are both sets of sample point
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errors, and the hypotheses are either that motion 1 is correct, or that motion 2

is correct. It is important to realise at this point that if, for example, motion 1

were correct, this should explain both the errors observed under motion 1 and those

under motion 2, since the background distribution is not uniform. Denoting this

first hypothesis by ‘e = 1’, and so on, the probability that this is correct is given by

P (e = 1|D1D2) =
P (D1D2|e = 1) P (e = 1)

P (D1D2)
(4.25)

=
P (D1D2|e = 1) P (e = 1)

P (D1D2|e = 1) P (e = 1) + P (D1D2|e = 2) P (e = 2)
(4.26)

The prior probabilities of the two motion labels are equal, since there is no particular

meaning at this stage to each motion label—foreground and background labelling

comes later. A modelling assumption is also made: that the two data sets may

be treated as independent. There is in fact a small correlation between the data

under each model, but the probabilities reported by assuming independence are

not unreasonable.7 By assuming independence, and given equal priors, the edge

probability is given by

P (e = 1|D1D2) =
P (D1|e = 1) P (D2|e = 1)

P (D1|e = 1) P (D2|e = 1) + P (D1|e = 2) P (D2|e = 2)
(4.27)

The four different terms present in (4.27) represent only two different scenarios,

either the probability that data Di comes from an edge obeying motion i (i.e. it is

the correct motion), or that the data are due to the incorrect motion. It is assumed

that one distribution is sufficient to model the data under any incorrect motion, but

not that this is a uniform distribution.

This latter point is critical to the understanding of (4.27) since intuition might

indicate that the terms under the incorrect motion, P (Di|e 6= i), are superfluous.

However, this would only be the case if this distribution were uniform, and this

is most certainly not the case in this application (see Figure 4.6(b)). Implicit in

the ‘e = 1’ hypothesis is that the the errors in D2 are drawn from the background

distribution, since the edge can only be labelled with one motion. Since some errors

are more likely than others in this distribution, this implicit assignment of D2 to

the P (Di|e 6= i) distribution must also have some impact on the hypothesis.

The two distributions, P (Di|e = i) and P (Di|e 6= i) are modelled using the sam-

ple point errors. As another simplifying assumption, it is assumed that these errors

are independent along an edge. This means that the edge probability is the product

7Appendix C investigates this assumption in more detail.
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(a) (b)

Figure 4.6: Edge statistics. Distribution of sample point measurement errors dk under
(a) the correct motion (P

(
dk

i |e = i
)
) and (b) the incorrect motion (P

(
dk

i |e 6= i
)
). A

Laplacian distribution is overlaid on graph (a), showing a reasonable match.

of the individual sample point error probabilities:

P (Di|e = i) =
∏

k∈e

P
(
dk

i |e = i
)

(4.28)

P (Di|e 6= i) =
∏

k∈e

P
(
dk

i |e 6= i
)

(4.29)

where dk
i is the error at sample point k under the ith motion. Assuming indepen-

dence gives improved simplicity and flexibility, at the expense of some saturation of

the probability estimates (see Appendix C for an investigation into these indepen-

dence assumptions).8

The distributions of sample point errors dk under the correct and incorrect mo-

tions have been estimated from the accumulated statistics of thirty different test

sequences, a subset of those shown in Appendix D. Using earlier estimated statis-

tics, EM was run to convergence to find the two motions, and the correct motion

for each edge was then labelled by hand. The resulting distributions are shown in

Figure 4.6.

8Appendix C, in particular, considers modelling the sample point errors along an edge as a
first order Markov process along an edge [61]. It is found that, while the errors under the ‘correct
motion’ hypothesis are largely independent, there is considerable structure to the errors under the
incorrect motion.
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Since matches are only made to the nearest pixel, the distributions are discrete

and are given as a function of the number of steps made from the initial location,

regardless of whether those steps were aligned with the pixel grid (N, E, S, W), or

at 45◦ (NE, NW etc.). These could be stored as two different distributions, but the

difference between them is found to be minimal, so they are combined as one.

Looking at the distribution under the correct motion (Figure 4.6(a)), it can be

seen that the vast majority of sample points are matched with zero error. Very

few sample points, 4%, find a match at a distance of more than 2 pixels. About

10% of all sample points fail to find a good match. Under the incorrect motion

(Figure 4.6(b)) there are still a large number of sample points which find their best

match with zero error. This is because in most sequences there are a number of

edges which are along the line of both motions, and so the sample points provide a

good match under both. Also, since the inter-frame motions tend to be small, most

errors under the incorrect motion are also small. There are, however, a significantly

greater number of failed matches. A Laplacian distribution has been overlaid on

Figure 4.6(a) in blue and it can be seen that, as stated in Section 4.3.5, it provides

a good fit, and justifies the use of the selected M-estimator.9

Returning to the edge probabilities of (4.27), and defining the likelihood ratio

LR as the ratio of the two distributions:

LR
(
dk

i

)
=

P
(
dk

i |e = i
)

P
(
dk

i |e 6= i
) (4.30)

equation (4.27) can be rewritten as:

P (e = 1|D1,D2) =

∏
k∈e LR

(
dk

1

)
∏

k∈e LR
(
dk

1

)
+

∏
k∈e LR

(
dk

2

) (4.31)

Thus the probability that an edge is motion 1 is the product of the sample point

likelihood ratios under that motion, normalised over all motions. Figure 4.7 shows

the likelihood ratio derived from experiments. This discrete distribution could be

directly used in the system, but to guarantee a maximum likelihood solution at an

error of zero, it is better to smooth the values at larger errors and provide a model

which increases monotonically towards zero.10 The model used in this system is

shown in in blue in Figure 4.7. This uses the raw values for the first two errors, and

9A Laplacian distribution is a double-sided exponential distribution. In this dissertation the
sample point residual errors are double-sided (they are both positive and negative), but for clarity
only the positive half of the distribution is shown in the figures in the chapter.

10There are few examples of the larger errors in the data set used, so these values are expected
to be noisy.
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Figure 4.7: Sample point likelihood ratio. The likelihood ratio for each error dk, given by
the ratio of the number of good matches at that distance to bad matches (using the data
of Figure 4.6). The blue line shows the smoothed, monotonic likelihood ratio used in this
system.

Figure 4.8: Probability of a good match. The probability that a sample point with error
dk comes from an edge obeying the correct motion. (Figure 4.6(a) normalised against the
sum of Figures 4.6(a) and 4.6(b).) The modelled distribution (from the likelihood ratio)
is shown in blue.

then an exponential decay.

The edge motion probabilities given by (4.31) are the responsibilities required

for the E-stage of EM. Given two motions (either from the initialisation or from

the M-stage), the edges are transformed under each motion and the residuals dk
i

found. For each edge the probability that it is motion 1 is calculated from (4.31);

the probability that it is motion 2 is given by (1−P (e = 1|D1,D2)). As well as being

the responsibilities used in the M-stage, these are also (once EM has converged) the

final edge probabilities used in labelling regions (Section 4.6).

Is this match correct?

As an aside, the likelihood ratio may also be used to calculate the probability that

an edge is correctly matched under a motion (without any data from other motions).

This probability is used in Chapter 6 to determine whether an edge is ‘trackable’ or
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not. The probability is given by

P (e = i|Di) =
P (Di|e = i) P (e = i)

P (Di)
(4.32)

=
P (Di|e = i) P (e = i)

P (Di|e = i) P (e = i) + P (Di|e 6= i) P (e 6= i)
(4.33)

and if the match is known to be correct for one of the two motions considered, then

the priors are equal:

=
P (Di|e = i)

P (Di|e = i) + P (Di|e 6= i)
(4.34)

=

∏
k∈e P

(
dk

i |e = i
)

∏
k∈e P

(
dk

i |e = i
)

+
∏

k∈e P
(
dk

i |e 6= i
) (4.35)

=

∏
k∈e LR

(
dk

i

)
∏

k∈e LR
(
dk

i

)
+ 1

(4.36)

This probability is plotted in Figure 4.8, with the modelled distribution used in

this implementation shown in blue. This is calculated from the likelihood ratio

distribution according to (4.36). As expected, a sample point error of less than 2

implies that it is more likely that the point obeys the motion (P (ei = i|Di) > 0.5),

whereas if the distance is larger it is likely to be incorrect.

4.4.5 Maximisation: Calculating motions

The M-stage of EM calculates the most likely values of the motion parameters given

the current edge responsibilities. According to the discrete version of EM (4.22) the

expression to be maximised is the weighted sum of the edge likelihoods, where the

weights used are the responsibilities from the E-stage. This may be performed using

weighted least squares, as shown in Appendix B, performing one maximisation for

each set of motion parameters.

In the case of two motions, this is achieved by applying the motion estimation

algorithm of Section 4.3 twice, but now also weighting the measurements for each

edge first by the responsibilities under motion 1, r1(e) = P (e = 1|D1,D2), and

then by those under motion 2. The modification required to the motion estimation

algorithm of Table 4.5 (to estimate motion 1) is shown in Table 4.7.

It is here that the scheme diverts from standard EM practice in two ways. First,

the motion estimation stage does not completely maximise the probability of the

data, and instead only one iteration of the weighted least squares is performed.
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...

– For each edge e

∗ For each sample point k ∈ e

wk =
1

1 + |dk|
Mij = Mij +

(
Li · n̂k

) (
Lj · n̂k

)
wk r1(e)

vi = vi + dk
(
Li · n̂k

)
wk r1(e)

...

Table 4.7: Multiple motion estimation. Modification to Table 4.5 in order to calculate
multiple motions via EM (here showing the calculation of motion 1) . The measurements
are weighted by the edge responsibility (the probability that the edge obeys that motion):
r1(e) = P (e = 1|D1,D2)

This generates a solution which is refined in further iterations of EM. Second, the

maximisation is not over all the data, but only over the data for one motion. The

motion estimation merely tries to minimise the sample point errors under the as-

signed motion model, and not to also maximise the errors for the other motion.

In fact, it is by no means clear that considering the second motion model is at all

desirable. However, using the ‘incorrect’ motion model is useful in estimating the

responsibilities and estimating the final edge probabilities.

4.4.6 Convergence

The progress of the EM algorithm is monitored by considering the likelihood that

is being maximised. Since sample points are assumed to be independent, this is the

product over all sample points of the individual error probabilities, where the error

probability for each sample point is taken to be the weighted average (according to

the edge responsibility) over the different motions:

Likelihood =
∏

all edges
e

∏

k∈e

2∑
m=1

rm(e) P
(
dk

m|e = m
)

(4.37)

Figure 4.9 shows how this likelihood changes over a typical run of EM as imple-

mented in this system. It can be seen that the likelihood, in general, increases as the

algorithm progresses and then levels out, but that there is also some noise in this

process. EM is usually guaranteed to increase the likelihood with every iteration
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Figure 4.9: EM convergence. The log likelihood at each iteration of EM. In this system
EM does not always improve the likelihood since the sample points find new matches at
each iteration, which changes the data.

Figure 4.10: Edge probabilities as EM converges. Initial (random) edge labelling and
then the first three iterations of EM. The edge colour blends from red (motion 1) to
green (motion 2) according to the probability of each motion for that edge; consequently
yellow indicates an edge with equal probability of either motion. Note that after very few
iterations the solution is already very good. The final (converged) edge labelling can be
seen in Figure 4.1(b).

but this is not the case here, for a number of reasons. For example, the probabil-

ities are only partially maximised at each iteration, and the data are also different

at each iteration (since the sample points are mapped under a revised motion and

search along their new normal for a match). Quantisation also plays a small part,

as matches are only found to the nearest pixel—small changes in the motion can

therefore cause a jump of one pixel in the distance to the best match, and a related

jump in the probabilities.

The qualitative solution (the edge probabilities) do not change significantly once

the graph flattens out, and it can be seen from Figure 4.10 that the edge labelling

appears reasonable after only very few iterations. It has been found sufficient to

declare convergence when the likelihood has not risen above its current maximum

for 10 iterations. Convergence is usually reached after 20–30 iterations, which for a

typical image with about 1,000 sample points takes around 3 seconds on a 300MHz

PC.
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4.5 Finding regions

Having obtained the set of tracked edges, and labelled these according to their

motions, it is necessary to build on these to label the rest of the pixels. Chapter

3 showed that the set of labelled edges were sufficient to label the complete image,

when the rest of the image is divided up into regions of similar colour. The first

task is therefore to divide the image into these regions.

4.5.1 Choice of segmentation scheme

There are an increasing number of motion segmentation schemes in the literature

which use a static segmentation of the frame [12, 27, 68, 102, 110, 141, 153]. In

each case, the authors point out that the choice of segmentation scheme does not

restrict their proposed technique. The challenge in motion segmentation is not the

static segmentation scheme, but the means by which regions are labelled with their

motion.

All of the papers mentioned above do identify their favoured static segmentation

scheme, the most popular approach being a watershed segmentation [157], which is

a fast morphological region-growing approach (used, for example, in [12, 27, 110]).

This technique grows regions from the minima of a gradient image until they meet,

giving closed regions whose boundaries are at maxima in the gradient image. The

watershed segmentation therefore does give region boundaries which are image edges,

but only in an opportunistic manner, and it is worth considering schemes which make

more explicit use of edges. The edges of the regions must agree with those edges

which have been tracked and labelled according to their motions.

Edge completion schemes, which attempt to join up the known edges to make

complete closed contours, are one possibility but, given that the aim is to combine

pixels of similar colour into regions, a scheme which considers these pixels is more

appropriate. Sinclair [130] has developed an image segmentation scheme which ex-

plicitly uses a set of provided edges in a region-growing approach. His segmentation

scheme is currently applied to static image segmentation and indexing schemes [117].

The particular static segmentation scheme used is not a major consideration in

this dissertation, and any scheme that enables the image edges to be used would

be suitable. The Sinclair scheme is fast enough to be of practical use and produces

pleasing segmentations, and so is the scheme selected. It would also be possible to

modify watershed techniques to use the existing edges as hard boundaries.
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4.5.2 Voronoi seeded image segmentation

Sinclair’s segmentation scheme [130] uses morphological region growing, starting

from points distant from edges and stopping when edges are encountered. The first

stage, finding the seed points, uses a distance transform (Voronoi image) of the edge

image. A distance transform assigns to each a pixel a value, in this case the distance

to the closest edge. The distance transform only needs to be approximate, and

an efficient calculation method is the chamfer technique popularised by Borgefors

[22]. Figure 4.11(a) shows an edge image and Figure 4.11(b) the related distance

transform (dark areas are furthest from edges). The peaks of the distance transform

image, being the points furthest from edges, are taken to be seed points for region

growing.

From each seed point a ‘seed region’ is grown, which consists of all the simply-

connected pixels which are of very similar colour to the seed point (Figure 4.11(c)).

Each region begins with just one pixel, the seed point, but then each pixel adjoining

this is tested to see if it should be included in that region. There are two possible

criteria for membership. If the colour difference between the candidate pixel and its

neighbour (already in the region) is within the estimated standard deviation then it

is included. This test considers the difference in each of the red, green and blue colour

components independently and the criterion is met if the difference in each is smaller

than 3 (assuming 24-bit images, and so a maximum of 255 in each component). If

the difference in colour is larger than this then the pixel may still be included in

the region if the colour difference between the candidate pixel and the current mean

region colour is less than a second threshold (15 in each component). This process

continues with pixels on the new boundary being considered for membership next.

Pixels already labelled as belonging to another region, or which are original image

edges, are not considered for membership. In this way the image edges act as hard

barriers through which regions are not allowed to grow. The region growing stops

when no boundary pixels satisfy the colour criteria.

Once all the seed regions have been established, blind region growing is performed

simultaneously from each seed region. Any pixel adjoining a seed region which is

not already assigned to a region is added to that region, regardless of colour. Once

each region has absorbed one layer of pixels, the process is repeated to enlarge

each region again, until all pixels have been labelled. In an improvement to the

original scheme, which performed this last step continually until convergence, this

dissertation presents a two-stage approach which prevents regions leaking through

small gaps in a fragmented edge. In the first stage, pixels which are within γ pixels

of an edge are not considered for merging, so that each region can grow until near an
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Example region segmentation. From the initial edges (a), a distance trans-
form image is calculated (b). The peaks of this gives seed points, which are expanded
into regions of similar colour (c). A morphological operator is then applied which grows
regions first until they are 3 pixels from edges (d), and then all the way to the edge (e).
Finally, regions of similar colour are merged and edges are assigned to the region of closest
colour (f).
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edge, but not close enough to then bleed through gaps.11 In this dissertation γ = 3,

which has been determined empirically to be a reasonable value. The convergence

of this first stage is demonstrated in Figure 4.11(d). Once this stage has concluded,

the restraint is lifted and regions are allowed to grow the rest of the way to an edge

(Figure 4.11(e)). The edges still act as hard boundaries to the region growing.

Given this set of proto-regions, any pair of neighbouring regions which abut

each other at some point along their shared boundary (i.e. they are not completely

separated by an original image edge) are then considered for merging. Following

the lead of Sinclair, regions are merged if the difference in their mean colour is less

than 10 in each colour component. This gives good results. Regions which are

smaller than 10 pixels in size are also merged with the neighbour with the closest

colour, as these regions will have very short boundaries and are unlikely to have

a reliable edge labelling. These small regions also have very little visible impact

on the final segmentation. Finally, the edge pixels themselves are assigned to the

neighbouring region with the most similar colour. Figure 4.11(f) shows the final

segmentation, with the regions coloured according to the mean pixel colour. The

static segmentation takes about 2 seconds on a 300MHz PC for a typical image with

352× 288 pixels.

4.6 Labelling regions and finding the layer order

With the image edges labelled according to their motion probabilities, and the image

pixels divided into regions along these edges, the complete motion segmentation of

the image can now be produced. Determining the labelling of the image regions,

and their relative depth ordering, is the second stage of the Bayesian framework

introduced in Chapter 3. Together with the estimate of the motions, provided by

the M-stage of the EM process (Section 4.4.2), this maximises the likelihood of the

segmentation defined in (3.4).

The labelling of image regions, and the depth ordering of the motion layers,

is completely determined by the edge labels. Following the approach described in

Chapter 3, possible region solutions are hypothesised and tested against the edge

label probabilities and also the prior probability of that labelling configuration.

11The pixels within a distance γ can be easily identified by reference to the distance transform
image which gives, for each pixel, its distance from the closest edge.
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4.6.1 Region probabilities from edge data

Given a hypothesised region labelling R and the layer order F, the edges can all

be given a definite label by following the Labelling Rule from Section 3.3.3.12 Un-

der two motions, all edges which form the boundary of a region labelled with the

foreground motion should move with that motion, and all other edges move with

the background. The probability of the region labelling given the data (term (a) in

(3.11)) is given by the probability of the edges having these implied edge labels.

A single image edge may form the boundary to several different segmented re-

gions, but according to the theory developed in Chapter 3 a region should only

consider the section of edge forming the region boundary. Fortunately this is easy

since, by assuming that the edge sample points are independent, the motion proba-

bility for a section of an edge is simply the product of the sample points along that

section.13 This independence assumption makes this part of the region labelling

trivial, since the evidence for a region is the product of the probabilities of the sam-

ple points on its boundary. Some regions may be bounded by no image edges, and

hence have no sample points. In this case the labelling of the region is ambiguous,

and will be entirely determined by the region prior. A complete hypothesised region

labelling R (given F) determines a labelling for all the sample points and so the

evidence for this region labelling is thus the product of their probabilities under

these implied motions.

4.6.2 Region prior

The labelled edges frequently contain a number of uncertain edges, or outright out-

liers, and relying on the edge labels alone produces a relatively poor segmentation

(see Figure 4.12). The performance of region (and pixel) labelling algorithms can

be greatly enhanced by remembering that not all labellings are equally likely. Par-

ticularly, objects are expected to have some spacial coherency—the regions or pixels

belonging to an object are usually all together in one particular area of the image.

Using a static segmentation enforces this to some extent, but regions with the same

label are also, a priori , expected to be spatially coherent. This prior knowledge is

encoded in Term (3.11b) of the treatment in Section 3.5.3.

The acknowledged means of modelling spatial coherency is with a Markov Ran-

dom Field (MRF) [36, 59], which is often used in pixel-based motion segmentation

methods [14, 40, 107, 160]. Here, the prior probability of a pixel’s labelling depends

12‘The layer to which an edge belongs is that of the nearer of the two regions which it bounds’.
13The independence of sample points naturally also implies that the edge sections bounding a

region are also independent.
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Figure 4.12: Region labelling solution with a flat prior. If the region prior is constant (i.e.
all configurations are equally likely), the regions are labelled from only the edge motion
probabilities and the solution is fragmented.

on its immediate neighbours (either in a 4- or 8-connected sense). In the case of seg-

mented image regions there is no regular grid as with pixels, and instead it is chosen

here to consider neighbours in terms of the fractional boundary length, fi. This is

the length of the region’s boundary which adjoins regions with the same labelling.

When parameterised by this, the more of a region’s boundary that adjoins a region

of a given motion, the more likely the region is to also obey that motion.

The prior model has been estimated from thirty examples of correct (hand-

labelled) region segmentations, a subset of the test sequences seen in Appendix D.

Figure 4.13 shows the observed distribution. It is found that 77% of all regions are

entirely surrounded by regions with the same labelling as themselves.

If the observed distribution is denoted by P (f1|R = 1) (where f1 is the boundary

fraction adjoining motion 1 regions) the posterior probability that a region should

be labelled motion 1, given f1, is given by Bayes’ Rule as

P (R = 1|f1) =
P (f1|R = 1) P (R = 1)

P (f1|R = 1) P (R = 1) + P (f1|R = 2) P (R = 2)

=
P (f1|R = 1)

P (f1|R = 1) + P (1− f1|R = 1)
(4.38)

assuming each model to be equally likely. This posterior probability is shown in

Figure 4.14, and is well-modelled by a sigmoid with a function

P (R = i|fi) =
0.932

1 + exp (18 (fi − 0.5))
+ 0.034. (4.39)

as overlaid on Figure 4.14. There are special cases when fi = 1 or 0 i.e. when the

region is completely surrounded or isolated. In these cases the posterior probabilities

are chosen to be those given from the test data: 0.9992 and 0.0008 respectively.
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(a) (b)

Figure 4.13: Region statistics. Distribution of regions with different boundary lengths f .
(a) Whole probability density function; (b) a close-up of the cases where f < 1.

Figure 4.14: Region prior. Probability that a region is motion i given that a fraction fi

of the boundary that is also motion i.

Values of 1.0 and 0.0 were considered, which would disallow disconnected regions,

or single-region holes in objects. However, these could interfere with the annealing

process (described below), which requires the optimisation process to be able to pass

through a lower (but non-zero) probability configuration.

Non-symmetric priors

The region prior considered here is a very simple implementation, and it could be

more sophisticated. It considers the labelling of both foreground and background

regions equally but, as was pointed out in Chapter 3, the labelling of foreground

and background regions is non-symmetric. Improved labelling performance could

be obtained by using different priors for foreground and background regions. For

example, it is very rare to find a hole in a foreground object, while there is almost

always a ‘hole’ in the background, where it is occluded. The region label priors,

assumed equal in (4.38), are also arguably different, since the foreground object is

usually smaller (although this is no guarantee that it has fewer regions).
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• For each possible layer ordering :

– Initialise region labelling

– Refine by simulated annealing
(see Table 4.9)

• Select most likely segmentation over all layer orderings

Table 4.8: Optimisation of region labelling and layer ordering. Finding the most likely
layer ordering F by an exhaustive search, and the most likely region labelling R (for each
layer ordering) by simulated annealing.

This non-symmetric form of the priors has been tested for the case of two motions,

but it is not obvious how it could be easily extended to an arbitrary number of

motions (as is required for Chapter 7). The simpler prior described earlier does not

give significant loss of performance in the majority of cases, and is applicable to a

larger number of motions.

4.6.3 Solution by simulated annealing.

Finding the maximum likelihood labelling for the regions R and the layer ordering

F is performed in two stages, outlined in Table 4.8. With two motions there are only

two possible layer orderings and so an exhaustive search of these is possible: given

a fixed F, the region labelling R may be maximised, and the most likely R over

all values of F is the global maximum. Figure 4.15 shows the maximum likelihood

region labelling given each of the two possible layer orderings, and in this case the

posterior probability of (a) is much higher, indicating that this is the correct layer

ordering and the best segmentation.

The maximisation of R given F (and the rest of the data) is a different matter,

since the search space is combinatorial in the number of regions and there are no

obvious polynomial solutions. Iterative schemes, performing a search of this space,

are the usual solution in these cases. Starting with some initial guess, the solution

is perturbed and is updated if the perturbation is an improvement, a process known

as stochastic relaxation [59].

As with most iterative schemes, this suffers from the problem that it might find

a local minimum. An improvement to this scheme is to provide the algorithm with

the possibility of accepting a less favourable solution, subject to a small probability.

In this way, given enough time, the algorithm will jump out of local minima and will

find the global solution with a probability approaching one. To enforce convergence
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(a) (b)

Figure 4.15: Solutions under different layer orderings. The most likely region labellings,
showing the foreground as magenta and the background as yellow. (a) where red is the
foreground motion; (b) where green is the foreground motion. Case (a) has a higher
posterior probability, and so is the maximum likelihood segmentation over R and F.

Figure 4.16: Region labelling as simulated annealing converges. Initial (heuristic) region
labelling and then every fifth iteration of the annealing process. In this case, after fifteen
iterations the labelling is a good as it will get.

the probability of a retrograde step is reduced over time. This is referred to as an

annealing schedule, by analogy to the cooling of metals which occurs in a similar

manner, and the approach is called simulated annealing [59, 88].

An initial guess for R may be made by looking at the edge probabilities. La-

belling each region according to the majority of its edge labellings is found to be

a reasonable initialisation (see the first image in Figure 4.16). This solution must

then be perturbed in an attempt to find a better labelling. The label for a particular

region is only dependent on the local neighbourhood (the edges of the region and

the neighbouring regions, via the MRF-style prior), and so the effect of perturbing

a single region is only local. It is therefore possible to consider each region label in

turn, maximising its own labelling probability given the current state of the other

region labels.

The annealing simulation is achieved by considering the probability of a par-

ticular region label. When considering the relabelling of a region, the probability

that it belongs to motion one may be calculated, and also for motion 2. This is the
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• Initialise region labelling R

• For iteration n = 1 . . . 40

– Shuffle region order

– For each region Ri

∗ Calculate (un-normalised) probability pj of each
labelling j

pj = P (Ri = j|fj)
∏
e

P (e = Imp(j,R)|D1,D2) (4.40)

∗ Cool probabilities

p′j = p
1+(n−1)0.07

j (4.41)

∗ Normalise probabilities

P1 =
p′1

p′1 + p′2

∗ Sample randomly u ∼ U[0,1]

∗ Set

Ri =

{
1 if u < P1

2 otherwise

Table 4.9: Simulated annealing. Optimisation of the region labelling R in order to find
the maximum likelihood labelling (given a particular layer ordering). The probability of a
region’s labelling is given by the product of an MRF-style prior and its edge probabilities.
The edge probabilities are a function of the hypothesised labelling j, and the (fixed) labels
of the other regions, R, given by Imp(j,R)).

product of the MRF-style prior of the region having this labelling and the implied

edge (sample point) probabilities. Given the labelling probabilities for this region,

the region is assigned a definite label by a Monte Carlo approach, i.e. randomly

according to the two probabilities. For the initial iterations this labelling is per-

formed strictly according to the region probabilities, but as the iterations progress

these probabilities are forced to saturate so that gradually the assignment will tend

towards the most likely label, regardless of the actual probabilities. The saturation

function, determined empirically, is

p′j = p
1+(n−1)0.07

j (4.42)
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Figure 4.17: Probabilistic region labelling. It is possible to label regions with probabilities,
rather than a definite labelling. Due to various independence assumptions, saturation
of region probabilities occurs, and the result is very similar to the deterministic labelling
(compare with Figure 4.15(a)).

where n is the iteration number. This is applied to each of the estimated label

probabilities as outlined in Table 4.9. The saturation function has been devised

such that after around thirty iterations, all but the most balanced regions will be

assigned their most likely label.

The annealing process continues for N iterations which, using N = 40 is quick

while being sufficient for a good solution to be reached. Each pass of the data tries

flipping each region, but the search order is shuffled each time to avoid systematic

errors. The entire maximisation over R and F (i.e. annealing twice), takes around

two seconds on a 300MHz PC for a typical image with around 300 regions.

4.6.4 A word on probabilistic region labelling

It is also possible to label regions with a probability, rather than a definite label,

within the same simulated annealing framework. However, when it comes to cal-

culating the new MRF-style prior for a region, this must consider each possible

combination of the neighbouring regions, which is combinatorial in the number of

neighbours. With some large regions having up to thirty neighbouring regions, it is

infeasible to consider each of the 230 combinations and a linearising approximation

must be made, using the expected fractional boundary length.14 This, together with

the independence assumptions already made earlier, leads to extensive saturation of

the probability distributions. The process also takes much longer to converge, and

so for efficiency it is initialised from the deterministic labelling. Figure 4.17 shows

the probabilistic labelling, and it can be seen that, because of the saturation, it does

14Loopy belief propagation [104] may provide an efficient alternative approximation to this prob-
lem.
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not diverge much from its initial labelling (compare with Figure 4.15(a)). A deter-

ministic labelling, as already described, is fast and suitable for many applications.

4.7 Summary

This chapter has presented an implementation of the edge-based segmentation scheme

outlined in Chapter 3. Edges are found using the Canny edge detector and tracked

into the next frame. The motion of the edges is estimated by a group-based scheme

which uses the motion along edge normals. Both motions are estimated simultane-

ously within an Expectation-Maximisation loop. This also provides the information

fundamental to this scheme: the motion probability of each edge. A fast region-

growing segmentation of the frame is performed based on these edges. Different

labellings for these image regions are hypothesised in order to find the most likely

labelling. Simulated annealing is used to quickly search an appropriate subset of the

region possibilities. This maximisation is performed over all possible layer orderings

to find the correct foreground motion.

The segmentation of a typical frame (352 × 288 pixels) into two motions, based

on the motion to the next frame, takes around 8 seconds on a 300MHz PC. This

implementation has been extensively tested, and evaluation of its performance is

presented in the next chapter.





CHAPTER 5

Evaluation

5.1 Introduction

The implementation presented in Chapter 4 has been tested on a wide range of real

video sequences, and the test results are presented here. In total, thirty-four test

sequences are considered and the results from the complete set of sequences can

be seen in Appendix D. This chapter presents detailed results for four of the test

sequences, and then discusses the performance on the test set as a whole. Finally,

the results of this novel framework are compared with results presented by other

authors.

5.2 Test sequences

The development of this implementation has focussed on four sequences. In partic-

ular, examples from the Foreman sequence have been used throughout the body of

this dissertation, and further results are presented here. Detailed results are also

presented from two other common test sequences: Coastguard and Tennis. These

three are among the sequences widely used by authors for testing video segmenta-

tion and coding applications. Several other test sequences have been recorded using

a hand-held video camera. One of these, the Car sequence, has also been extensively

used for testing because of the unusual features it exhibits, such as the background

being visible through the window of the car. This is the fourth sequence considered
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in detail.1

A large supply of other test sequences has kindly been provided for this work

by AT&T Laboratories, Cambridge, derived from their AT&TV project [98]. This

project maintains an archive of the past seven days’ television across the four main

UK terrestrial channels, and is used for investigations into large-scale information

retrieval. Videos in the AT&TV system are stored in the MPEG-1 format and a

selection of twenty-five MPEGs from this archive have been used for testing the

two-motion implementation. Sequences were selected at random from programmes

shown in February 2001, covering many different genres. In order to agree with the

two-motion assumption, sections were chosen which, by eye, had only one foreground

object.

5.3 Qualitative and quantitative results

Segmentation is a subjective procedure, and the desired results are often determined

by the semantics of the scene, and the use to which the information will be put. For

example, a person waving their arms may need to be segmented as one object (for

background replacement), or the arms may need to be treated separately (for gesture

recognition). As a result, there is no accepted method of assessing the quality of a

segmentation.2

In the results presented here, the qualitative appearance of the segmentation is

discussed. The quantitative segmentation performance is also measured by compar-

ing it with a hand-labelling of the same static regions and edges. This gives some

measures, such as the percentage of edges or pixels correctly labelled, which may be

compared between segmentations. In Section 5.9, a qualitative comparison is made

between the results of this dissertation and those from other authors.

All the segmentations, unless stated, use exactly the same parameter values, and

the affine motion model is used throughout.

5.4 Foreman sequence

The Foreman sequence (Figure 5.1) is a sequence examined by many authors (e.g.

[91, 103, 153]). Taken with a hand-held camera, it shows a man in a hard hat talking

1These test sequences, and a selection of others, are available for download from http://
www-svr.eng.cam.ac.uk/~pas1001/Publications/videos.html.

2A recent paper by Martin et al. [95] presented a database of hand-segmented images. It was
concluded that human segmentations are consistent, but that different observers choose to segment
at different levels of granularity (of which the ‘person’ vs ‘arms + head + body’ is an example).
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Figure 5.1: Foreman sequence. Frames 47–51 from the Foreman sequence. The foreman
moves his head to the left during this part of the sequence.

animatedly to the camera. The section shown in Figure 5.1 is a rather less animated

portion (and is the section considered by most authors); later parts of the sequence

are very difficult to describe using only two affine motion models (see Chapter 7).

Edge detection

Figure 5.2(a) shows the edges detected in the first frame of the sequence. It can be

seen that almost all of the occluding boundary is included among these 153 edges,

the only major absences being parts of the hat, and his right shoulder. The shoulder

is missed because only a grey-scale edge detector is used and the intensities of the

shoulder and the concrete background are very similar. Even with a colour edge

detector, parts of the hat would still be missed as both are nearly white.

Edge labelling

These edges are tracked into the next frame and labelled as motion 1 or motion

2 using the Expectation-Maximisation (EM) algorithm. The motion between the

frames is negligible for the background and about two pixels for the head. This is well

within the range of the search track, but is large enough for a clear differentiation to

be made between the two motions. The EM stage reaches its convergence criterion

after sixteen iterations (see Figure 4.10 for the first few iterations). This motion

estimation/edge labelling stage takes about three seconds.3

The final edge probabilities are shown by the edge colours in Figure 5.2(a). In

these figures, each edge is coloured as a blend between the two probabilities, where

red is motion 1 and green is motion 2.4 In this case, the edge probabilities are

generally very good, with only a few errors or ambiguities. The edges on his left

shoulder have equal probabilities under each motion (and so appear a dark yellow

colour). In this area of the frame the two estimated motions are very similar, so

it is impossible to determine a labelling from the motions (see Figure 3.2 for the

3All timings in this chapter are quoted for a conventional 300MHz PC.
4That is, for a 24-bit colour, the value (R,G,B) displayed is (255 × P (motion 1) , 255 ×

P (motion 2) , 0).
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(a) (b)

(c) (d)

(e)

Figure 5.2: Foreman segmentation from two frames. (a) Edges labelled by their motion;
(b) Region segmentation; (c), (d) Region labellings under alternative layer orderings. (d) is
the most likely with a probability of over 99.99%; (e) Final foreground segmentation. Some
images here were previously shown in Chapter 4.
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full extent of the ambiguous region). The background edges above his left shoulder

are mislabelled since in this part of the image, motion 1 (red) is along the line of

these edges and so again they can fit either motion. A few slightly better matches

under motion 1 leads to an erroneous decision in favour of this motion, with edge

probabilities of around 80%. In total, 78% of edges are labelled correctly, compared

with a hand-labelling of the same edges.

Static segmentation

Figure 5.2(b) shows the static segmentation of this frame. It can be seen that,

even though the edge of the hat is incomplete in the detected edges, it is correctly

extracted in the static segmentation, which does detect enough difference in colour.

His right shoulder is not fully segmented (it should extend all the way to the edge

of the frame) because the colours are too similar. As a result, it will be impossible

to accurately represent this shoulder in the final segmentation. Without an edge in

the image, these problems can only be resolved by some higher-level modelling.

Region labelling

The final stage is the labelling of the regions according to their motion. This process

is performed twice, once for each possible layer ordering, using simulated annealing.

Figure 5.2(c) shows the final solution assuming that motion 1 is foreground, and

Figure 5.2(d) the solution if motion 2 were foreground. In each case, a region

is coloured magenta if it is labelled as foreground, and yellow if background. It

can be seen that, despite the occasional poor edge label, realistic segmentations

are produced thanks to the use of the MRF-style prior on region labels. The two

minimisations take a total of three seconds.

The two possible solutions have likelihoods (from the edge probabilities and MRF

prior) of e−421 and e−411 respectively, giving a probability of over 99% that motion 1

is the foreground layer, and so the final segmentation is that shown in Figure 5.2(e).

Of the 221 regions identified by the static segmentation, 212 are labelled correctly

(compared with a hand-labelling). As a percentage of the pixels in the image, this is

97.6%, which is excellent. The complete segmentation process takes a total of eight

seconds.
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5.5 Tennis sequence

Figure 5.3 shows the second of the test sequences, another standard sequence (stud-

ied, for example, in [4, 47, 103]). In this part of the sequence, the player bounces

the ball on his bat as he prepares to serve. The detected edges are shown in Figure

5.4(a), and it can be seen that the edge detection settings used throughout this work

have a high enough threshold to avoid the textured background, but extract all of

the occluding boundary. In total, sixty-seven independent edges are detected.

Figure 5.4(a) also shows the edge probabilities after the motion estimation stage,

which are reasonable, with 88% of edges correct. The table and the bat have been

identified as two distinct motions, but the labelling of the arm is uncertain. The

upper arm is almost stationary, and the lower arm naturally obeys a motion part-way

between that of the upper arm and the bat, so an uncertain labelling is somewhat

justified. The motion of the ball is, of course, a genuine third independent motion.

However, the ball’s displacement between frames is quite large—about ten pixels—

and with only one edge for that object, the measurements from any sample points

which do find a match are swamped by the other motions. Consequently, the ball’s

motion is ignored and the ball’s edge is labelled at close to 50% for each motion.

Despite having an almost complete occluding boundary, this does not guarantee

a trouble-free region segmentation. The background is not uniform, but with few

edges detected on the background only a small number of seed points are created

for region growing. The initial region growing stage is controlled by colour, and

with the textured background giving some colour variation, each seed region is only

small. When the blind region growing stage is then performed, it takes a substantial

number of steps to reach the edge of the arm and if there are any small gaps in the

arm’s edges, the regions inside the arm (which also try to grow) may bleed out

into the background. It is for this reason that the two-stage region growing scheme

outlined in Section 4.5.2 was introduced, where the the first stage of growing stops

a few pixels from the edge and then proceeds from there in a separate stage. This

effectively blocks small gaps between edges and means that in this case a very

good static segmentation is produced. This is shown in Figure 5.4(b), and contains

seventy-two regions.

The two possible region labellings, one for each layer ordering, are shown in

Figures 5.4(c) and 5.4(d). It can be seen that the brown background is clearly

identified as background in both cases (it has edges of both motions), and the

decision is between the table and the bat and arm being foreground. Even though

there are no T-junctions between edges of the two motions in the detected edge
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Figure 5.3: Tennis sequence. Frames 1–5 from the Tennis sequence. The table tennis
player is bouncing the ball on his bat during this part of the sequence.

(a) (b)

(c) (d)

(e)

Figure 5.4: Tennis segmentation from two frames. (a) Edges labelled by their motion; (b)
Region segmentation; (c), (d) Region labellings under alternative layer orderings. (c) is the
most likely with a probability indistinguishable from 1; (e) Final foreground segmentation.
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map, there are T-junctions between the region edges, and these have the same

effect. In this case, it has already been noted that the brown regions must obey

the background motion. The important difference between the two hypothesised

labellings is the few edges on the background, which are labelled as obeying the red

motion with a high probability. Unless red is the background motion, these will

be mislabelled. As a result, green is correctly identified as the foreground, with a

probability indistinguishable from 1. The final segmentation is clean and accurate,

only missing the (admittedly stationary) upper arm.

With far fewer edges and regions than the previous Foreman case, the whole

process is much faster. The complete segmentation takes about five seconds.

5.6 Coastguard sequence

The third standard test sequence presented here is the Coastguard sequence, shown

in Figure 5.5, and also considered in [47, 110]. This is one of the more difficult

sequences to segment: the movement of the water makes it difficult to track; the

hull of the boat is a similar colour to the water, making the boundary difficult to

identify; and there is also a significant amount of fine detail in the boat’s mast and

railings. The boat moves from left to right, and is tracked by the camera.

There are 316 edges detected in this frame, far more than in the previous two

sequences, with quite a few short edges representing parts of the rocks along the side

of the waterway, or waves (see Figure 5.6(a)). With the similarity of colour between

the hull and the water, neither the prow nor stern of the boat is extracted as an

image edge. This causes problems later when it comes to finding image regions and

labelling them. In particular, the static segmenter merges the prow with the water,

and the stern with the wake in Figure 5.6(b). The intricate mast is not segmented

at all, but the railings at the bow are well segmented. A region-based approach is

not a good technique if fine detail is required, and to preserve these a pixel-by-pixel

refinement and labelling would be needed.

The EM stage converges quickly, in thirteen iterations taking two seconds, but

gives a noisier solution than has been seen so far (Figure 5.6(a)). In this sequence

there are many more background edges than foreground, and the foreground is con-

centrated in one small area of the frame. With this arrangement, it is quite possible

for some background edges to agree with the foreground motion by chance, and the

foreground motion can conform to these edges without significantly disturbing the

labelling of the few foreground edges.
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Figure 5.5: Coastguard sequence. Frames 256–260 from the Coastguard sequence. The
camera tracks the boat as it sails from left to right.

(a) (b)

(c) (d)

(e)

Figure 5.6: Coastguard segmentation from two frames. (a) Edges labelled by their motion;
(b) Region segmentation; (c), (d) Region labellings under alternative layer orderings. (c) is
the most likely with a probability of 99.18%; (e) Final foreground segmentation.
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This example highlights the effectiveness of the MRF-style prior on the region

labelling, as even with this noisy edge labelling both hypothesised region labellings

are plausible and realistic. With more regions, 276, than either previous example,

the simulated annealing process takes longer, converging on the two solutions in a

total of three seconds. Looking at the two possible solutions, most of the erroneous

edges are equally incorrect under either possible ordering (for example, the green

edges on the tree trunks at the top of the frame). The layer ordering therefore

depends only on the regions and edges around the occlusion boundary. The first

solution, Figure 5.6(c), with motion 2 (green) as foreground is comfortably identified

as the most likely.

The final solution, Figure 5.6(e), is a reasonable attempt given the static seg-

mentation. A hand-labelling of the same image regions would only have labelled

18 (6%) of those differently, but in either case some quite substantial parts of the

hull of the boat are missing; namely those which the static segmentation merges

with the water. This problem is one which cannot be resolved without detecting

or otherwise perceiving the edge of the boat. Refining the static segmentation to

find these edges is a matter for future work, as discussed in Chapter 8. It should

also be noted that this sequence violates the layer assumption—the water along the

side of the boat, part of the ‘background’, is nearer the camera, and so the interface

between the hull and the water is a background edge which occludes the foreground

object. The Coastguard is a testing sequence for a segmentation scheme, and the

edge-based scheme performs creditably.

5.7 Car sequence

Figure 5.7 shows the Car sequence, specifically filmed for this work using a hand-

held MPEG-1 video recorder. It shows a close-up of a car being tracked as it drives

to the left. This sequence exhibits several unusual features: the foreground object

occupies the majority of the pixels (i.e. the ‘dominant motion’ is not necessarily

the background); the background is visible through the car window; and there are

reflections on the top and bonnet of the car. The system presented here deals

admirably with the first two of these, although it falls down on the latter.

Figure 5.8(a) shows the detected edges, labelled according to their motions as

before. In this case the EM algorithm used to estimate the motions takes more

than 100 iterations (nine seconds) before it converges. The problem here is that

the background motion is considerable (of the order of ten pixels), and is confined

solely to the top of the frame. The two random motions are both initialised to give a
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Figure 5.7: Car sequence. Frames 490–494 from the Car sequence. The camera tracks
the car as it moves to the left.

(a) (b)

(c) (d)

(e)

Figure 5.8: Car segmentation from two frames. (a) Edges labelled by their motion; (b)
Region segmentation; (c), (d) Region labellings under alternative layer orderings. (c) is
the most likely with a probability of 99.63%; (e) Final foreground segmentation.
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reasonable fit to the entire of the frame, and so both contain significant shear terms

(a deformation which is allowed under the affine model). These two initialisations

only slowly diverge to give the two correct motions. Convergence is also particularly

difficult since many edges are horizontal, and with both motions being horizontal the

labelling of these edges is uncertain for much of the process, and frequently oscillates

between the two possible motions as they are refined. These edges should be labelled

with probabilities close to 50%, but unfortunately their edge statistics saturate and

they are labelled strongly in favour of one or the other. The non-independence of

sample points is investigated in Appendix C, and improved statistical models are

an issue for future work, as discussed in Chapter 8. Nonetheless, 91% of edges are

correctly labelled, with the only major errors being the top of the car and one edge

along the side (which does not affect the region labelling). The error on the top of

the car is the result of the background reflections on the roof, which naturally move

with the background. Thus this edge in fact has the correct motion labelling, but

the incorrect semantic labelling. The small edges on the car bonnet are also labelled

according to background reflections. Without any higher-level processing, namely

a model of a car’s shape, this problem is difficult to resolve and is not discussed

further here.

The static segmentation, Figure 5.8(b), is again good. Of the two layer ordering

solutions, Figure 5.8(c) is the most likely, but with less certainty than in some se-

quences (although still high, because of the edge saturation). Despite the texture in

parts of the background, there are in fact very few T-junctions, and the mislabelling

of the occluding boundary on the top of the car also does not help the layer ordering

choice. However, the correct layer ordering has been determined, in a case where

(due to the relatively small area of background) a näıve ‘dominant motion’ approach

might fail.

The final foreground segmentation is shown in Figure 5.8(e), where 96.2% of

the pixels are correctly labelled. Because a background edge is visible through the

window of the car, the window regions are correctly labelled as background by the

logical constraints, which is particularly pleasing. The only errors are in the areas

where reflections are present.

5.8 Ensemble results

The implementation of Chapter 4 has been tested on a total of thirty-four image

sequences: the four sequences described above; two other standard sequences; three

‘home movies’; and twenty-five sequences from the AT&TV archive (see Figure 5.9
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Figure 5.9: Examples from the AT&TV sequences. A selection of images from the se-
quences in the AT&TV archives in February 2001. Results from these sequences can be
seen in Appendix D.

for some examples). Specific sequences from the test set are identified by name in

this section, and the results for all the test sequences can be found (in alphabetical

order) in Appendix D.

Segmentation parameters

The system was left to segment each sequence automatically, using an affine motion

model in each case. Apart from seven exceptions (21%), each segmentation used

exactly the same parameters (those given in Chapter 4). The exceptions were

Lower edge threshold (4 cases: Friends, ITN, Tennis2, Thunderbirds1) In four

sequences no edges were detected in the scene background using the standard

thresholds. These thresholds are usually set deliberately high to avoid edges

due to texture, but in these cases the absence of structure in the background

meant that the texture had to be detected. A common cause of this is a small

depth of field—with some lenses, particularly those with long focal lengths, the

background is significantly out of focus and so sharp edges are not present. In

these four cases the threshold was reduced by hand until edges were detected

in the background.

Frame subsampling (3 cases: Horizon1, ITN, News) In three further sequences,

all of which feature seated people talking to the camera (including two news-

readers), the inter-frame motion was found to be too small for any independent

motion to be detected. Edge matches are only found to the nearest pixel, and

the motion in each case was less than this. To force a larger motion these se-

quences were subsampled, taking every 10th or every 20th frame. Subsampling

was also required for the two sequences from the FlashGordon cartoon, since

that had only been animated at 15 frames per second (fps) and so featured
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repeated frames when broadcast at the UK standard of 25fps. Taking every

second frame avoided these repetitions.

Both of these parameter corrections could, in a future system, be identified and

made automatically. The edge detection process could benefit from an adaptive

threshold which attempted to encourage a certain density of features. The second

case (that of the motion between frames being too small) would be resolved if the

number of motions was not constrained to be two between each frame, as frames with

negligible motion would best modelled using only one motion. Alternatively, sample

points with no motion could be flagged to wait to see if a motion does eventually

occur.

EM convergence

With these small parameter changes to a few sequences, each sequence was deemed

to have sufficient edges, and motion, for the EM process to have a reasonable chance

of success. In 82% of cases the EM did indeed reach a good solution. The cases

where the EM does not satisfactorily converge are the result of:

Non-affine motion (3 cases: Driven2, Horizon2, Nick) In these cases the fore-

ground motion cannot be modelled by an affine motion—either it is projec-

tive, or changing in 3D shape—and the deformation is too great for the sample

points to give the correct statistics.

Too many background edges (1 case: Buffy) If there are far more background

edges than foreground edges, the EM process (starting with a random la-

belling) can converge to a local maximum which includes some of the back-

ground edges with the foreground. (This was partially in evidence in the

Coastguard sequence considered earlier in this chapter). In the severe case,

both initial edge labellings will contain a predominance of background edges

and EM will never converge correctly on the foreground motion.

Too few background edges (1 case: ITN) One sequence, even with a lower edge

threshold, still had too few edges for a background motion to be estimated,

for the same reasons as the reverse case described above.

Motion too large (1 case: FlashGordon2) One of the cartoons exhibits a fore-

ground motion of 60 pixels, which is larger than the search track (and unreal-

istic in real video sequences).
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The remaining twenty-seven cases produced reasonable motion estimates and edge

probabilities. These cover a wide range of genres, and include some challenging

subjects. In particular, the edge labelling for the running lion in Cats1 is good, and

that for the cat in the Trin sequence is also reasonable, both of which are examples

of non-affine motion which were successfully tracked.

Of the cases where EM does not converge, the problem of large non-affine motions

is the most significant. In one of those cases, Horizon2, the background motion could

be modelled by a full 2D projective model, rather than the 2D affine used, but if

this is tried it is found that the EM struggles to converge with these additional

degrees of freedom. A multi-resolution approach, fitting first an affine and then a

projective model might perform better here [9, 78]. The Nick sequence also features

a projective deformation, where the subject tilts his head back violently, although

this also suffers from having very few edges. In the other case (Driven2), the image

motion is probably best explained by three motions, and this should be detected by

a multi-motion approach, as introduced in Chapter 7.

Ensuring a suitable number of edges is something which could be accomplished

by an adaptive approach, as described earlier, but it should also be remembered

that in some sequences segmentation won’t be possible. Likewise, if the motion is

too large any tracking scheme will find difficulties.

Layer ordering

Whenever EM converges to a reasonable solution, the region labelling is also good.

This validates the fundamental assertion of Chapter 3, that an edge labelling is suffi-

cient for a dense labelling of the frame. However, this is only true up to unresolvable

ambiguities and, in particular, if the layer ordering is ambiguous the foreground layer

can be incorrectly determined. Of the twenty-eight sequences where EM provides

a good solution, the layer ordering is correctly determined in twenty-three cases

(85%). The five sequences where the layer ordering is incorrect are:

No T-junctions (3 cases: AHvid, Thunderbirds1, Tweenies) Where the foreground

regions do not interact with background edges, the layer ordering cannot be

determined. Even where there are a few T-junctions, if the edges corresponding

to these are poorly labelled then the layer ordering can be ambiguous. In one

of these cases (Thunderbirds1), the edge labels are good, but there is genuinely

no interaction between regions which can be labelled by these edges. In the

other two cases, there are a few T-junctions, but the edge labelling is poor due

to the foreground deforming significantly.
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Ranking Pixels correct Frequency (%)
Excellent > 95% 11 (32%)
Good 85–95% 8 (24%)
Reasonable 75–85% 3 (9%)
Poor 50–75% 5 (15%)
Failure 0–50% 7 (21%)

Table 5.1: Percentage of pixels correctly segmented using two frames. Overview of seg-
mentation performance over the thirty-four test sequences. Any figure over 85% is a good
segmentation; those over 95% are almost flawless.

Missing occluding boundary (2 cases: Food&Drink, Horizon1) Where a sub-

stantial portion of an occluding boundary is missing, foreground regions can

bleed into the background. This is in fact likely, since if there is no image edge,

the foreground and background in this area have a similar intensity. A region

spanning both foreground and background violates one of the assumptions

(that each region obeys only one motion), and also means that a (partly) fore-

ground region may be bounded by an edge obeying the background motion.

As a result, the layer ordering is not well defined, and an erroneous ordering

can occur if the edge labels are poor.

The first type of error is difficult to deal with over two frames—these cases

truly are ambiguous unless more background edges can be detected or a better edge

labelling determined. Both of these are possible if multiple frames are used. The

second type can also sometimes be dealt with by a multi-frame approach which

would eventually detect and maintain the missing occluding edges.

Final segmentation

Table 5.1 summarises the segmentation results over the thirty-four test sequences.

It shows the percentage of pixels correctly labelled compared with a hand-labelling

of the same image regions. Any automatic segmentation which labels more than

95% of pixels correctly is almost indistinguishable from the ideal segmentation, and

any figure over 85% is still very good. It can be seen from the table that over half

of the test sequences fall into one of these top two categories, with virtually a third

of sequences segmented almost flawlessly.

Of the twelve sequences which perform poorly (i.e. have less than 75% of pixels

correct), ten have already been discussed: the EM stage failed on five sequences;

and a further five had a reasonable edge labelling, but the wrong layer ordering.

Two cases with a reasonable edge labelling and a consistent region labelling also

scored poorly against the ideal labelling. In the Friends sequence only the actor’s
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head moves, but the desired semantic segmentation is the whole actor. In the other

case, the standard FlowerGarden sequence, the desired ‘clean’ segmentation is just

that of the tree, but parts of the flowerbed move with a very similar motion and the

automatic scheme picks these up as well. These two cases highlight the discrepancy

that can occur between a pure motion segmentation and the semantic applications

for which they are usually intended.

5.9 Comparative results

As demonstrated by the results shown in this chapter, motion segmentation is a

difficult task. It is also difficult to assess, in quantitative terms, the accuracy of a

segmentation, and many of the results presented here have been qualitative. It is

therefore instructive to compare the results generated by this edge-based system with

work published by other authors over recent years; this gives an indication of the

relative success of the edge-based approach. Again, with no accepted quantitative

measure of segmentation performance, a qualitative comparison is made between

results.

This section presents a comparison with a number of authors who have analysed

freely-available sequences. The results are extracted from their published papers,

and comparable results from the implementation described in this dissertation are

shown side-by-side. Each author displays their results differently and so, as far as

possible, the results presented from the edge-based system have been generated so

as to emulate each of their particular styles.

5.9.1 Pixel-based approaches

A popular test sequence amongst pixel-based authors is the FlowerGarden (see Ap-

pendix D), which is unsurprising as it contains a large amount of texture in the

foreground objects. Pixel-based approaches rely on texture for an accurate motion

estimation and pixel labelling. This sequence is unfortunately also one where the

edge-based approach approach performs less well, because of the dominance of edges

from one motion model (the flower bed), and the difficulty in extracting the edge of

the tree against the flowers.

Wang and Adelson [159] presented results from this sequence in their paper

introducing the layered representation, and Figure 5.10 shows a comparison with

this. The edge-based approach extracts the tree’s edges more accurately along some

of the trunk and main branch, but less well in other areas. The fine detail of the
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Wang and Adelson (1994) this dissertation

Figure 5.10: Comparison with Wang and Adelson: FlowerGarden sequence. A comparison
with results presented by Wang and Adelson in [159]. The segmentation of the tree is
comparable—Wang and Adelson estimate it to be too wide, while the edge-based approach
misses a few sections.

Ayer and Sawhney (1995) this dissertation

Figure 5.11: Comparison with Ayer and Sawhney: FlowerGarden sequence. A comparison
with results presented by Ayer and Sawhney in [4]. Ayer and Sawhney’s is a better outline,
but there is more noise in the background.

Weiss and Adelson (1996) this dissertation

Figure 5.12: Comparison with Weiss and Adelson: FlowerGarden sequence. A comparison
with results presented by Weiss and Adelson in [160]. The results are similar, but the
edge-based approach is cleaner.
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Ayer and Sawhney (1995) this dissertation

Figure 5.13: Comparison with Ayer and Sawhney: Tennis sequence. A comparison with
results presented by Ayer and Sawhney in [4]. Ayer and Sawhney’s is much worse, with
poor boundary localisation and large amounts of noise.

Elias (1998) this dissertation

Figure 5.14: Comparison with Elias: Tennis sequence. A comparison with results presented
by Elias in [47]. Both segmentations are excellent.

Elias (1998) this dissertation

Figure 5.15: Comparison with Elias: Coastguard sequence. A comparison with results
presented by Elias in [47]. Both segmentations are excellent, although Elias’s approach
finds a little more fine detail than is detected by the edge-based scheme.
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small branches cannot be well represented by image regions, and these are segmented

poorly. Comparisons with Ayer and Sawhney [4] and Weiss and Adelson [160] are

also presented for this sequence (Figures 5.11 and 5.12 respectively). Both of these

authors’ results show some outlying pixels or regions which are absent in the edge-

based approach, which gives the system presented in this dissertation a more pleasing

appearance. The same is true, to a much larger extent, for Ayer and Sawhney’s

segmentation of the Tennis sequence (Figure 5.13), which contains a considerable

number of erroneous pixels as well as giving the arm too large an extent. The

edge-based approach is both more accurate and cleaner than their work.

Some of the best pixel-based work is that of Elias [47], who uses a multi-frame

EM approach, also modelling pixel occlusion. Both segmentations of the the Tennis

sequence—Elias’s and the edge-based approach—are almost flawless (Figure 5.14);

they only disagree about the ambiguous upper arm. The finer detail available to

pixel-based methods means that his segmentation of the Coastguard sequence (Fig-

ure 5.15) is slightly better, but the edge-based approach also performs very well on

this difficult subject. Results are therefore comparable but, importantly, his seg-

mentations take about 1 minute to perform, compared with a few seconds for the

edge-based approach (on roughly comparable machines).5

5.9.2 Region-based approaches

Region-based approaches avoid the problem of occasional misassigned pixels, seen in

some of the previous examples, by only labelling homogenous regions of the image.

The segmentations produced by this approach are thus naturally cleaner, but depend

to some extent on the quality of the original region segmentation.

The segmentation scheme used in this dissertation is clearly superior to that used

by Moscheni and Dufaux in [103], which still somehow manages to give outlying pix-

els (Figures 5.16 and 5.17). The labelling of regions is also superior, particularly in

the Foreman case, where their system has performed a number of incorrect merges.

Although that particular pair of frames are difficult to segment (both schemes in-

clude some background), the edge-based system gives a more appropriate result.

Other work by Dufaux et al. [46] also performs some strange merges, and the

edge-based approach here also appears superior since the complete bat and hand is

segmented in the Tennis sequence (Figure 5.18). The edge-based approach decides

that the upper arm is stationary between these two frames and so belongs to the

5Elias’s figures are quoted for a 100MHz Sun SPARCstation, and the figures in this dissertation
for a 300MHz PC.
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Moscheni and Dufaux (1996) this dissertation

Figure 5.16: Comparison with Moscheni and Dufaux: Foreman sequence. A comparison
with results presented by Moscheni and Dufaux in [103]. Both approaches merge some
erroneous regions with the foreground, but the edge-based approach is considerably better.

Moscheni and Dufaux (1996) this dissertation

Figure 5.17: Comparison with Moscheni and Dufaux: Tennis sequence. A comparison
with results presented by Moscheni and Dufaux in [103]. The edge-based approach does
not detect all of the arm, but more accurately detects the outline.

Dufaux et al. (1995) this dissertation

Figure 5.18: Comparison with Dufaux et al. : Tennis sequence. A comparison with results
presented by Dufaux et al. in [46]. Part of the arm is considered to be stationary by
the edge-based approach (which is perhaps reasonable), but all of the hand and bat is
extracted as foreground.
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Moscheni and Bhattacharjee
(1996)

this dissertation

Figure 5.19: Comparison with Moscheni and Bhattacharjee: Tennis sequence. A com-
parison with results presented by Moscheni and Bhattacharjee in [101]. The edge-based
approach gives a slightly more accurate object boundary.

Bergen and Meyer (1998) this dissertation

Figure 5.20: Comparison with Bergen and Meyer: Foreman sequence. A comparison with
results presented by Bergen and Meyer in [12]. The static segmentation used by Bergen
and Meyer is inferior to the one used in this dissertation, giving a less accurate boundary.



Section 5.10 Summary 117

background. Better results by Moscheni were presented in [101] and, looking at

Figure 5.19, are comparable with the edge-based approach.

Bergen and Meyer [12] use a morphological scheme for their static segmentation,

but on the evidence of Figure 5.20 (and their static segmentation shown in Fig-

ure 2.4) the edge-based approach of Sinclair, adopted in this dissertation, provides

considerably more accurate boundaries.

5.10 Summary

The edge-based motion segmentation scheme generates fast, accurate segmentations

of many of the sequences tested. The results validate the theory of Chapter 3: if the

edges in the frame are labelled according to their motion, a complete segmentation

can be produced. The main limitation of the implementation presented here is in

the edge labelling. When the parametric motion model is inappropriate, or the EM

process fails to converge to the global maximum, a poor segmentation is produced.

There are also some sequences when the depth ordering of the layers is ambiguous,

and some of these are mislabelled. However, in the majority of the sequences tested,

a good edge labelling is produced, the correct layer ordering is determined, and

an excellent segmentation is the result. The edge-based approach compares very

favourably with previous work, both pixel- and region-based, and outperforms a

number of existing schemes, particularly on computation speed and the accuracy of

the object boundary.

The next two chapters will consider extensions of the implementation presented

in Chapter 4. Many of the problems, both the edge labelling and the layer ordering,

can be resolved by observing the sequence over more than two frames, and Chapter

6 describes this segmentation of multiple frames. The edge-based framework is also

equally applicable to more than two motions, and Chapter 7 considers segmenting

sequences containing an arbitrary number of motions.





CHAPTER 6

Extension to multiple frames

6.1 Introduction

The previous chapters have presented an implementation and evaluation of the edge-

based motion segmentation framework, which segmented a frame into two parts

using the motion between that frame and the next. While successful in many cases,

there can be problems when labelling edges using just two frames, and it is only with

a reasonable edge labelling that a complete, accurate segmentation can be produced.

Edge labelling errors occur due to noise, or where the motion is ambiguous. This

chapter will show that observing the same edges through further frames reduces

errors due to noise, and the motion of ambiguous edges can become clearer. As

well as clarifying motion information, these additional frames can themselves also

be segmented once their motion has been found. The segmentation of multiple

consecutive frames from a sequence is essential if an analysis of the motion in a

sequence is to be performed, as is required for many applications.

This chapter extends the implementation of Chapter 4 to include information

from further frames. The concept of a cumulative edge probability is introduced—

this is the probability of an edge having the same motion label over several frames.

Cumulative edge probabilities provide a more robust edge labelling and lead to an

improved segmentation. This chapter also considers some of the problems of tracking

extended sequences: edge occlusion and non-parametric deformation, and techniques

are presented to cope with these. Finally, results are presented, considering the

extended segmentation of the thirty-four sequences already considered in Chapter

5, as well as presenting examples of image mosaicing.
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6.2 Accumulating evidence: Continued tracking

This section considers using multiple frames to improve the edge labelling, and

resolve ambiguities. The starting point for this is the two-frame segmentation of

Chapter 4. The task is one improving the labelling of the frame 1 edges, and thus

its segmentation, by tracking these frame 1 edges into frame 3, and further frames.

The larger motion between frames 1 and 3, or 1 and 4, and also over the larger time

period involved, should allow a more certain edge labelling. In the sequences tested,

only a few further frames are typically needed to provide this disambiguation, and

greatly improve the edge labelling (see Section 6.6).

The approach followed is the same as for the two-frame algorithm, whereby the

EM algorithm is used to estimate the motion and the edge probabilities, only this

time between frames 1 and K (where K > 2). It is assumed that the motion

between these two separated frames is still approximately described by a projective

transformation (or one of its subgroups). It is important to remember that the

mapping does not need to be exact—the edge must simply match better under one

motion than the other.

6.2.1 Initialisation

The EM process between frames 1 and 3 can be initialised using the results from

the two-frame segmentation. This provides a prior probabilistic labelling for the

edges, and an estimate of the motion. In general, the results from frame K can be

used to initialise frame K + 1, as outlined in Table 6.1. First the edges from frame

1 are transformed into the correct area of the image by extrapolating from each of

the previous motions. This is necessary since the search for the edge location in the

new frame is only made over a short search track ρ each side of the edge (usually

ρ = 20 pixels), and only normal to the edge, so the search must begin close to the

correct location and orientation.

Having transformed the edges to the appropriate region of the frame for each

motion, each sample point makes a search to find the most similar pixel in the new

image.1 Given these error distances, a refined initial estimate is made which min-

imises these errors. Here, the edge probabilities from the previous frame are used

to indicate which motion error each edge should be minimising. First each mea-

surement is weighted by the probability that they are motion 1, and these residual

errors are summed and minimised, and then the same for motion 2, as described in

Section 4.4.5. This gives a good initialisation from which EM may then begin (at

1As in Section 4.3.2, the match is based on the squared error in colour image gradients between
the pixel on the edge in frame 1, and the candidate pixel in the frame in question.
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• Motion initialisation (frame K + 1)

– Predict motions by velocity prediction from pre-
vious frame

ΘK+1
−1 = ΘK +

(
ΘK −ΘK−1

)
(6.1)

– Transform tracking nodes under each motion and
search for best match

– Estimate motions ΘK+1
0 given frame K edge

probabilities

• Repeat (EM Loop)

– As in Table 4.6

Table 6.1: EM initialisation for frames after the first two. To initialise tracking in frame
K + 1, the motion between the previous two frames (ΘK −ΘK−1) is used to estimate
the new location. The previous edge labels are also used as a bootstrap.

the E-stage), and frequently only a few iterations are required to reach convergence,

giving the edge probabilities and motion in this new frame.

6.2.2 Occlusion

As the foreground object moves, it occludes edges and sample points on the back-

ground layer. Over two frames the problem of occlusion has been ignored as the

effects are minimal. However, when tracking over multiple frames, significant num-

bers of sample points become occluded. These sample points either fail to find a

match or, worse, find a spurious match on the foreground layer; this can lead to a

poor motion estimation and edge labelling.

The foreground/background labelling for edges and regions from the previous

frame’s segmentation enable this problem to be overcome, as background edges can

be tested to see if they are occluded by any foreground regions in the next frame.

The region labelling provides an implied edge labelling, and every edge which is

implied to be background has its sample points tested.

Figure 6.1 illustrates the occlusion test. Each sample point to be tested, i.e. those

on background edges (red in this case), is transformed under the current estimate of

the background motion, θB to find its new location in the frame in question. This

location is then tested to see whether it is occupied by a foreground object in this

frame. To do this, the sample point’s new location is transformed under the inverse
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θF

θF
-1

θΒ

Figure 6.1: Detection of sample point occlusion. Sample points on edges previously la-
belled as background (red) are transformed according to the current background motion,
θB , and then under the inverse of the foreground motion,θ−1

F . If they fall within regions
previously labelled as foreground (blue), they must have been occluded.

of the foreground motion, θ−1
F . If the point falls into a region labelled as foreground

in the previous frame then this point is now occupied by a foreground region and

it must be occluded. Each occluded sample point is marked as such, and does not

contribute to the tracking for that edge. All sample points are also tested to see if

they project outside the frame under the current motion and, if so, they are also

ignored.

This occlusion test should be performed before the EM loop commences, to

prevent these points from affecting the solution, but it requires estimates of the

current motions θF and θB. The occlusion test therefore uses the approximate

motions from the initialisation stage (outlined in Section 6.1), and is performed just

before the EM loop.

6.2.3 Combining statistics

Tracking the edges between frame 1 and 3 provides an estimate of the total motion

between those pair of frames and also an estimate for each edge of the probability

that it obeys each of those motions. The two-frame algorithm also provides edge

motion probabilities, this time for the motion between frames 1 and 2. Each edge

must obey the same motion across all frames—an edge either remains foreground or

remains background, it cannot change label part-way through a sequence.2

The probability that an edge obeys a particular motion over a sequence is the

probability that it obeyed that motion between each of the frames in the sequence.

2The case of a foreground object moving and then stopping is ignored here, as it is unlikely
to happen in the space of the few frames considered to refine the statistics. However, Section 6.6
shows some cases where this occurs as part of a longer sequence.
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Figure 6.2: Foreman sequence: Cumulative statistics. The edge probabilities and region
labels as evidence is accumulated over 5 consecutive frames. Beginning with a two-frame
segmentation, the edge probabilities become more certain as more frames are used, and
the region segmentation improves.

Since the sample point matches found in each frame are independent, the edge

probabilities are also independent. As a result, the probability that an edge obeys

motion 1 is the product of the probabilities that the edge obeyed motion 1 for each

of the frames considered. The probability for motion 2 may be calculated similarly.

Each edge must obey one of these hypotheses, so they may be normalised to give a

cumulative edge probability of each motion.

6.3 Using cumulative statistics to segment a frame

The segmentation of a frame begins with a two-frame segmentation, as in Chap-

ter 4. After this is completed, further frames are considered. For each frame an

independent EM maximisation is performed, using only the edge probabilities and

the motion between the frame in question and frame 1. The initialisation of EM

is bootstrapped by the results of the previous frame. After convergence the final

probabilities are multiplied together with the probabilities from the previous frames

to give the cumulative edge statistics. The region and foreground labelling can then

be performed in the same way as earlier (Section 4.6), but using the cumulative edge

statistics instead of the edge responsibilities from the EM algorithm. Since this is

still the segmentation of frame 1, the static segmentation of the frame need only be

performed once.

Figure 6.2 presents an example of the accumulation of statistics. It clearly indi-

cates the benefit of considering more frames, which improves the edge probabilities

and motion segmentation of the original frame. Cumulative statistics are consid-

ered further later in this chapter, as part of a deformable multi-frame segmentation.

First, however, a simpler form of multi-frame segmentation is considered.
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6.4 Templated segmentation of a sequence

Once the (parametric) motion between each frame of a sequence is known, and

the segmentation of frame 1 has been performed, this may be used to provide a

rudimentary segmentation of the sequence.

The estimate of the foreground motion between each frame describes how the

pixels belonging to the foreground object transform between frames. The segmenta-

tion of frame 1 may be used as a template, or a mask, which specifies the foreground

pixels. Transforming this template according to the foreground motion provides the

location of the foreground objects in the new frame, if it is assumed that the image

motion of the object agrees with the parametric motion model (i.e. there are no

other deformations). Over a short sequence this is commonly an adequate approxi-

mation. A short sequence can thus be segmented by using this foreground template,

transformed by the motion, to cut out the foreground object in each frame. This

form of segmentation also provides a useful test of the accuracy of the foreground

motion estimation.

Figures 6.3–6.5 show examples of sequence segmentations using this approach.

Each figure shows the segmentation of the original frame, and then the templated

segmentation of a number of subsequent frames. In each case the quality of the

segmentation of the additional frames is almost indistinguishable from that of the

original frame. This shows, firstly, that the 2D affine motion model (used here) is

capable of suitably modelling the inter-frame motions seen here, and even the motion

between more widely spaced frames. Secondly, it shows that this parameterised

motion is well estimated by the EM process.

The segmentation after the first few frames shows no obvious alignment errors,

and the segmentations are good. It is only in the later frames of Foreman or Tennis

sequences (Figures 6.3 and 6.4 respectively) that small errors can be observed. The

modelling of the Foreman’s head motion shows an error of 1–2 pixels in some areas

by frame 7, with some of the background visible to the left of his hat brim. The

Tennis sequence similarly has the occasional error by frame 7, with a little of the

background visible under the player’s shirt cuff. In both cases, however, the error

is not due to any particular misestimation of the motion, but because over this

larger period the object’s image motion cannot be accurately described by the affine

parameterisation. The Car sequence continues to be accurate for longer—in this case

the moving object is (obviously) substantially more rigid and so exhibits less image

deformation. Over short sequences of rigid objects, this is an easy and appropriate

method of segmentation.
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Frame 1 (Original) Frame 4 Frame 7 Frame 10

Figure 6.3: Templated segmentation of the Foreman sequence. The foreground segmen-
tation for the original frame is transformed under the foreground motion model and used
as a template to segment subsequent frames. As the frames progress, a small amount of
the background can be seen to the left of the hat-brim (the dark pixels are not present in
frame 1).

Frame 1 (Original) Frame 4 Frame 7 Frame 10

Figure 6.4: Templated segmentation of the Tennis sequence. The foreground segmenta-
tion for the original frame is transformed under the foreground motion model and used as
a template to segment subsequent frames. In frame 10 a strip of background pixels can
be seen below the player’s lower arm, which are not visible in frame 1.

Frame 1 (Original) Frame 4 Frame 7 Frame 10

Figure 6.5: Templated segmentation of the Car sequence. The foreground segmentation
for the original frame is transformed under the foreground motion model and used as a
template to segment subsequent frames.
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6.5 Deformable segmentation

To segment a general sequence, a more sophisticated multi-frame segmentation tech-

nique is needed—over a longer sequence, or with non-rigid objects, the image motion

will not obey a simple 2D parametric model. In this case it is not sufficient to rely

on one static segmentation, and instead it is necessary to segment each frame anew

each time, using the local image edges. What is then needed is some means to

continue to accumulate statistics across these new edges and segmentations. This

process will enable a robust segmentation which adjusts to the changing object—a

deformable segmentation.

6.5.1 Segmenting a new frame: Propagating edges

As introduced in Section 4.2, the image edges are found using the Canny edge de-

tector, and conservative thresholds are set to avoid edges due to shadows or texture.

This means that valuable edges may sometimes be missed, and this can be par-

ticularly problematic if these missed edges belong to occluding boundary. These

boundary edges help the region segmentation produce an accurate representation,

and increase the chances of finding T-junctions which determine the layer ordering.

The Canny edges are also used to guide and constrain the static segmentation and

an accurate segmentation of the objects is best achieved when the occluding bound-

ary exists in the edge map and can act as a hard constraint to the region growing.

Figure 6.6(a) shows the edges detected in frame 1 of the Foreman sequence, and in

Figure 6.6(c) the edges detected in frame 2. In this case it can be seen that part

of the boundary on the hat is missing in the second frame. These edge detection

errors can be corrected by propagating edges from the previous frame.

To determine candidates for propagating, each edge from the previous frame is

transformed according to each of the motions between the frames, and tested to see

whether it finds a match. Testing for a match again uses the sample points, so in

each new location the edge’s sample points find their best matches. If the product of

an edge’s sample point likelihoods under the ‘correct motion’ distribution is greater

than that under the ‘incorrect motion’ (Section 4.4.4, particularly (4.36)) then the

edge is deemed to have found a match, and is ‘trackable’.

Figure 6.6 shows the process. The edges from frame 1 are tested under each

motion and the trackable edges are marked in red in Figure 6.6(b). It can be seen

that (as should be expected), almost all edges are only trackable under one of the two

candidate motions. Any sections of trackable edges which are not already present
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(a) (b)

(c) (d)

Figure 6.6: Propagation of edges to the next frame. (a) Edges detected in frame 1; (b)
Frame 1 edges transformed under each motion. These are marked as red if they find a
match in the next frame (i.e. they are ‘trackable’); (c) Edges detected in frame 2; (d)
Missing edges in frame 2 (such as parts of the hat) are filled in with trackable edges from
frame 1.
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Frame 1 Frame 2

Snap to
edge

Create missing
sample points

Figure 6.7: Propagation of sample points between frames. Sample points on an edge in
frame 1 are mapped into frame 2 according to the motion parameters if that edge finds a
match. They are then allowed to move up to 2 pixels to lock onto any new edge detected
in the frame. Sections of new edges still without sample points then have new sample
points created.

in frame 2 are added into the edge map. Figure 6.6(d) shows the augmented edge

map.

This propagation of edges ensures that useful edges which are less clear in the

new frame continue to be included and tracked, assisting both the motion estimation

and the region segmentation. However, by relying as much as possible on edges

detected in this new frame this new edge map also represents any non-parametric

deformations of the objects that may have occurred between the frames.

6.5.2 Accumulating evidence: Propagating sample points

Although the static segmentation of the new frame starts afresh, with newly-detected

edges (albeit augmented with previous edges), the previous edge probabilities should

be exploited to make use of the cumulative edge statistics. Since edges are detected

anew in each frame, persistence is difficult to ensure on a per-edge basis. An image

contour detected as three separate edge sections in one frame may be detected as

two different sections in the next frame, and it is unclear how the probabilities for

one can be satisfactorily combined with the other. However, along an edge it is the

sample points which are used to estimate the motions and edge probabilities, and

these can be easily propagated from frame to frame. A new edge’s probability can

be estimated from whatever sample points are assigned to it.

Figure 6.7 demonstrates the sample point propagation scheme. For each edge

which found a match in the next frame (again, based on whether the sample points

had a higher probability under the ‘correct’ or the ‘incorrect’ motion hypothesis),

the sample points are mapped into the new frame according to the edge’s motion. It

is known that the parametric model provides a reasonable match, but that the real
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image edge may be one or two pixels away (in Section 4.4.4 it was seen that 96% of

all good matches are at most at a distance of two pixels). Therefore, if the sample

point does not map exactly onto an edge in the new frame, it is allowed to move a

distance of up to two pixels to move onto the nearest real edge location in the new

frame. This sample point propagation allows non-rigid objects to be tracked by this

system while still retaining the simplicity of a 2D parametric motion model. Edges

still lacking sample points have new sample points created.

6.5.3 Accumulating edge probabilities

Having found the new set of edges and assigned sample points, the edges may be

tracked into the next frame (i.e. one further on from the ‘new’ frame) and labelled

by EM as before. Initialisation for EM can proceed as described in Section 6.2.1:

an initial set of motions is given by a velocity estimate from the previous frame,

while the prior probability for each edge can be determined from the sample points.

Each sample point maintains a record of of the match probability for that sample

point across all previous frames. As with edges, each sample point (which is simply

part of an edge) must obey a single motion across all frames. Thus, for this new

frame, the prior probability that an edge obeyed motion 1 is the probability that

each sample point assigned to that edge obeyed motion 1 across all previous frames.

From the previous independence assumptions, this is simply the product over all

that edge’s sample points, over all the frames for which they have existed. Having

determined the initial edge probabilities, EM can be initialised (as outlined earlier,

in Table 6.1) and run to convergence.

This EM process is independent of that from the previous frame and the edge

probabilities after convergence merely represent those of the current edges under

the motion from the current frame to the next. However, those sample points which

were propagated from the previous frame also store a record of their probabilities

from the previous frame. As a result a cumulative probability may be calculated

for each sample point (and, from this, also for an edge)—it is the probability that

the sample point obeyed the same motion in all its frames. Since the matches found

in each frame are independent, this is given by the product of all the inter-frame

motion probabilities under that motion.

As an example, Figure 6.8(a) shows the edge labels in the Foreman sequence

after the first frame, and Figure 6.8(b) the results of EM between frames 2 and

3. Both contain a few incorrectly labelled edges. After accumulating the sample

point statistics, the cumulative edge probabilities are calculated, and these give more
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(a) (b)

(c) (d)

Figure 6.8: Cumulative statistics for propagated edges. (a) Edges in frame 1, labelled
according to their inter-frame motion probabilities. Note that some of the diagonal edges
to the right of the head are incorrectly labelled; (b) Edges in frame 2, labelled according to
their inter-frame motion probabilities. Here, note the errors around the collar; (c) Edges
in frame 2, labelled according to the cumulative probabilities over the 3 frames. Most of
the errors present in one of the previous frames are corrected by this accumulation; (d)
Labelled region segmentation of frame 2.
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• Find edges

• Transfer trackable edges from previous frame as required

• Transfer sample points from previous frame

• Allow sample points to snap to nearest edge

• Track and label edges between this frame and the next

• Accumulate probabilities for edges and sample points

• Segment frame into regions

• Label regions using cumulative edge probabilities

Table 6.2: Deformable segmentation of a new frame. Overview of the propagation stages
and segmentation.

robust edge labels. Figure 6.8(c) shows the improved edge labelling given by the

cumulative statistics, and Figure 6.8(d) the improved segmentation.

6.5.4 Continued deformable segmentation of a sequence

The techniques developed in this section enable an accurate segmentation of further

frames to be performed even when the objects undergo additional deformation which

is not described by the parametric model. The standard two-frame segmentation is

performed between the first two frames and this is used to initialise further frames.

Each new frame then uses newly-detected image edges, but propagates additional

edges as required and, most importantly, also propagates the sample point statistics.

This allows cumulative edge probabilities to be used with even the new edges. Table

6.2 gives an overview of the segmentation of these further frames, and this process

can be repeated for each frame to enable a complete sequence to be segmented.

6.6 Evaluation

The ‘deformable segmentation’ approach has been tested on the corpus of sequences

highlighted in Appendix D. As in Chapter 5, four sequences are considered in detail

(Foreman, Tennis, Coastguard and Car), and then the performance over the complete

set of thirty-four sequences is discussed.
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6.6.1 Foreman sequence

Edge propagation

The first stage in the segmentation of the second frame in a sequence is to find the

new edges, and fill any gaps in the edge map with edges from the previous frame.

The complete edge map is shown in Figure 6.9(a), with the propagated edge sections

shown in red. In this case most of the edges are found by the edge detector in the

new frame and so do not need to be propagated. However, a few, such as the edge

of the hat, are usefully added by this process.

Sample point propagation

Most of the sample points for the edges in the second frame are provided by prop-

agating those from the previous frame, moving them a short distance onto the new

edge if necessary. Of the 804 sample points in the first frame, 721 are successfully

propagated, and Figure 6.9(b) shows the new configuration of sample points. Any

gaps, such as on the edges on his left shoulder, are filled in with newly created sam-

ple points. The colour of the sample points in Figure 6.9(b) indicates their motion

probability in the previous frame. This will be combined with the probability in

this new frame to give the cumulative edge probability.

Cumulative edge probabilities

The motion between the second and third frames is estimated by EM, as before, and

the resulting edge probabilities are shown in Figure 6.11(c). In this case it takes

twenty iterations to converge. There are a number of errors in some of the small

edges on his collar, but, with these exceptions, the probabilities appear to be, as

for the previous pair of frames, very plausible (c.f. Figure 5.2(a)). The background

edges on the right of his head, which were mislabelled in the previous frame, are

more certain on this occasion.

Taking the product of the two edge labellings (and re-normalising) gives the

cumulative labelling, encompassing the evidence from both frames. Figure 6.9(d)

shows this cumulative labelling and it can be seen that, now, almost all of the edges

are labelled correctly. The edges on his collar are closer to the correct labelling and

the edges to the right of his head are, while still not perfect, better than in the

previous frame. In this cumulative labelling, 89% of the edges are correctly labelled,

compared with a hand-labelling. In the first frame only 78% of edges were correct,

so this is a significant improvement.
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(a) (b)

(c) (d)

(e)

Figure 6.9: Foreman segmentation of the next frame. (a) Detected edges (blue) aug-
mented by propagated edges (red); (b) Sample points propagated from previous frame.
New sample points are created to fill any gaps; (c) Edge motion probabilities between the
second and third frames; (d) Cumulative edge probabilities over both frames; (e) Seg-
mentation of second frame.
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Final segmentation

Figure 6.9(e) shows the final region labelling, following a static segmentation of

this second frame and the simulated annealing process (using the cumulative edge

probabilities). This yields an even better solution than using only two frames, with

99% of pixels labelled correctly, compared with a hand-labelling.

A longer sequence

Figure 6.10 shows the results of continuing this process over a larger number of

frames and it can be seen that over later frames the segmentation is problematic.

The diagonal edges still cause occasional problems, but major errors only begin to

occur about nine frames in. The first problems occur when the man stops moving

his head for a few frames. The EM process still attempts to fit two motions during

these frames (the third row of Figure 6.10), and the motions end up converging on

two solutions which only differ significantly due to noise. Unfortunately, even with

these similar motions, the edge probabilities tend to saturate and a near-random

edge labelling results. When these are accumulated with the earlier probabilities

over a number of frames, the cumulative edge probabilities are diluted to the extent

that a poor segmentation results. This problem should be resolved by selecting the

best number of motions on a per-frame basis—where there is no foreground motion,

only one motion will be fitted and no dilution of the edge probabilities will occur.

The second problem is that, between frames 15–28, the foreman throws his head

back and opens his mouth. This rapid motion cannot be parameterised by the

affine motion model, and the sample point errors are much larger than the mean

distance (for a correct match) of 1.3 pixels. With these large motions, the sample

points are also not propagated. As a result, edges such as the top of his hat cannot

be fitted and the edge probabilities on these edges are again governed by noise

and saturation. This problem cannot be resolved with the current system, but

fortunately motions such as this are rare in the sequences considered. After this

violent motion, the edge labels settle down and are again reasonable. Unfortunately,

after passing through an almost random labelling during the previous few frames,

the motion which converges on the head during the last frames is that which in

earlier frames modelled the background. This is highlighted in this example because

the layer ordering is assumed to be constant across frames. If the layer ordering

were allowed to swap mid-way through a sequence, a correct segmentation would

also be obtained for the last few frames.
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Figure 6.10: Segmentation of the Foreman sequence. Segmentation of thirty consecutive
frames.
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6.6.2 Tennis sequence

Figure 6.11(a) shows (in blue) the newly-detected edges in the second frame of the

Tennis test sequence. As with the previous sequence, a valuable edge is added from

the previous frame—in this case part of the top of the bat was not detected using

the conservative edge detection thresholds. Figure 6.11(b) shows the propagated

sample points, and it is apparent that, even without any motion analysis, the prior

labelling will be very good. The player’s upper arm was not well tracked between

the first two frames (it was ambiguous). As a result its sample points were not

propagated and new ones must be created along those edges. Between frames two

and three, the upper arm more obviously obeys the green motion, as can be seen in

Figure 6.9(c). When the results are combined with those from the previous frame,

the edge labelling is still very good, with 96% of edges labelled correctly (Figure

6.9(d)). With this excellent edge labelling, the final region labelling (Figure 6.9(e))

cannot be faulted, segmenting the frame as accurately as could be done by hand.

The segmentation of the first thirty frames of this sequence is shown in Figure

6.12. The segmentations continue to be excellent, with only a few frames exhibiting

unwanted behaviour, all of which may be described as differences in interpretation

rather than errors:

Ball segmented with foreground In frames 4–6, the ball has reached the top of

its flight and begins to fall. For this short period it has a very similar motion

to that of the arm, and is segmented as foreground. This may, of course, be

the desired segmentation in some cases. It is certainly the correct ‘motion’

segmentation.

Missing upper arm Between some frames the player’s lower arm, hand and bat

move much more than the upper arm, which at times is almost stationary.

As a result the upper arm sometimes appears to have a motion more similar

to that of the background motion, and is labelled as such. This again is the

correct ‘motion’ segmentation, even if it is not the desired solution.

Background regions glued to the arm The background in each frame is seg-

mented as several different regions. These are grown from different seed points

and, unless the mean colour is very similar, they will continue to be distinct

regions (it is not wise to merge regions before the motion segmentation stage

unless absolutely certain that they are part of the same object). The bound-

aries of these regions do not necessarily have to include one of the detected

Canny edges—they can simply be the points where regions have met during
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(a) (b)

(c) (d)

(e)

Figure 6.11: Tennis segmentation of the next frame. (a) Detected edges (blue) augmented
by propagated edges (red); (b) Sample points propagated from previous frame. New sam-
ple points are created to fill any gaps; (c) Edge motion probabilities between the second
and third frames; (d) Cumulative edge probabilities over both frames; (e) Segmentation
of second frame.
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Figure 6.12: Segmentation of the Tennis sequence. Segmentation of thirty consecutive
frames
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the region growing process. In the frames which exhibit erroneous background

regions, the regions in question do not have, as part of their boundary, any de-

tected edge labelled with the background motion, and their only labelled edge

is foreground. This means that the labelling of this region is ambiguous—it

would agree with the labelled edges if it were background or if it were fore-

ground. However, since the region labelling stage combines both the edge

evidence and a MRF-style prior, a decision can be made. In these cases this

prior has forced the most contiguous (but incorrect) solution. Given the cur-

rent edges and the region segmentation, the motion of these regions truly is

ambiguous and a correct labelling of these regions cannot be guaranteed with-

out more labelled edges.

6.6.3 Coastguard sequence

The third of the standard test sequences considered, the Coastguard, performed less

well using only two frames (see Figure 5.5), and it is interesting to see whether

using any more frames can improve the edge labelling, or resolve the errors in the

static segmentation. Figure 6.13(a) shows the augmented edges in the second frame,

but it can be seen that the stern and prow of the boat are still missing (there is

still no obvious intensity difference between the colour of the hull and the water).

Only a few inconsequential edges are propagated. Almost all of the sample points

are propagated, but it can be seen from Figure 6.13(b) that many of them are

incorrect or ambiguous, highlighting the difficult nature of this sequence, with its

highly textured areas.

The edge labelling for the inter-frame motion from frames two to three (Figure

6.13(c)) is, as before, rather noisy, with many of the small background edges un-

certain of their labelling. Comparing this with the labelling in the previous frame,

Figure 5.6(a), it can be seen that, as expected for errors due to noise, there is

no consistency in the mislabelled edges. As a result, when the edge probabilities

are combined over the two frames, as shown in Figure 6.13(d), the edge labels are

improved—most edges do have at least one good labelling, which dominates. This

process continues to improve the edge labelling over the whole sequence (the edge

labelling for Frame 10 may be seen in Appendix D). The only edges which continue

to be occasionally labelled incorrectly are the horizontal edges, since both motions

are horizontal.

The resulting foreground segmentation, Figure 6.13(e), is an improvement over

the previous frame, this time only missing a small amount of the bow and stern.
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(a) (b)

(c) (d)

(e)

Figure 6.13: Coastguard segmentation of the next frame. (a) Detected edges (blue) aug-
mented by propagated edges (red); (b) Sample points propagated from previous frame.
New sample points are created to fill any gaps; (c) Edge motion probabilities between the
second and third frames; (d) Cumulative edge probabilities over both frames; (e) Seg-
mentation of second frame.
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Figure 6.14: Segmentation of the Coastguard sequence. Segmentation of twenty-nine
consecutive frames. (A software bug prevented further frames being processed in this
case.)
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As before, this occurs because the static segmentation merges these parts with the

water. In this frame some of the edges belonging to the boat’s mast have also been

extracted and correctly labelled. However, most objects as small as the mast are

not included in the static segmentation, so only a coarse attempt can be made to

represent these in the final motion segmentation.

Figure 6.14 shows that the segmentation is stable over a longer sequence. The

occasional background region is included in the segmentation, due to a noisy labelling

of some edges, but the boat is well segmented throughout. The prow of the boat is

finally represented in the region segmentation by the twenty-first frame, and better

segmentations of the front of the boat are then performed, but the stern always

looks too similar to the wake.

These results, however, show that the framework and implementation still work

reasonably when occluding edges are missing. Most of the segmentation is correct,

and if occluding edges are missing then the segmentation will be a subset of the

desired segmentation. Resolving this problem of a missing occlusion boundary is

discussed as part of the further work in Chapter 8.

6.6.4 Car sequence

The final test sequence considered here in detail is the Car sequence. Figure 6.15(a)

shows the detected and propagated edges, and again some useful edges are added

from the first frame. Most of the sample points are propagated and these provide a

good prior edge labelling. In this sequence, with the large foreground motion, occlu-

sion is a major concern, particularly over an extended sequence, but as explained in

Section 6.2.2, the sample points on background edges are tested for occlusion. Fig-

ure 6.16 shows those sample points identified as occluded in the next frame (marked

in red). These points are well identified, and it is particularly pleasing to note that

the background sample points which are visible through the window are correctly

treated. Also marked (in blue) in this figure are those sample points which project

off the image in the next frame, due to either motion. As with points occluded by

the foreground motion, these are not used for motion estimation or calculating edge

probabilities.

The edge probabilities after EM (Figure 6.15(c)) are as good as before, with the

only major ambiguities being in the horizontal edges, and the only major errors in

the region of the reflections. The cumulative edge probabilities of Figure 6.15(d)

reinforce these, and the final segmentation, Figure 6.15(e), is very similar to that of

the previous frame.
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(a) (b)

(c) (d)

(e)

Figure 6.15: Car segmentation of the next frame. (a) Detected edges (blue) augmented by
propagated edges (red); (b) Sample points propagated from previous frame. New sample
points are created to fill any gaps; (c) Edge motion probabilities between the second and
third frames; (d) Cumulative edge probabilities over both frames; (e) Segmentation of
second frame.
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Figure 6.16: Occluded sample points in the Car sequence. Sample points in the second
frame, some identified as occluded by the foreground (red) and some as off the image in
the next frame (blue).

Figure 6.17: Segmentation of the Car sequence. Segmentation of twenty-three consecutive
frames. (A software bug prevented further frames being processed in this case.)
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Over the sequence, as shown in Figure 6.17, the segmentation continues to be

very good, with the only consistent error being the roof of the car which, with its

reflections, continues to be assigned to the background. In the occasional frame,

the area of pavement above the car bonnet is also segmented with the car. Since

this is only usually identified as background thanks to one horizontal edge, it will be

mislabelled if that edge is labelled with the car’s motion, as occasionally happens.

Also of note is the fact that as edge features are lost from the view through the car’s

window, the regions there can no longer be identified as background. In general, the

car’s image motion does not present any major problems to the affine motion model,

and the only errors are due to the ambiguities of labelling the horizontal edges and

the reflections. An excellent segmentation is produced throughout.

6.6.5 Ensemble results

The multiple-frame deformable segmentation has been tested on each of the thirty-

four image sequences shown in Appendix D. The segmentation using only two frames

has already been discussed in Section 5.8; here the segmentations after three and

ten frames are considered for each sequence.

Segmentation of a second frame

The segmentation of the second frame in each sequence is performed in the same

manner to that of the first frame, except that the edge probabilities used are those

accumulated over both frames. It is therefore to be expected that sequences which

performed well in the two-frame case also perform well for the next frame, and this

is indeed what is observed. All of the sequences for which EM gave good solutions

in the two-frame case also gave good solutions for the next frame. Over the thirty-

four sequences, all but eight have a greater number of edges labelled correctly when

using a third frame and, even including these, there is a mean increase of 5% in

the number of correct edges. Those sequences which do show a drop in the edge

labelling have only a small decrease (these are sequences where the labelling is

uncertain throughout).

The Nick sequence shows a startling improvement between frames.3 In the two-

frame case, EM failed to converge because of the small number of edges and the

non-affine motion, but between the next two frames the motion is well modelled,

and a good labelling is found. The Driven2 sequence again failed to converge well

between either pair of frames, but does edge a little closer to a good labelling as

3See Appendix D for the results from the second and tenth frame for each sequence.
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Ranking Pixels correct Frequency (%) at frame number
1 2 10

Excellent > 95% 11 (32%) 14 (41%) 11 (32%)
Good 85–95% 8 (24%) 10 (29%) 12 (35%)
Reasonable 75–85% 3 (9%) 4 (12%) 6 (18%)
Poor 50–75% 5 (15%) 4 (12%) 2 (6%)
Failure 0–50% 7 (21%) 2 (6%) 3 (9%)

Table 6.3: Percentage of pixels correctly segmented over multiple frames. Overview of
segmentation performance over the thirty-four test sequences. Any figure over 85% is a
good segmentation; those over 95% are almost flawless.

the sequence progresses. The only sequence to perform significantly worse is the

Horizon2 sequence, with its large projective motion.

The use of an extra frame generally increases the confidence in the layer ordering,

and in very few sequences is the opinion of the correct layer ordering changed from

that in the first frame. Of the thirty-four sequences here, six sequences changed

layer ordering—all from the incorrect to the correct layer ordering

Table 6.3 extends the earlier table to include the results from frames 2 and 10.

It can be seen that with the use of the extra frame, the segmentation of frame 2 is

generally improved. Twenty-four of the sequences (71%) have a higher number of

pixels correct when using this extra frame and the same number have good, or excel-

lent segmentations. These are excellent results, and the segmentation only genuinely

performs poorly in four cases: FlashGordon2 features a very large motion, Horizon1

and Tweenies have significantly non-affine motions, which this current system does

not pretend to be able to model, and ITN has no edge features in the background.

Segmentation of the tenth frame

The final set of results in Appendix D are those of the tenth frame of each sequence.

By this point in many sequences the motion has changed significantly from any

original affine assumption. In addition, while sample points will have had ten frames

to gather evidence, there is no guarantee that many of the original sample points

will by now be visible, or will have been successfully propagated.

Looking at the results presented in Table 6.3 it can be seen that the results

continue to be very good, with the only significant change (compared with the

performance after the second frame) being that a few sequences slip from ‘excellent’

to merely ‘good’. This slight down-turn in the high-end results is due to the motion

problems highlighted in the Foreman case: over a longer sequence, foreground objects

can either cease to move, or can begin moving in a highly non-affine manner. The
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first case would be dealt with by selecting the best number of motions in each

frame. However, the manner in which events such as this ‘sleeping person’ problem

[150] should be treated depends on the the semantics of the scene and the correct

treatment of these cases requires some higher-level understanding. The second case,

of sudden changes in the direction or type of motion requires more sophisticated

tracking technology. Once the boundary of the object has been identified (as is

frequently the case within a few frames), the problem essentially becomes one of

tracking this boundary. Schemes based on the Condensation algorithm [20] have

proved to be highly successful at tracking even vigorous motion.

The majority of sequences, however, continue to move according to the image

motion assumptions, i.e. affine with perhaps a few pixels of non-parametric defor-

mation. These perform excellently under the edge-based approach. By the tenth

frame, a large number of edges have been collected and propagated, and typically

around 80% of these would be labelled correctly according to their cumulative de-

tected motion. Even difficult subjects such as the lion in Cats1 or the boat in the

Coastguard sequence have an excellent edge labelling by the tenth frame, and one

which is vastly improved over that of earlier frames.

6.7 An application: Background mosaicing

Image mosaicing is the process of piecing together various different images of a scene

to produce one large-scale image. This is a process which has long been performed,

for example, in aerial photography [41]. There has also been a recent flurry of

interest in image mosaicing for image-based rendering [87], to give a computer user

the impression of being immersed in a 3D environment by using images to create a

continuous field of view around a given point.

In motion analysis applications a number of authors advocate a mosaic-based

approach to video coding and motion description. In motion description applica-

tions, a mosaic can be used to display a ‘visual summary’ of a sequence [57, 73].

A single mosaiced image is created of the backdrop to the sequence and then the

motion of the foreground objects is overlaid on this as a series of tracks. A mosaic

gives a common frame of reference within which the foreground motion may be de-

scribed and analysed. For video compression the single background image may be

transmitted once and then each individual frame can be described by the position

of the current frame in the mosaic, plus the foreground objects and any correction

terms [75, 121]. This process is part of the MPEG-4 standard [82, 129].

Any of these applications could be built on top of the video segmentation scheme
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Figure 6.18: Mosaic of the background to the Car sequence. The background segmen-
tations of frames 490-507 (shown at the top of the figure), transformed to a common
co-ordinate frame using the background motion estimates. The red patches are areas of
the car which, due to reflections, were mislabelled as background.

presented in this dissertation. This section presents a few sample mosaics generated

automatically by the multi-frame implementation introduced in this chapter, as a

demonstration of the background segmentations possible. It also provides a qualita-

tive test of the background motion estimation, since without an accurate background

motion estimation, the images cannot be stitched together correctly.

6.7.1 Implementation

A simple mosaicing implementation is demonstrated here. As each frame in a se-

quence is segmented, the pixels identified as background are extracted. These are

transformed into the mosaic image, in the coordinate frame of the first frame, using

the estimated (affine) motion between the current frame and the first. Over a se-

quence of frames, this is simply the matrix product of the inter-frame motions. For

simplicity, this is only performed to pixel accuracy.

It is likely that each pixel in the mosaic image will receive contributions from

several different frames. The displayed pixel colour in these cases is taken to be the

median colour for that pixel, independently in red, green and blue.

6.7.2 Examples

Car sequence

Figure 6.18 shows the backdrop to the Car sequence over nineteen frames. As seen

earlier, the top of the car is not usually segmented as foreground due to the reflec-
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Figure 6.19: Mosaic of the background to the Simpsons sequence. The background seg-
mentations of frames 77–94 (shown at the top of the figure), transformed to a common
co-ordinate frame using the background motion estimates.

tions, and the same is sometimes true of part of the bonnet, so these are unfortu-

nately included in the mosaic. The mosaic appears to be accurate, apart from a

slight ‘tearing’ visible across the white lines at the top. These may be due to only

using pixel accuracy for the mosaic, but it is also known that the motion estima-

tion in this sequence does not converge particularly well—the EM process takes a

very long time to converge, continually making small adjustments. However, on the

evidence of this mosaic the error is at most one pixel, and only in some parts of

the frame.4 It is also interesting to note the difference in colour of the background

pixels which were only seen through the tinted glass of the car window.

Simpsons sequence

The background mosaic for the Simpsons sequence is shown in Figure 6.19 (see

Appendix D for some of the individual segmentations). Of interest in this mosaic

are the ghosts of the edges of the foreground, particularly visible above the garage.

4It should be remembered that an accurate motion estimate (i.e. sub-pixel) is not required for
this motion segmentation scheme. The correct motion must just fit better than the other choices.
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These indicate that, even with cartoons, it is difficult to extract the boundary on only

a whole-pixel basis. The boundary in the world is unlikely to be imaged exactly at a

pixel boundary, particularly in the 320×288 MPEGs considered here. Consequently,

the ‘boundary’ pixel will be a blend of both the foreground and the background

colour. It is these pixels which are observed in this mosaic. However, as far as the

motion is concerned, the mosaic is again good, with errors of at most one pixel. As

mentioned earlier, these may be due to the mosaic generation process rather than

the estimated motion.

6.8 Summary

In this chapter techniques have been developed which look at a sequence of frames.

The tracking of edges, or sample points, across a series of frames enables evidence

to be accumulated and a more accurate edge labelling to be performed, reducing

ambiguity. Once the motion between each frame has been determined, a segmenta-

tion of each frame in the sequence may also be performed. This chapter introduced

a templated segmentation, which is appropriate for short sequences, and also a de-

formable segmentation. The latter has been evaluated on a range of test sequences,

with excellent results.

The techniques developed here consider only a causal improvement of labellings—

using previous frames to assist the current one. The segmentation may also proceed

in a non-causal manner by using future frames as well, either directly from a recorded

sequence or by slightly delaying a real-time sequence. It is these segmented sequences

which would be particularly useful for higher-level motion analysis applications. This

and other possible improvements are suggested in Chapter 8.

The use of multiple frames resolves many of the problems identified in the eval-

uation of the two-frame algorithm (Chapter 5). However, thus far only two motions

have been considered: the background and one foreground object. In this chapter,

correctly modelling the number of motions in the frame has been identified as a prob-

lem in some test sequences. The next chapter considers extending the edge-based

framework to segment an arbitrary number of motions.
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Extension to multiple motions

7.1 Introduction

While a wide number of useful video sequences feature only one moving object, a

truly general video segmentation system must be able to detect and segment as

many different moving objects are there are in the scene (and identify when there

is no motion). The edge-based framework developed in Chapter 3 is applicable to

any number of motion layers, and this chapter presents a preliminary investigation

into extending the implementation to the multiple-motion case. In particular, new

algorithms are developed to improve the edge labelling accuracy. Experimental

results are presented for two three-motion sequences.

Segmenting multiple motions is a far more difficult problem than the two-motion

case. With more motions spread throughout the frame, there are fewer edges with

which to estimate each motion. With more motions to choose between, edges can

be assigned to a particular model with less certainty. Both of these provide the

Expectation-Maximisation algorithm with a far harder task in estimating the mo-

tions and edge labels, and the EM stage is found to have a large number of local

maxima. Avoiding these maximum has required the development of a new EM

initialisation scheme. Connected with the EM optimisation is the question of how

many motion models should be fitted to the data. The approach adopted here con-

siders solutions with different numbers of motions and selects the most plausible;

this is done using the Minimum Description Length principle [116], as described

later.



152 Extension to multiple motions

With more uncertainty in the edge labels, the labelling of the regions becomes

more difficult, as does identifying the correct layer ordering. Although more diffi-

cult, it will be seen that this region labelling stage still performs reasonably, due

to the spatial coherency enforced by the Markov Random Field approach. This

region labelling can be used to improve the edge labelling, using the spatial reason-

ing of the region labelling to constrain the possible edge labels in an Expectation-

Maximisation-Constrain loop. The region segmentation is also improved by enforc-

ing the constraint that each foreground object should be represented by a contiguous

group of regions. Each of these modifications is also presented in this chapter.

7.2 Recursive Splitting EM

The EM algorithm is guaranteed to converge to a maximum, but there is no guar-

antee that this will be the global maximum [43]. This local maximum problem is

common in many iterative schemes: by only taking local measurements and making

a small step in a favourable direction, large-scale features are missed. If the itera-

tion is initialised at some distance from the global maximum and there are other,

smaller, maxima on the route to this maximum, the iteration can easily ascend one

of these local maxima and become trapped there, finding no local improvements.

The best solution to these local maxima problems remains an open question.

One suggested solution to this problem is to attempt to remove the local maxima.

For local maxima problems, Blake and Zisserman [21] proposed the Graduated Non-

Convexity (GNC) algorithm, which approximates the function to be minimised by

a smoothed version with a guaranteed single maximum (i.e. it is convex). The

maximum of this will be close to the global maximum for the original function, and

this then is a good starting point for a slightly less smoothed version of the function.

The smoothing is gradually removed, calculating the new maximum at each point,

so that eventually the real function is maximised. By starting at a point close to the

global maximum of each function, the maximisation should not be caught in any

local maxima. Ueda and Nakano [154] proposed this form of solution for EM, in their

Deterministic Annealed EM algorithm (DAEM), which performs the smoothing by

increasing the variance of each model. The variance is slowly restored to its true

value as the EM progresses in order to give the final solution. While this scheme

is effective at avoiding local maxima in the vicinity of the global maximum, it does

not solve all local maximum problems.

A common problem occurs in multiple-model situations when too many models

are initialised in one part of the space and too few in another. It would be desirable
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for these to be redistributed optimally, but changes by local steps are not usually

possible as this would involve passing through positions with a lower likelihood.

Even with the smoothing of the DAEM algorithm, this is not usually possible.

To resolve this, Ueda et al. [155] introduced a Split and Merge EM algorithm.

This initialised a pre-determined number of models and allowed them to converge

to an initial solution. This solution was then analysed to determine whether any

two models could be merged (if they were similar), and whether any model was

under-fitting, and so should be split into two. If so, these motions were merged and

split respectively (so that the total number of models remained constant), and EM

again run from the new locations.

This section of the dissertation presents a similar approach, developed jointly

with Tom Drummond and Rob Fergus (see also [52]). This scheme differs from that

of Ueda et al. in that only splitting is performed—it begins with only one model

and recursively adds more models. This enables it to be integrated with a scheme

to select the best number of models, since splitting continues as long as it improves

the interpretation of the data.

The Recursive Splitting EM (RSEM) algorithm presented here can be considered

to be akin to the multi-resolution techniques common in image matching algorithms

(e.g. [9, 78]). First the gross arrangement is estimated by fitting a small number of

models and then these are split to see if there is any finer detail that can be fitted

(see Figure 7.1). By proceeding in this fashion, it is guaranteed that all the models

that are being fitted are initialised in sensible locations.

7.2.1 Initialising an extra model

In order to determine how to add an extra model to the data, it is worth considering

what happens if too few models are fitted. For example, Figure 7.2(a) shows a set

of data best explained by three models. If only two models are fitted then there are

two likely outcomes (depending on the initialisation):

1. One (or both) of the models adjusts to absorb data which should belong to a

third model (Figure 7.2(b)).

2. If the models are fitted with a robust estimator [70, and Appendix A], then

the data belonging to the third model could be discarded as outliers and the

other two motions fitted well (Figure 7.2(c)).

Given these likely cases, it is clear that there are a number of possibilities for

initialising an (n+1)-motion solution given an n-motion solution. One of the models



154 Extension to multiple motions

(a)

→

(b)

→

(c)

Figure 7.1: Initialisation by splitting. Random samples taken from two multivariate Gaus-
sian distributions. (a) Fitting one model; (b) Random initialisation of two models by
perturbation from (a); (c) Models after EM.

(a) (b) (c)

Figure 7.2: Initialising with too few models. If the data are best explained by 3 models
(a), but only two models are fitted then two results are likely: either (b) the models absorb
data points which should belong to an extra model or (b) a large set of data points are
discarded as outliers.
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could be split into two to reveal any smaller-level structure, or the outliers could be

considered as a separate model. The RSEM algorithm tries each of these possible

initialisations at each stage, selecting the best one before continuing.

Splitting

Experience of EM in both this dissertation’s application, and the work of Fergus [52],

has shown that robustly fitting two models to data by EM is relatively untroubled

by the problem of local maxima, and this is key to the splitting process. Given a

model i which needs to be split (with parameters Θi), two new models j and k are

initialised with parameters

Θj = Θi + ε Θk = Θi + ε′ (7.1)

where ε and ε′ are some small random perturbations. One simple way to achieve

this is to take all the data points for which model i is the most likely and divide

them randomly into two groups. Models Θj and Θk can then be estimated, one

from each group, by standard maximum likelihood methods.

From these initial estimates, the models are updated to fit the local data by

performing EM using only these two models and the local data (once again, the

data for which model i was most likely). Figure 7.1 showed this process, starting

with one model, then two random perturbations, and finally the solution after the

local EM stage. After this local EM stage, model i is replaced in the global list of

models by the split pair j and k. EM is then performed upon the global list (i.e. the

previous motions, plus the split motion) to find the global optimum. This splitting

process is attempted for each of the original motions.

Outlier model

The other possibility is that one of the motions has been ignored through the use of

robust methods. Taking the set of data points which are deemed to be outliers to

the existing models (according to some suitable error threshold), an extra model is

fitted to these points. This solution is then optimised by performing EM over the

augmented set of models.

Selecting the best n + 1 model solution

After EM has been performed from each starting point (trying a split of each original

model, and the outlier model) the final solution given by each may be compared.
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The solution with the highest likelihood (the value that EM is optimising) is taken

as the solution for n + 1 models. This solution may be further split to test whether

further models would be appropriate.

7.2.2 Determining the best number of models

Increasing the number of models is guaranteed to improve the fit to the data, and

increase the likelihood of the solution (as long as they converge to the global opti-

mum). However, this should be balanced against the principle that simple solutions

are the best, commonly referred to as Occam’s Razor.1

The common method for imposing this principle is to define a cost function which

decreases as the likelihood increases, but increases with model complexity. There

have been a large number of these suggested in the literature, variously justifying

the cost functions in terms of information theory (entropy), or the related field of

coding theory, or Bayesian statistics. However all these approaches result in very

similar expressions (for a survey, see Torr [144]).

The cost function used in this work is derived from a coding standpoint, following

Rissanen’s Minimum Description Length (MDL) principle [116]. This is popular in

motion segmentation approaches, for example in work by Ayer and Sawhney [4],

Brady and O’Connor [27] and Elias and Kingsbury [48]. This considers the cost of

encoding the observed image motion in the minimum number of bits, by coding the

model(s) and then, for each data point, any residual error from the model. A large

number of models or a large residual error both give rise to a high cost.

The cost of encoding the model consists of two parts: first the parameters of each

model, and second the labelling for each edge. If each number in the model is to

be encoded to 10-bit precision (a typical figure) and each model has nd parameters,

the cost of encoding the models is 10ndnm (where nm is the number of models). To

label each data point requires that each has one of nm labels. In binary, this costs

log2 nm bits, so for ne data points this costs a total of ne log2 nm bits. Finally, the

residual errors must also be encoded. From information theory [125], the cost for

an optimal encoded size (in bits) is equal to the total negative logarithm (to base

2) of the data likelihood, Le =
∏

i P (ei|Θ) . The total cost is thus given by:

C = 10ndnm + ne log2 nm +
∑

e

log2 Le (7.2)

The cost C can be evaluated after each attempted initialisation, and the smallest

cost indicates the best solution and the best number of models. Equation 7.2 is

1William of Occam was an 14th-century English philosopher and theologian who wrote ‘Plural-
itas non est ponenda sine neccesitate’ (‘Entities should not be multiplied unnecessarily’).
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completely general apart from one tunable parameter, the number of bits per model

parameter. Ten bits is a typical figure and is successfully used in both [52] and here.

Table 7.1 gives an overview of the complete initialisation and model selection

algorithm.

7.2.3 Implementation for edge-based motion segmentation

The RSEM algorithm has thus far been described in general terms. It is proposed

as a general solution to the local maximum problem in EM, and has proved to be

an effective solution in both of its current applications: fitting Gaussian mixture

models in [52], and in fitting more than two parametric edge motions in the work

described in this dissertation. This section describes the latter implementation in

more detail.

In this implementation, one motion is first fitted and the cost of this solution

evaluated according to (7.2). For a 2D affine model, which is usually used, the

number of parameters nd = 6, and the data to be coded are the edge labels and

likelihoods. Then two models are fitted and the cost again evaluated.

If two motions are better than one, three motions must be tried. To begin

splitting, the edges are separated into three groups: firstly the outliers are detected—

these are edges for which the probability of a correct match P (e = i|Di) is less than

0.5 under each motion (equation (4.36)). The remaining edges are then separated

according to their most likely motion i.e. if P (e = 1|D1D2) > 0.5, the edge is motion

1 (equation (4.31)).

Given these groups, three initialisations and trials of EM are run:

1. Calculate the motion of the outlier edges, add it to the list of motions and run

EM.

2. Take the set of edges which best fit motion 1, split these into two random

groups and run EM on these to fit two motions. Replace motion 1 with these

two motions, and run EM.

3. As initialisation 2, but splitting motion 2.

In each case the cost is calculated once the three-motion EM has converged. If the

smallest cost from among these three is less than the cost of the 2-motion solution

then that 3-motion solution is stored as the current best model. The process is then

repeated to try four motions, and then further motions.

Figure 7.3 demonstrates the motion-fitting process on a test sequence with three

motions. First two motions are fitted (Figure 7.3(a)), then the three different ini-

tialisations are tried (Figure 7.3(b) shows the splitting of motion 1), and finally the
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• Fit one model to all data (n = 1)

• Calculate cost C1

• Repeat

– Set number of models n = n + 1

– Generate possible initialisations I1...n:

Ii The set of existing models, but with model i split into
two (i = 1 . . . n − 1). Splitting is performed by random
assignment and then local EM.

In The set of existing models plus a new model created to
fit the outlier set

– For each initialisation Ii (i = 1 . . . n)

∗ Do EM

∗ Calculate cost of solution Ci
n

– Evaluate best n-model solution Cn = mini C
i
n

– If Cn ≥ Cn−1

Report motion corresponding to Cn−1 and terminate.

Else

Goto Repeat

Table 7.1: Recursive splitting EM. Overview of algorithm to repeatedly initialise EM from
different (plausible) starting points, with increasing numbers of models, and select the
best one.
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(a) (b)

(c)

Figure 7.3: Fitting three motions. The books, statue and background each have a different
motion. (a) Two motions are fitted to the sequence by EM—note that one motion (green)
has fitted both the background and the statue; (b) The set of edges belonging to motion
1 are taken and two motions fitted to these by EM. This separates the statue from the
background (two other initialisations are also tried, but these have a higher cost and are
not shown); (c) The two new motions, and the original motion 2 are taken as initialisations
for a three-motion solution and EM is performed over all edges. The edge probabilities
are now displayed as a blend between three colours: red, green and blue, representing
motions 1, 2 and 3 respectively.

best three-motion solution is selected. The cost associated with both two- and four-

motion solutions is higher (see Section 7.7 for full results). These motion estimates,

and the associated edge probabilities are sufficient for a reasonable region labelling.

7.3 Region labelling under multiple motions

Given a set of edges labelled with their motion probabilities, as is provided by

the RSEM algorithm, a region segmentation may be performed and the regions

labelled by simulated annealing in the same manner as described in Chapter 4.

In the case of three motions this requires an optimisation over six possible layer

orders, so the annealing stage must be repeated for each of these six possibilities

and the maximum selected. For more motions this increases combinatorially, since
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(a) (b)

Figure 7.4: Three-motion edge probabilities and region labels. (a) The edge labels given
by EM (solution of the RSEM algorithm of Section 7.2). Here the edges are labelled
according to their most likely motion: red, green and blue represent motions 1, 2 and 3
respectively; (b) Maximum a posteriori region labelling and layer ordering. In increasing
depth order, the layers are coloured magenta, cyan and yellow.

for n motions there are n! layer ordering possibilities. Fortunately, in real world

sequences, there are rarely many independently moving objects (one or two are

typical), and it is reasonable to assume that n is small.

Under each layer ordering, an initial guess is made to the labelling (this time

each region may have one of n different labels). This is done in a similar manner

to the two-motion case i.e. according to the majority edge labelling. Each region in

turn is then considered for a new label, and the probability of each label calculated.

Once again this probability is the product of the implied edge probabilities and the

region prior. The implied edge probabilities may be used in exactly the same manner

as before, but the region prior should, strictly speaking, be a joint distribution over

the boundary fraction shared with each of the other two motions. This once again

gives a combinatorial explosion and so, for simplicity, the distributions are assumed

independent. This assumption is exact for the majority of regions, which are only

bounded by edges of one or two different labels. The same annealing schedule,

(4.42), is used and the regions are labelled by a Monte Carlo approach as before.

Figure 7.4 shows a typical edge and region labelling. It can be seen that even with

a noisy edge labelling, the region labelling is reasonable.

7.4 Global optimisation: EMC

A complete motion segmentation is determined via two independent optimisations,

which use edges as an intermediate representation: first the best edge labels and

motions are determined, and then the best region labelling given these edges. It has
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thus far been assumed (see Section 3.5.1) that this gives a good approximation to

the global optimum, but unfortunately this is not always the case, particularly with

more than two motions.

In the first EM stage the edges are assigned purely on the basis of how well they

fit each motion, with no consideration given to how likely that edge labelling is in

the context of the wider segmentation. There are always a number of edges which

are mislabelled—increasingly so with more motions—and these can have an adverse

effect on both the region segmentation and the accuracy of the motion estimate.

One possible solution is to reinstate priors on the edge probabilities (these were

assumed to be constant, and equal, in Chapter 4, particularly (4.26)). The prior

labelling for an edge could be expressed as a function of the labellings of the edges

surrounding it. However a simpler approach, and one also followed by Brady and

O’Connor [27], is to introduce an extra constraint step into the EM algorithm, thus

making the stages Expectation-Maximisation-Constrain, or EMC.

Acknowledging that the edge probabilities provided by the E-stage are noisy,

the EMC algorithm uses the logical constraints imposed by a region labelling to

provide a discrete, constrained edge labelling, where each edge is labelled with a

probability of 1 for one motion and 0 for the others. Figure 7.4 showed the edge labels

after the standard RSEM algorithm, and the resulting region labelling. This region

labelling implies an edge labelling, shown in Figure 7.5. This implied edge labelling

is self-consistent and, while not perfect, is better than that provided without any

constraints. The EMC algorithm therefore uses these implied, discrete, edge labels

in the M-step rather than the edge probabilities, giving the following steps, which

are iterated as shown in Figure 7.6:

Expectation Estimate the edge label probabilities given the motions

P (e|ΘnD) (7.3)

Constrain Calculate the most likely region labelling given these edge probabilities

max
RF

P (RF|ΘD) = max
RF

∑
e

P (RF|e) P (e|ΘD) (7.4)

= max
RF

P (e (R,F)|ΘD) P (R) (7.5)

and from this the set of definite edge labels

ê = e (R,F) (7.6)



162 Extension to multiple motions

Figure 7.5: Constrained edge labels. Edge labels implied by the region labelling of Figure
7.4(b). Compare this with the original labelling of Figure 7.4(a) and note that several of
the original edge labels were inconsistent with this region labelling.

Expectation

Estimate edge
probabilities

Constrain

Label regions

Label edges

Maximisation

Estimate motion
parameters

Figure 7.6: Overview of the EMC algorithm. After the edge probabilities are calculated,
the region labelling is used to constrain the edge labels to definite, consistent, labellings.
These constrained edge labels are used to estimate the motions.

Maximisation Use the implied edge labelling ê to calculate a new set of motions

arg max
Θn+1

∑
e

log P (êD|Θn+1) P (ê|ΘnD) (7.7)

The iteration is continued until the likelihood of the region labelling in the C-step

(7.5) is maximised. This region labelling, having been calculated from the most

recent edge labels, is the final solution.

The EMC loop is best considered as a final global optimisation stage. Once

again, as an iterative scheme, its initialisation is an important consideration. The

constraints (i.e. a sensible segmentation) cannot be applied until the edge labels are

reasonable. It is also time-consuming since each iteration requires the maximisation

of the region labelling (via simulated annealing), which is itself an iterative scheme.

As a result, starting from as close to the solution as possible is highly desirable and

the EMC loop is performed as a separate refinement stage after the original EM (or
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(a) (b)

Figure 7.7: Example EMC solution. (a) Edge probabilities after EMC loop; (b) Region
labelling using EMC edge probabilities. Note the improvement to both, compared with
the original labelling in Figure 7.4.

RSEM) loop. EMC must also be performed for each possible layer ordering, as it

is only with a hypothesised layer ordering that the region labelling may be max-

imised. The EMC process described here therefore does not scale to large numbers

of motions, but only small numbers of motions are likely in real-world situations.

Figure 7.7 shows the edge labels and most likely region segmentation for the

example sequence after the completion of the EMC loop. The optimisation takes

about a minute to perform on a 300MHZ Pentium II (for images of 352×288 pixels in

size). The final edge and region labellings show a small, but significant, improvement

over the standard EM solution of Figure 7.4.

7.5 ‘One region’ constraint

The Markov Random Field used for the region prior P (R) only considers neighbour-

ing regions, and does not consider the wider context of the frame. This makes the

simulated annealing efficient (since only local changes need to be considered), but

does not enforce the belief that there should, usually, be only one connected group

of regions representing each foreground object. It is common for some isolated back-

ground regions to be mislabelled as foreground when the edge probabilities are noisy

(as seen in the Coastguard sequence, Figure 6.14), and this is a particular problem

when the number of motions increases. Not only is it easier for this mislabelling to

occur, but this error is also compounded if this labelling is then used in a feedback

loop, such as the EMC described above, which would encourage the edge motions

and probabilities to support this mislabelling.

It is possible to include a higher-level clustering term to the region prior, for

example a measure of compactness, or simply a prior on the number of connected
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components. One trivial change would be to set the prior for an isolated region

(i.e. the case of fi = 0 in Section 4.6.2) to zero. This would prevent this scenario

from being considered during the annealing stage. However, this is undesirable as it

may be necessary for the annealing process to pass through such a state in order to

reach the global optimum. Such a solution would also not prevent an isolated pair

of neighbouring regions from being created and maintained.

Instead, a simple Procrustean approach is proposed as a post-processing stage.2

After the annealing stage has converged and produced a labelling, a connected-

component analysis is performed to determine the number of independent groups

at the depth layer closest to the camera. (This is straightforward as details of a

region’s neighbours are already required for the MRF-style region prior.) Given

these groups, region labellings are hypothesised which label all but one of these

groups as belonging to a lower layer (i.e. further back). The most likely of these

‘one object’ region labellings is the one that is kept. This process is repeated for

each layer in turn, working through the layers in order of depth until each layer

apart from the background (the layer furthest from the camera) has been edited to

leave only one group.

This approach enforces the hard constraint that there shall be only one simply-

connected object at each layer. While not completely general (a probabilistic prior

would be preferable), it is true in many cases and is simple and efficient to implement.

This ‘one region’ processing stage is included within the EMC loop (Section 7.4) such

that the edge labels which feed back to the motion estimation stage are consistent

with this constraint.

7.6 Implementation overview

To provide a reliable segmentation of more than two motions using two frames it is

necessary to use all of the extensions proposed in this chapter. Figure 7.8 provides

an overview of the general algorithm.

Edges are found in the frame to be segmented and the mean motion is estimated.

The system then enters the RSEM loop (Section 7.2), which repeatedly tries splitting

the motion first into two, then three, and then further motions in order to (a) avoid

the local maximum problem with EM, and (b) determine the most appropriate

number of motions (using MDL). Once the edge motions have been determined, the

2Procrustes was a bandit in Greek legend who claimed that his bed would fit all guests, which
he achieved by either stretching the victim or cutting off their legs. The term procrustean refers
to a scheme which ruthlessly forces something to fit a pattern.
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Figure 7.8: Implementation for multiple motions. Overview of the algorithm with all
described additions.

static segmentation is carried out to find the image regions, and the system enters

the EMC loop (Section 7.4), which performs both the region labelling and the global

optimisation.

The EMC loop is performed once for each possible layer ordering. The regions

are labelled, constrained to have only one object on each foreground layer (Section

7.5), and the implied edge labels used to refine the motions, and thus the edge

probabilities. Having run this loop to convergence for each layer ordering, the max-

imum over all layer orderings is selected as the most likely solution and the final

segmentation.

7.7 Evaluation

7.7.1 Overview

This section presents results for two three-motion sequences, shown in Figures 7.9

and 7.11. The segmentation performance is evaluated, and the discrimination of

the MDL approach assessed by considering both three- and two-motion sequences.

Further development and evaluation of multiple-motion edge-based segmentations

are an avenue for future work.

7.7.2 Model selection

The RSEM algorithm attempts several different initialisations with different num-

bers of motions in order to find the ‘best’ solution according to the Minimum De-

scription Length (MDL) principle [116, and Section 7.2.2]. Table 7.2 shows the

coding cost for four sequences when different numbers of models are fitted. Two



166 Extension to multiple motions

nm Motion Edge Residual Total

F
or

em
an

1 60 0 5067 5127
2 120 482 3733 4335
3 180 764 3467 4411
4 240 964 3334 4538

C
ar

1 60 0 10491 10551
2 120 518 5167 5805
3 180 821 4931 5932
4 240 1036 4763 6039

nm Motion Edge Residual Total

L
ib

ra
ry

1 60 0 2341 2401
2 120 133 1691 1944
3 180 211 1450 1841
4 240 266 1400 1906

C
ar

&
V
an

1 60 0 4158 4218
2 120 322 3669 4131
3 180 510 3109 3799
4 240 644 2944 3828

Table 7.2: Selecting the best number of motions: Minimum Description Lengths. For dif-
ferent numbers of motions (nm), the total cost is that of encoding the motion parameters
(‘Motion’), edge labelling (‘Edge’) and the residual error (‘Residual’). The two sequences
on the left are expected have two motions, the two on the right have three. The minimum
costs (in bold) agree with the desired outcome.

sequences are expected to be best fitted by two models, and two by three models.

These sequences are all correctly identified.

The minimum cost for the Foreman sequence (Figure 5.1) occurs when two motion

models are used, although there is also some small support for fitting the girders

at the bottom right corner as a third motion (they are at a greater depth than

the concrete structure behind him). The Car sequence (Figure 5.7) is also correctly

identified as a two-motion sequence.

The two three-motion sequences, Library and Car&Van each have a minimum

cost under three motions, which is the desired outcome. In the Car&Van case, four

motions is nearly as favourable. In this sequence, EM suffers greatly from local

maxima, and any edge labelling is difficult, which makes the figures for this case

noisier than they might otherwise be.

7.7.3 Library sequence

Figure 7.9 shows the two frames considered from the Library sequence. Here the

scene is static but the camera moves from right to left. The books, statue and

background are at different depths, and so have different image motions.

The RSEM algorithm works well to label the edges. As was shown in Figure

7.3(a), the best two-motion solution fits one motion to the books, and another to

the other edges (the statue and the background). When this ‘background’ motion is

split, it finds two motions—the statue and the background—and it is this solution

which yields the smallest MDL score.

Labelling the motion of the horizontal lines in the scene is difficult as the camera

(and hence the object) motion is horizontal, and so these edges could fit any of
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Figure 7.9: Library sequence. Frames 36–37 from the Library sequence. The camera
moves from right to left here, and the image motion is due to parallax, with the books,
statue and background at different depths.

(a) (b)

(c) (d)

(e) (f)

Figure 7.10: Library segmentation from two frames. (a) Region segmentation; (b) Region
edges labelled according to their motion; (c) Region labelling (using original edge labels);
(d) Region labelling after EMC; (e) Middle layer of final segmentation; (f) Front layer of
final segmentation.
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the motions equally well. Figure 7.10(b) shows the edge probabilities after RSEM

and it can be seen that the edge marking the top of the books has been incorrectly

labelled.3 As a result, when the region labelling is performed (Figure 7.10(c)), some

of the book regions are incorrectly assigned to the statue.4

The Expectation-Maximisation-Constrain (EMC) loop is then entered, which

performs the global constrained optimisation. The edge labels of Figure 7.10(b) can

be seen to have a number of mislabelled edges, and these are logically inconsistent.

Figure 7.10(d) shows the region labelling (and edge probabilities) after the EMC

loop, which shows an improvement. The constrained optimisation has now labelled

the top edge of the books correctly, and the region labelling is now very good.

The EMC loop is performed for each possible layer ordering (six in this case)—

the results here only show the final most likely ordering. Of the different layer

orderings, the ones which label the green motion as the background layer (i.e. cor-

rectly) are much more likely. However, the ordering of the two foreground layers

is more ambiguous in this case. The main horizontal edge dividing the two objects

is not labelled with any great confidence, even after EMC, and there are very few

other edges which contribute to the layer ordering decision. The correct ordering is

selected, but only with a probability of 53% over the other foreground ordering.

The segmentation of this sequence takes about three minutes on a 300MHz PC.

The majority of time is spent in the EMC loop, which has to be repeated six times

to consider all possible layer orderings, and has to perform a complete region seg-

mentation at each iteration of the loop.

7.7.4 Car & Van sequence

The second sequence presented here is the Car&Van sequence, shown in Figure 7.11.

Recorded with a hand-held MPEG-1 camera, this shows an essentially static back-

ground while the white car closest to the camera pulls out (to the left) as the yellow

van speeds by. The size of the van’s motion means that under two motions the

van’s edges are mainly outliers and it is here that the value of considering a third

motion initialised from the outliers becomes apparent. The MDL process (Table

7.2) correctly selects three motions after the RSEM stage.

When the edges are labelled (Figure 7.12(b)), the car motion (green) also fits

parts of the building well, particularly due to the repeating nature of the classical

3In the three-motion sequences, edges are displayed according to their most likely motion, with
motions 1, 2 and 3 being red, green and blue respectively.

4The region labelling indicates the different depths in the following order (closest to the camera
first): magenta, cyan, and then yellow for the background.
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Figure 7.11: Car&Van sequence. Frames 73–74 from the Car&Van sequence. The yellow
van passes by on the road as the white car pulls out of the side street.

(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Car&Van segmentation from two frames. (a) Region segmentation; (b)
Region edges labelled according to their motion; (c) Region labelling (using original edge
labels); (d) Region labelling after EMC; (e) Middle layer of final segmentation; (f) Front
layer of final segmentation.
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architecture in the background. This presents some problems to the region labelling

stage, as can be seen in Figure 7.12(c), where there are a few regions on the columns

which are labelled with the car. It is in cases such as this that the ‘one region’

constraint is needed, in conjunction with EMC, to produce the clean results seen in

Figure 7.12(d). This shows the final most likely region labelling and edge probabil-

ities after EMC and again the labels can be seen to be much improved. The entire

segmentation again takes a few minutes.

Determining the correct layer ordering is a little easier in this case than in the

Library sequence and the depth ordering of the car, the van and then the background

is significantly more likely. These two sequences have been carefully selected to have

some interaction between all three layers, but although there is some, the task is still

difficult, as there are very few T-junctions on which to base an opinion. In a more

general three-motion sequence, with no object interaction, the relative ordering of

the foreground objects would be completely ambiguous.

7.8 Discussion

This chapter has discussed the difficulties of fitting more than two motions using an

edge-based approach. A robust initialisation for EM has been developed, which uses

a sampling approach to avoid the problems of local maxima. This RSEM algorithm

also selects the best number of motions according to the MDL principle. A global

optimisation scheme has been developed which constrains the edge labels to obey

the logical constraints laid down by a region labelling. A technique for constraining

the segmentation to simply-connected foreground objects has also been described.

As these necessary extensions show, the segmentation of multiple foreground mo-

tions is a much more difficult proposition than a two-motion foreground/background

segmentation. Various elements of the scheme increase combinatorially with the

number of motions, and the labelling uncertainty introduced by having more mo-

tions places a heavier burden on priors and constraints.

The two sequences presented in the evaluation demonstrate the difficulty of la-

belling the edges in a three-motion case. The RSEM algorithm gives a reasonable

edge labelling and motion estimates, and the number of motions is correctly deter-

mined. However, the process is rather more fragile: in the Car&Van case the edge

labelling is barely satisfactory for a good segmentation. Also, the added complex-

ity of the various additional stages increases the computation time by an order of

magnitude, taking minutes rather than seconds.
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This chapter has demonstrated that the segmentation of frames into multiple

independently-moving objects under the edge-based framework is possible. The

framework of Chapter 3 is general, and a frame with correctly labelled edges of any

number of motions can be completely segmented, up to unresolvable ambiguities.

Even in cases where the edge probabilities suffer from some noise, the techniques

developed in this chapter, with the MRF-style prior, allow a good segmentation.

However, the challenge with multiple-motion segmentation under this framework is

one of obtaining a good edge labelling. In Chapter 6, it was shown that the use of

multiple frames can greatly improve noisy and ambiguous edge labellings, and this

will no doubt be a partial solution to the problem.

Regardless of the use of cumulative edge statistics, the motion and labelling in

each individual frame must be determined. The RSEM algorithm presented in this

chapter is a useful tool in negotiating a reasonable edge labelling from one pair of

frames. Ameliorating the local maxima problem in EM, or developing alternative

methods for determining the motion labelling of edges when there are many motions

present, are obvious avenues for future work.





CHAPTER 8

Conclusion

8.1 Summary

This dissertation has considered the problem of segmenting the frames of an image

sequence into semantically meaningful areas, using image and motion information.

The thesis presented is that image edges are fundamental to obtaining an accurate

motion segmentation, since they both provide the boundaries of objects in the image,

and can be efficiently tracked using robust statistical techniques.

Chapter 3 developed the theory linking the motion labelling of edges with that

of the image regions they bound. It was shown that not only is an edge labelling

sufficient to label regions, but also that occlusion constraints make logical reasoning

over edges and regions necessary for a complete segmentation. This provides both

the complete dense labelling, and the relative depth ordering of the different seg-

mented areas. A Bayesian framework was outlined which formalised this approach,

making it possible to perform a motion segmentation using edges in the presence of

the noise and uncertainty which are unavoidable features of real sequences.

An implementation of this framework was presented in Chapter 4, and extended

in Chapters 6 and 7. Two separate optimisation stages are required to determine

the edge labelling and then the region labelling. The first is implemented using

the Expectation-Maximisation (EM) algorithm, and the second by simulated an-

nealing. The extension to multiple frames (Chapter 6) showed that accumulating

edge motion information across frames resolves ambiguities and provides a more

robust labelling. Extending the implementation to multiple motions in Chapter 7
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demonstrated the generality of the framework. This chapter also introduced a new

initialisation stage for EM which also selects the best number of motions (using the

Minimum Description Length principle), and a global initialisation and constraint

stage. Extensive results for the basic two-motion, two-frame case were discussed in

Chapter 5, featuring real video sequences covering many different genres. Evalu-

ations of the multiple-frame and multiple-motion cases were also presented in the

relevant chapters. These showed the success of this framework, particularly in the

two-motion case, giving clean, accurate segmentations.

8.2 Discussion

The edge-based framework introduced in this dissertation is a new, general scheme

for motion segmentation. The analysis of image edges should form an integral part to

any motion segmentation scheme concerned with the accurate extraction of motion

boundaries. The framework presented here integrates segmentation using edges with

edge-based motion estimation, creating an efficient and elegant unified approach.

The system developed for this dissertation demonstrates that a fast implemen-

tation of this framework is possible for the segmentation of two motions. Despite

the necessity for two separate iterative optimisation stages, this (relatively unopti-

mised) implementation can segment a frame in a few seconds on standard hardware.

With the continual increase in affordable computing power, and with an optimised

implementation, a real-time implementation of this framework for two motions is

within reach.

The results for the two-frame implementation demonstrate that it works very

well when there are two clear motions (i.e. the background and one large foreground

object). The main limitation of the system is the EM process used for edge labelling.

When there are only a few edges representing an object, this can fail to converge to

the global maximum, and the edge labelling can be poor. When the edge labels are

good, the thesis that these are sufficient for a complete labelling (up to unresolv-

able ambiguities) is verified. The region-based approach to a dense labelling gives

accurate boundaries and clean segmentations, but is dependent on the initial static

segmentation. This is usually very good, but problems occur when the occluding

boundary is weak, or when the regions are required to represent fine image detail.

Using multiple frames significantly increases the robustness and accuracy of the

edge labels, with the result that the segmentation is much improved. Many se-

quences are segmented very accurately using this multi-frame approach, and com-

plete sequences can be segmented. The speed and accuracy of the edge-based seg-
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mentation scheme will allow many different video analysis applications to be built

upon this framework.

Segmenting multiple motions is much more difficult than segmenting two mo-

tions. In these sequences, each object often has fewer edges, and this again causes

problems when determining the edge labelling. The proposed extensions have met

with some success, but segmenting multiple motions pushes the limit of the current

algorithms. Dealing with these cases in a more satisfactory manner is an area for

future research.

8.3 Suggestions for further work

This dissertation has demonstrated the effectiveness of an edge-based approach to

motion segmentation, and has presented a successful implementation for two mo-

tions. However, there are a number of interesting ways that this work could be

extended, or improved.

Application development Motion segmentation is an enabling technology, and

the first stage in many video analysis technologies. The existing edge-based

implementation gives excellent results for most two-motion sequences, and

applications can be built upon this. For example, video description tools could

be developed, which consider a mosaic of the background (see Section 6.7), and

the manner in which the foreground object moves over this background and

its shape changes. The segmentation scheme should also be tested as part of

an MPEG-4 coding scheme [82, 129].

Improved edge statistics The labelling of edges, which is integral to this frame-

work, would be improved by a better statistical model of the sample point

errors. For example, a Markov chain approach [61] (as considered in Ap-

pendix C) could be pursued. This is particularly important when segmenting

a larger number of motions.

Alternative motion parameterisations The edge tracking scheme used in this

dissertation is not restricted to 2D projective motions, and the use of alterna-

tive models could be investigated. Other deformation modes could, for exam-

ple, be determined by a Principal Component Analysis of the sample points,

as in Cootes and Taylor’s Active Shape Models [38, 39]. The Lie algebra track-

ing approach can easily be extended to include any parametric deformations,

and has been extended to track articulated objects [45], which should also be

considered.
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Motion-assisted static segmentation Region labelling errors are usually due to

errors in the static segmentation, in particular a missing occluding boundary.

If only part of the boundary is missing, there are usually strong foreground

edges which are surrounded by background. Because of this, the error can be

detected. In these cases the occluding edge could be introduced either by a

model-based edge completion scheme, or by searching for a weak edge which

is present at that location in both frames. Using this motion information to

assist the static segmentation creates a truly integrated motion segmentation

of a frame or sequence.

Multi-frame segmentation The multiple frame aspects of the implementation

could benefit from a more sophisticated treatment. The sample point motion

hypotheses should be correctly treated—if a sample point is only propagated

because it finds a match under motion 1, it should from then on only be allowed

to search for matches under motion 1. A full multi-frame implementation

should also, if possible, accumulate information from all of the sequence for

all of the frames and ensure consistency of edge labels across the sequence.

Multiple motions An extended investigation into multiple motions should be con-

ducted. In particular, alternative approaches to the motion estimation and

edge labelling should be considered. This may involve multi-resolution ap-

proaches [9, 78], or motion estimates from other (e.g. pixel-based) sources.

8.4 A final word: Edges vs pixels

The evaluation of Section 5.9 showed that in some types of sequence, the widely-

used pixel-based approaches have the upper hand, and in others the feature-based

approach advocated in this work is more appropriate. Pixel-based schemes per-

form well in textured images, but less well otherwise. This dissertation’s edge- and

region-based approach is distracted by excessive texture, but generates excellent,

fast segmentations in many other cases, including sequences with low texture be-

tween edges. A truly general and successful motion segmentation scheme will have

to combine elements of both approaches. Image edges must be used as they provide

the only guaranteed means of obtaining an accurate object boundary, and they also

allow analysis of the relative depths. However, if textured surfaces are available, it

is foolish to reject this valuable source of motion information.

Although this dissertation has presented pixels and edges as two alternatives, the

approaches are not mutually exclusive. They could be combined in several ways.
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A pixel-based approach could be used to estimate the image motions, and then the

edges and regions could be labelled; this may sidestep the problems with the edge-

based EM process in textured images. Alternatively, pixels could be brought in at

a later stage, as another piece of evidence in the labelling of regions, or could be

used to bring out fine detail. The future direction for motion segmentation will lie

in combined pixel- and edge-based approaches.





APPENDIX A

Parameter estimation

A.1 Motion estimation

The Lie group formulation outlined in Chapter 4 reveals that the motion of a sam-

ple point k which obeys a 2D projective motion (or one of its subgroups) can be

expressed as a linear combination of the group generators at that point, Lj
k:

Motion at k =

nd∑
j=1

αjLj
k (A.1)

where there are nd generators. The αj are the parameters of the motion, and are the

same for all sample points.1 Measurements are taken along edge normals in order

to estimate these motion parameters.

The residual error measured at each sample point, rk, is the difference between

the measured normal motion dk and the motion predicted by the current motion

parameters when it is projected onto the unit edge normal n̂k:

Residual error = rk = dk −
(∑

jαjLj
k
)
· n̂k (A.2)

Since the summation and dot product are linear, this may be rewritten as

= dk −∑
jαj

(
Lj

k · n̂k
)

(A.3)

1There are eight parameters in the full 2D projective group P(2), and six in the 2D affine GA(2)
(see Tables 4.3 and 4.4).
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which, for brevity, may be simplified by writing xk
j =

(
Lj

k · n̂k
)
, giving:

rk = dk −∑
jαjx

k
j (A.4)

which is of the form usually solved using linear least squares.

A.2 Least squares solution

The least squares solution to the linear equation given in (A.4) is given by those

parameter values α which, over the whole set of K data points, minimise the total

squared error. This error is defined as:

Error =
K∑

k=1

(
rk

)2
=

K∑

k=1

(
dk −

nd∑
j=1

αjx
k
j

)2

(A.5)

The necessary condition for this is that the error with respect to each parameter be

a minimum i.e:
∂(Error)

∂αi

= 0 (A.6)

Performing this minimisation explicitly for the the squared error defined in (A.5)

gives the following system of equations:

K∑

k=1

2xk
i

(
dk −

nd∑
j=1

αjx
k
j

)
= 0 i = 1 . . . nd (A.7)

The factor of two may be ignored, and rearranging (A.7) gives

K∑

k=1

dkxk
i =

K∑

k=1

xk
i

nd∑
j=1

αjx
k
j (A.8)

=
K∑

k=1

nd∑
j=1

xk
i x

k
j αj (A.9)

as the equation which must hold for the least squares estimate of each parameter

αi.

Over all the parameters, these equations can be gathered into matrix-vector form

by writing the left-hand side as a vector v, and the right-hand side as a matrix M

which multiples α =
(
α1 . . . αnd

)
, leaving

v = Mα (A.10)
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where the elements of v and M are given by:

vi =
K∑

k=1

dkxk
i (A.11)

Mij =
K∑

k=1

xk
i x

k
j (A.12)

The parameter vector α may be easily found by inverting the square matrix M:

α = M−1v (A.13)

This is usually best solved by Singular Value Decomposition (SVD) and back-

substitution [112] .

A.3 M-estimators

In any parameter estimation problem, the problem of erroneous data points, outliers,

must be considered. Parameter estimation techniques typically consider the residual

error rk between the kth observation and the fitted value (for example (A.5)). The

standard least squares method, minimising
∑

k (rk)
2, is particularly unstable to out-

liers since points with a large residual will have a disproportionate influence on the

result. Additionally, the least squares solution is also only the maximum likelihood

estimate of the parameters if the errors are independent and their distribution is

Gaussian, which is often not the case.2

M-estimators [69, 70, 115] are a popular method of robust fitting, since they still

provide a maximum-likelihood style of estimation. They are a generalisation of the

least squares solution, replacing the error based on squared residuals (A.5) by that

using a general function, ρ():

arg min
�

K∑

k=1

ρ
(
rk

)
(A.14)

This is the maximum likelihood estimator for this data if the probability distribution

of residuals, P
(
rk

)
, is given by

P
(
rk

) ∝ e− ρ(rk) (A.15)

2The sample point residuals considered in this dissertation are clearly not Gaussian, and are
closer to a Laplacian distribution (see Section 4.4.4, particularly Figure 4.6).
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since in this case, for independent data, the likelihood is defined to be the product

over the samples,
∏K

k=1 P
(
rk

)
, and so the maximum likelihood estimation is then

given by the parameters which maximise this:

arg max
�

K∏

k=1

P
(
rk

)
= arg max

�

K∑

k=1

ln P
(
rk

)

= arg min
�

K∑

k=1

ρ
(
rk

)
(A.16)

which is the same as (A.14).

As with the least squares case considered in the previous section, this is min-

imised when the partial derivative with respect to each parameter is zero:

∂

∂αi

K∑

k=1

ρ
(
rk

)
=

K∑

k=1

d ρ
(
rk

)

drk

∂rk

∂αi

(A.17)

=
K∑

k=1

ψ
(
rk

) ∂rk

∂αi

= 0 i = 1 . . . nd (A.18)

where ψ is the derivative of the weight function,

ψ (x) =
d ρ (x)

dx
(A.19)

which is called the influence function. This is a measure of the influence of a data

point on the value of the parameter estimate. With the least squares estimate,

ρ (x) = x2, the influence function is ψ (x) = 2x i.e. the influence of a data point

increases linearly with the size of the error, which is clearly non-robust. For a robust

estimator, this influence should be bounded (see Table A.1).

Defining the weight function w(x) as

w (x) =
ψ (x)

x
(A.20)

equation (A.18) becomes:

K∑

k=1

w
(
rk

)
rk ∂rk

∂αi

= 0 i = 1 . . . nd (A.21)

This last manipulation allows M-estimators to be implemented within a least squares

framework, since (A.21) leads to exactly the same series of equations as are required
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Type P (x) ρ (x) ψ (x) w (x)

L2 e−
x2

2
x2

2
x 1

L1 e−|x| |x| sign(x) 1
|x|

‘Fair’ e−c|x|
(
1 + |x|

c

)c2

c2
[
|x|
c
− ln

(
1 + |x|

c

)]
x

1+
|x|
c

1

1+
|x|
c

Huber
if |x| ≤ k
if |x| ≥ k

{
e−

x2

2

e−k(|x|− k
2 )

{
x2

2

k
(|x| − k

2

)
{

x

k sign(x)

{
1
k
|x|

Table A.1: M-estimators. Influence functions for least squares (L2), least absolute value
(L1), ‘Fair’ and Huber M-estimators.
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to solve the weighted least squares problem:

arg min
�

K∑

k=1

w
(
rk

)
rk2

(A.22)

This is implemented as an iterative process, where the weight term w
(
rk

)
uses the

residual value calculated using the current parameters. Each residual is multiplied

by square root of its weight and then the new parameter values may be found by

standard least squares.

In terms of the matrix-vector solution given earlier, (A.12) and (A.11) become:

vi =
K∑

k=1

dkxk
i w

(
rk

)
(A.23)

Mij =
K∑

k=1

xk
i x

k
j w2

(
rk

)
(A.24)

where the residual error rk is that calculated using the previous parameter values,

according to (A.4).

Table A.1 shows a number of possible influence functions, weights, and the prob-

ability distributions for which they are the maximum likelihood estimator.3 Many

more M-estimators are suggested in the literature [70, 115, 162] and, in cases where

the probability distribution is known, there is no excuse for not using an appropriate

M-estimator rather than Least Squares, even to the extent of deriving the correct

weight function.

A.4 Regularisation

In some parameter estimation cases, the problem is ill-posed, hence the solution is

very sensitive to noise. This occurs when the available data does not adequately

constrain all of the degrees of freedom in the model.4 Regularisation is a technique

for including prior information in the least squares process, so that in these cases

the solution can be guided to the one which, a priori , is more likely.

3For the sample point errors in this dissertation, experiments (Section 4.4.4) indicate that the
probability distribution is exponential, which is reasonably well modelled by the latter three func-
tions in Table A.1. Of these, the ‘Fair’ function is used for this system as it has fewer discontinuities,
and is found to yield good convergence [115]. A value of c = 1 is used.

4The Car sequence discussed in Chapter 5 is an example of this. The two motions in the scene
are horizontal translations of different magnitudes, but an alternative solution would include shear
terms. Regularisation is needed to penalise this solution and encourage the more likely translation
solution.
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This is performed by modifying the cost function to include a penalty term which

is a function of the solution vector. The usual approach, Tikhonov regularisation

[142], minimises

arg min
�

[
rk2

+ λ2 ‖Lα‖2
2

]
(A.25)

for some penalty matrix L. This expression can, of course, also be used for M-

estimators by changing the first term. In the solution, the penalty simply augments

the matrix M, giving:

α =
(
M + λLTL

)−1
v (A.26)

Often L is chosen to be the identity matrix, L = I, thus putting a penalty on

the total energy of the solution vector. In this case, the parameter λ is added to

each Mii, the diagonal elements of M. The λ parameter controls the weight of the

regularisation term on the cost function. This should be large enough to have the

desired effect of guiding the solution, but should not outweigh the data term.5

A.5 Normalisation

The least squares solution (A.13) calls for the inversion of a matrix M, which is

formed from the modes of the parametric model (the xi in (A.12)). If these modes

have vastly different magnitudes, this matrix can be ill-conditioned and accuracy of

the inverse can be very poor.6 One means to achieve good conditioning is to redefine

the modes such that their magnitudes are all in the same range, but a more general

solution is to normalise the matrices used to calculate the solution.

The equation which must be solved to find the solution α, (A.10), is repeated

here:

Mα = v (A.27)

This may be premultiplied and augmented by an invertible matrix S, to give the

equivalent expression:

SM
(
SS−1

)
α = Sv (A.28)

5The system in this dissertation encourages translational motions by penalising all motion
parameters apart from the first two. This is done by incrementing the Mii for i = 2 . . . nd by λ,
where λ is the mean of all the diagonal elements of M. This give the prior and the measurements
approximately equal weight.

6The modes in this dissertation’s work are the projections of the various vector fields Lj .
The magnitudes of the different Lj vary greatly: |L1,2| ≈ 1, |L3–6| ≈ (size of image), |L3–6| ≈
(size of image)2. See Table 4.3 for details of the different fields. This matrix is therefore frequently
highly ill-conditioned.
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• Calculate normalisation factors
For i = 1 . . . n

Si =
1√
Mii

• Pre-normalise
For i, j = 1 . . . n

v′i = viSi

M ′
ij = MijSiSj

• Compute α′ = M0�1v′ using SVD

• Post-normalise
For i = 1 . . . n

αi = α′iSi

Table A.2: Matrix normalisation. Conditioned solution Mα = v to calculate the vector α.

This can be expressed as

M′α′ = v′ (A.29)

by defining:

M′ = SMS α′ = S−1α v′ = Sv (A.30)

If S is a diagonal matrix defined as

S =





Sij = 1√
Mii

i = j

Sij = 0 i 6= j
(A.31)

then the matrix M′ will have ones along the leading diagonal and will thus be much

better conditioned.

This normalisation scheme may be used wherever an equation of the form Mα = v

needs to be solved, as outlined in Table A.2.



APPENDIX B

Maximum likelihood estimation

via EM

B.1 The EM algorithm

The Expectation-Maximisation (EM) algorithm [43] is the standard approach for

finding model parameters when some of the data is missing. That is, of the complete

data Z = {XY }, when only the data X are known. As outlined in Section 4.4.2, for

the desired parameters Θ, given some initial guess Θg, a function Q can be defined:

Q (Θ, Θg) = E [logL [Θ; X,Y ] |X, Θg] (B.1)

=
∑
y

logL [Θ; X,y] P (y|X, Θg) (B.2)

This considers the expected value of the complete-data log-likelihood L [Θ; X,Y ]

with respect to the unknown data Y , given the observed data X and the initial

parameter estimates Θg. The current set of parameters are used to evaluate the

expression and (B.2) is maximised over the updated set of parameters Θ. This

Appendix considers how this maximisation can be achieved in the case of mixture

models.
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B.2 Estimation of mixture model parameters

The estimation of parameters for mixture models is the most common application of

the EM algorithm. A mixture model is a probability distribution constructed from a

weighted sum of distributions, for example constructing a multi-modal distribution

from the sum of Gaussian distributions. The general model is:

P (x|Θ) =
M∑

m=1

cm P (x|θm) (B.3)

where the parameters are Θ = {c1, . . . cM , θ1, . . . , θM} such that
∑M

m=1 cm = 1.

The maximum likelihood estimate of these parameters is given by maximising the

likelihood, or equivalently the log-likelihood, of the data. Using only the observed

data X, the log-likelihood for this distribution is (assuming independent data)

logL [Θ; X] = log
N∏

i=1

P (xi|Θ) =
N∑

i=1

log

(
M∑

m=1

cm P (xi|θm)

)
(B.4)

which is difficult to optimise because it contains the log of a sum. The problem

can be made tractable by positing the existence of some unobserved data Y , a label

for each data point. Each data point is considered to be generated by one of the

component densities, and by identifying this component the sum is removed. The

likelihood then becomes:

logL [Θ; XY ] =
N∑

i=1

log(cyi
P (xi|θyi

)) (B.5)

where the yi now select the particular component. Since the problem now involves

this hidden variable, the EM algorithm is a natural choice for performing the opti-

misation.

The EM algorithm consists of two stages. The E-stage calculates the label prob-

abilities, P (yi|xiΘ
g), and from these the second term in (B.2) can be calculated

(again assuming independence):

P (y|XΘg) =
N∏

i=1

P (yi|xi, Θ
g) (B.6)

The M-stage then uses these label probabilities in maximising the expected likeli-

hood of the data (B.2). This appendix considers this second maximisation stage,
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assuming that the E-stage has already been completed.1

Having determined (B.5) and (B.6), these may be substituted into (B.2) to give

Q (Θ, Θg) =
∑
y

log(L [Θ; X,y]) P (y|X, Θg)

=
∑
y

N∑
i=1

log(cyi
P (xi|θyi

))
N∏

j=1

P (yj|xj, Θ
g)

=
M∑

y1=1

M∑
y2=1

· · ·
M∑

yN=1

N∑
i=1

log(cyi
P (xi|θyi

))
N∏

j=1

P (yj|xj, Θ
g)

=
M∑

y1=1

M∑
y2=1

· · ·
M∑

yN=1

N∑
i=1

M∑

`=1

δ`,yi
log(c` P (xi|θ`))

N∏
j=1

P (yj|xj, Θ
g)

=
N∑

i=1

M∑

`=1

log(c` P (xi|θ`))
M∑

y1=1

M∑
y2=1

· · ·
M∑

yN=1

δ`,yi

N∏
j=1

P (yj|xj, Θ
g) (B.7)

The second half of this expression can then be greatly simplified by considering that

for each ` ∈ 1 . . .M :

M∑
y1=1

M∑
y2=1

· · ·
M∑

yN=1

δ`,yi

N∏
j=1

P (yj|xj, Θ
g)

=




M∑
y1=1

· · ·
M∑

yi−1=1

M∑
yi+1=1

· · ·
M∑

yN=1

N∏

yj=1, j 6=i

P (yj|xj, Θ
g)


 P (`|xi, Θ

g) (B.8)

=
N∏

yj=1, j 6=i




M∑
yj=1

P (yj|xj, Θ
g)


 P (`|xi, Θ

g) = P (`|xiΘ
g) (B.9)

since
∑M

yj=1 P (yj|xj, Θ
g) = 1. Using (B.9), expression (B.7) can be rewritten as

Q (Θ, Θg) =
M∑

`=1

N∑
i=1

log(cl P (xi|θl)) P (`|xi, Θ
g)

=
M∑

`=1

N∑
i=1

log(cl) P (`|xi, Θ
g) +

M∑

`=1

N∑
i=1

log(P (xi|θl)) P (`|xi, Θ
g) (B.10)

Therefore when maximising Q, the term containing cl can be maximised indepen-

dently of the term containing θl. Both terms are weighted sum over the probabilities

that the data was drawn from a particular component density.

1In this dissertation, the responsibilities P (yi|xi, Θg) are the edge label probabilities
P (e|D1D2), assigned by considering the edge sample point errors under each motion.
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B.2.1 Finding the weights c`

When solving (B.10) for cl, there is the additional constraint that the mixture

weights must sum to 1, i.e.
∑

` c` = 1. This constraint can be added to the maximi-

sation using a Lagrange multiplier λ, giving:

∂

∂c`

[
M∑

`=1

N∑
i=1

log(cl) P (`|xi, Θ
g) + λ

(∑

`

c` − 1

)]

=
N∑

i=1

1

c`

P (`|xi, Θ
g) + λ = 0 (B.11)

and hence

c` = −1

λ

N∑
i=1

P (`|xi, Θ
g) (B.12)

Summing both sides over `, and remembering that
∑

` c` =
∑

` P (`|xi, Θ
g) = 1,

gives that λ = −N , resulting in

c` =
1

N

N∑
i=1

P (`|xi, Θ
g) (B.13)

Where the P (`|xi, Θ
g) are simply the data label probabilities determined in the

E-stage.

B.2.2 Finding the model parameters θ`

The details of the maximisation over θm are dependant on form of the underly-

ing component distributions P (xi|θ`). It is commonly assumed that the errors are

Gaussian, i.e.

P (xi|θ`) =
1√

2πσ2
exp

(
− ri2

2σ2

)
(B.14)

where ri is the error between the observed data xi and the data predicted by the

model parameters, x(θ`):

ri = xi − x(θ`) (B.15)

Using this distribution, the second maximisation in (B.10) can be written as
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∂

∂θ`

[
M∑

`=1

N∑
i=1

log(P (xi|θl)) P (`|xi, Θ
g)

]

=
∂

∂θ`

[
M∑

`=1

N∑
i=1

log

(
1√

2πσ2
exp−

(
ri2

2σ2

))
P (`|xi, Θ

g)

]

=
∂

∂θ`

[
−1

2σ2

N∑
i=1

ri2 P (`|xi, Θ
g)

]
(B.16)

is identical to finding the parameters by minimising the weighted squared error in

ri:

arg min
θ`

∑
i

w(ri)ri2 (B.17)

where in this case the label probability P (`|xiΘ
g) is the weight function w(ri). This

can be solved by standard techniques.

B.3 The M-stage for edge motion parameters

In this dissertation, the M-stage estimates the motion parameters Θ from the resid-

ual edge errors, given the edge label probabilities P (e|ΘD) from the E-stage. As

indicated by (B.17) these can be calculated a motion at a time by weighted least

squares, where in each case sample is weighted by the probability that its edge

obeyed that motion. Although the residual errors do not follow a Gaussian dis-

tribution (see Section 4.4.4), this is accommodated by another weighting term (an

M-estimator) as described in Appendix A. Each sample is therefore weighted by

two terms, as highlighted in Table 4.7.

For a number of reasons, this implementation of the M-stage does not achieve

optimality. To calculate the maximum likelihood estimate of the motion parameters

using an M-estimator, the least squares solution must be iterated. In this imple-

mentation, however, only one iteration is used, partly for reasons of speed, but also

because it is used with the larger EM loop, which itself leads to the solution being it-

erated. This in itself does not affect convergence, since EM only requires an increase

in likelihood at each iteration, rather than a full maximisation.2 Instead, the non-

optimalities in the implementation come from the data used in the optimisation, the

sample points. For M-estimators to converge, the data is required to be linear and

continuous, neither of which are strictly true in this application (particularly since

new sample point matches are found at each iteration). The approach, nonetheless,

is still reasonable approximation, and achieves good results.

2If the M-step does not perform a full maximisation, this is then referred to as the generalised
EM algorithm, or GEM [43].





APPENDIX C

The independence of sample

points

C.1 Introduction: Edges and sample points

Edges form the fundamental basis of this thesis. They are used to estimate the mo-

tion between frames, and are labelled with the probability that they move according

to each of the motions. This edge labelling then enables the rest of the frame to be

segmented into the regions which obey each motion.

For both the estimation of a motion from an edge and its labelling, sample points

are taken at regular intervals along the edge. This appendix considers the labelling

of the edge motion probabilities from these sample points. In Section 4.4.4 (which

considered the case of two motions), two simplifying assumptions were made: that

the data observed by an edge under each motion are independent; and that the data

observed by sample points along an edge are independent. These two assumptions

are tested in the following sections.

C.2 Errors under different motions

The first stage in assigning a motion probability is to transform the edge under each

motion, and for its sample points to measure the residual error (the distance to the

nearest edge) in each case. These two sets of readings comprise the data D1 and D2
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‘correct’ mean 1.4
‘correct’ variance 10.9
‘incorrect’ mean 4.7
‘incorrect’ variance 27.8
covariance 2.8
correlation 0.16

Table C.1: Correlation of sample point distances under each motion. (Using absolute
residual distances.) As would be expected, there is a larger variance in distances under the
incorrect motion. The covariance term and the correction are both small, but significant,
indicating that the two measurements are not independent.

upon which the probabilities are based. In the implementation described in Chapter

4, these are assumed to be independent.

Clearly, the two sets of sample point data are independent if the edge maps to a

completely different part of the frame under each motion. However, the inter-frame

motion is usually small and, if under the correct motion the edge finds a match, then

under the incorrect motion the errors will be only a little worse. A known case of

dependence is where an edge which is weak in the first frame, or changes appearance

greatly, fails to find a match in the second frame under either motion.

Specimen sample points have been taken from thirty test sequences, using one

pair of frames from each. Using a hand-labelling, the errors measured under each of

the two motions (‘correct’ and ‘incorrect’) have been gathered for each sample point.

In all, 6782 sample points were analysed. Some statistics derived from this data are

shown in Table C.1. The important figures from this table are the covariance and

the correlation. Both of these figures are relatively large, which indicate that, on

a sample point-by-sample point basis, there is a significant correlation between the

error under each motion. A χ2 independence test indicates that there is a vanishingly

small probability of independence.

C.2.1 The effect of assuming independence

The independence assumption is a very convenient simplification but, in the light

of these findings, its applicability must be questioned. However, the probabilities

returned by the implementation, which assumes independence, do not appear un-

reasonable. Given the test sample point data, a joint probability distribution over

both sets of data has been estimated. This has been compared with a distribution

which assumes independence and two revealing results have been determined:

Mean probability error The mean absolute difference between the probability

estimated using the full, dependent, distribution and the distribution assuming
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independence has been evaluated. The difference is 0.05 which, while not

insignificant, is small enough to be considered reasonable.

Labelling error The correct motion label for each sample point is known, and this

can be compared with the most likely labelling given by each sample point’s

probabilities. Under the full distribution, 91.3% of sample points are correctly

labelled from their probabilities. Under the independence assumption this only

falls to 89.6%.

These two results, together with the empirical evidence from the performance of

the completed system, indicate that, while it is true that the data are not indepen-

dent, the system nevertheless performs well if independence is assumed.

C.3 Errors along an edge

Having found the sample point errors for a motion, the probability of that edge

fitting the motion must be determined. The simplifying assumption here is that the

sample points along the edge are independent, i.e. that knowing the errors at some

sample points gives no information about the errors at the remaining points. This

assumption is somewhat suspect, and this section considers an alternative model.

A now-standard way to consider dependence along a chain of samples is with a

Markov chain [61]. In a first-order Markov chain, as will be considered here, the

measurement at a point is dependent on the measurement at the previous point

in the chain.1 This dependence is expressed in terms of transition probabilities : in

this case the probability of a particular sample point error given the previous error.

These chain transition probabilities have been modelled from the sample point data

for each of the two motions (‘correct’ and ‘incorrect’), and these are displayed in

Figure C.1. In these figures, the (known) error at the current sample point—the

x-axis—determines the error distribution for the next sample point, given by the

relevant column of the matrix.

Figure C.1(a) shows the transition probabilities for sample points on edges under

the ‘correct’ motion. It can be seen that, regardless of the error at the current point,

a low residual distance is likely—the errors are largely independent. This is true

for all errors apart from the case when no match was found; in this case, a failed

match at the next sample point is highly likely. Under the ‘incorrect’ motion (Figure

C.1(b)), the errors are clearly not independent. Whatever the current error, the next

1A similar chain was used by MacCormick and Blake [91] to make their contour matching more
robust to occlusion.



196 The independence of sample points

(a) (b)

Figure C.1: Markov chain transition probabilities.. (a) ‘correct motion’ chain; (b) ‘incor-
rect motion’ chain. The error at the current sample point indicates from which column
the probability for the next sample point error should be taken. ‘X’ indicates the case
where no match is found.

error is likely to be the same, or a failed match. The first case corresponds to the

situations where an edge under the ‘incorrect’ motion still maps close to an edge,

but is small distance away along its whole length.

These results indicate that, while the independence assumption is somewhat

justified for the ‘correct’ motion, it is not appropriate under the ‘incorrect’ motion.

The Markov chain described here provides a model of this dependence, and it has

been tested with the system described Chapter 4. Perhaps surprisingly, however,

the final segmentation performance is similar under both schemes. The failings of

the independence assumption can be observed in the edge probabilities in some

sequences—those with edges which could obey either motion. The probabilities in

these cases should be very similar but, by assuming independence, a single point

can make a large difference to the outcome, saturating the probabilities hugely in

favour of one motion. This gives edge probabilities which are not as uncertain as

they should be, with edges labelled with high probability in favour of one motion al-

though they are, in truth, considerably more ambiguous. However, for these edges,

the motion with the highest probability is still usually the correct one, and the

region labelling scheme is able to ignore many of the errors which occur. For sim-

plicity, therefore, given the minimal performance loss, sample point independence is

adopted. Nonetheless, approaches such as this Markov chain scheme are worthy of

future research, and should yield increased robustness.



APPENDIX D

Complete multiple-frame results

D.1 Introduction

This appendix presents the results of testing the edge-based motion segmenta-

tion scheme of Chapters 4 (two-motions, two-frames) and 6 (two-motions, multiple

frames) on thirty-four different image sequences.

D.1.1 Image sequences

The image sequences used fall into three categories:1

Standard MPEG-4 test sequences. There are number of sequences commonly

used for testing video segmentation and coding performance. Of these, Coast-

guard, Foreman, FlowerGarden, HallMonitor and Tennis have been tested over

the course of this work.

Terrestrial TV footage, from AT&TV. Sequences have kindly been made avail-

able by AT&T Laboratories, from their AT&TV project [98], which maintains

a seven-day archive of the four main terrestrial channels. Twenty-five se-

quences from this archive were selected in February 2001 for testing.

Home movies. Four additional sequences were taken from camcorder footage in

and around Cambridge.

1And a selection of these test sequences are available for download from http://www-svr.eng.
cam.ac.uk/~pas1001/Publications/videos.html.
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D.1.2 Algorithm

All sequences were segmented automatically, first using the two-frame implementa-

tion of Chapter 4, and then further frames were segmented using the multiple-frame

implementation described in Chapter 6. It is assumed that there are only two mo-

tions present in each sequence, and each motion is modelled by a 6-parameter affine

model. Unless stated, the settings are the same for each sequence; in seven of the

sequences it was necessary to either reduce the edge detection hysteresis thresholds

to identify weaker edges, or skip frames in order to speed up slow motions. These

are identified in the discussion accompanying each sequence.

D.1.3 Presentation of results

For each sequence, the final edge probabilities and region labels are shown after

two frames, three frames, and eleven frames have been processed (thereby being the

labels for frames 1, 2 and 10). The edge probabilities are shown as a blend between

red and green, where the red component indicates the probability of motion 1 and

green the probability of motion 2. The region labelling shows the foreground regions.

Two statistics are shown: the percentage of edges which would be labelled cor-

rectly if each were assigned to its most likely label, and the percentage of pixels

labelled correctly as foreground or background. In each case this figure is a compar-

ison with a hand-labelling of the image regions given by the static segmentation.

The results are discussed in Chapters 5 and 7 (for the two- and multiple-frame

cases respectively). These chapters make reference to some of the sequences in this

appendix; the sequences are referred to by name and are in alphabetical order.

D.2 Results

The individual results may be seen on the remaining pages of this appendix.
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AHvid
Home movie converted to
MPEG (with thanks to Andy
Hopper). The two girls walk
together towards the camera
and slightly to the right.
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1

Edges correct: 76.3% Pixels correct: 11.7%
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2

Edges correct: 82.8% Pixels correct: 97.8%
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10

Edges correct: 78.9% Pixels correct: 84.9%

Since they are walking together, the two children are well mod-
elled by one motion model, apart from the movement of the
arms and legs which means they are are sometimes incorrectly
labelled. No edges are detected on the grass, which means that
labelling this is difficult, and also that the only T-junctions
are where the heads cross the edge of the lawn. As a result
the layer ordering is incorrect in the first frame.
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Bike
A moped being tracked as it
drives right to left. Sequence
taken from AT&TV database,
from BBC2’s ‘The Bike’s the
Star’.
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Edges correct: 87.0% Pixels correct: 91.0%
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2

Edges correct: 87.7% Pixels correct: 90.1%
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10

Edges correct: 86.7% Pixels correct: 85.5%

Both motions are horizontal, and many edges could fit either
motion, which makes convergence difficult. Also, the indepen-
dent motion is confined to one small area of the screen, and
easily picks up edges from other parts of the screen. Nonethe-
less, the system performs creditably. The road genuinely is
ambiguous (the moped could be on a conveyer belt), so errors
in the segmentation of this are to be expected.
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Bobsled1
Bobsled coming to a stop to-
wards the camera. Sequence
taken from AT&TV database,
from Channel 4’s ‘Transworld
Sport’.
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Edges correct: 73.3% Pixels correct: 89.3%
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2

Edges correct: 71.0% Pixels correct: 86.6%
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10

Edges correct: 93.2% Pixels correct: 98.9%

Sequences of a bobsled at full speed proved impossible to seg-
ment, due to both motion blur and a very large image motion.
This sequence of the bobsled slowing down segments well. The
edges are well labelled, apart from some ambiguities along the
line of motion, and a reasonable segmentation is produced
which becomes excellent with more observations.
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Bobsled2
Bobsled team starting a run.
Sequence taken from AT&TV
database, from Channel 4’s
‘Transworld Sport’.
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Edges correct: 77.8% Pixels correct: 81.1%
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2

Edges correct: 82.6% Pixels correct: 89.7%
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10

Edges correct: 85.6% Pixels correct: 88.7%

The motion of the foreground is projective rather than affine,
but the sled is tracked well even with an affine motion model.
The motion of the brakeman is close to that of the background
for the first few frames (as she pushes off), so it is a while be-
fore she is segmented. The top edge of the sled is not detected
by the Canny edge detector, although the segmenter still pulls
the sled out well. The final segmentation is reasonable.
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Buffy
Faith (dark hair) talks to
Buffy. Sequence taken from
AT&TV database, from BBC
2’s ‘Buffy the Vampire Slayer’.
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Edges correct: 70.1% Pixels correct: 73.5%
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2

Edges correct: 81.3% Pixels correct: 85.9%
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10

Edges correct: 89.2% Pixels correct: 91.6%

There are very few edges in the foreground—just some of the
occluding boundary and areas of skin. With many more edges
in the background, and the foreground motion small, the EM
does not find a very good solution. After a few frames the
edge labelling is good but, with large parts of the occluding
boundary missing, only part of the foreground is segmented.
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Car
Camera tracking a car as it
moves from right to left. Se-
quence recorded using a hand-
held MPEG camera.

F
ra

m
e

1

Edges correct: 87.7% Pixels correct: 95.7%
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Edges correct: 91.9% Pixels correct: 96.1%
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10

Edges correct: 93.5% Pixels correct: 92.2%

The car has a few edges along the line of motion which are
labelled ambiguously, and the reflections on the roof cause a
few problems. But the EM converges to a good solution and
the car is well segmented. This sequence is discussed in detail
in Chapters 5 and 7.
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Cats1
Camera tracking a lion run-
ning. Sequence taken from
AT&TV database, from BBC
2’s ‘Big Cat Diary’.
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Edges correct: 87.9% Pixels correct: 97.4%
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Edges correct: 84.1% Pixels correct: 96.9%
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10

Edges correct: 87.6% Pixels correct: 97.1%

A very difficult subject, with a significant amount of motion
blur. The lion quite definitely does not fit an affine motion,
with the legs and tail undergoing large motions between frame.
Regardless, the EM converges well and the lion’s body is con-
sistently segmented. The legs are occasionally included when
the motion is close enough. There is little chance for the prob-
abilities to be refined over the sequence since the tracker error
is usually too great for them to be propagated between frames,
but those that are propagated ensure that the edge labels are
improved with time.
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Cats2
Camera following a Land
Rover driving across a plain.
Sequence taken from AT&TV
database, from BBC 2’s ‘Big
Cat Diary’.
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Edges correct: 70.8% Pixels correct: 89.9%
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Edges correct: 82.5% Pixels correct: 93.9%
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10

Edges correct: 94.8% Pixels correct: 98.8%

The Land Rover’s edges are well separated from the back-
ground in the EM process, and the Land Rover is well seg-
mented. The dust and the shadow, of course, are occasionally
segmented with the Land Rover. After a few frames, a very
good segmentation results.
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Cats3
Simon King talking to the
camera. Sequence taken from
AT&TV database, from BBC
2’s ‘Big Cat Diary’.
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Edges correct: 80.2% Pixels correct: 75.1%
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Edges correct: 93.3% Pixels correct: 99.9%
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10

Edges correct: 82.9% Pixels correct: 94.6%

Simon King moves his head enough while talking to segment
well, and his shoulders soon follow suit. Part of the camera
tripod is in front of the ‘foreground’, breaking the layered
assumption, but the system copes with this small anomaly.
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Coastguard
A boat is tracked from left to
right. Part of a standard test
sequence.
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Edges correct: 79.4% Pixels correct: 97.9%
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Edges correct: 75.2% Pixels correct: 98.3%
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10

Edges correct: 84.9% Pixels correct: 95.4%

There are a considerable number of edges due to texture here,
and some edges of the boat are difficult to distinguish from
the water, making the static segmentation difficult. However,
the edges are mainly correctly labelled, and the the boat is
correctly detected as the foreground and well segmented, apart
from the areas where there is no occluding boundary. Over a
longer sequence the edge labelling and segmentation improves.
This sequence is discussed in detail in Chapters 5 and 7.
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Driven1
A car driving around a corner
towards the camera. Sequence
taken from AT&TV database,
from Channel 4’s ‘Driven’.
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Edges correct: 91.8% Pixels correct: 99.2%
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Edges correct: 87.8% Pixels correct: 99.7%
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10

Edges correct: 81.6% Pixels correct: 99.8%

Even with a small number of edges describing the car, the
motion is fitted well and an excellent edge labelling and seg-
mentation results. The edge of the road along the line of
motion is mislabelled in the early frames, but does not affect
the solution.
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Driven2
A close-up of a car (on the
right) slowly reversing into a
parking space. Sequence taken
from AT&TV database, from
Channel 4’s ‘Driven’.
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Edges correct: 41.0% Pixels correct: 29.3%
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Edges correct: 42.7% Pixels correct: 75.6%
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Edges correct: 69.0% Pixels correct: 75.5%

This sequence is not a good candidate for segmentation. The
inter-frame motion of the car is very small, and many of the
background edges are horizontal, and thus ambiguous. One of
the main sources of foreground edges, the wheel, is rotating
and so moving with a different motion from that of the rest
of the car. EM never converges to a good solution and the
segmentations are all poor. Over a large number of frames a
reasonable labelling of some edges is produced, but still not
enough for a particularly good segmentation.
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F1
Michael Schumacher’s Ferrari
driving towards the camera.
Sequence taken from AT&TV
database, from ITV’s coverage
of the Australian Grand Prix.

F
ra

m
e

1

Edges correct: 88.7% Pixels correct: 99.3%
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Edges correct: 91.4% Pixels correct: 99.8%
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Edges correct: 93.5% Pixels correct: 99.9%

A sequence which gives the segmentation scheme no trouble,
with a good edge labelling and an excellent final segmentation.
The large featureless expanse of tarmac is extracted as one
region by the static segmenter and correctly labelled thanks
to the white lines.
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FlashGordon1
Cartoon of a woman talking to
Flash. Sequence taken from
AT&TV database, from Chan-
nel 4’s ‘Flash Gordon’.
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Edges correct: 83.4% Pixels correct: 92.7%
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Edges correct: 85.7% Pixels correct: 90.4%
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19

Edges correct: 65.4% Pixels correct: 86.2%

Cartoons would be expected to segment well, and the static
segmentation is indeed good. However, the motion is rather
more difficult to establish. The first problem is that many
cartoons (including this one) are only filmed at 15Hz, and so
there is only motion in every other frame. Here, therefore, the
settings have been changed to consider every other frame. The
second problem is that much of the content of neighbouring
frames is identical. Making cartoon characters talk is com-
monly achieved by keeping the frame static and animating
only the necessary facial features, which provide too few fea-
tures to successfully track. In the example here, the head does
move as she begins talking, which allows it to be segmented.
But, as the sequence progresses the only motion is in the lips,
and the head begins to be considered as background.
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FlashGordon2
Cartoon tracking Flash flying
his speeder through a canyon.
Sequence taken from AT&TV
database, from Channel 4’s
‘Flash Gordon’.
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Edges correct: 35.8% Pixels correct: 41.1%
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Edges correct: 43.5% Pixels correct: 55.9%
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Edges correct: 46.0% Pixels correct: 44.1%

The problem with animating fast-moving objects at only
15Hz, as this cartoon does, is that the inter-frame motions
are then very large. The background in this sequence moves
about 60 pixels between frames, which is far too large to be
effectively (and efficiently) tracked. A random edge labelling,
and a random segmentation results.
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FlowerGarden
The camera moves to the right
and the tree, closer to the cam-
era, has a different image mo-
tion from that of the flowerbed
and houses. Part of a standard
test sequence.
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Edges correct: 53.8% Pixels correct: 70.9%
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Edges correct: 60.1% Pixels correct: 75.0%
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10

Edges correct: 78.9% Pixels correct: 79.6%

The motion of tree’s edges is well labelled as distinct from
the background, but the edges in the flowerbed close to the
camera are also labelled with this motion. In addition, the
edges on the far right can also be included in the foreground
motion while still leaving the tree’s edges in good agreement.
Another problem is that the Canny edge detector does not
pick up the edge of the tree against the flowerbed, so part of
the tree is missing here.
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Food&Drink
Antony Worrall Thompson
turning his head to the right.
Sequence taken from AT&TV
database, from BBC 2’s ‘Food
and Drink’.
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Edges correct: 65.7% Pixels correct: 25.8%
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Edges correct: 67.4% Pixels correct: 70.3%
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Edges correct: 76.6% Pixels correct: 79.1%

The motion of his head is non-affine, but it is reasonably well
tracked by the affine model with the sample point propagation.
Unfortunately the occluding edge at the back of his head is not
extracted and, together with edge label errors, this means that
the layer ordering is incorrectly identified in the first frame.
This error is corrected in subsequent frames but, with the
occluding edge still missing, the segmentation can still not be
complete. The statistics quoted are poorer than they could
perhaps be since the hand segmentation in this case expected
his shoulders also to be segmented.
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Football
Close-up following a footballer
walking to the left. Sequence
taken from AT&TV database,
from Channel 4’s ‘Football
Italia’.
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Edges correct: 89.1% Pixels correct: 75.1%
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Edges correct: 91.8% Pixels correct: 98.6%
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10

Edges correct: 81.6% Pixels correct: 94.1%

One of the problems of telephoto lenses is their small depth
of field. In this case, this means that the background is out of
focus, and the Canny edge detector picks up very few edges.
There are, however, just about enough to be tracked inde-
pendently of the foreground. After a few frames the correct
background edge labels are established and a good segmenta-
tion results. The edge-based system, of course, fails on general
football shots where there are many different motions of small
objects.
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Foreman
Hand-held footage of a man
talking to the camera. Part of
a standard test sequence.
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Edges correct: 81.0% Pixels correct: 98.0%
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Edges correct: 91.7% Pixels correct: 99.2%
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Edges correct: 72.4% Pixels correct: 89.4%

One of the standard test sequences, this segments well. After
the first frame the edges are mainly well labelled, and an ex-
cellent segmentation is produced by the second frame. After
about eight frames the man stops moving for a few frames—
frame ten, shown here, suffers from this as the foreground
edges have by this point been diluted by behaving as back-
ground for two frames. This sequence is considered in detail
throughout this dissertation.



218 Complete multiple-frame results

Friends
Chandler talking to his friends.
Sequence taken from AT&TV
database, from Channel 4’s
‘Friends’.
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Edges correct: 53.0% Pixels correct: 69.9%
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Edges correct: 53.0% Pixels correct: 46.1%
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Edges correct: 62.1% Pixels correct: 46.7%

Using the standard edge-detection thresholds no edges are de-
tected in the background, which makes segmentation impos-
sible. Lowering the hysteresis thresholds (Section 4.2) from
(30&10) to (10&7) yields sufficient edges for the first frame
to segment reasonably. In subsequent frames the motions be-
come more complex and the edge and region labellings more
uncertain.
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HallMonitor
A stationary camera views a
man walking down a corridor.
Part of a standard test se-
quence.
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Edges correct: 66.5% Pixels correct: 95.9%
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Edges correct: 72.8% Pixels correct: 96.9%
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Edges correct: 73.2% Pixels correct: 85.3%

The system performs excellently here, particularly given the
small number of edges representing the foreground object.
The edges of the cubicles on the right are ambiguous in many
frames, and it is perhaps fortunate that it is not until the
tenth frame that they are labelled in error, and segmented
incorrectly.
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Horizon1
Man talking to the camera.
Sequence taken from AT&TV
database, from BBC 2’s ‘Hori-
zon’.
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Edges correct: 48.5% Pixels correct: 24.8%
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Edges correct: 68.0% Pixels correct: 27.2%
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91

Edges correct: 57.2% Pixels correct: 75.3%

People move surprisingly little as they talk, and in this case
the inter-frame motion is substantially less than one pixel. If
the sequence is instead sampled every 10 frames, there is suf-
ficient motion to label the head motion as independent from
the background. Unfortunately, the occluding edge of his head
which is in shadow is not picked out by the Canny edge de-
tector, so that the side of his head bleeds into the background
and is labelled as background. Together with the noisy edge
labels, this makes the layer ordering difficult to determine and
it selects the incorrect layer as foreground, giving a very poor
segmentation. By the tenth frame the random nature of the
edge labelling has labelled the head with the other motion,
and so it is now (by chance) better segmented.
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Horizon2
Camera tracking a motorbike
as it drives down a road. Se-
quence taken from AT&TV
database, from BBC 2’s ‘Hori-
zon’.
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Edges correct: 55.7% Pixels correct: 42.8%
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Edges correct: 46.4% Pixels correct: 79.0%
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10

Edges correct: 32.4% Pixels correct: 42.7%

While there are only two rigid motions in this sequence, the
background motion is highly projective and so is not selected
as one motion. When a full-projective motion model is used,
EM fails to converge to a reasonable solution. Instead the
edges are shared between the background and the motorbike,
and a near-random segmentation results.
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ITN
Trevor McDonald reading the
news. Sequence taken from
AT&TV database, from ‘ITV
News’.
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Edges correct: 46.3% Pixels correct: 79.7%
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Edges correct: 53.8% Pixels correct: 68.8%
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Edges correct: 53.2% Pixels correct: 59.4%

As with many ‘talking heads’, Trevor McDonald does not
move much as he talks, and a sample every 10 frames is re-
quired to yield a visible inter-frame motion. Unfortunately,
the background on this news program is also very smooth,
with very few edges detected even with greatly reduced hys-
teresis thresholds (10&10). The movement of his shoulder is
detected in the first few frames, but the labelling of the rest
of the edges is poor and a poor segmentation is the result.
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News
Huw Edwards reading the
news. Sequence taken from
AT&TV database, from BBC
1’s ‘News at Six’.
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Edges correct: 68.1% Pixels correct: 86.9%
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Edges correct: 71.9% Pixels correct: 88.0%
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Edges correct: 66.2% Pixels correct: 83.9%

In contrast to the ITN News, there is sufficient structure in
the background to identify the motion and identify the news-
reader as the foreground object. Taking samples every 20
frames yields enough foreground motion to identify the mov-
ing objects (usually the head and the arms).
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Nick
AT&T’s Nick Hollinghurst
posing for the camera (with
thanks to Nick). Here he
tips his head back. Sequence
recorded using a hand-held
MPEG camera.
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Edges correct: 44.8% Pixels correct: 61.4%
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Edges correct: 81.9% Pixels correct: 93.2%
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10

Edges correct: 95.2% Pixels correct: 99.1%

The motion of Nick’s head is difficult to model with an affine
motion. Also few background edges intersect with foreground
edges, which makes the layer ordering difficult to determine.
The edge labelling is poor in the first frame, but by the second
frame the edges are well labelled and after more evidence they
give an excellent segmentation.
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Simpsons
Cartoon following Homer
Simpson walking to the right.
Sequence taken from AT&TV
database, from BBC 2’s ‘The
Simpsons’.
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Edges correct: 89.8% Pixels correct: 99.5%
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Edges correct: 95.2% Pixels correct: 98.9%
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Edges correct: 92.0% Pixels correct: 99.7%

The Simpsons is more professionally produced than the Flash
Gordon cartoon considered earlier in the test set—the frames
are at a full 25Hz, and there is more animation between
frames. This means that the motion of Homer can be very
easily detected and with the edges and static segmentation
trivial to detect and perform, an excellent segmentation re-
sults. A mosaic of the background to this sequence is shown
in Section 6.7.
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Tennis
A table tennis player bouncing
the ball on his bat. Part of a
standard test sequence.
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Edges correct: 92.5% Pixels correct: 95.4%
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Edges correct: 96.1% Pixels correct: 100%
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10

Edges correct: 80.5% Pixels correct: 98.7%

A sequence with good, strong edges and obvious motion. The
lower arm is easily identified as the independent motion, and
after another frame the upper arm is also included in this
motion and the edge labelling is excellent. This sequence is
discussed in detail in Chapters 5 and 7.
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Tennis2
Close-up of a tennis player
walking away from the cam-
era and to the right. Sequence
taken from AT&TV database,
from Channel 4’s ‘Transworld
Sport’.
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Edges correct: 70.1% Pixels correct: 86.2%
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Edges correct: 68.8% Pixels correct: 83.2%
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Edges correct: 91.8% Pixels correct: 98.6%

Another case where the background is out of focus, and in
this case Canny cannot detect any of the edges with the stan-
dard threshold. Lowering the upper threshold from 30 to 15
does generate enough background edges, and a reasonable seg-
mentation results, which becomes excellent over time. The
problem with a lower threshold is that many of the creases on
the player’s shirt are extracted as edges. These flutter as he
walks, and sometimes the incorrect (i.e. background) motion
model is fitted to them, leading to a poor segmentation there.
This is another case where the edge labels improve greatly as
evidence is gathered.



228 Complete multiple-frame results

Thunderbirds1
Thunderbird 1 taking off
against a cloudy sky. Se-
quence taken from AT&TV
database, from BBC 2’s
‘Thunderbirds’.
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Edges correct: 81.1% Pixels correct: 61.7%
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Edges correct: 90.5% Pixels correct: 100.0%
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Edges correct: 86.9% Pixels correct: 97.1%

Again, very few background edges; the example here shows
a lowered upper hysteresis threshold of 15 and there are still
barely sufficient to detect the background motion. However,
it is detected and the edge labels throughout are excellent.
With no interaction between the edges of different layers, the
labelling is difficult to determine and it is incorrect in the first
frame, but after that the simpler structure of the segmented
rocket yields a more likely segmentation.
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Thunderbirds2
The camera tracks Scott Tracy
as he walks from right to
left. Sequence taken from
AT&TV database, from BBC
2’s ‘Thunderbirds’.
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Edges correct: 95.9% Pixels correct: 99.9%
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Edges correct: 94.6% Pixels correct: 99.1%
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Edges correct: 90.7% Pixels correct: 92.4%

The advantage of segmenting puppets is that they undergo
less deformation as they walk than humans do. In this case,
the edges are extracted well, and the motions are correctly
estimated. An excellent edge labelling and segmentation re-
sults. In the final frame there are no motion-labelled edges
bounding one of the background regions, apart from the fore-
ground edge, meaning that it is ambiguous. In this case it is
mislabelled.
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Trin
Trin the cat walking across
the grass towards the cam-
era and to the right (with
thanks to Ken Wood). Se-
quence recorded using a hand-
held MPEG camera.

F
ra

m
e

1

Edges correct: 73.7% Pixels correct: 98.9%
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Edges correct: 84.5% Pixels correct: 92.4%
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Edges correct: 78.8% Pixels correct: 93.6%

An easy sequence for the static segmenter, but there are very
few long edge contours extracted. Trin’s motion is, of course,
non-affine but the edges associated with her are in general
correctly identified, and some sample points are also propa-
gated from frame to frame. The segmentation is a reasonable
attempt given the difficult subject.
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Tweenies
Max dancing (moving right to
left in the first few frames),
with Jake entering the frame
later. Sequence taken from
AT&TV database, from BBC
2’s ‘Tweenies’.
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Edges correct: 79.1% Pixels correct: 43.1%
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Edges correct: 74.1% Pixels correct: 73.5%
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Edges correct: 82.3% Pixels correct: 61.9%

Like cartoons, brightly coloured children’s TV characters
would be expected to segment well, and the static segmen-
tation is indeed good. The layer ordering is incorrect in the
first case, with missing occluding boundaries and errors in the
edge labelling, but the second frame is a reasonable attempt.
Unfortunately, the amount and speed with which the charac-
ters bounce around is such that the motion is too large and
non-affine for the EM to converge on the correct edge labelling
later in the sequence, particularly with the addition of another
moving object.
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Weather
Michael Fish presenting the
weather. Between frames
he moves a little to his
right. Sequence taken from
AT&TV database, from BBC
1’s weather forecast.
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Edges correct: 51.2% Pixels correct: 91.0%
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Edges correct: 65.4% Pixels correct: 91.1%
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Edges correct: 63.7% Pixels correct: 75.9%

Weather men present similar difficulties to news readers, but
fortunately undergo more motion and have guaranteed struc-
ture in the background. Michael Fish moves enough as he
talks for his edges to be labelled reasonably well, and there
are just enough edges in the computer-generated backdrop to
extract that and label it as background.
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