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Abstract
One common characteristic of all intelligent life is continuous perceptual input. A
decade ago, simply recording and storing a a few minutes of full frame-rate NTSC
video required special hardware. Today, an inexpensive personal computer can pro-
cess video in real-time tracking and recording information about multiple objects for
extended periods of time, which fundamentally enables this research.

This thesis is about Perceptual Data Mining (PDM), the primary goal of which
is to create a real-time, autonomous perception system that can be introduced into
a wide variety of environments and, through experience, learn to model the activity
in that environment. The PDM framework infers as much as possible about the
presence, type, identity, location, appearance, and activity of each active object in an
environment from multiple video sources, without explicit supervision.

PDM is a bottom-up, data-driven approach that is built on a novel, robust at-
tention mechanism that reliably detects moving objects in a wide variety of environ-
ments. A correspondence system tracks objects through time and across multiple
sensors producing sets of observations of objects that correspond to the same object
in extended environments. Using a co-occurrence modeling technique that exploits
the variation exhibited by objects as they move through the environment, the types of
objects, the activities that objects perform, and the appearance of specific classes of
objects are modeled. Different applications of this technique are demonstrated along
with a discussion of the corresponding issues. Given the resulting rich description of
the active objects in the environment, it is possible to model temporal patterns. An
effective method for modeling periodic cycles of activity is demonstrated in multiple
environments.

This framework can learn to concisely describe regularities of the activity in an
environment as well as determine atypical observations. Though this is accomplished
without any supervision, the introduction of a minimal amount of user interaction
could be used to produce complex, task-specific perception systems.

Thesis Supervisor: W.E.L. Grimson
Professor of Computer Science and Engineering
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Chapter 1

Introduction

This chapter introduces the main concepts underlying Perceptual Data Mining and
details the structure of this document. The first section describes the goals of this
research. Section 1.2 discusses some guiding principles that led us to attack this
particular problem and to use Perceptual Data Mining in this capacity. Section 1.3
introduces our world model, which lays the groundwork for a description of each
component of our system in Section 1.4. Because the breadth of this document may
be more than most readers require, the final section describes different paths through
this document that may be appropriate for readers with different interests.

1.1 Goal

The primary goal of Perceptual Data Mining (PDM) is to create an autonomous per-
ception system that can be introduced into virtually any environment and, through
experience, learn to model the active objects of that environment. We would like to
infer as much as possible about the presence, the type, the identity, the location, the
appearance, and the activity of each active object in an environment from multiple
video sources, without supervision. We choose to initially neglect the static elements
of the environment (those that never move) because they are often the least interest-
ing and they are generally more difficult to model because they do not exhibit any
variability.

Perceptual Data Mining (PDM) is a bottom-up, data-driven approach that models
regularities in the representations of active objects. By taking advantage of general
assumptions about the state of the active objects, complex models of the sensors, the
environment, the objects, and the activities of the objects can be built. For example,
assuming that the state of an object varies smoothly enables tracking from frame
to frame. Assuming that an object can only occupy one position in space at any
particular time can allow for various levels of camera calibration and correspondence
matching. Assuming that the class of a tracked object does not change enables
improved clustering based on class.

To begin the process of modeling the active objects, a basic attention mechanism
that reliably detects the objects of interest is required. Beginning with only this basic

17



attention mechanism, it is possible to bootstrap one capability from another until the
system reaches a limit that it cannot surpass without explicit user guidance (supervi-
sion). Reaching this point is the ultimate goal of PDM. Once this state is reached a
minimal amount of user guidance (supervision) or user interaction (communication)
can produce complex, task-specific perception systems.

Based on the assumptions we have made, we can detect moving objects. We
can establish correspondence between those moving objects through time and across
multiple sensors. We can normalize properties of the tracked objects in certain envi-
ronments. We can cluster the type of object based on object shape. We can cluster
the activities that objects perform. We can learn cycles of repeated activity in a
site. We can model large environments. We can find anomalies based on any aspect
that we have modeled. We are capable of doing all this in a wide range of different
environments without any explicit supervision.

1.2 Guiding principles

Because this thesis describes a very complex system with many parts, it can be
difficult to understand exactly why a particular choice was made in designing the
system. While these specific choices will be described throughout this thesis, we list
below three guiding principles that have been employed throughout this research:

Data-driven modeling

When we first began tracking objects 24 hours a day/seven days a week, we were
amazed by the amount of data we were able to collect. In a few minutes, we collected
more data than the COIL-120 database [39] commonly used for object recognition
experiments. In a few hours, we collected more data than the FERET database [45]
used for face recognition. In a single camera in one morning, we collected more data
than the COREL database [5] used for image indexing experiments. By tracking in
multiple cameras for more than four years, we have collected hundreds of terabytes
of data1 . This quantity of data is daunting but also enabling.

Perceptual data is grounded in real objects

Further, the data we collect is more structured than a random collection of images.
Our data is observations of real objects in the world over time. Notably, this type of
data is available to all situated vision systems, whether biological or computational in
nature, throughout their development. Though the identity of tracked objects is not
known, we usually make tens to hundreds of observations of the same object. We also
see similar activities performed by objects of the same class. There is also temporal
structure to the types of objects and activities. This thesis examines the many ways
of leveraging this type of data.

'Unfortunately, only a small portion of this data remains due to storage constraints.
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Maximize applicability by minimizing restrictive assumptions

Building a vision system by assuming a particular task and embedding as much
knowledge as possible about that task into the system allows one to build very capable
systems. For instance, manually trained face recognition systems currently perform
better than a human at certain tasks. This is a valid approach, but our primary
goal is to create broadly applicable systems that extract their models from the data
they observe. Every assumption that is made reduces the applicability of the system
to situations where that assumption is (mostly) valid. The primary requirement in
producing a general vision system is limiting the assumptions that are made about
the active objects and their environment.

Of course, some assumptions are required to learn anything, but our goal is to
use the most general assumptions possible. We assume that we are seeing the world
through multiple static cameras. We assume that active objects' visual representa-
tions tend not to overlap and their visual representations tend to differ from the static
objects that appear in the same location. We assume that objects' dynamics tend
to vary smoothly in time. We assume that tracked objects maintain their identity.
Other assumptions will be detailed throughout this thesis. These assumptions limit
our system to situations where these assumptions are valid, but we will show by
example throughout this thesis that these assumptions are very general.

What differentiates this approach from similar approaches is what we do not
assume. We do not assume that any supervision is available. We do not assume the
number of objects is known. We do not assume the objects are of a particular type
or small set of types (e.g., people or vehicles). We do not assume the types of objects
are known. We do not assume the number of types of objects is known. We do not
assume the geometry of the world is known. We do not assume there is visual overlap
between cameras. In cases where there is overlap, we do not assume the geometric
relationship between the cameras is known.

1.3 Our model

In this section we introduce a model that can be used to describe many problems
in computer vision including tracking, correspondence, clustering, and classification.
While some important aspects of computer vision are not covered by this model, it
enables a concise description of a large portion of the field. In particular, it is useful
in articulating all major components of this thesis. It is also useful in understanding
where this work is situated within the field of computer vision.

Our model of the world is composed of a set of N objects, Sx, and a set of M
(imaging) sensors, S,

W = (SX, SI). 11

In order to model all aspects of computer vision other state would be required (e.g.,
lighting sources), but this model is expressive enough to discuss a majority of com-
puter vision research.

The set of objects can be modeled by a set of object state sequences through time
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corresponding to the N objects, {X1, X 2 , ... , XN} where object state is described
below. The set of sensors can be modeled by a set of sensor state sequences through
time corresponding to the M sensors, {I1, 12, ---, IM} where sensor state is described
below. Each object has a state at each point in time

Xi = (Xi(1), Xi(2), Xi(3), ... , Xi(T)) (1.2)

and each sensor has a state at each point in time

Ii = (Ii (1),7 Ii (2),7 Ii (3),7 ..., Ii (T)). (1.3)

We further factor the state of object i at time t into

Xi(t) = (U, Li(t), pi(t), ci(t), si(t)) (1.4)

where Ui is a unique label for a particular object (which does not vary over time), Li is
a class label or set of class labels, pi(t) is the three dimensional position of the object,
ci (t) is the configuration of an object (description and relative positions of the parts),
and si(t) is the surface properties of an object. Class labels can include object type

(e.g., person, car, trash, leaves, etc.), object activity (e.g., walking, running, roller
blading, etc.) or any other type of classification. This is not the meant to be taken
as the only factorized representation of object state, but it is useful in the context of
this thesis.

Currently, we are considering only cameras as sensors. Hence, we factor the state
of sensor j at time t into

Ii(t) = (t (M), ri (W), ii M)) (1.5)

where ti(t) is the position (translation) of the sensor, ri(t) is the orientation (rotation)
of the sensor, and ii(t) describes the intrinsic parameters of the sensor. Intrinsics for
cameras can include imaging sensor size, aspect ratio, focal length, auto gain control,
aperture, and many other properties of the sensor.

At a single point in time, the state of the world can be fully described by the state
of the objects and the sensors at that time

W(t) = (X1(t), X 2(t), ..., XN(t); Il(t), 1 2(t), -,IM(t)). (1-6)

Given the state of an object and a sensor at time t, it is possible to determine
the instantaneous, sensor-relative (observable) state of the object i in sensor j with
a deterministic function, f.

OZ (= f(I(t), Xi()). (1.7)

The imaging process for sensor j is simply a function producing an image at time
t, Yi(t), given the sensor-relative observable state of the objects in the world at that
time

YJ (t) = g (03 (t), O 0 (t), ... O(t)). (1.8)
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where g is a complex function which produces an image while taking into considera-
tion all the visibility constraints of all the objects. In this model, background scene
elements such as sky, ground, or walls are also considered objects.

Computer vision and computer graphics are often posed as inverse problems. Com-
puter graphics can be described as producing the images (Yi's) given the state of the
world. The field of computer vision is the inverse-trying to infer the state of the
world from the images.

1.3.1 The landscape of computer vision

Many problems in computer vision can be effectively described as "estimating the
state of the world (W(1), W(2),..., W(T)) from a set of images (Yi(l),...)". The set
of images may be a sequence, a set of images from different sensors at the same time,
or images with no regular relationship. Apart from some low-level vision problems,
the model introduced above can be used to describe many computer vision problems
though the granularity of the definition of "object" can vary considerably (e.g., moving
objects, edges, corners, skin-colored regions, etc.). Different bodies of research make
different assumptions about the world and try to infer different aspects of the state
of the world. Below we will describe a few major areas of research in computer vision
to aid in the understanding of the model introduced above (without attempting to
exhaustively describe the field).

* Egomotion- Egomotion attempts to model the state of the sensor or sensors,
{I,(t), ... }, and often assumes the objects are static ({Xi(tl) = Xi(t 2 )Vt 1 ,t 2}).
Often the "objects" are assumed to correspond to simple features in the images

(e.g., corners, lines).

" Tracking- In contrast to egomotion, tracking tries to estimate the state of
the objects, {Xi(t), ...}, and often assumes the sensors are static ({Ii(ti) =

Ii(t 2 )Vt 1 , t 2 }). If not, an attempt is often made to estimate and factor out that
state. Two major types of tracking are:

- Far-field tracking- Far-field tracking is primarily interested in extracting
the position of many objects in situations where the objects are far from
the sensor and usually do not visually interact. Here the most significant
problems are determining the number of objects and learning correspon-
dence between multiple observations of the same objects.

- Near-field tracking (articulated tracking)- Near-field tracking is primarily
interested in modeling the configuration of the object over time. It is
often assumed that there is at most one object and the object is always
completely visible.

* Object classifcation (Supervised classification)- Supervised classification attempts
to assign class labels to unlabelled observations, O,(t). These systems are
trained on large sets in which the unique labels, Ui, are provided.

21



" Object clustering (Unsupervised classification)- Unsupervised classification often
takes sets of observations, Oi(t), without information about the object's class
labels Li, and attempts to determine a set of object labels that correlate with
the true classes labels. It is difficult to evaluate the descriptive power of the
labels determined by such systems except in the context of a supervised task.

" Reconstruction- Reconstruction work usually assumes observations from more
than one sensor, {Yl(t), Y 2 (t), ..., YM(t)}. Some work attempts to model both
the relative state of the sensors and the state of the objects in the world.

- Stereo- Stereo assumes knowledge about the relative position of the sensors.
It attempts to model the correspondence of every region in one scene to re-
gions in the second scene. Recently, this has been used as a pre-processing
algorithm for tracking.

- Image mosaicing- Mosaicing works on the assumption that multiple cam-
eras are roughly at the same position and a projective homography of the
images can be used to bring the features (edges, corners, pixels, or image
regions) of the image into correspondence.

" Perceptual Data Mining- The goal of Perceptual Data Mining is to infer as
much as possible of the state of the objects and the sensors in the world from
continuous visual observation in static cameras.

- Given a sequence of images (Yi(1), Yi( 2), Yi(4), ..., Yi(t)), our visual
attention mechanism determines a set of active object observations in each
frame of each sensor. Each observation is given a unique label. E.g.,
{O1, 02, 03,...}.

- By modeling the sensors, environment, and object dynamics, our corre-
spondence system can refine the estimates of object position and velocity
to a more global frame of reference and can determine sets of object ob-
servations that are likely to have the same unique label (U). A set of
observations that correspond to the same object in different sensors or at
different times is referred to as a Multiple Observation Sets (MOS). E.g.,

M'={Oi1(ti), O2 (t2), .. I

- Multiple Observation Learning (MOL) clusters observations while exploit-
ing the variability exhibited by the active objects in the environment. MOL
was used to determine latent class models for object shape and object ac-
tivity by clustering based on those aspects of the object observation de-
scription. These latent class labels are likely to be predictive of the true
class labels, {Li }. MOL can also be used to determine a factored represen-
tation of images of a class of objects and to determine tissue type variation
in unsegmented magnetic resonance images.

- This complex descriptive model of the types of objects and the activities
that they perform can be exploited to classify MOSs, determine anomalous
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Figure 1-1: This figure shows the system architecture for our perception system.

MOSs, and model temporal structure of the activity in the environment.
This rich, complex description of an environment shows promise for nu-
merous applications and customization to particular tasks.

1.4 Outline of Perceptual Data Mining

Shortly after birth, infants develop the ability to track moving objects by combining
the ability to saccade to areas of interest and a sub-cortical mechanism for stabilizing
visual input. We have developed a system with a similar function that tracks moving
objects in an environment. In this thesis, we show that it is possible to bootstrap an
entire visual processing system from this basic attention mechanism.

Figure 1-1 shows the architecture of the complete learning system. The basic
attention mechanism on each sensor in the environment detects the presence of ac-
tive objects at each point in time. Correspondence modeling groups these separate
observations based on their identity. The groups are used to build unsupervised
representations of the objects in the environment. At the end of the process, user
guidance and user interaction can be used to associate the learned representation with
task-specific labels.

This section outlines each component of the system in the context of a particular
example, tracking the activity around the Artificial Intelligence Laboratory in Cam-
bridge, Massachusetts. This example was chosen because it is our longest experiment
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and has the most comprehensive results. In the following chapters other examples
will be given to illustrate the generality of our approach. After reading this section,
one should have a basic understanding of the entire system.

1.4.1 The environment and the sensors

74

Figure 1-2: Example camera locations for our experimentation around the Artificial
Intelligence Laboratory in Cambridge, Massachusetts. Five camera positions and the
region of space they can view are displayed. We would like to thank the MIT Computer
Graphics Group for this reconstruction of Technology Square.

We have chosen to explain the components of the system in the context of our
longest running experiment, modeling the activity around 200 Technology Square2 .
In a single day, thousands of people and vehicles as well as various other types of
objects move through this environment.

For more than four years, our system has been continuously monitoring the moving
objects around the MIT Artificial Intelligence Laboratory using multiple cameras.
Figure 1-2 shows an example positioning of a set of cameras and the region of space
they can observe. This example of camera placement illustrates that some cameras
overlap while others do not. Our system is robust to the number of cameras and the

2 This building was 545 Technology Square when this experiment began.
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Figure 1-3: This figure shows the process of background estimation. A series of video
images are used to estimate the appearance of the static background. This model is
used to determine the pixels that are not consistent with that model. Those pixels are
grouped to determine a discrete set of moving objects.

camera placement. While our system requires that the cameras are static, our system
does not require any information about the placement of the cameras or their visibility
constraints. Each camera j produces images at discrete points in time, Y(t). This
set of video streams is the only input into our system.

1.4.2 Basic attention (Chapter 2)

A robust, general attention mechanism is required for all subsequent research in
Perceptual Data Mining. Our visual attention mechanism attempts to detect all
visible, moving objects in static scenes by modeling the appearance of the non-moving
elements as seen through a static camera. In the AI Laboratory scenario, examples
of moving objects are people, vehicles, trash, trees blowing in the wind, and various
animals. Examples of non-moving objects are patches of grass, cement, buildings, and
parked cars. To determine which pixels are likely to have resulted from the presence
of a moving object, our method uses a novel variant of background estimation.

The goal of background estimation is to detect a small set of likely observation
states of visible, active objects, {0J(t), ...} for each frame taken from each sensor,
YJ(t). No information about the identity of these observed objects is available. The
only available information is the time, sensor, and the characteristics that can be
determined by the attention mechanism. In our case, the characteristics we derive
are the image-relative centroid, size, width, height, projected silhouette, and projected
appearance.
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Figure 1-4: This figure shows the three essential problems in establishing object cor-
respondence. Instantenous object correspondence is correspondence between pairs of
observations of the same object across sensors. Continuous object correspondence
is correspondence over time. Discontinuous object correspondence is correspondence
after missing observations caused by distraction or objects leaving the environment.

The bulk of Chapter 2 centers on the complexity of modeling the static background
using our background estimation technique. Figure 1-3 shows the general framework
of background estimation.

Our technique uses online estimation of an approximation to a mixture of Gaus-
sians for each pixel. The two major advantages of this implementation are quick
recovery when stopped objects move and some robustness to repetitive background
changes. It allows for effective tracking in reasonably sparsely populated environ-
ments. The processing required to track the detected foreground objects in multiple
cameras is discussed in the following chapter.

1.4.3 Modeling object correspondence (Chapter 3)

A multiple observation set (MOS) is a set of observations of the same object in
the world, either taken at different times or from different sensors. An ideal object
correspondence system would establish N multiple observation sets (MOSs) that cor-
respond to observations of each object. Each set would contain all observations of
a single object regardless of when it occurred or which sensor made the observation.
Every car, every person, every piece of trash would have a single corresponding MOS.
Nothing about the true identity of the MOS would be available, but every observation
in each MOS would correspond to a single object. Whenever that object appeared in
any sensor, the system would assign it to the proper MOS. This can be posed as a
labeling problem.

26



Without perfect tracking in a completely observable system or user supervision in
a restricted domain (e.g., face recognition with a limited domain), there is little hope
of achieving this ideal goal. Fortunately, there are regularities that can be exploited.
Figure 1-4 shows the three essential problems in establishing object correspondence
on a timeline. Chapter 3 discusses how to exploit these regularities.

First, if an object is detected in a location at the same instant by multiple sensors,
instantaneous object correspondence can be established. There are three possible
correspondence relationships between a pair sensors including: having no region of
visual overlap in which objects are detected; having an approximately planar set of
corresponding points in the area of visual overlap; and having correspondences that
span a full three dimensional subspace in the area of visual overlap. We cover models
for each of these cases as well a mechanism for determining which model is appropriate
in a given situation.

The most common and (most difficult to detect) case is when there is no visual
overlap. When there is visual overlap, the data often lies on one or a set of planes.
The approximately planar case can be fit by single homographies or multiple homo-
graphies. The three dimensional case may enable Euclidean reconstruction of the
tracking data. Even in this case, determining a set of correspondence planes can be
useful in establishing object correspondence. Though much work has been done on
multiple sensor correspondence, tracking correspondence has some peculiarities that
can be exploited. We will fully discuss these peculiarities and how they can affect
this type of reconstruction.

Second, continuous tracking in individual sensors (or unified sensors) should enable
many detections of the same object to be put into an equivalency class. Approaches
vary from maximum likelihood tracking to full density estimation through time. We
determined that a multiple hypothesis tracking system suited our computational and
robustness requirements best.

Third, discontinuous correspondences are investigated. Short-term discontinuities
can result from interactions between tracked objects or various types of distraction.
We discuss methods of exploiting models of dynamics, appearance, and site-specific
behavior models to re-establish object correspondence in these cases. Long-term
discontinuities can result from occlusions, lack of site coverage, or objects leaving the
environment for a period before returning.

Figure 1-5 shows an application of these techniques in the context of the 200 Tech-
nology Square monitoring experiment. Given the tracking data from three different
cameras, a correspondence model can be estimated. Using the correspondence model
allows one to track objects through multiple sensors in extended environments.

Using these systems in multiple environments over the period of more than four
years, we processed terabytes of data including billions of images and movements
of tracked objects. Each set of observations of the same object is termed a Multi-
ple Observation Set (MOS). The following chapter discusses methods for exploiting
MOSs.
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Figure 1-5: This figure illustrates how a correspondence model of three overlapping
cameras allows an object to be tracked through multiple sensors in an extended
environment.

1.4.4 Co-occurrence based clustering (Chapter 4)

Having established hundreds of thousands of Multiple Observation Sets (MOSs), it
is possible to determine models of observations for classes of objects by exploiting

variability in observations we have recorded of the same underlying objects. Chapter

4 discusses Multiple Observation Learning (MOL), a broadly applicable method of co-

occurrence-based non-parametric modeling of phenomena which is directly applicable

to multiple observation sets (MOSs) and other co-occurrence problems.

A landscape of classification and clustering problems is introduced to better un-

derstand the relationship between MOL and other clustering and classification sys-

tems based on the amount and type of supervision required for each. Figure 1-6 shows

that MOL requires no explicit labeling supervision and a modest amount of relational

(pairwise identity) supervision that are acquired at little cost. With the addition of

minimal labeling supervision, an MOL system could achieve an acceptable level of

performance at a particular task while minimizing the associated human cost.

Using a simple example involving pairs of numbers from one to ten produced

independently and identically distributed (IID) from a number of people, a generative
latent class model is introduced. This generative model involves choosing a latent class
(person) with some probability and then choosing multiple observations (numbers
from one to ten) from that latent class' probability mass function (pmf). In our simple
example, the chance of choosing an individual is their likelihood of participating in the

test and their pmf describes their likelihood to choose the numbers from one to ten.

The resulting co-occurrence matrix describes the probability of a pair of observations
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Figure 1-6: This figure shows relational supervision vs. labeling supervision.

occurring in any MOS.
N

O = = 3(c)3(ilc)13(jlc). (1.9)
CL=1

Figure 1-7 shows two simple examples involving a single person and a set of three
individuals with different preferences on choosing values from one to ten. Given a
set of pairs of observations from individuals the corresponding co-occurrence matrices
is estimated. The goal of MOL is to determine parameters of a latent class model
which is consistent with the estimated co-occurrence given the proper number of
latent classes. With relatively clean data, the number of latent classes can also
be determined. This chapter outlines the process of accumulating co-occurrences,
estimating the latent classes, and classifying MOSs. Then some of the assumptions
and considerations of MOL in discrete spaces are discussed.

One of the most significant considerations in MOL is computational and storage
requirements. These are a fundamental limitation for MOL in large or continuous ob-
servation spaces. Thus, methods of applying MOL in continuous observation spaces
are discussed including three types of discrete tilings of the spaces: uniform tiling;
density-based tiling, and tiling based on Associative Mixture of Gaussians estimation.
Different factors that affect performance are investigated through five sets of experi-
ments. The generality of this mechanism is illustrated in four example applications.

Using different aspects of the description of the objects it is possible to determine
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Figure 1-7: This figure shows two simple examples. Each shows some latent class
models on the left, a co-occurrence matrix (brighter values are larger in the center,
and the estimated class models on the right. For the three person example, there is
only one set of latent class model parameters that are consistent with the observed
co-occurrences.
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Figure 1-8: On the left is the 400 silhouette prototypes and the co-occurrence matrix
that resulted from a day's worth of tracking sequences. In the middle is the classifica-
tion hierarchy which resulted, images of all occurrences of each class, and description
of the classes as well as their performance relative to those descriptions. On the right
are 24 hour histograms of the occurrences of each class. For higher quality images,
see: http://www.ai.mit.edu/projects/vsam/.
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Figure 1-9: This figure shows an image of the scene(upper left), the classification
hierarchy (center), and the co-occurrence matrix and normalized pmfs(upper right) for
each element of the tree. The scene contains a road with adjacent parking spots and
a path through the grass near the loading bay of our building. The binary tree shows
accumulated motion templates for each node of the tree. And the co-occurrence matrix
and normalized pmfs show which prototypes occurred within the same sequences and
the probability distributions for each node in the tree (ordered breadth-first). The final
level of the tree specific classes including: pedestrians on the path (one class in each
direction); pedestrians and lawn-mowers on the lawn; activity near the loading dock.
cars; trucks; etc. These classes can be viewed in a Java 1.1 compatible browser at:
http: //www. ai.mit. edu/projects/vsam/Classif ication/Cclasses/ . Note: the columns

and rows of the co-occurrence matrix have been ordered to make some of its structure
more apparent.

different classifiers based on appearance and activity. The first application determines
a hierarchical clustering based on silhouette shape, which describes the types of ob-
jects in that environment. Figure 1-8 shows an example of classification based on
shape. It effectively clusters the observations based on shape into vehicles, individual
pedestrians, groups of pedestrians, and clutter and lighting effects. This is a con-
cise description considering the variability in object shape due to different positions,
angles, sizes, and configurations of these classes of objects.

The second application determines a hierarchical description of the types of ac-
tivities in an environment. Figure 1-9 shows an example of hierarchical activity
classification. Objects are first differentiated based on their direction of travel be-
cause few object changed directions. Then, the path and road traffic are separated
because there was not significant overlap in those two activities. A tree of depth four
results in a concise description of the different significant clusters of activity in this
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Figure 1-10: The similarity template and the corresponding automatically generated
binary decomposition of the images in the pedestrian data set. The root node rep-
resents every pixel in the image. The first branch splits foreground vs. background
pixels. Other nodes correspond to shirt, legs, head, and background regions.

environment.
Next, the Similarity Template (ST), a new image representation that models like-

lihood of pixels resulting from the same region, is introduced. We use STs to estimate
a static visual attention mechanism from our attention mechanism based on motion.
This static attention mechanism could eventually enable PDM to locate and track
objects similar to the active objects in its environment in non-static cameras (e.g.,
on the web) based on its experience in an active environment.

The third application of MOL determines a hierarchy of component regions for a
set of images of a single class of object based on the Similarity Template. Figure 1-10
shows a similarity template for a pedestrian data set and the resulting decomposition
into component regions. Figure 1-11 shows automatically derived clusters conditioned
on different aspects of the model (shirt, pants, and background colors).

The final application determines latent tissue class models in magnetic resonance
images given measures of local co-occurrence. The wide range of applications of MOL
shows its promise from low-level modeling to high-level modeling.

1.4.5 Meta modeling (Chapter 5)

Thus far, the thesis has illustrated the ability to characterize models of the environ-
ment, the sensors, the type of objects, the activities of the objects, and even charac-
teristics of the appearance of particular types of objects. Chapter 5 discusses methods
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Figure 1-11: Results of automatic clustering on three components: shirt, pants, and
the background. Each shows the feature, the most unusual examples of that region,
followed by the 12 most likely examples for the eight prototypical colors of that region.
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Figure 1-12: This figure shows the two environments used as examples in the cyclic
context modeling experiments. The first is an office environment in which a refriger-
ator was placed that contained inexpensive soft drinks. Most of the activity in this
area was graduate students using the refrigerator or individuals passing through the
environment. The second example is a traffic intersection in Boston.

of further exploiting these automatically-derived, rich representations of activity in
an environment.

Thus far, the time an object was observed has not been considered. In many
environments, the temporal context of an event can be extremely important. We
introduce a system which first determines temporal context cycles and then exploits
the context cycle to characterize the activity of the scene. Figure 1-12(a) and (b)
show two example environments that contain periodic context cycles.

In the office setting, the system automatically determined that there are 24-hour
and 7-day cycles of activities. Using this information we can characterize activities at
unusual times of the day. We could also characterize days with unusual amounts of
activity (e.g., vacation days and student visit weekends). In the traffic intersection,
after determining eight characteristic activities in the environment, the system learns
the traffic light cycle. This enables detection of events like people running traffic
lights.

Figure 1-13(a) and (b) show the context-sensitive activity models for these two
environments. In the office, daily and weekly patterns can be exploited to better
model when activity is expected. The traffic intersection example not only illustrates
another example of a context cycle, but the ability to articulate the periodic model
for different classes. This would enable a system to model the types of objects, object
activities, and object appearances expected at different times of day or days of weeks

(or any other salient context).
One of the strengths of our probabilistic modeling technique is that not only can

we characterize clusters of shape, activity, and appearance, but we can determine that
certain MOSs are not characteristic of our model. Four types of anomaly detection
are outlined: observation anomalies, co-occurrence anomalies, temporal anomalies,
and anomalous activity periods. These anomalous observation sets are often of the
most interest. E.g., traffic accidents, an elderly person falling down, a child climbing
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Figure 1-13: This figure shows wrapped histogram of activity for 24-hour and 7-day
periods and a daily histogram for our office experiment. The amount of activity
is shown in half-hour, one-hour, and one-day blocks respectively. The week period
begins on at midnight on Thursday morning. The entire 62 day experiment lasted
from February 13, 2002 to April 19, 2002.

a bookshelf or a tree, a delivery after midnight, traffic commuting patterns changed,
etc.

1.4.6 Discussion and future work (Chapter 6)

Chapter 6 discusses the motivation and promise of the Perceptual Data Mining frame-
work. Throughout the thesis, an attempt is made to advocate a general approach
to modeling active elements of an environment. In some cases, specific functional-
ity was sacrificed to achieve a more broadly applicable system. The beginning of
this chapter is an attempt to remind the reader of the benefits of those sacrifices.
This includes discussion loosely relating human capabilities and neurophysiology to
Perceptual Data Mining.

While this thesis attempts to cover the Perceptual Data Mining framework in both
depth and breadth, there is significant areas of future research related to or enabled
by the PDM framework. Various improvements in attention and correspondence are
outlined that would augment the capabilities and applicability of the entire PDM
framework. Methods for developing more factored, transferable representation and
incorporating other modalities that would enabled modeling of additional structure
in an environment are briefly outlined. Methods for exploiting additional context
that could further generalize the system to many non-periodic environments are also
summarized.

Finally, various means of incorporating explicit supervision are enumerated. While
we illustrate that an unsupervised system is capable of building a robust, descriptive
model of the activity in an environment, such a system has limited application to spe-
cific tasks without supervision. Supervision can be used to evaluate an unsupervised
systems representation for a particular task and even altering the representation to
better suit a task. An operator can tailor an activity filter to preferentially return
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important or atypical events. Supervision could be elicited by the system to commu-
nicate aspects of its representation.

An intriguing aspect of the PDM framework is its general applicability. Potential
application areas include security, elder-care, child-care, wildlife monitoring, home
monitoring, traffic statistics, and intelligent environments. Statistics can be continu-
ously gathered without human intervention. These statistics can be used to determine
a variety of types of anomalies relating to object type, object activity, object appear-
ance, or statistics of activities in an environment.

1.4.7 Appendices

Appendix A has pseudo-code for an implementation of the tracking system. Appendix
B has pseudo-code for estimating of planar homographies. Appendix C has details
of the factorization of a joint distribution into a mixture of marginally independent
distributions used in the Multiple Observation Learning.

1.5 Reader's guide

Because of the broad scope of this thesis, I have outlined paths for readers with three
different primary interests:

Tracking and correspondence- Because of the burgeoning interest in this area of
research, many researchers have an interest in creating a robust tracking system.
If you are most interested in understanding our indoor/outdoor, multicamera, 24/7
tracking system, read Chapter 2, Chapter 3, Appendix A, and Appendix B.

Non-parametric unsupervised modeling- Readers that are most interested in the
unsupervised learning methodologies of this work should read Chapter 4, Chapter 5,
and Appendix C.

Data mining driven computer vision research- I have found that a great deal can
be gained by understanding why people have chosen their approach. I believe it
would be a mistake to fully understand the mechanics of a body of research without
understanding why that methodology was used. If you wish to understand why I have
chosen the path I have and why I believe it holds promise for general computer vision
research, read this chapter, the introductions to each of the following chapters, and
the final two chapters of this work. This should help you understand my perspective
and how my research relates to the field of computer vision as a whole.

Keeping the different goals of different readers in mind, each component will be
treated in turn. Rather than discussing theory, implementation, and results for the
entire system, these will be handled for each of the major topics described above.

37



38



Chapter 2

Attention: adaptive background
estimation

This work is founded on the relatively new capability of processing large streams of
information continuously in real-time and storing a reduced representation of that
data for later processing using off-the-shelf hardware. Less than a decade ago, special
hardware was required to simply record and store a few minutes of full frame-rate
NTSC video signal. Now, an inexpensive personal computer can process each image
in real-time, allowing multiple objects to be tracked and the pertinent data to be
stored for days or even months. In the near future, cheap devices should be capable
of more complex visual processing and subsequent analysis of the data in real-time,
making this an intriguing area for further research.

This and the following chapter show the mechanism we used to process video
streams in real-time and extract descriptions about the moving objects in the en-
vironment. This chapter describes a novel type of adaptive background estimation.
Adaptive background estimation attempts to model the static "background" of an
image sequence. Usually the model of the background is of less interest than the
pixels that are outliers to the model, called "foreground" pixels. These pixels tend to
lie on moving objects. The "foreground" pixels can be grouped using a method called
connected components [20] into connected regions. These regions usually correspond
to single moving objects or groups of moving objects in the scene.

This chapter outlines how to determine a discrete set of potentially moving objects
from each frame in a video sequence, but not how to track objects across time and
across multiple cameras. Chapter 3 outlines how to establish sets of object observa-
tions that correspond to the same object in the world by tracking objects through
time and across multiple sensors. Appendix A outlines an efficient, approximate
implementation of the entire tracking system.

This chapter begins by discussing related work in the field of tracking with par-
ticular attention to related work in background estimation. Then our approach to
online estimation of the background is outlined. This system takes images as input
and produces a foreground/background mask as output. Our approach uses an ap-
proximation to a mixture of Gaussians to model the intensity values of each pixel.
Then it determines which components of the mixture model are most likely to have
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resulted from static background objects. The pixel values that do not match these
background components are considered "foreground" pixels. Extensions of the video
tracking system are discussed, including a brief description of bootstrapping a static
attention mechanism from our motion-based tracking system, which is discussed fur-
ther in Chapter 4.

2.1 Related Research

Our goal as stated in the previous chapter extends beyond producing a tracker that
estimates some aspect of the state of a particular set of objects in the world. We
intended to create a tracker that would enable a system to automatically model all
the active elements of a particular extended environment. This goal dictated many
of the decisions we made in producing our tracking system.

A visual perception system should be robust to whatever is in its visual field or
whatever lighting effects occur. It should not depend on careful placement of cameras.
It should be capable of tracking objects through cluttered areas, objects overlapping
in the visual field, shadows, lighting changes, effects of moving elements of the scene

(e.g. swaying trees), slow-moving objects, and objects being introduced or removed
from the scene causing long-term changes. Thus, to monitor activities in real outdoor
settings, we need robust motion detection and tracking that can account for such a
wide range of effects.

Traditional tracking approaches have difficulty in these general situations. Our
goal is to create a robust, adaptive tracking system that is flexible enough to han-
dle variations in lighting, moving scene clutter, multiple moving objects and other
arbitrary changes to the observed scene. The resulting tracker is primarily geared
towards video surveillance applications that cover large areas in which a few objects
visually interact.

2.1.1 The field of visual tracking

It is difficult to define tracking in the context described here. The most appropriate
Merriam-Webster definition of track (verb) is "To observe or monitor the course of
(aircraft, for example), as by radar." While this is sufficient to describe some types of
tracking, we are currently interested in visual tracking. We state the problem of visual
tracking as "establishing correspondence between multiple visual representations of
the same object."

This definition implicitly highlights two fundamental problems in computer vision.
First, you must determine the visual representations that correspond to objects. Sec-
ond, you must determine correspondence between these visual representations. Hence,
we have chosen to conceptually divide the process of visual tracking into two separate
tasks, object detection and object correspondence. Object detection involves deter-
mining likely states of objects (or the likelihood of states) given the observations.
Object correspondence involves determining which sets of observations correspond to
the same objects in the world.
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Below we will begin to describe the vast variability in this field of research. We
have highlighted in bold font the characteristics of our system:

* modeled aspect of observable state- There is a large variability in the aspect of
the observable objects that can be modeled.

- image-based models- e.g. face recognition[60, 6], pedestrian recognition[42],
correlation-based tracking[62].

- color-based models- e.g. skin blob tracking [63, 1].

- edge-based models- e.g. Hausdorff and other edge-based detectors [21, 23].

- feature and corner-based models- e.g. discriminant features [50]

- contour-based models- e.g. condensation-based approaches [24].

- heat-based models- e.g. Infrared-based tracking.

- motion-based models- e.g. frame differencing, background subtraction,
flow-based motion tracker [54, 36, 16, 48, 32, 63, 14, 57, 9, 8, 17].

" probabilistic detection vs. deterministic detection- Some detection approaches
determine a discrete set of possible object states (O). Others produce a prob-
abilistic score for a large set of possible object configurations and rely on the
correspondence mechanism to determine how many objects are present and their
locations.

" near-field vs. far-field (articulated vs. gross motion estimation)- Some ap-
proaches are primarily interested in determining the configuration of a single
object over time (ci), while others are most interested in determining the proper
number of objects and their locations (l).

" continuous vs. sparse visual evidence- Some tracking involves tracking objects
across frames taken within a short period of time (e.g. tracking a person moving
through a room). Other approaches attempt to track across long periods of time

(e.g., tracking a person's entrance and exit from a place of work).

" image-relative vs. global state approaches- Many approaches estimate a part
of the state of the object relative to the sensor (Or). This is often sufficient for
establishment of correspondence. Other approaches attempt to model a more
global state of the object (e.g., location in three dimensional space given multiple
cameras). This enables multi-camera tracking and, in some cases, normalization
of camera specific properties of objects.

* single vs. multi-sensor- Many approaches rely on a single sensor whereas other
approaches rely on multiple sensors. This is closely related to the question of
image-relative vs. global state.

" on-line vs. batch- Some approaches work given the observations up to the cur-
rent time t, (Yi, Yi, .i..Y), while other approaches rely on having observations
over the entire experiment. The following issue is related to this issue.
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" real-time vs off-line- Certain approaches do not lend themselves to real-time
processing.

* one vs. many objects- Some approaches assume a single object is always
present. More general approaches assume that object may or may not be
present. The most general approaches determine both the number of objects
and their state with no more than a loose prior.

" single object class vs. multiple object class- Some approaches are geared
towards only estimating the state of a single type of object, whereas others can
handle multiple classes.

* learned vs. manually-specified- Some aspects of a tracking system can be
learned rather than manually specified. For instance, some research efforts
expend a large amount of energy in calibrating cameras.

" automatic vs. manual initialization- Some models must be manually initialized
while others claim some robustness.

While this list of descriptive parameters of work in the area of tracking is daunting,
many of the factors tend to be correlated. For example, all current articulated (near-
field) approaches are limited to a single class of object (e.g. a person). Most rely on a
manually-specified model. Many rely on initialization and are not robust to problems
such as partial occlusion.

Multi-sensor approaches tend to estimate more global state than single sensor
approaches. Online, real-time trackers tend to model less complex aspects of state
often using deterministic detection and simple models of observable state.

2.1.2 Previous work in visual tracking

In this section we describe a few major areas of tracking research and discuss their
appropriateness for our task.

Articulated modeling

The field of tracking can be split into two major areas of research, near-field (articu-
lated) tracking and far-field tracking. Near-field tracking research includes perception
of gesture, articulated body movements, gaze, gait recognition, and other aspects.
These methods are primarily concerned with determining the configuration of the
objects over time (ci). They generally assume one moving object and consider the
location of the object as a nuisance parameter.

We acknowledge the value of these approaches and intend to pursue this line of
research after we can successfully model the number of objects, types of objects, their
locations, and a rough segmentation of the objects. Also, rather than considering
the rest of the object's state as a nuisance parameter, we strongly believe that it
will provide essential context for articulated modeling problems. For these reasons,
near-field problems will not receive any more attention in this thesis.
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Visual detection-based tracking

One major approach to tracking involves using a visual detection mechanism in com-
bination with a method that establishes correspondence. Some examples of detection
mechanisms are face detection [60, 43], correlation models [621, skin blobs [63], edge
based models [22], contour-based models [24]. Some examples of correspondence
methods are simple maximum likelihood tracking (tracking the most likely state from
instant to instant), multiple hypothesis tracking, CONDENSATION, or full density
approximation.

This type of approach has some advantages. First, the detection mechanism can
be used on static input. For instance, a face detection system can search a photo
album or the web for faces. Because this is a capability of humans, we have devoted
Section 2.5 to describing how our motion-based attention mechanism could be used
to bootstrap a static attention mechanism. Second, if the task is only concerned with
a particular type of object, this method can reduce the amount of distractors. For
instance, a face tracker will only be distracted by things that are detected as faces.

This type of approach also has some limitations that make it less useful in modeling
complex environments. It produces a class-specific tracker based on visual appear-
ance. It is possible for some simple models bootstrap an appearance model after a
motion based detection as in [62], but this is rarely done in practice as the tracking is
often not robust to changes in object appearance. In general the detection mechanism
is trained with a large supervised set of data.

We have looked at bootstrapping this type of system as a secondary attention
mechanism. Because of the disadvantages of this approach we did not consider it for
our base tracking system. Our primary motivation is the vast variability of tracked
objects we have observed in our tracking experiments (see Table 2.1). While it is hard
to imagine the usefulness of detecting all of the objects listed in Table 2.1, it is obvious
that limiting yourself to a single or small set of object types would fundamentally limit
your system's understanding of the environment.

Some general models attempt to model the world with layers or sprites citewan-
gadelson94. These are purported to be very general solutions. Jojic and Frey have
recently created a system that can model layers given video input with considerable
occlusions [29]. Unfortunately, the computational requirements and the robustness
of these approaches make them inappropriate for our needs.

Motion-based tracking

Our primary goal in tracking is to have a robust, general tracking system that can
track the positions and appearances of many objects of many different types in many
environments over extended periods of time. Rather than trying to filter out all the
moving objects that might be considered distractors in Table 2.1, we track them and
rely on later processing to model them.

We also wanted to produce a real-time tracking system that is computationally
feasible on the hardware available when this work began. In short, we want a far-
field, multiple object, multiple object class, on-line, real-time tracking system. As
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a result of these requirements we determined our base tracking system should be a
motion-based, continuous tracker, which relies on deterministic detection. This made
background estimation on static cameras an obvious choice.

Being far-field, motion-based, and continuous, it was not tuned for particular type
of objects and relied on reasonably universal object dynamics. Once it became ap-
parent that we could create a robust reliable tracking system for sparsely populated
environments, secondary goals arose. First, we looked at bootstrapping a static at-
tention mechanism based on the motion-based mechanism. In as much as possible,
we wanted to unify the state estimates across multiple sensors through time.

2.1.3 Previous work in background maintenance

The terse description of the field of visual tracking given above does little to describe
the diverse approaches to background estimation. In this section, we will detail
previous work in background estimation.

Most researchers have abandoned non-adaptive methods of backgrounding because
of the need for manual initialization. Without re-initialization, errors in the back-
ground accumulate over time, making this method useful only in highly-supervised,
short-term tracking applications without significant changes in the scene. It is pos-
sible to use a maximum interframe difference[36], but this leaves "ghosts" where the
object was and leaves large regions of the object undetected unless the object under-
goes significant motion each frame.

Most backgrounding methods involve continuously estimating a statistical model
of the variation for each pixel. A common method of adaptive backgrounding is
averaging the images over time, creating a background approximation which is similar
to the current static scene except where motion occurs. While this is effective in
situations where objects move continuously and the background is visible a significant
portion of the time, it is not robust to scenes with many moving objects particularly
if they move slowly. It also cannot handle bimodal backgrounds, recovers slowly when
the background is uncovered, and has a single, predetermined threshold for the entire
scene. One interesting attempt to meet these difficulties is W4 [16], which combined its
estimates of the minimum value, maximum value, and maximum interframe difference
per pixel.

Ivanov[25] used disparity verification to determine moving regions in a scene. This
showed invariance to lighting variations but involved a costly, off-line initialization. Its
primary application is for geometrically static backgrounds. Recently, an eigenvector
approximation of the entire image was used to model the background in outdoor
scenes[41], but the difficulties of on-line estimation have limited its applicability.

Changes in scene lighting can cause problems for many backgrounding methods.
Ridder et al.[48] modeled each pixel with a Kalman Filter which made their system
more robust to lighting changes in the scene. While this method does have a pixel-wise
automatic threshold, it still recovers slowly and does not handle bimodal backgrounds
well. Koller et al. [32] have successfully integrated this method in an automatic traffic
monitoring application.

Pfinder[63] uses a multi-class statistical model for the foreground objects, but the
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MOVING OBJECTS FOR CHANGES TRACKED BY OUR SYSTEM
OBJECTS

cars, trucks, semis, buses, vans, mini-vans,
vehicles pickups, motorcycles, trains, planes, head-

lights/taillights/ running lights(at night)
individuals adult children people with strollers

people groups of people rollerbladers bikers flash lights(at
night)
branches dust on a road grass, bushes, flowers,
etc. sprinklers flags and flag shadows traffic lights
fire fireworks garage doors doors windows open-

scene elements ing or closing inter-reflections shades being drawn
business fluorescent lights construction cranes(6
or more blocks away) traffic gates construction
signs arrows, blinkers, etc. advisory signs

water bodies of drainage steam
blowing trash bags & newspapers manipulated ob-

misc objects jects sticks thrown bats, balls, frisbees, etc. trash
cans/dumpsters

animals birds (pigeons, seagulls, swans) squirrels dogs cats
a other(skunk, raccoon, horse, etc.)

LIGHTING RELATED _

shadows of terrestrial moving objects, of stationary ob-
jects, of planes, blimps, etc.

reflections windows, wet pavement, water surface, vehicle
win dows or hood$

direct-lighting changes partially cloudy, daily lighting cycles, area lighting
going on or off, vehicle lights

SCENE CHANGES
new buildings/structures, changes resulting from
severe weather, vandalism, wet pavement and
tire trails, weather, clouds, snow, hail, rain,
seasonal(longer-term), flowers, falling leaves

CAMERA RELATED _

camera damage/degradation, dirty lenses, fly on lens
INDOORS

leds updatable information displays TVs pro-
jectors monitors tickers static displays which

movable objects flicker(TV, Monitors, etc.) lights on/off fish
tanks(fish, bubbles, etc.) manipulated objects!
papers food chairs staplers, phones, etc. doors

___________________ I shades

Table 2.1: This table shows some of the moving objects that have been tracked by
our tracking system. While some may be more important than others in particular
tasks, they are all potentially important in modeling an active environment. The
considerable variability justifies a general tracking approach.
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background model is a single Gaussian per pixel. After an initialization period where
the room is empty, the system reports good results. There have been no reports on
the success of this tracker in outdoor scenes or in situations with multiple moving
objects.

Friedman and Russell[14] implemented a pixel-wise EM framework for detection
of vehicles that bears the most similarity to our work. Their method attempts to
explicitly classify the pixel values into three separate, predetermined distributions
corresponding to the road color, the shadow color, and colors corresponding to vehi-
cles. Their attempt to mediate the effect of shadows appears to be somewhat suc-
cessful, but it is not clear what behavior their system would exhibit for pixels which
did not contain these three distributions. For example, pixels may present a single
background color or multiple background colors resulting from repetitive motions,
shadows, or reflectances.

2.1.4 Our approach to motion tracking

Rather than explicitly modeling the values of all the pixels as one particular type
of distribution, we simply model the values of a particular pixel as a mixture of
Gaussians. Based on the persistence and the variance of each of the Gaussians of the
mixture, we determine which Gaussians are most likely to represent pixel values from
static objects. Pixel values that do not fit the background distributions are considered
foreground until there is a Gaussian that includes them with sufficient, consistent
evidence supporting it to convert it to a new background mixture component.

Our system adapts to deal robustly with lighting changes, repetitive motions of
scene elements, tracking through cluttered regions, slow-moving objects, and intro-
ducing or removing objects from the scene. Slowly moving objects take longer to be
incorporated into the background, because their color has a larger variance than the
background. Also, repetitive variations are learned, and a model for the background
distribution is generally maintained even if it is temporarily replaced by another dis-
tribution which leads to faster recovery when objects are removed.

Our backgrounding method contains two significant parameters - a, the learning
constant and T, the proportion of the data that should be accounted for by the
background. Without any alteration of parameters, our system has been used in an
indoors, human-computer interface application and has been continuously monitoring
outdoor scenes since October 1997.

Since the publications of our results, many interesting systems have been devel-
oped. Toyama et al. [57] developed a system called "Wallflower" that had three
components: a pixel-level component, a region-level component, and a frame-level
component. Their system compared favorably to nine other systems on seven differ-
ent problems.

Ellis and Xu [9] used a mixture of Gaussians in color chromaticity rather than
(R, G, B) to attempt to be more robust to lighting changes. Elgammal et al. [8] use a
full density approximation rather than a parametric mixture of Gaussians. Haritaoglu
et al. [17] integrated shape and motion cues to improve estimation of their model.
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(a)

(c) (d)

Figure 2-1: The execution of the program. (a) the current image, (b) an image
composed of the means of the most probable Gaussians in the background model, (c)
the foreground pixels, (d) the current image with tracking information superimposed.
Note: the shadows are foreground in this case because the surface was not covered
by shadows a significant portion of the time. Hence, no Gaussian representing those
pixel values was significant enough to be considered background.

2.2 Adaptive background maintenance for motion
tracking

The underlying hypothesis of background maintenance is that the world is composed
of static objects and active objects. The goal of adaptive background maintenance
is to determine whether each pixel in an image sequence is measuring the radiance
of the surface of a static object or an active object. This is a binary classification
problem. Unfortunately, no explicit model of the background or foreground objects
can be estimated except in cases where all active objects are removed for a training
period and all other factors remain the same.

Figure 2-1 shows an example of foreground vs. background segmentation pro-
duced by our tracking system. The regions corresponding to the moving vehicles and
pedestrians are effectively classified as foreground (white) pixels. The regions that
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are not moving are primarily classified as background (black) pixels. There are some
errors, but they are not localized and can be filtered.

2.2.1 Adaptive Background Mixture Model (ABMM) Overview

Because of the computational complexity of representing pixel-wise dependencies,
almost all current background estimation techniques assume independent models for
each pixel. This is a limitation that may be overcome in the next few years. Our
work currently makes this assumption.

Most adaptive background models attempt to represent the background distribu-
tion and consider pixel values that do not fit that model to be foreground pixels.
This assumes that either the foreground pixel values are not significant in the model
estimation or are factored out of the estimation. For example, the single Gaussian

(averaging) model assumes the background is unimodal and the values in the fore-
ground will not significantly affect this estimation at the chosen time scale.

On the other hand, our mixture models represent both the foreground and back-
ground pixel values with a single mixture of Gaussian distributions. Whether a pixel
value is considered foreground or background is dependent on the characteristics of
the distribution that represents that value. In effect we are segmenting the observa-
tions based on multiple models and then determining which set of models are likely
to result from background surfaces.

The following sections describe our approach to background modeling. The first
subsection describes the observations made at each pixel-the "pixel process". The
following subsection describes online estimation of the parameters of the mixture
of Gaussian estimate from pixel values. The following subsection describes how to
determine which components of the mixture of Gaussians are most likely to result from
static objects. This allows the pixel values to be labeled as foreground or background.
The following section describes how to efficiently group the pixels into connected
regions. Appendix A has a pseudo-code description of both of these processes.

2.2.2 The "pixel process"

Each pixel value is a noisy measurement of the surface radiance of the first object
that its optical ray intersects in the scene. The values of a particular pixel over time
can be considered a "pixel process", i.e. a time series of scalars for grayvalues or
vectors for color pixel values. At any time, t, what is known about a particular pixel
I(xo, yo) is its history

{X1, ... , Xt} = {I(o,yo,i) : 1 < i < t} (2.1)

where I is the image sequence and Xi is the pixel value.
If each pixel resulted from a single surface under fixed lighting, a single Gaussian

would be sufficient to model the pixel value while accounting for acquisition noise.
If only lighting changed over time, a single, adaptive Gaussian per pixel would be
sufficient. Surfaces of active objects can occlude the background in a particular pixel
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(0)
(a)

(b)

(c)

Figure 2-2: This figure contains images and scatter plots of the red and green values of
a single pixel from the image over time. It illustrates some of the difficulties involved
in real environments. (a) shows two scatter plots from the same pixel taken 2 minutes
apart. The two distributions show different variances and means. (b) shows a bi-modal
distribution of a pixel's values resulting from specularities on the surface of water. (c)
shows another bi-modality resulting from monitor flicker.
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and the lighting conditions change. Thus, multiple, adaptive Gaussians are required.
We use an adaptive mixture of Gaussians to approximate this process.

Some "pixel processes" are shown by the (R,G) scatter plots in Figure 2-2, which
illustrate the need for adaptive systems with automatic thresholds. Figure 2-2(b)
and (c) also highlight a need for a multi-modal representation. In each case, the ideal
distribution of values should be a tight, Gaussian-like cluster around some point. The
fact that the cluster can shift dramatically over a period of a few minutes or that two
or more processes at the same pixel can result in several distinctive clusters illustrates
the need for an adaptive, multi-modal representation.

2.2.3 Online mixture model

At any point in time t, only the current and past values of each pixel are available.
We model the recent history of each pixel, {X 1, ..., Xt}, with an approximation to a
mixture of K Gaussian distributions. The probability of observing the current pixel
value given our model is

K

P(Xt) = wi,t * r7(Xt, pi,t, Ei,t) (2.2)
i=1

where K is the number of distributions, wi,t is an estimate of the weight (the portion
of the data accounted for by this Gaussian) of the ith Gaussian in the mixture at time
t, pi,t and Ei,t are the mean value and covariance matrix of the ith Gaussian in the
mixture at time t, and where r7 is a Gaussian probability density function

1 -- (Xt- t)T E- 1 (Xt-tt)(23
77(Xt, A, E) = ,,l 2 A-X* (2.3)

(27r) 1EI

K is determined by the available memory and computational power. Currently, values
ranging from 3 to 5 are used. Also, for computational reasons, the covariance matrix
is assumed to be of the form:

21o~ (2.4)

This assumes that the red, green, and blue pixel values are independent and have
the same variances. While the noise is certainly not spherical, this assumption allows
us to avoid a costly matrix inversion at the expense of reduced accuracy. Using a
diagonal covariance would allow a Gaussian to represent that a particular channel
showed more variation. Using a full covariance matrix would allow each Gaussian to
model the its local variation with more accuracy. This would be particularly helpful
in modeling of variation due to lighting, which varies significantly across the color
space.

Thus, the distribution of recently observed values of each pixel in the scene is
characterized by a mixture of Gaussians. Each new pixel value will be represented by
one of the major components of the mixture model and used to update the parameters
of that component of the mixture.
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If the pixel process could be considered a stationary process, a standard method
for determining the parameters that maximize the likelihood of the observed data is
expectation maximization[7]. Because there is a mixture model for every pixel in the
image, implementing an exact EM algorithm on a window of recent data would be
costly. Also, lighting changes and the introduction or removal of static objects suggest
a decreased dependence on observations further in the past. These two factors led us
to use the following on-line best-first K-means approximation to a Gaussian mixture
model.

Every new pixel value, Xt, is checked against the existing K Gaussian distributions
(starting with the most likely background Gaussians) until the first match is found.
A match is defined as a pixel value within 2.5 standard deviations of a distribution1 .
This threshold can be perturbed with little effect on performance. This is effectively
a per pixel/per distribution threshold. This is extremely useful when different regions
have different lighting (see Figure 2-2(a)), because objects which appear in shaded
regions do not generally exhibit as much noise as objects in well-lit regions. A uniform
threshold often results in objects not being detected after they enter shaded regions.

If none of the K distributions match the current pixel value, the least probable
distribution is replaced with a distribution with the current pixel value as its mean
value, an initially high variance, and low prior weight.

The prior weights of the K distributions at time t are adjusted as follows

(1 - a)Wk,t_1 + a(M,t) (2.5)
Wk t = z25

Z

where Z is a normalization constant, a is the learning rate2 , and Mk,t is 1 for the model
which matched and 0 for the remaining models. 1/a defines the time constant that
determines the speed at which the distribution's parameters change. wk,t is effectively
a causal low-pass filtered average of the (thresholded) posterior probability that pixel
values have matched model k given observations from time 1 through t. This is
equivalent to the expectation of this value with an exponential window on the past
values.

The mean (p) and variance (-) parameters for unmatched distributions remain
the same. The parameters of the distribution which matches the new observation are
updated as follows

[pt = (1 - p)Pt-1 + pXt (2.6)

= (1 - p)o_ 1 + p(Xt - put)T (X, - t) (2.7)

where
p = arn(Xt; pk, Ork) (2.8)

'Depending on the kurtosis of the noise, some percentage of the data points generated by a
Gaussian will not "match". The resulting random noise in the foreground image is easily ignored
by neglecting connected components containing only a few pixels.

2While this rule is easily interpreted an an interpolation between two points, it is often shown in
the equivalent form: Wk,t = Wk,t- + a(Mk,t - Wk,t_1)
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is the learning factor for adapting current distributions 3. This is effectively the same
type of causal low-pass filter as mentioned above, except that only the data which
matches the distribution is included in its history for the purposes of estimation.

One of the significant advantages of this method is that when pixel values resulting
from a new object are allowed to become part of the background, the existing model
of the background is not destroyed. The original background color remains in the
mixture until it becomes the Kh most probable mixture component and a new color is
observed. Therefore, if an object is stationary just long enough to become part of the
background and then it moves, the distribution describing the previous background
still exists with the same p and a' but a lower w, and will be quickly re-incorporated
into the background.

2.2.4 Background model estimation

As the parameters of the mixture model of each pixel change, we would like to deter-
mine which components of the Gaussian mixture model are most likely to represent
observations of static surfaces. Heuristically, we are interested in the Gaussian dis-
tributions which have the most supporting evidence and exhibit the least variance.

To understand this choice, consider the accumulation of supporting evidence and
the relatively low variance for the "background" distributions when a static, persistent
object is visible. In contrast, when a new object occludes the background object, it
will not, in general, match one of the existing distributions, which will result in
either the creation of a new distribution or the increase in the variance of an existing
distribution. Also, the variance of the moving object is expected to remain larger than
a background pixel until the moving object stops. For example, a loitering pedestrian
not remain as stationary as most dropped objects. To model this, we need a method
for deciding what portion of the mixture model best represents background processes.

First, the Gaussians are ordered by the value of w/-. This value increases both as
a distribution gains more evidence and as the variance decreases. While background
surfaces that are rarely present or have high variance will tend to be more quickly
replaced than those that have more evidence and exhibit less variation. After re-
estimating the parameters of the mixture, it is sufficient to sort from the matched
distribution towards the most probable background distribution, because only the
matched models' relative value will have changed. This ordering of the model is
effectively an ordered, open-ended list, where the most likely background distributions
remain on top and the less probable transient background distributions gravitate
towards the bottom and are eventually replaced by new distributions. Given enough
computational power, this approximation would not be necessary.

Then the first B distributions are chosen as the background model, where

b

B = argminb (Wk> T (2.9)
(k=1

3In high dimensional spaces with full covariance matrices, it is sometimes advantageous to use a
constant p (= a) to reduce computation and provide faster Gaussian tracking.
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where T is a measure of the minimum portion of the data that should be accounted
for by the background. This takes the "best" distributions until a certain portion,
T, of the recent data has been accounted for. If a small value for T is chosen,
the background model is usually unimodal. If this is the case, using only the most
probable distribution will save processing.

If T is higher, a multi-modal distribution caused by a repetitive background motion

(e.g. leaves on a tree, a flag in the wind, a construction flasher, etc.) could result
in more than one color being included in the background model. This results in
a transparency effect which allows the background to accept two or more separate
colors.

2.3 Evaluating our method

Background estimation works very well in many situations, but fails in certain situa-
tions where assumptions are violated. Here we outline a set of these problems (similar
to Toyama et al. [57]).

" Regular object occlusions- The most basic problem is occlusions of the back-
ground by transient objects. The background estimation procedure must be
robust to both short-term occlusions and long-term occlusions.

" Object appearance not significantly different from background- The
most basic assumption is that the pixel values resulting from active objects are
separable from the pixel values of static objects. If this is not true, little can be
done using local methods. Our system assumes this is not the case.

" Object type transition- Active objects can become static objects and vice
versa. This problem is also referred to as the sleeping object and waking object
problem. An example of this problem is a car which moves into a parking lot,
parks, and doesn't move until the next day. If the object is not incorporated
into the background, it will disrupt the tracking of any object that moves in
front of it. When that object moves the next day, it re-exposes the cement
(which most models have "forgotten") causing a ghost. This is related to the
problem of bootstrapping a model without a training period. This can occur
over a short period (e.g., vandalism, dropped objects, retrieved objects, etc.) or
over a longer period of time (e.g., new structures, fallen trees, etc.).

" "False" moving objects- There are many types of objects or motion artifacts
that exhibit the characteristics of moving objects that we may not want to track.
In most cases, our system tracks these artifacts and relies on later processing
to filter them out. Table 2.1 lists many of these objects. Here we list a few
categories.

- shadows- The most common "false" object is a shadow. Our system tracks
the shadow as part of the object except in cases where the shadow appears
a significant amount of the time.
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- other object-related artifacts- Shadows are only a small portion of the
object-related artifacts we have observed. On rainy days, there are reflec-
tions off roads. On snowy days, tracked objects leave visible tracks. Cars
have headlights and fog lights.

- repetitive motions- Branches blowing in the wind, dust on a road, sprin-
klers, steam, and flags can produce motion artifacts in such quantities that
it dwarfs the amount of data that comes from other objects.

- information displays and indicators- Displays and indicators are common
in both indoor and outdoor environments. Monitors, LEDs, and TVs are
common indoors. Construction indicators and traffic lights are common
outdoors.

9 Environmental conditions- Lighting variation and environmental factors
cause many problems, particularly in outdoor scenes. Fast lighting variations
occur from lights being turned on or off or lighting strikes. Slow lighting vari-
ations can occur as a result of moving cloud cover or doors or windows being
opened or closed. Long-term changes also result from changes in weather or
season.

2.3.1 A simple example

While it is difficult to evaluate our method of background estimation empirically,
we will show its effectiveness on a simple example. Given a single pixel's greyscale
value over a short period with multiple occlusions caused by foreground objects, we
show two approaches to background estimation in Figure 2-3. While this does little
to elucidate the complexity of this problem, it is helpful in building intuitions for
understanding our approach.

The first approach is a unimodal background model. The learning thresholds
were too slow to adapt to the slow changes in the background colors, yet enabled
the background model to be extremely corrupted by a short occlusion. The recovery
time for the short occlusion events are significant. Our approach begins with one
model whose weight (darkness) increases and variance (error bar) decreases as more
evidence is attributed to that component. Three short occlusion events initialize
three Gaussian color models. Each of the three additional models follows the same
pattern but never becomes significant enough to be a background component. Most
importantly, the background model that took time and evidence to be established is
not corrupted by the new observations.

2.4 Connected components

The method described above allows us to identify foreground pixels in each new frame
while updating the description of each pixel's process. These labeled foreground pixels
can then be segmented into regions by an efficient two-pass, connected components
algorithm [20]. Details of this method are covered in Appendix A
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(a) is a unimodal Gaussian model. The mean of the Gaussian is plotted as well as
variance error bars. (b) is our multi-model Gaussian model. The relative weights of
the different models are shown in variation from black (largest weight) to white (no
weight). This example shows the creation of three different models to account for three
different occlusion events. The variance tightens and the weight increases when the
values are regular. The variance loosens when the Gaussian is tracking the values
because the mean estimate is not accurate.
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Because this procedure is effective in determining the whole moving object, moving
regions can be characterized not only by their position, but size, moments, and other
shape information. Not only can these characteristics be useful for later processing
and classification, but they can aid in the tracking process.

2.5 Bootstrapping static attention from an active
environment

Using an adaptive background estimation technique limits the applicability of this
body of work to situations where static cameras are observing environments that
contain active objects that move independently and do not regularly occlude each
other. The details of an existing system to bootstrap a pedestrian detection system
from a tracking system in an environment with only pedestrians are given in Section
4.6.5. This capability would allow a system to be introduced into more and more
complex environments and still be able to function.
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Chapter 3

Establishing object correspondence

The previous chapter discussed a method for determining a discrete set of possible
moving object observations in each video frame of each camera in the system. This
enables us to determine that an object with a certain appearance was present at a
particular location in sensor j at time t. On its own, this information can tell little
about the objects and activities of a particular environment beyond camera-specific
models of where objects tend to be.

Fortunately, each of these observations were caused by an object in the world,
and many may have been caused by the same object over time or in multiple sen-
sors. By taking advantage of this fact, we can reduce the redundancy in our data by
grouping our observations into sets of observations of the same object, or multiple
observation sets (MOSs). A perfect correspondence system could determine the min-
imum number of MOSs containing only observations from a single object regardless
of which day the object was recorded. The goal in this chapter is to determine a
set of MOSs that contain only object observations corresponding to a single object
rather than attempting to determine MOSs that contain all the object observations
corresponding to a particular object (but potentially grouping observations of multi-
ple objects together). Chapter 4 will illustrate that MOSs contain information that
enables effective clustering based on identity.

In this chapter we discuss many problems in establishing object correspondence.
Section 3.1 introduces object correspondence and describes an ideal object correspon-
dence system. The following three sections describe the three basic problems in object
correspondence. The three types of object correspondence problems are instantaneous
object correspondence, continuous object correspondence, and discontinuous object
correspondence. Figure 3-1 shows these three essential problems in establishing ob-
ject correspondence on a timeline. Not all aspects of each correspondence problem
are addressed directly in this thesis, but those not covered are briefly reviewed for
the benefit of the reader. Section 3.5 describes how our models can be used to aid in
normalization of relatively constant properties of objects.

Below we detail the three basic problems in object correspondence.
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Figure 3-1: This figure shows the three essential problems in establishing object cor-
respondence. Instantaneous object correspondence is correspondence between pairs of
observations of the same object at the same time in different sensors. Continuous
object correspondence is correspondence over time. Discontinuous object correspon-
dence is correspondence after missing observations caused by distraction or objects
leaving the environment.

Instantaneous (multiple camera) object correspondence

When the view frustra of two or more cameras overlap and an object is present in
the region of overlap, it may result in multiple object observations. Given enough
redundant observations, it is possible to build models of visibility and correspondence
for the areas of overlap. Using these models it is possible to determine that multi-
ple observations resulted from the same object in the world. Although there is a
large, related field in camera calibration and establishing correspondence in images
from visual features, correspondence points from tracked objects have a very different
character and deserve special attention.

We will discuss the three possible relationships between pairs of cameras as well
as a mechanism for determining which case is present in a particular situation. The
cases are:

* detected objects in the region of visual overlap occupy a significant portion of a
three dimensional subspace- When there are enough reliable object detections
between two cameras and those detections are not approximately planar, exter-
nal camera calibration is possible. Given the corresponding object observations
and the internal camera parameters describing the optics of the camera, it is
possible to estimate the external camera parameters including relative position
and relative angle. Multiple cameras watching birds and people in swimming
pools are obvious examples where objects occupy a significant portion of a three
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dimensional subspace. Knowing the camera geometry and a point in one image
corresponding to the position of an object in the environment, the corresponding
point in the second image is restricted to lie on a line. This epipolar constraint
is useful for establishing correspondence of observation sequences but undercon-
strained for instantaneous correspondence because the position of an object in
the first image could potentially match to many the position of multiple objects
in the second image.

" detected objects lie on one or more low dimensional subspaces- Because of grav-
ity, most objects lie near surfaces in the world. Taking advantage of this reg-
ularity allows one to determine a one-to-one mapping of points in one image
to points in the other image in many cases. In fact, if all objects are detected
near a single plane, external camera calibration is not possible. Also, exter-
nal camera calibration can be made less robust due to various shortcomings
in the estimation of the projection of the centroid of the object due to noise,
occlusions, shadows, reflections, and other factors. We cover two methods for
modeling this case:

- single homography- Often tracked objects move on a single ground plane
in the area of overlap. It is possible to robustly estimate the homography
that maps the centroid of an object in one camera to the centroid of the
same object in the other camera. We discuss previous work in this area
done by our group as well as adding visibility constraints and anomaly
detection.

- multiple homographies- This is an additional layer to the above method.
There are many situations where a single homography is insufficient. This
includes multiple planes of correspondence, occlusions, shadows, reflec-
tions, and objects with different centroid heights.

* no objects detected in region of visual overlap- Because we do not specify the
camera configuration to our system, it is important to understand when there
is and when there is not visual overlap. This is a very important case to un-
derstand, because, in many situations, the majority of pairs of cameras will not
overlap or will not have active objects detected in a region of visual overlap.

Continuous object correspondence

In the case of an object moving in full view, the object can be tracked from frame to
frame. In many cases, very simple dynamics can be used to effectively track objects
from frame to frame. When there are multiple object observations in similar locations
with similar characteristics, this problem becomes more difficult. We will discuss a
variety of approaches to this problem with particular attention to the one used in
our system, multiple hypothesis tracking (MHT). We will also discuss some results in
different environments.
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Discontinuous object correspondence

Often observations of an object are not available for a period of time and it is necessary
to attempt to re-establish correspondence. Objects can be "lost" due to interactions
with other moving objects, visual effects that disrupt the functioning of the attention
mechanism, or short occlusions. There are many characteristics of objects that can
be employed to re-establish correspondence including:

* dynamics models- Based on the movement of the object it is often possible to
estimate a likelihood that an newly tracked object corresponds to a previously
tracked object [24].

" appearance models- Based on the appearance of the tracked object it is also
possible to help re-establish correspondence [16].

* behavioral models- Based on the dynamic properties (e.g., a fast walking) of the
object or the intended behavior of an object, it is possible to infer that a newly
tracked object corresponds to a previously tracked object even after significant
periods of missing observations.

Continuous and discontinuous object correspondence are most often associated
with tracking in single sensors. Correspondence across sensors is useful in multiple
object tracking or tracking in extended environments.

Normalization of regular properties

We will also discuss methods for normalizing certain characteristics of a single camera.
In some cases the normalization corresponds to finding an orthogonal projection of the
data. Properties that can sometimes be normalized are velocity, size, and height. For
instance, after normalization the estimated size of an object far from the camera and
near to the camera should be approximately equal. This decreases the complexity
of modeling object and activity types. Also, with as little as one labeled velocity,
size, or height, it is possible to know the exact velocity, size, or height of objects
in the environment. This will increase the amount of transfer of models from one
site to another. In the case of Euclidean camera calibration, this normalization is
unnecessary, but in less ideal situations this technique is useful.

3.1 Ideal object correspondence

Every observation, or, is given a unique index, x. To define an MOS, we introduce
a labeling function, U(x), which specifies a unique identifier for each observation
that corresponds to a particular object. If the true object labels Ux were known, an
ideal solution would be U(x) = Ux. If U(x) = x, each observation would be from a
unique object. If U(x) = const, every observation would be from the same object.
Since these labels are not specific to particular objects (e.g., 'bob', 'john', etc.), any
permutation of the unique labels would be equivalent.
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Figure 3-2: This figure shows three objects tracked through two sensors and the re-
sulting correspondence matrix. Object 1 is tracked only in camera A. Object 2 is
tracked in camera A and camera B. Object 3 is tracked through occlusion in camera
B. Instantaneous, continuous, and discontinuous correspondences are highlighted in
the example correspondence matrices below. In the upper right, an ideal labeling func-
tion has assigned [O1,...,05] to one unique identifier, [06, ... , 015 to a second unique
identifier, and [016, ... , 020] to a third unique identifier. Regardless of the values of
(U 1 , U2 , U3), the full correspondence matrix in the lower right will result.
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A multiple observation set (MO S), Mu is a set of observations {0., O, ..., OX}
whose unique label is the same value (u). E.g.,

U(xo) = U(xi) = ... = U(XT) - u (3.1)

The observation correspondences for the complete set of D object observations
can be summarized in a DxD object correspondence matrix, K, where

11 if U(i) = U(j)
Kij . = fUW -UU (3.2)

3  '0 otherwise

An ideal object correspondence system would establish N multiple observation
sets (MOSs) that correspond to observations of each object. Each set would contain
all observations of that object regardless of when it occurred or which sensor made
the observation. Every car, every person, every piece of trash would have a single
corresponding MOS. Nothing about the true identity of the MOS would be available,
but every observation in each MOS would correspond to a single object. Whenever
that object appeared in any sensor, the system would assign the corresponding object
observation to the proper MOS by assigning it the proper label.

Without perfect tracking in a completely observable system or user supervision in
a restricted domain (e.g., face recognition with a small domain), there is little hope
of ever achieving this ideal goal. On the other hand, the objects in the world obey
certain regularities. For instance, only one object can exist at the same point in space
at the same time. Also, the state of an object must vary continuously through time.
This chapter discusses how to exploit these and other regularities.

Figure 3-1 shows the three essential problems in establishing object correspon-
dence. A simple example of correspondence labeling is shown in figure 3-2.

Section 3.2 discusses the problem of instantaneous camera calibration including
the three possible cases of overlap between cameras and how to differentiate between
them. Section 3.3 discusses the problem of continuous object correspondence-tracking
objects given continuous observations of the objects. Section 3.4 discusses problems
related to re-establishing correspondence when the observations are not continuous.

3.2 Instantaneous (Multiple camera) Object Cor-
respondence

Instantaneous object correspondence can be simply stated as determining which pairs
of observations taken from two cameras at the same time result from the same object.
After some discussion of related research, we cover three different cases of camera
overlap.

Related research

Tracking in extended scenes using distributed cameras is a difficult and interesting
problem. Many individuals have attempted to model relationships between tracked
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objects in multiple cameras without significant overlap [30] and cameras with sig-
nificant overlap [35]. This chapter is concerned with scenes with significant overlap
between cameras in which tracked objects are present.

Javed et al. [26] modeled the projections of the location of the feet of pedestrians
as they leave one camera in the other camera. In previous work at the MIT Al
Lab[35], we have shown that for scenes with a single plane of correspondence we can
estimate the corresponding homography robustly despite the large number of false
correspondences resulting from multiple objects being tracked at the same time. We
have also shown that time alignment can be robustly estimated in such cases where
exact time synchronization is not available. In later work[35], we showed that these
homographies are robust enough to estimate camera positions when three pairs of
cameras are present.

The field of reconstruction has also applied statistical estimation to finding multi-
ple planes of correspondence [65, 4], but the characteristics of correspondence points
of tracked objects are fundamentally different than visual correspondence features.
When trying to find multiple planes of correspondence in a pair of cameras with-
out rough camera calibration or previous knowledge, the search is vast [37] With
knowledge of the orientation of the plane of correspondence [65], the problem be-
comes easier. With moving cameras [65] adjacent frames are taken from very similar
positions and the problem is a local search.

In the following sections, we investigate the characteristics of tracked object cen-
troids in multiple cameras as correspondences. The characteristics of tracked object
correspondences allow greatly reduced number of false correspondences and more
robust estimation of reliable sets of correspondence pairs. This is followed by a dis-
cussion of the different types of correspondence models.

Overview

The goal of instantaneous object correspondence is to determine whether it is more
likely that a pair of observations from two cameras resulted from the same object or
two different objects. Given a pair of observations from two cameras, (OA, OB), it is
possible to model this likelihood ratio as

f(OA, OB) P(OA, OBI(A) 1(B)) (3-3)
P(OA, OBl(A) I 1(B))

_ P(OA, OBl(A) = 1(B)) (3.4)
P(OA)P(OB)

p(OAIOB, l(A) = l(B))p(OB) (3.5)
P(OA)P(OB)

p(OA|OB, l(A) = 1(B)) (3.6)
P(OA)

(3.7)
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(a) (b)

Figure 3-3: This figure shows images from two cameras viewing the same area. (a)
shows the reference image with a point marked. (b) shows the second image. (c) and
(d) are the second image with a distibution superimposed of the possible locations of
the corresponding observation given epipolar constraints and homography constraints
respectively.

where OA refers to the observation in camera A and l(A) is the unique label of
observation OA. This assumes that the locations of two observations of different
objects in different sensors are independent. Thresholding this value allows one to
make an instantaneous judgment of whether two observations resulted from the same
object in the world. P(OA) can be computed simply by measuring the likelihood
of observing an object at any particular location. p(OA|OB) is the correspondence
model. In many cases, P(OA lOB) for a given value of OB would be well-approximated
by a unimodal Gaussian or a multi-modal Gaussian because objects tend to lie near
surfaces.

This function could be estimated non-parametrically. Unfortunately, there will be
false correspondence pairs and we do not want to rely on seeing a sufficient amount
of correspondences in the reference camera to reliably estimate a two dimensional
probability distribution on the second camera conditioned on each point in the first
camera. Hence, parametric approaches which take advantage of the geometry of the
real world are advantageous.

The first subsection discusses full external camera calibration using objects as
correspondence points. This can only be accomplished when the location of the
centroid of objects can be determined reliably in two cameras simultaneously and
those detections include objects spanning a three dimensional subspace relative to
the noise in measurements. We briefly discuss this case and show a simple example,
but as this is not a focus of this thesis and is a relatively rare case, we do not cover
details of the computation.

The second subsection discusses the common case where two cameras overlap but
there are not enough reliable correspondences to reliably estimate external camera
calibration. In this case, homography correspondences have been proven useful. A
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homography is a one-to-one mapping of points in one camera to points in the other
camera assuming that the points lie on a plane and each camera uses perspective
projection.

The third subsection is concerned with the case of a pair of cameras with no
overlap. This case is generally the most common.

Observation correspondence pairs

Calibrating cameras using correspondence of visual features is an extremely difficult
problem in computer vision. Most of this difficulty arises from the correspondence
problem (e.g., knowing which feature corresponds to which feature in a set of im-
ages). Once this correspondence can be established, there are established methods
for calibrating cameras.

Without knowing something about the relative camera positions, this task is
nearly impossible because searching the space of all possible correspondence map-
pings is computationally infeasible. Many variants of RANdom SAmpling and Con-
sensus (RANSAC) algorithms [13] have been created to attempt to solve this problem
reliably.

Thankfully, tracking correspondences are very different in character. First, the
number of tracking correspondence pairs increases with the amount of time that
tracking occurs. If there is not enough data to calibrate properly, one needs only wait
until additional objects pass through that area of the environment. This means that
the density of correspondence points can be much greater than the density of pixels.

Second, potential correspondences must occur at the same time. One need not
consider potential correspondences of observations that occur at different times. If
multiple objects are being tracked at once, one must search over the possible corre-
spondence matchings of those pairs. Of course, as per the previous point, this data
could be neglected in favor of data captured when only a single object was being
tracked in both cameras.

Third, instantaneous and continuous correspondence are coupled. Correspon-
dences of tracked objects that do not match for the entire tracking sequence need
not be considered. Tracking can also be improved by considering the observations of
the objects in multiple cameras if an effective model of correspondence is available.
The following sections describe how to derive these models starting with the most
restrictive and most powerful case.

3.2.1 External camera calibration

In the ideal case, the available object correspondence pairs enable external camera
calibration. Given the internal parameters, the relative locations and rotations of the
camera can be estimated. Faugeras [12] and Hartley [18] did early work on camera
calibration for computer vision. Bundle adjustment is a well-established technique
for determining the camera geometry given the correspondence pairs (see [58] for a
survey).
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Figure 3-4: This figure shows the epipolar constraints on two calibrated cameras.

If external calibration is possible and correspondence can be reliably estimated, the
positions of the cameras and the positions of the objects in the region of redundancy
can be determined up to a single Euclidean transformation. Apart from a translation,
rotation, and scaling, the exact position of the objects and cameras in the world
would be known. Given the estimates of these parameters, normalized measurements
of object height, approximate area, speed, and direction could be extracted. These
normalized measurements could be used to build general models of appearance, size,
and behavior that would transfer from one environment to another.

Unfortunately, external calibration is difficult from noisy estimates of object cen-
troids. Our experimentation in this area has not proven robust to noise in our mea-
surements of object centroids, regular errors caused by shadows or occlusions, and
degenerate data which lies mostly on a single plane.

Given a calibrated camera system, what is known about the two cameras is the
epipolar geometry. Given the location of an observation in one camera, m, the cor-
responding point in the second camera, m', is restricted to lie on (or near) the corre-
sponding epipolar line given by the epipolar constraint

mFm' = 0 (3.8)

where F is the fundamental matrix. This is illustrated in Figure 3-4. As was stated
earlier, the locations of objects in the world tend not to occupy the majority of the
three dimensional space. Even in the case of a fish tank or birds flying, it is not
possible for fish to move outside of the tank or birds to fly through buildings or solid
ground. Further, most cases are more restrictive because most active objects are
constrained by gravity.

Because this is often the case, we often fit the reconstructed data with planes in
space. This results in a homography of points in one camera to points in the other
camera.

M' = Hm (3.9)

66



Unified Virtual Camera

Figure 3-5: This figure illustrates how a correspondence model of three overlapping
cameras allows an object to be tracked through multiple sensors in an extended
environment.

3.2.2 Planar correspondence models

Because external calibration is not always possible and often not robust, we have
investigated estimating a less complex model of correspondence directly- the homog-
raphy. A homography is a projective mapping of points in one camera to points in the
other camera. Usually homographies are used to represent correspondence between
two views of points that lie on a plane.

In previous work[35, we have shown that it is possible to robustly estimate a
single homography that maps tracked objects from one scene to another assuming
those objects lie on a single ground plane in such cases where a single plane exists in
the area of overlap between two cameras. This allows us to estimate correspondence
between the tracking sequences in multiple cameras.

This section discusses extending this simple method to more general situations
where multiple planes of correspondence are visible in more than one camera. These
planes can result from the existence of multiple true planes of correspondence from
multiple surfaces (e.g., a shopping mall) or objects of vastly different heights. Also,
different sources of error in the estimates of the centroids (e.g., shadows, occlusions,
adverse tracking conditions, etc.) can cause regular correspondence errors.

This estimation would necessitate simultaneously estimating outlier points, a seg-
mentation, and the underlying homographies. This more general solution would en-
able establishment of correspondence anywhere piece-wise linear projections are valid.
Further, the segmentation and homographies may be useful for directly inferring some
functional understanding of the scene.
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Robust estimation of a single plane of correspondence

In previous work [35, 56], we have illustrated the ability to calibrate cameras that
are very far apart using object centroid estimates as correspondence points. Figure
3-5 shows a three camera views, the corresponding data, and the resulting unified
reference frame with a single object being tracked through the entire scene.

Two corresponding points, m and m' are related by a homography transformation
as follows.

x' hil h12 h13 i xi

y ~oc h2 1 h22  Yi23  (3.10)
1 hi31  32 h33  1]

Appendix B shows the details of estimating a homography from correspondence
points.

It is potentially possible to improve the sampling of points that are used to hy-
pothesize homographies in a number of ways. First, the second tracking sequence can
be interpolated to better estimate correspondences to the exact times of the reference
sequence frames. Second, points can be sampled more locally in space. Arguably
this is not an advantage when the entire scene is modeled by single homography. But
in the applications which potentially contain multiple planes, this would effectively
reduce the number of false correspondences. It is also possible to use points from
sequences that are at least locally consistent. Finally, it is possible to use point pairs
from sequences which exhibit at least one very similar correspondence (and hence
may be of similar height) increase the chances of determining a homography that
matches the data.

Robust estimation of multiple planes of correspondence

Unfortunately, in most tracking environments, a single plane is often not sufficient
to model the correspondences expected in the scene. This may be the case if the
points are actually on multiple different planes or if errors in centroid estimates that
are roughly linearly related to the position of the object are present. For example, if
a person is occluded by a in one camera, the centroid of the person will be linearly
biased by the amount of occlusion the person is undergoing, but the second camera
will not be affected. This is a case where a homography can be useful even though
there is no true analogous point in three dimensional space that corresponds to both
centroids.

3.2.3 Cameras with no visual redundancy

The final case is both the most common and most difficult to detect. This is the
case where two cameras have no visual overlap. For instance, a camera tracking in
Rome, Italy and another in Boston, Massachusetts will never see the same object at
the same time. Unfortunately, there will be a parametric model of correspondence
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Figure 3-6: This figure the speed and effectiveness of four types of state estimation
including, maximum likelihood estimation, multiple hypothesis tracking, CONDEN-
SATION, and full density estimation.

that may be predictive of locations that co-occur. We do not discuss how this would
be accomplished, but recognize the value of this detection process in automatically
modeling multiple camera correspondence.

3.2.4 Future work

Experimentation in a wide range of environments is required to determine how effec-
tively cameras with no visual redundancy can be characterized. With multiple planes
of correspondence, one could determine which planes are parallel and determine where
planes intersect. This information could be useful in modeling a scene, understand-
ing more about the activities in a scene, and "passing off" from one correspondence
model to another.

3.3 Continuous correspondence

Perhaps the most important type of correspondence for determining sets of obser-
vations that correspond to the same object in the environment is continuous cor-
respondence. Continuous correspondence involves estimating the state of an object
continuously through time given noisy observations. Correspondence techniques em-
ploy various levels dynamics modeling in this regard.

Also, there is a gradation of discreteness of state estimation in tracking contin-
uously through time. On the one extreme is maximum likelihood state estimation
where only the most likely state of the object in each frame is estimated. On the other
extreme is a full density estimation. Figure 3-6 illustrates that there is a tradeoff that
is made in reliability and speed.

Maximum likelihood estimation is the fastest technique. It involves simply esti-
mating the most likely state at each point (with a local search) in time given the
previous estimate and the current observation. Multiple hypothesis tracking adds
the complexity of considering multiple possible states when uncertainty exists. CON-
DENSATION takes this a step further by estimating a sampled density over the
possible states. Full density estimation is simply evaluating the full posterior of the
state at every time step.

We have chosen a simple implementation of multiple hypothesis tracking (MHT).
Below we explain our method, implementing a version of MHT is not a focus of this
thesis.
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3.3.1 Multiple Hypothesis Tracking

Establishing correspondence of object observations between frames is accomplished
using a linearly predictive multiple hypotheses tracking algorithm which models both
object position and object size. We have implemented an online method for seeding
and maintaining sets of Kalman filters.

At each frame, we have an available pool of Kalman models corresponding to
each object being tracked and a new available pool of object observations that could
be observations of those objects in the current frame. First, the models are proba-
bilistically matched to the object observations that they could explain. Second, the
connected regions which could not be sufficiently explained are checked to determine
if new Kalman models should be initialized. Finally, models whose fitness (as deter-
mined by the inverse of the variance of its prediction error) falls below a threshold
are removed.

Matching the models to the object observations involves checking each existing
model against the available pool of object observations which are larger than a pixel
or two. All matches with relatively small error are used to update the corresponding
model. If the updated models have sufficient fitness, they will be used in the following
frame. If no match is found a "null" match can be hypothesized which propagates the
model as per its dynamics and decreases its fitness by a constant factor. If the object
reappears in a predictable region of uncertainty shortly after being lost, the model
will be re-established. Because our classification system requires tracking sequences
which consist of representations of a single object, our system generally breaks tracks
when objects interact rather than guessing at the true correspondence when it is not
certain.

The unmatched models from the current frame and the previous two frames are
then used to hypothesize new models. Using pairs of unmatched object observations
from the previous two frames, a model is hypothesized. If the current frame contains
a match with sufficient fitness, the updated model is added to the existing models.
To avoid possible combinatorial explosions resulting from noise in the estimation of
object observations, it may be desirable to limit the maximum number of existing
models by removing the least probable models when excessive models exist. In noisy
situations (e.g. ccd cameras in low-light conditions), it is often useful to remove the
short tracks that may result from random correspondences. Further details of this
method can be found at http://www.ai.mit.edu/projects/vsam/.

3.4 Discontinuous object correspondence

Once the continuity of observations has been broken, it is necessary to rely on longer-
term characteristics of the object. This is not a focus of this research, but it will be
discussed in the following three sections.
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3.4.1 Dynamics-based models

The first type of discontinuous correspondence modeling is a short-term estimate
of the object's state given the current object dynamics. In some environment, short
occlusions or distractions can result in an object being tracked as two separate objects.
The multiple hypothesis tracker mentioned in the previous section already exploits
this type of regularity.

3.4.2 Appearance-based models

The second type of discontinuous correspondence modeling involves estimating the
appearance of the object. This can be accomplished by a correlation model, color
histogram model, or any other type of appearance-based model. The following chap-
ter introduces an method for decomposing the description of pedestrian images into
component regions that exhibit regularity. The resulting concise description of the
pedestrian could be useful in this regard.

3.4.3 Behavioral models

The final type of discontinuous correspondence modeling involves characterizing the
activities that objects may be performing. If by concatenating two tracking sequences,
the resulting tracking sequence is consistent and not detected as an atypical obser-
vation in an environment, it is likely that the two sequences resulted from the same
object in the world. The following two chapters will discuss way that objects appear-
ance, shape, and activities can be characterized as well as how anomalous activity
sequences could be determined.

3.5 Normalizing regular properties of objects

Under certain circumstances, some properties of objects can be normalized. For in-
stance, the height of an object can be normalized by assuming that they objects lie
on a plane in the world and are being recorded through a perspective transformation.
While this is not a focus of this thesis, it is an important consideration in model-
ing in multiple environments and building concise models of object appearance and
activities.

3.6 Tracking discussion

On an SGI 02 with a R10000 processor, this method can process 11 to 13 160x120
frames a second. On a 1Ghz Pentium 3 processor, the method can process 20-25
320x240 frames a second. The variation in the frame rate is due to variation in
the amount of foreground present. Our tracking system has been effectively storing
tracking information for five scenes since 1997[61]. Figure 3-7 and figure 3-8 show
accumulated tracks in two scenes over the period of a day. While quick changes in
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cloud cover (relative to a, the learning rate) can sometimes necessitate a new set
of background distributions, it will stabilize within 10-20 seconds and tracking will
continue unhindered.

The tracking system has the most difficulty with scenes containing high occur-
rences of objects that visually overlap. The multiple hypothesis tracker is not ex-
tremely sophisticated about reliably disambiguating objects which cross. Adding
more complex dynamics or appearance templates[16] could help in this regard. This
problem can be compounded by long shadows, but for our applications it was much
more desirable to track an object and its shadow and avoid cropping or missing dark
objects than it was to attempt to remove shadows. In our experience, on bright days
when the shadows are the most significant, both shadowed regions and shady sides
of dark objects are black (not dark green, not dark red, etc.).

The tracker was robust to all but relatively fast lighting changes (e.g. flood lights
turning on and partly cloudy, windy days). It successfully tracked outdoor scenes
in rain, snow, sleet, hail, overcast, and sunny days. It has also been used to track
birds at a feeder, mice at night using Sony NightShot, fish in a tank, people in a lab
environment, and objects in outdoor scenes. In these environments, it reduces the
impact of repetitive motions from swaying branches, rippling water, specularities, slow
moving objects, and acquisition noise. The system has proven robust to day/night
cycles and long-term scene changes.

This chapter and the last explain how we can reliably determine sets of observa-
tions of the same object in the environment (Multiple Observation Sets) over long
periods of time, across multiple cameras, and in widely varying conditions. The fol-
lowing chapter discusses how MOSs can be exploited to estimate models of classes
of object observations. Without MOSs we would be required to rely on a standard
unsupervised clustering mechanism (e.g., a mixture of Gaussians). We will show an
approach that relies primarily on co-occurrence of object observations in MOSs to
derive rich models of object type and object activities.
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(a) (b)

Figure 3-7: This figure shows consecutive hours of tracking from 6am to 9am and 3pm
to 7pm. (a) shows the image at the time the template was stored and (b) show the
accumulated tracks of the objects over that time. Color encodes object direction and
intensity encodes object size. The consistency of the colors within particular regions
reflects the consistency of the speed, direction, and size parameters which have been
acquired.
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(a) (b)

Figure 3-8: This figure shows consecutive intervals of tracking on a different scene
than previous figure. Also, this particular day was foggy, then clear, then overcast.
As the templates show, the tracking was relatively unaffected.
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Chapter 4

Co-occurrence based clustering

This chapter discusses a method for clustering observations given sets of observations
of the same object or class of object, referred to as multiple observations sets (MOSs).
There are many situations where multiple observations of the same object or process
are available rather than single observations. Observations may be grouped by hand
or by any process which is allowed to make more than a single observation of a
process. For instance, if an infant is given a new object, it makes many observations
of the object through manipulation using many modalities (sight, touch, smell, taste).
Except in the case of certain psychological experiments, almost all objects a human
being observe in the world can provide sets of observations.

Chapter 3 discussed a method for passively determining sets of observations that
correspond to the same moving object. Our multiple camera adaptive background
tracking system described in the previous two chapters has tracked over 10 million
objects since 1997. The resulting 10 million MOSs are much more informative than the
corresponding billion or so individual observations. Each MOS exhibits some of the
variation that one type of object undergoes. While some clustering mechanisms rely
on separable densities or a continuous, separable manifold of examples, our method
relies on the variability in the MOSs.

Consider the millions of silhouettes of tracked objects in an urban environment.
Given a set of 400 prototype silhouettes that are representative of the millions, some
prototype silhouettes would be similar to pedestrians of different sizes and in different
positions. Others would be similar to different vehicles of different sizes at different
angles. Over time, tracked objects will tend to present EITHER like the set of
pedestrian prototypes OR like the set of vehicle prototypes but rarely both. For
example, it is certainly possible to see two views of a car at different angles under
different lighting in a single MOS, but unless our tracking system has made a grave
error, there should never be an observation of a car and a person in the same MOS.
This information is what enables Multiple Observation Learning.

This chapter discusses how Multiple Observation Learning (MOL) exploits the ad-
ditional information available in MOSs. Our method uses Vector Quantization (VQ)
to develop a codebook of observations that are representative of the entire set of
observations. Using this codebook to represent our continuous observations, we can
accumulate joint co-occurrence statistics of the observations in the codebook that
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Figure 4-1: This figure shows a single frame from a typical scene and the information
which recorded for the two moving objects. The fields which are used for the two
classification examples are labeled.

tend to occur within the same MOSs. Finally, we perform hierarchical clustering of
the observations in the codebook using the accumulated co-occurrence data. This
classification probabilistically clusters the codebook observations into sets of obser-
vations that tend to occur in the same MOSs and separates codebook observations
that do not generally occur in the same MOSs. In our silhouette example described
above, it would probabilistically cluster codebook observations into pedestrian and
vehicle clusters.

This chapter begins with some discussion on previous work in clustering. In
Section 4.1, Multiple Observation Learning (MOL) is introduced using an artificial
example with discrete integer observation values from one to ten. This section covers
accumulating co-occurrence statistics, estimating the model parameters, and classi-
fying examples given the model. Next, a continuous example is introduced to explain
the complexities of using this algorithm with continuous-valued observations. This
section explores the trade-offs of different methods of discretizing continuous observa-
tions. Also, issues and assumptions are covered including computational complexity,
storage complexity, convergence, the assumption of independence of samples in MOSs,
normalization techniques, and identifiability.

Section 4.5 shows some examples of classification on tracking data. As shown in
Figure 4-1, for every frame that an object is detected its unique identifier (assigned
in the last chapter), its location (x,y), speed/direction (dx,dy), and size are recorded.
Also, an image of the object and a binary motion silhouette are cropped from the
original image and the binary difference image respectively. As mentioned in the
previous chapter, some of these values can be normalized and mapped to a more
global (universal) coordinate system. Two sets of experiments are discussed that
perform classification based on the {x,ydx,dysize} representation and the binary
motion silhouette representation using literally millions of training examples. These
experiments result in a concise description of the clusters of activities and object
types respectively.

The remainder of this chapter discusses a co-occurrence based image representa-
tion and its application to detection, alignment, and factorization of a class of images
(pedestrian images). The factorization mechanism is nearly identical to the previous
co-occurrence based factorization. Appendix C has details of the computation in the
form of pseudo-code for the benefit of the reader.
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Figure 4-2: This figure shows relational supervision vs. labeling supervision.

4.1 Background in clustering and classification

The different types of clustering and classification can be characterized by the type
and amount of supervision available. Given only a set of data points and no super-
vision, one is restricted to unsupervised learning approaches. Unsupervised classifi-
cation can be effective in clustering data according to their class if the data fits a
simple parametric model or is relatively separable. Unfortunately, in our experience
with perceptual data this is rarely a reasonable assumption.

Supervision for classification tasks generally refers to supplying class labels for
the data points. Given class labels for the set of data points, supervised classifi-
cation attempts to determine a function that indicates the class of any new data
point. Relational supervision refers to supplying relational information about pairs of
data points. In our case, a correspondence system establishes identity relationships
between the data points.

Figure 4-2 shows many different classification approaches plotted based on the
amount of relational and labeling supervision they employ. The vertical axis de-
scribes the amount of labeling supervision that is available. This covers a spectrum
of approaches from completely unsupervised approaches where no labels are asso-
ciated with any data points to completely supervised approaches where every data
point is assigned the proper label. The horizontal axis describes the amount of rela-
tional supervision that is available. If all pairwise identity relationships are defined,
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data points can be trivially grouped based on identity and this problem reduces to
supervised learning with unknown labels.

There is an associated cost in creating the classification systems in figure 4-2.

Ctotal = Caquire * numData + CIabel * numLabels + Creatio * numRelations (4.1)

where Caquire is the cost of acquiring data, Clabde is the cost of labeling supervision,
Crelation is the cost of providing relational supervision. Our goal is to minimize this
cost while maximizing the functionality of our system. In the case of perceptual data,
the cost of acquiring data and the cost of some relational labeling is extremely low
while the cost of supervision is comparatively large. One can acquire billions of data
points without intervention. One can obtain correspondence relationships between
a significant portion of them without intervention. Unfortunately, labeling even one
percent of those observations by hand would take a moderately talented graduate
student months of continuous effort.

Previous work

There are countless examples of tracking system that perform predetermined classifi-
cation tasks on tracked data, e.g. human vs. vehicle; walking vs. running[3]; walking,
marching, line-walking, and kicking[10]; etc. Our system does not perform predeter-
mined classification tasks.

Many generally applicable unsupervised clustering mechanisms assume a locally
smooth manifold of points or that the entire densities are separable. In practice,
we have learned that these are particularly poor assumptions for object observations

(e.g., images, silhouettes, positions, velocities, sizes, or the entire description) because
of poor lighting, occlusions, and other factors in acquiring real-world data. In our
outdoor, 24/7 tracking system, all object types will have some observations that can
only be described as small, dark, noisy, erratic blobs.

Our method is similar to the work of Johnson and Hogg [27]. They begin their
process by on-line Vector Quantization on the input space. They then quantize again
into a predetermined number of probability mass functions (pmfs) over their discrete
states. While a significant number of these pmfs will result in tight clusters of activity
and shape, it is unclear how to relate two inputs that are grouped into separate pmfs
or to select the proper number of pmfs.

Our hierarchical classification involves a step that has the flavor of Normalized
Cuts and its many derivatives (see [51]). It has discrete nodes (defined by the code-
book prototypes). It has edges which represent pair-wise distances (or dissimilarities
or costs) between them. In addition, the goal is to determine two sets of nodes that
have the largest distances (or weighted distances) between them. However, that is
the extent of the similarity. Our pairwise measurements are probabilities, not "dis-
tances." Those similarities are not directly related to the coordinates or properties
of the nodes, but rather are a function of the co-occurrence of the observations. Our
"cut" does not produce two discrete sets that minimize the cut "similarities." It
produces two distributions that both explain the observed joint statistics and are
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relatively dissimilar.
Our method can be described as estimating a joint distribution as a mixture

of products of marginal distributions. Recently, Lee and Seung citekey:seung have
popularized this approach. Thomas Hofmann's previous probabilistic treatment is
very closely related to our approach. The statistics community has used similar
approaches in the past [11]. Neither of these previous approaches dealt with the
complexity of continuous observations.

4.2 MOL in discrete observation spaces

We will describe Multiple Observation Learning in discrete spaces using a simple,
artificial example. This example involves sets of integer observations from one to
ten. The next section introduces a continuous observation example and discusses the
complexities involved in effectively modeling co-occurrences with continuous observa-
tions.

4.2.1 A simple, discrete example

Given the experiment:

* Place N individuals in a room. Ask individuals to approach the tester and name
S numbers from 1 to 10 and then sit down again. Repeat this test T times.

This experiment would result in T MOSs on the space of [1,10], e.g., {1,4,3,9,4,2}.
This is similar in character to the perceptual observations produced by our attention
and correspondence systems. The goal is to estimate the number of people, their
preferences, and how likely they are to participate in the experiment from the pieces
of paper given.

If the MOS size, S, was one, this would be an unsupervised data set. Each
MOS would contain a single observation that could have been sampled from any
individual. Nothing could be determined about the individuals in the room except
their cumulative probability of choosing any number from one to ten.

If S was very large and the test subjects had individual preferences on the numbers
that they produced that could be represented by a probability mass function (pmf),
the pmf's of each MOS of a particular individual would closely approximate that
person's pmf. If the individual's preferences were sufficiently different from each
other relative to the variation resulting from the sampling process, the pmfs could be
effectively clustered. Hence, it would be possible to determine both the number of
individuals (number of clusters), their likelihood of participating in the experiment
(number of samples in each cluster), and their number preferences (the average pmf
of the cluster). This could even be done if there were many individuals participating
in the test.

Unfortunately, for most problems S must be very large to create a characteristic
pmf that can be effectively clustered and often one cannot control the value of S. As
S decreases, clustering becomes increasingly unreliable. For instance, in the extreme
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Figure 4-3: This figure shows three pmf's for three individual's preferences on num-
bers. The first person prefers low numbers, the second person prefers middle numbers,
and the third person prefers high numbers.

1II
Figure 4-4: This figure shows C after a single
1000 samples as well as the theoretical limit
infinity. Brighter values are higher.

sample, ten samples, 100 samples, and
as the number of samples approaches

example, you may get only a pair of samples from each test subject. But under a
stronger set of assumptions than the previous case, it is still possible to determine the
number of individuals, their likelihood of participating in the experiment, and their
individual preferences of producing the numbers from one to ten.

To illustrate this case, we will assume the sample size is two (S = 2) and the
number of sample sets T is infinite. We will look at two cases involving the three
individuals with profiles shown in Figure 4-3. These three people prefer low, medium,
and high values respectively.

Consider the case where the first person is the only individual in the room. We
assume each observation is an independent and identically distributed (IID) sample
from his pmf. We measure the co-occurrence of each pair of numbers in a 10x1O
matrix. By normalizing this matrix by the number of observation pairs(T), this
resulting matrix C is a joint probability density function of the observation pairs, xo
and x1 , e.g.,

p(i,j) = T(i j)
CiJ Pi7 A T

(4.2)

where T is the number of pairs (MOSs) and T(i, j) is the number of i, j-pairs observed
in the samples. Figure 4-4 shows C after a single sample, ten samples, 100 samples,
and 1000 samples as well as the theoretical limit as the number of samples approaches
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infinity. In the limiting case with only the first person participating, elements of the
ideal co-occurrence matrix are

C* lim (4.3)
T-+oo T

T T (ij)

= lim ( (44)
T-*oo T J

lim (TiTi(i) (4.5)
T-+oo T T J

= p(ci)p(i, jci) (4.6)

= p(c)p(ic)p(jci) (4.7)

= p(ilci)p(jci) (4.8)

where T, is the number of observation pairs from person one, T (i, j) is the number
of i, j-pairs sampled from person one, p(ci) is the probability of person one being
the individual that provided an observation pair (in this case 1), p(i, j c1 ) is the joint
probability of person one providing an i, j-pair, and p(i ci) is the probability of person
one drawing sample i. 1

Now, consider the case were all three individuals are in the room. We can accu-
mulate the co-occurrence statistics of the pairs provided by all three individuals. The
co-occurrence matrix would be

C* -- lim (T( (4.9)
'3 T-oo T

I (T1 (i, j) + T2 (iij + T3(zi,)= lim (4.10)
T +oo T

TcTc(ili)

- lim TcJ) (4.12)
T --+oo T

C3

= p(c)p(i, jIc) (4.13)
C=C1

C3

= p(c)p(i c)p(jIc). (4.14)
C=C1

where c indexes the person. This is simply the sum of the three joint distributions
that would result from single-person experiments weighted by their probability of par-
ticipating. Figure 4-5 shows limit of the co-occurrence matrix if all three individuals

1C is simply the outer product of the pmf of person one with itself. i.e., C = p(i1c)T * p(iJc).
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Figure 4-5: The co-occurrence matrix which would result from the three single person
experiments as well as the experiment with all three individuals. Brighter values are
higher.
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participate equally in the experiment as the number of samples approaches infinity
(T - oo).

The goal of MOL is to estimate parameters which are consistent with the co-
occurrence statistics. Given the number of people, it is possible to iteratively estimate
the p(c) and p(ilc) for each person c that minimize the error between the measured
co-occurrence and the estimated co-occurrence. By analyzing the error for models
containing different numbers of people, it is possible to estimate the correct number
of people. Obviously, this is not always possible. For instance, if two people have the
exact same preferences, they will be indistinguishable. This and other issues will be
investigated further in Section 4.2.5.

The following three subsections cover MOL in discrete spaces. Subsection 4.2.2
discusses how to accumulate co-occurrence statistics given a set of MOSs. Subsec-
tion 4.2.3 discusses estimation of the latent class parameters as well as determining
hierarchical sets of class models. Subsection 4.2.4 discusses how to use the resulting
latent class models to classify MOSs. Subsection 4.2.5 discusses other considerations
in discrete MOL.

4.2.2 Accumulating co-occurrence statistics

Our model for the production of an MOS is simple. There are N underlying latent
classes, each of which is sampled with some prior probability, p(c). An object of
class c, when observed in a camera, produces an observation given some probability
distribution, p(i c). As long as the object is observed, it will produce independent
observations from the same distribution. This model reflects our assumption of the
independence of samples in an MOS.

Our method disregards temporal information in the MOSs and considers them
as multi-sets of independent observations. A multi-set is a set which can contain
multiple instances of the same element (e.g., (1, 2,4, 2,8, 7,...)). Each (ordered) pair
within an MOS (excluding pairing observations with themselves) is evidence that
those observations may result from the same underlying class.

The m multi-sets of observations {M 1 , M 2 , ...M'} are used to estimate a co-
occurrence matrix, C where Cij is the estimated probability that a pair of observa-
tions {Oi, O9} will be from an MOS chosen at random from the m multi-sets.

We have covered the case where all MOSs are pairs of observations (S = 2)
and the probability of drawing from each MOS is uniform. If the size of the multiple
observation sets, S, varies for each sample or some MOSs are more likely to be drawn,
accumulating the co-occurrence statistics must be computed as follows.

First, the matrix of the co-occurrences, C, is initialized to zeros or a prior joint
distribution. Given a multi-set, the element Cij corresponding to each possible pair
of observations (excluding pairing observations with themselves) is incremented by
the inverse of the number of valid pairs in that MOS multiplied by the probability
of drawing from that MOS. Given an MOS, M' = {1 i, x2 , ... , XT}, the element Ci,
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corresponding to each pair {Xa, Xb where a f b}, is incremented by w

(|Mu) b, ia = Oi, Xb = Oj (4.15)
0 otherwise.

where p(Mu) is the probability of drawing from Mu and (IMu2 -JMu!) 2 is the number
of valid pairs in this sequence. Thus

Cij = Y E E w (4.16)
U XaEMu XbEMu

By this definition, the co-occurrence matrix is a valid symmetric joint distribution
over the observation values.

In most cases, p(Mu) is assumed to be uniform (h). This weighs each MOS
equally in the estimation of C. While this was done for our experiments, it would
be possible to weigh the contribution of each MOS. Factors such as the number of
observations, the number of sensors used to collect them, and the certainty of their
correspondence could be used to reduce the effect of unreliable and unrepresentative
MOSs in the estimation of C.

If there was a single underlying class co and infinite MOSs to train, Cj would
converge to p(ilco)p(jIco). With N underlying classes,

N

lim Ciy = E P(c) * A~i IC) * pUI C). (4.17)
T--+ooc=

c=1

Online Estimation

For extremely large streams of data, a running estimate of the co-occurrence is useful.
Without examining the entire dataset, it is not possible to determine exact values
for p(Mu). Online estimation involves aggregating the values into a matrix that is
proportional to C. By using a value 1 (Mu) which is proportional to the correct value
of p(Mu), an accumulation matrix can be estimated that is proportional to C,

Cj = kCi,j= kw (4.18)
U XaEMu XbEMu

C is obtained by normalizing CaccIm by the proportionality constant (k). For the
uniform case, 1 (Mu) = 1 = k (or any constant value) and hence the co-occurrence
matrix is the accumulated matrix divided by the number of MOSs used to compute
it. e.g.,

C = Caccumr/m. (4.19)

This can also be used to estimate the co-occurrence over an exponential window
on the recent past. By increasing the proportionality constant by a factor of (1 + C),

2Pairs are ordered so {a, b} and {b, a} are both valid pairings.
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the current estimate of C is equivalent to the estimate which weighs observations
inversely proportional to how long ago they occurred3 .

4.2.3 Estimating the latent classes

Our classification method attempts to estimate N latent class weights (P(c)) and
observation probability mass functions (P(ilc)) which are consistent with the ob-
served co-occurrence matrix, C. Given the latent class parameter estimates, the
co-occurrence estimate is

N

= P(c)P(i c)jP(j c). (4.20)
C=1

Similar to Hofmann [19] and more recently Lee and Seung [33], we iteratively
estimate the parameters that minimize the kl-divergence between C and C

E = Cjjy log . (4.21)

The corresponding update rule for the weight of each class is

P cx) c p(cxilcpuje) (4.22)

C, N ) (4.23)
\ Ec=1 P(C) *Api IC) *U IjC)

C, z C) (4.24)
\ Ec=1 P(c)p(i, i IC)

= E C2 ,p(clij). (4.25)
i :j

This is the sum of each co-occurrence element, Cjj weighted by the probability of
this particular latent class given that (i, j) observations pair. It is the proportion of
the observed co-occurrences accounted for by the latent class c. The update rule for

3This requires occasional re-normalization of acc""' to avoid the proportionality constant in-

creasing beyond the precision of the computer.
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Figure 4-6: This figure shows the iterative estimation of the three latent class pmfs and
the resulting estimated co-occurrence matrix after 1, 2, 3, 4, 5, 10, 20, 50, 100, 500,
and 1000 iterations. After the first iteration the latent class pmfs are still somewhat
random. By the fifth iteration, the latent class pmfs already resemble the generative
classes used to estimate the co-occurrence matrix.

the class-conditional distribution is

C- -
P'(ilc) oc fi(ijc) (C)P(jjc) (4.26)

=i C NP()*1)UC (4.27)
j ( ~C=*) *Xpilc) * P^1C))

= iC~yli, j) (4.28)

which is the sum of the co-occurrence in row i weighted by the probability the latent
class c given each co-occurrence pair in that row. For instance, if the latent class
probability for class c for an entire row is approximately 1 (that class is most likely
to explain all pairs in that row), f(ilc) ~- Ej Ci, j, which is the measured marginal
probability of observation i.

If the number of latent classes was known, this procedure could be used to estimate
the parameters of the latent class. Figure 4-6 shows this iterative estimation for the
three person problem introduced earlier. The co-occurrence matrix was estimated
with 1000 pairs of observations. Starting from random initial conditions, it quickly
converges to a global maximum. One thousand such trials all converged to the correct
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set of latent class parameters within 100 iterations.
If the co-occurrence matrix is fit with two or four classes, one would get the results

similar to those shown in Figure 4-7. For our simple experiment, the proper number
of classes is the minimum number of classes that produce the minimal error. By
associating a description cost to each latent class relative to the cost of estimation
error, one can determine the number of classes that minimizes the description length
of the co-occurrence data. This type of N-way clustering can be effective in situations
where there are N independent classes of objects.

Hierarchical binary classification

An alternative to clustering into a pre-determined number of clusters is to use hierar-
chical clustering. This can be advantageous in situations where the number of classes
is not known or when some classes are more closely related than others. For instance,
people and vehicles are reasonably discrete classes while vehicles could be described
by a single class or multiple similar classes (e.g, cars, vans, trucks, etc.). Therefore,
one might expect that pedestrians and cars would represent discrete branches of a
hierarchy while the different types of cars would be children of the vehicle class.

Given the entire co-occurrence matrix, two latent classes (c, E {0, 1}) are es-
timated that best approximate the observation co-occurrences as described above.
These root latent classes are used to partition the co-occurrences into two co-occurrence
matrices corresponding to the co-occurrence measurements attributed to each class.

C9. = CP(C, = Oi, j) (4.29)

and

C y Cj,jp (C, = I1Ii, j) (4.30)

These two co-occurrence matrices sum to the original co-occurrence matrix. The
process is repeated on each new co-occurrence matrix producing two sets of new
latent classes, co E {0, 1} and ci E {0, 1}. Each of these latent classes can be used to
again partition the co-occurrences recursively.

C9 = C9.p(co = 0 i, j) (4.31)

= Cjp(co = 0i,j)P(C, 0=ij) (4.32)

Figure 4-8 shows this procedure performed on our example problem. The first
branch results in two latent class models: one for observations of person two and
person three combined and one for person one. The weight of the first latent class is
nearly twice the second. The pmf for the first latent class is approximately the sum of
the pmfs from the two corresponding people. The branch on C0 results in two latent
classes that are approximately the same as the two corresponding individuals' pmfs.
These three latent classes (c, = 1, co = 0, c1 = 1) correspond to the three pmfs used
to generate this data.

Once the parameters for the hierarchy of latent classes have been determined,
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Figure 4-7: This figure shows the iterative estimation of the class-conditional pmfs
and the resulting co-occurrence mnatrix assuming two classes (a) and four classes (b)
after 1, 2, 3, 4, 5, 10, 20, 50, 100, 500, and 1000 iterations. (c) shows the log of the
estimation error for N={2,3,4}.
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Figure 4-8: This figure shows the hierarchical clustering of the "three person" experi-
ment. The first branch separates observations from the first two individuals from the
third. The second branch on the left separates the first and second person. Repeated
trails result in this solution or a solution with person two and person three sharing a
node, but never person one and three sharing a node.
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Figure 4-9: This figure shows values of d for successive binary segmentations.

the leaf nodes of any pruned version of the binary tree describe a set of latent class
models whose weighted pmfs approximately sum to the cumulative observation pmf
and whose co-occurrence statistics sum to the observed co-occurrence statistics.

We prune the tree after any node whose children's co-occurrences are likely to
have been drawn from that node's co-occurrences. There are two significant cases
where this is true. If the weight of either child is very small, the second child will be
very similar to the parent, hence, the co-occurrences will be very similar. If the pmfs
of both children are very similar to the pmf of the parent, their co-occurrences will
be very similar regardless of the weight on the two children. In either of these cases,
further branches are very unlikely to produce interesting results.

The similarity can be quantified by the kl-divergence between the parent co-
occurrence matrix and the weighted sum of the childrens' co-occurrence matrices.

~rarent 0 paen
d = E E( C?(* lkfg (4.33)7j Children (.3

i j ZJ

where Cchildren is the weighted co-occurrence of the two child nodes.

0 children = p(co)C, + p(c1)Cc1 (4.34)

Figure 4-9 shows the values of d corresponding to the segmentation in Figure
4-8 overlaid onto the pruned version of the tree. Figure 4-16 shows an example
of a complete tree before pruning. The next section illustrates how a set of latent
class models can be used to classify MOSs robustly despite potentially ambiguous
observations.
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4.2.4 Classifying an MOS

Classifying an MOS involves determining which class is more likely to have produced
the MOS. The likelihood of a class given an MOS is

p(CIMu) = p(MuIc)p(c) (435)
p(MU)

p(MUIc)p(c) (4.36)
ZdP(Muld)p(d)

p(c) H.,Mu p(XIc) (4.37)
Ed p(d) jx6 Mu p(xld)

This is the maximum likelihood latent class for Mu is

C = argmax p(c Mu) (4.38)
C

p(c) Rxe, p(x~c)
= argmax (4.39)

C Ed p(d)Hfx, Mu p(x Id)

= argmaxp(c) H p(xIc) (4.40)
C XEMU

argmaxlog(p(c)) E log(p(xlc)) (4.41)
C xEMu

= argmax log (p(c)) E N(x = Oj) log (p(ilc)) (4.42)
C XEMu

= argmax log (p(c))EojEMu [og p(i c)] (4.43)
C

where N(x = Oj) is number of observations in Mu that are equivalent to Oi and E
is an expectation.

Figure 4-10 shows two classes, co and ci, which output sets of observations from
one to four. The first class is equally likely to produce observations from one through
three. The second class is equally likely to produce observations from two through
four. Both classes are nearly equally likely to occur. Thus, the production parameters
are

p(ilco) = {3' ',0} p(co) = .5 + e, (4.44)

p(ilci) = {0' ' ' 3} p(ci) = .5 - e. (4.45)
3' 3' 3

Using the maximum likelihood classification policy, an MOS with a single observation
would be classified as class 0 if the observation was in {1, 2, 3} and class 1 otherwise.
This results in - classification error rate. As the size of the MOS increases, the3
classification error decreases because a larger set of observations is more likely to
contain an unambiguous example.

Given a perfect discriminant model for single observations, one could optimally
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Figure 4-10: This figure shows the classification error for a simple example for cluster-
ing MOSs of different sizes. Given more observations, the classification error decreases
unless no model of uncertainty is available when classifying observations, in which case
the error increases.

classify single examples. But in our simple example, the classification error will
actually increase with more observations without some measure of confidence on that
discriminant measure because approximately two thirds of the observations from class
1 will be misclassified.

Figure 4-10 shows the error for these two cases. This example underscores the
importance of a probabilistic class model as opposed to a discriminant model of the
observations. A probabilistic model will always perform as well as a discriminant
model, but it will perform significantly better with larger MOSs when some obser-
vations are ambiguous. As stated earlier, this is often the case in perceptual data.
Alternative pairwise clustering mechanisms are available which do not suffer from
local minima, but they make hard assignments of observations to clusters.

4.2.5 Discrete space considerations

Thus far, we have used explicitly chosen examples to illustrate MOL. This section
explores the assumptions and limitations of MOL.

Estimation, storage, and computational requirements

The number of co-occurrences that are required to estimate the co-occurrence matrix
increases as the square of the size of the observation space, K. In our simple example
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K was ten, but for most interesting problems K is considerably large. The number of
co-occurrences from an MOS increases with square of the size of the MOSs. Thus, the
number of MOSs required to estimate a co-occurrence matrix is proportional to S.

The storage requirements as well as the computational requirements in estimating the
latent class models are also O(K 2 ). These factors will be important considerations in
the continuous MOL section.

Embedding of discrete observations has no effect on results

Note that there is no assumption about the embedding of the discrete pmf. The
"three person" experiment could involve three people who prefer even numbers, odd
numbers, and primes respectively. The people could also be asked to give their favorite
animals as long as their samples could be described by a pmf over dogs, cats, cows,
horses, etc.

Convergence

Convergence of this type of minimization procedure has been previously investigated
[34]. But there are no guarantees of convergence to a globally optimal solution.

Non-IID data

Our experiments involved independent and identically distributed samples. This is
not the case for most perceptual observations. For instance, a person tracked for
only two frames will result in an MOS with two similar silhouettes rather than two
completely random person silhouettes. A person tracked for a single frame in two
different cameras may produce two independent silhouettes, but that pair of silhouette
is more likely to reoccur in that pair of cameras than a random pair of silhouettes. In
a particular scene, each vehicle may only show variation across a small set of angles.

Thus, one class of object can result in more than one cluster. Fortunately, these
clusters usually have a significant probability of producing some of the same obser-
vations and will often be clustered in similar branches of the hierarchy. A case where
this would not be true is if a scene contained two roads at different angles and no ve-
hicles were observed moving from one road to another. In this case, there is no direct
visual evidence that the vehicles on one road are similar to vehicles on the other road.
After correcting for a planar projection, the object size and speeds may be closely
related, but in general this situation would require user-provided supervision.

Identifiability

Given infinite data, if our estimated latent class parameters exactly match the pa-
rameters of the production model, the error will be minimized. Unfortunately, the
inverse is not true because multiple latent class models may result in identical co-
occurrence matrices. This is obvious when considering multiple classes that have
identical observation pmfs.
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Figure 4-11: This figure shows two two-class examples outputting over three output
observations. The blue example produces a unique co-occurrence matrix. The red
example shows two sets of model parameters that produce the same co-occurrence.

As a simple example, consider a coin flip experiment. Imagine taking every coin
from a coin press and flipping it twice. Given an infinite number of coin flips, our
co-occurrence matrix will converge to Cei, representing the joint distribution of coin
flip pairs.

Because there are only two output observations (heads and tails), the co-occurrence
matrix has four elements with three free parameters because it sums to one. Even
with a single type of coin, little can be determined about the system. If there is
only one type of coin, the joint distribution should be completely independent (the
joint is the exact product of the marginal distributions). If the joint distribution is
not independent (given infinite samples), there must be at least two types of coins
with different biases. The only identifiable case with two coins and two observations
is where one class produces only the first observation and the second produces only
the second. In all other cases, multiple latent class models produce exactly the same
co-occurrence matrices and additional knowledge is required. For instance, if the
weight of the two classes of coins is known, it is possible to estimate the latent class
parameters for the system.

Figure 4-11 shows two two-class models in a three dimensional output space. The
pmfs for two generative models are shown by pairs of blue and red arrows. The
blue model produces a unique co-occurrence matrix. The red model produces an
ambiguous co-occurrence matrix. By altering both p(ilco) and p(ilci) by the proper
amount in any direction in the subspace defined by the two points and altering the
class weights, an identical co-occurrence will result.

In multi-class problems, any set of latent class pmfs that can all be altered in a
direction within the subspace defined by the same set of pmfs without moving any
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pmf off the probability simplex will result in a non-unique co-occurrence matrix. The
blue example is unique because moving both points in either direction would force
one point off the probability simplex. Obviously, any production model in which
one class pmf is not necessary in defining the minimal convex region containing all
pmfs does not produce a unique co-occurrence matrix. A sufficient condition for
production model identifiability is that each latent class have one observation that it
alone produces.

4.3 MOL in continuous observation spaces

If the observations are continuous, it is not possible to estimate co-occurrence statis-
tics because two identical observations may never occur. This may also be the case in
extremely large observation spaces. Also, the amount of storage required, the amount
of data necessary to estimate a co-occurrence matrix, and the computational require-
ments increases with the square of the size of the observation space. In these cases,
it is necessary to determine a discrete representation for the MOSs by grouping local
observations together.

4.3.1 Uniform tiling of the observation space

A trivial way to accomplish this is to tile the space of observations into equal sized
regions. All observations in each region are treated as the same discrete observation.
If the "three person" experiment was altered to allow people to provide continuous
values, it would be necessary to quantize the space in order to collect co-occurrence
statistics. To quantize this range to the same values as in the previous experiment
(1, 2, 3, ...10), we can introduce those values as codebook prototypes. Each continu-
ous observation is represented by the index of the nearest prototype. The discrete
probability mass function (pmf) given person c is

p(Xc) = f p(yc)dy (4.46)

where x can take on the values of integers from one to ten, p(ylc) is the continuous
probability density function (pdf) of class c (person c). If the approximation to
the continuous density resulted in the pmfs shown in Figure 4-3, this experiment is
exactly equivalent to the previous experiment. In the final section, we will show that
our method is invariant to this tiling in as much as p(xlc) ~ p(ylc).

Unfortunately, simply tiling high-dimensional input spaces will often result in poor
pmf approximations to pdfs unless the regions are very small. But, if the tiling is
fine, many of the regions of the space will contain few observations. Regions that
contain few samples will not produce reliable co-occurrence statistics and will result
in an inefficient encoding. Representing co-occurrence statistics using an inefficient
tiling increases the storage and computation requirements.

For these reasons, using vector quantization to determine a representative set of
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Relative Velocities of Objects
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Figure 4-12: This figure shows artificially produced histograms of velocities of pedes-
trians, vehicles, and an unknown mixture of the two velocities profiles. The vertical
axis denotes the velocity in the direction of movement. Positive values are forward
and negative values are backward. The horizontal axis denotes the velocity in the
direction perpendicular to the direction of movement.

prototypes tends to increase performance. This enforces the constraint that each
region contain approximately the same amount of data. In the Subsection 4.3.3, we
introduce a class-conditional tiling which determines a set of regions which represent
the data and contain mostly observations from one class.

4.3.2 Codebook generation

The goal of codebook generation is to determine a set of K prototype observations
which can be used to efficiently represent a set of continuous observations. Given this
set of prototype observations, each observation in an MOS can be represented by the
index of the most similar prototype. Thus the problem is reduced to the previously
covered discrete MOL.

The codebook must be kept reasonably small because of computational, storage,
and estimation limitations. The codebook should be large to increase the expressive
power of the resulting latent class models. The codebook should be representative of
the observations so elements of the codebook are not wasted representing observations
that rarely occur.

In our previous example, an MOS of continuous values from one to ten (8.2, 1.8,
1.2, 4.0138, ..., 2.3) would be represented as (8,2,1,4, ..., 2). The tiling could be made
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Figure 4-13: This figure shows three approximations of pdfs using the same number
of prototypes. The first line shows: the tiling of the space and the original pdfs for
pedestrians, vehicles, and a mixture of the two classes. The following three lines
show approximations using 400 prototypes using a uniform distribution, a random
distribution, and a distribution that is representative of the data.

finer to make the discrete probability mass function (pmf) a better estimate of the
continuous probability distribution function (pdf). But if it is made too fine, the co-
occurrence matrix will be extremely large and computation of the latent class models
will be prohibitive. Also, as the size of the co-occurrence matrix increases so does the
relational supervision requirements.

Figure 4-12 shows a less trivial example. Relative velocity profiles for two types
of objects are shown-people and vehicles. From the velocity probability distribution
functions (pdfs), it is apparent that vehicles move faster than pedestrians but pedes-
trians are more likely to change their direction and less likely to walk backwards.
Both classes are likely to stop, although people exhibit more noise when stopped
because they are less stationary than vehicles.

There are many ways to produce a codebook of prototypes for this two dimensional
space. Figure 4-13 shows the approximations resulting from three distributions of 400
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random uniform representative
Li-error .2395 .0059 .2159 .1914 ±.0084
L2-error 9.5598x10- 6  8.2583x10- 6 5.0707x10 -6

ki-divergence .0937 .0543 .3829

Table 4.1: This table shows the pmf approximation error for the three sets of prototypes
shown in 4-13.

prototypes: a uniform distribution, a random distribution, and a distribution that is
representative of the data. Table 4.1 shows the errors of the pmf approximations to
the true probability distributions.

Assignment to a uniform distribution of prototypes results in a uniform tiling of
the space. It can be performed using a simple hash function. The error is always larger
using 400 random prototypes as opposed to distributing the prototypes uniformly in a
grid. While kl-divergence is minimized for the uniformly distributed prototypes, Li-
error and L2-error are minimized for the representative prototypes. Further, as shown
in Subsection 4.4 the representative prototypes enable better latent class estimation.

Online codebook generation

There are many methods of developing codebooks of prototypes that are representa-
tive of the data (see [15] for a discussion). For the quantity of data and the number
of prototypes available to our system, an off-line method, such as K-means, is not
feasible on today's hardware. To allow our system to handle large amounts of data,
we have chosen to use on-line vector quantization.

The simplest method of on-line vector quantization is to initialize the codebook
randomly with K prototypes centered at existing data points. Then, take single data
points, find the closest prototype in the codebook, and adapt that prototype towards
the data point using a learning factor, a. This process is repeated for millions of
data points as the a value is slowly decreased until the prototypes are stable and
represent an approximately equal amount of data. The continuous observation spaces
we encountered did not require complex annealing strategies.

We occasionally encountered an initialization problem. Prototypes seeded on out-
lying data points may be stranded representing only that data point. We circum-
vented this problem with a method similar to Johnson and Hogg[27] which enforces
that each prototype represent the same amount of data. Over time, stranded data
points account for larger regions of the input space until they represent new data
points. The prototypes are then adapted towards the new data points until they
represent as much data as all the other points. This restriction can be softened in
situation where there are very common observations.

Once a codebook is generated, it is used to represent continuous data points,
i.e., continuous observations are represented by the indices of the nearest prototype.
Given the desired size of the codebook, the goal of quantizing is to determine a
set of prototypes which best represent the dataset. Our results were produced with
codebooks of 400 prototypes. More complex spaces (e.g. color image space) would
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necessitate either more prototypes or more complex prototypes.
In high dimensional observation spaces with complex class pdfs, it may be diffi-

cult to create an effective codebook of prototypes. If all the representations in the
codebook are equally likely to result from all the underlying classes, the resulting
pmf approximations will be equivalent. For example, if none of the representations
in your codebook is more likely to result from a person than a vehicle, there will be
no possibility of using those representations to differentiate people and vehicles.

While this may seem unsettling, we are encouraged by our ability to generate
large codebooks. Large codebooks are usually troublesome because as the size of the
codebook, K, increases, the amount of data needed for effective codebook generation
increases on the order of K. Also, the amount of data needed for estimating the
co-occurrence statistics increases on the order of K2 . Since our system automatically
collects and processes data, we have hundreds of gigabytes of tracking data available.
And, our method converges as the amount of data increases rather than suffering from
over-fitting, because more data will result in a better estimate of the co-occurrence
matrix.

An area of high data point density may accumulate a large portion of the proto-
types, leaving few prototypes for the rest of the input space. In some cases, it may
be desirable to have a large number of prototypes in the high-density areas because
those regions may be the most ambiguous regions of the input space (e.g. traffic at an
intersection). In other cases, the areas of high density may arise from uninteresting,
repetitive input data (e.g. scene clutter) and there is usually no benefit to wasting a
large portion of your prototypes in that region. We currently filter most of the MOSs
whose observations were captured in less than a few seconds. This filters most of the
repetitive motions in the scene before MOL begins.

4.3.3 Associative mixture of Gaussians (AMG)

In the following section, we have illustrate that classification performance generally
improves when using prototypes that are representative of the observations. Classi-
fication performance is often significantly better when using a set of prototypes to
represent each class. Figure 4-14 shows an example where this is the case.

If the latent class of each MOS was known and sets of Gaussians were assigned
to represent each class, we could maximize the likelihood of the data under a set of
independent mixtures of Gaussians.

M

P(x) = 1 p(x~j)p(j)jj (4.47)
j=1

where 6 ij = 1 if observation i and Gaussian j are from the same class. If the class
assignments of both the observations and the Gaussians were known, this would
simply reduce to a mixture of Gaussians estimation for each class using only the
observations and the Gaussians assigned to that class. Unfortunately, neither the
observation or Gaussian class is known, but as shown earlier in this chapter it is
possible to estimate both.
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Figure 4-14: This figure shows two concentric circle distributions of slightly different
radius (a). Using standard codebook generation (b), each prototype represents sig-
nificant portions of both classes of observations. Prototypes are labelled with their
most likely latent class, but most of these prototypes are nearly equally likely under
each class. This results in poor latent class estimation and poor classification. Using
a separate set of prototypes for each latent class (c) results in significantly better
classification. (d) shows the result of Associative Mixtures of Gaussians.

We have illustrated that it is possible to determine the latent class probabilities
given the number of classes, an assignment of observations to prototypes, and co-
occurrences of those observations. This allows us to determine an expected value of
6ij as

E[6i,j] = Ep(cjx,g) = I p(cjx)p(cjg) (4.48)
C C

This expectation is one or zero if there is no uncertainty of the class of the observa-
tions or the Gaussians. Using this estimate of 6,j, it is possible to do a maximum
likelihood estimation of the parameters of the likelihood given in Equation 4.47. Af-
ter re-estimating the parameters of each of the Gaussians, some observations may
be assigned to different Gaussians, thus the co-occurrences must be re-estimated and
the latent classes must be determined again. Because a single iteration of estimation
is not likely to change many of the assignments, it is not necessary to start from
random conditions each time or to wait until full convergence. Both the estimation of
the latent class and the estimation of the mixture parameters can continue in parallel.

By Bayes Rule,

_p(glc)p(c)P(c~g) p(g ) (4.49)
p(g)

p(g~c)p(c)
c (gjc)p(c) (4.50)

and p(clx) is the likelihood of the class given the current observations MOS given in
Equation 4.37.
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Figure 4-15: This figure shows the effect on classification performance of different
tiling methods (a), number of training MOSs (b), training MOS size (c), test MOS
size (d), and number of prototypes in codebook (e). Each graph shows the classifica-
tion error for a binary classification problem assuming the clusters were labeled with
the most likely class. Large error bars resulted from convergence variability. Each
experiment is discussed in Section 4.4.

4.4 Performance factors

This section discusses the many factors that affect the performance of Multiple Ob-
servation Learning (MOL) including type of tiling, number of training MOSs, size
of training MOSs, size of test MOSs, size of codebook, and overlap of latent class
pdfs. Each of these will be discussed in the following subsections using the previous
(two-ring) latent class example and other simple examples to illustrate their effect.

Figure 4-15(a) shows classification results with different values for each of the
above factors. Except where noted, these experiments involved codebooks containing
25 prototypes. There were 20 MOSs that contained 20 observations used to train the
system. The test classification was performed on 500 MOSs with 4 observation. The
Associative Mixtures of Gaussians tiling was used except where noted. In all cases,
two latent classes were assumed.
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Type of tiling

Figure 4-15(a) shows the performance of the MOL system using five different tilings.
The first three tilings are uniform tilings of 25 prototype observations in which the
data falls into approximately 8%, 36%, and 96% of the tiles. This illustrates the
effect of sparsity of the data in the space. If the observations are sparse, the uniform
tiling may not have enough prototypes in the regions near the observation to have
the discriminability necessary to differentiate classes. This becomes a very important
issue in high dimensional spaces.

The last two tilings are straight K-means prototypes and AMG prototypes. As
shown in figure 4-14, a K-means prototype will tend to represent nearly the same num-
ber of observations from both classes whereas the AMG prototypes tend to represent
more observations from a single latent class. This is results in improved classifica-
tion performance. For every experiment we performed with more than one or two
dimensional observations, uniform tilings were too inefficient. In most cases, AMG is
not required which is fortunate because it must be performed in batch with all ob-
servations being accessed in each computation cycle. We use a set of representative
prototypes in most cases.

Number of training MOSs

As the number of training MOSs increase, performance tends to increase and the vari-
ability in the results tends to decrease. With very few MOSs, the class-conditional
pmfs are not representative of the latent class pmf and therefore the training classi-
fication is poor. Figure 4-15(b) shows this tendency.

Size of training MOSs

As the size of the training MOSs increases, the estimates of the latent class pmfs
becomes more reliable. This also affects the estimate of the latent class of the MOSs
and can result in better AMG results. Figure 4-15(c) shows this tendency.

Size of test MOSs

As shown earlier in our simple example, the classification performance increases with
the size of the MOS.

Size of codebook

Without enough prototypes in the codebook, prototypes tend to represent observa-
tions from both latent classes. Thus the co-occurrence matrices do not specify a
unique generative model and latent class weights can be poorly estimated. This can
cause one latent class model to have a significantly higher prior and result in MOSs
from both classes being classified as the same class and, thus, near random classi-
fication error. After enough prototypes are alloted, the performance improves. In
our two-ring example, performance was significantly better if at least 12 prototypes

102



were used. The number of prototypes required increases with the complexity and
proximity of the latent classes.

Overlap of latent class pdfs

As was discussed in Subsection 4.2.5, the latent classes do not have to be separable
but each latent class has to represent one distinct set of observations in order to
reliably estimate the latent class parameters.

4.5 Results

We assume that the attention and correspondence systems will produce sets of ob-
servations of the same objects, or MOSs. For example, a person tracked through the
scene for N frames will result in a set of N images, N binary silhouettes, N positions,
N velocities, etc. Because our correspondence system associated a much higher cost
to false positives than false negatives, our MOSs will rarely contain observations of
multiple objects. Some sequences will be broken when correspondence is uncertain
to avoid the possibility of creating false correspondences. So, except in rare cases,
every observation in an MOS should correspond to the same object in the world. No
two observations will be exactly the same. Each observation shows the object at a
different time or from a different angle.

The following two examples involve creating a classification hierarchy using the
same number of prototypes, the same learning parameters, and the same sequences
produced by our tracking system. The only difference is that they use different
portions of the observation description. The first example classifies activity based on
a 5-tuple (image position, speed, direction, and size). The second example classifies
shape based on a 1024-tuple (32x32 binary silhouettes).

4.5.1 Classifying activities

This example clusters objects based on a representation of their position, speed,
direction and size (x,ydx,dy,s). First, four hundred representative prototypes are
determined. Each prototype represents the objects of a particular size that are seen
in a particular area of a scene moving in a particular direction. Co-occurrences are
accumulated using 24 hours of MOSs from that scene. Finally, the universal pmf (the
true pmf of the entire set of sequences) is probabilistically broken into two pmfs. The
process is repeated to produce a binary tree of height four detailed in Figure 4-16.
Figure 4-17 shows the history of one particular day.

Note that the scene contains a road with adjacent parking spots and a path
through the grass near the loading bay of our building. The binary tree shows accu-
mulated motion templates for each node of the tree. The first break separates traffic
moving in one direction around the building and traffic moving in the other direction,
because objects in this scene did not generally change their direction. The second
break for both branches separates traffic on the road and traffic on the path. While
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Figure 4-16: This figure shows an image of the scene(upper left), the classification
hierarchy (center), and the co-occurrence matrix and normalized pmfs(upper right) for
each element of the tree. The scene contains a road with adjacent parking spots and
a path through the grass near the loading bay of our building. The binary tree shows
accumulated motion templates for each node of the tree. And the co-occurrence matrix
and normalized pmfs show which prototypes occurred within the same sequences and
the probability distributions for each node in the tree (ordered breadth-first). The final
level of the tree specific classes including: pedestrians on the path (one class in each
direction); pedestrians and lawn-mowers on the lawn; activity near the loading dock.
cars; trucks; etc. These classes can be viewed in a Java 1.1 compatible browser at:
http: //www. ai.mit.edu/projects/vsam/Classification/Cclasses/ . Note: the columns
and rows of the co-occurrence matrix have been ordered to make some of its structure
more apparent.
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Classification counts for 9/21/98

Tim e lode 0 node 1 00 01 10 11 000 0001 0010 001 0100 0101011C 011 1000 1001 1010 1011 1100 11011110 1111
12am-1am 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lam-2am 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2am-3am 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3am-4am 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4am-5am 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5am-6am 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
6am-7am 6 3 3 3 0 0 0 3 0 0 0 0 0 10 0 17 0 0 2
7am-8am 18 4 14 3 1 3 0 6 3 3 2 0 1 25 1 44 2 1 2
8am-9am 32 8 24 5 0 2 1 3 11 8 2 0 1 28 3 34 3 3 6
gam-lOam 72 26 46 17 1 7 1 14 12 16 4 1 0 15 3 9 0 5 10
10am-11am 31 10 21 8 0 2 0 6 4 11 0 0 1 4 1 4 2 3 4
llam-12pm 38 21 19 19 9 12 14 1 2 2 6 2 6 5 3 0 5 1 6 1 2 3
12pm-1pm 34 1 1 0 11 6 7 0 0 0 34 4 11 0 5 8
lpm-2pm 7 1 2 0 5 1 3 1 0 0 12 1 11 2 4 2
2pm-3pm 23 27 6 17 15.12 4 0 0 2 9 3 3 2 1 0 14 0 5 0 1 6
3pm-4pm 27 13 14 11 0 3 1 21 3 2 1 0 3 7 3 6 0 5 3
4pm-5pm 30 12 18 24 0 4 0 28 0 3 1 0 0 12 0 9 0 6 3
5pm-6pm 33 16 17 20 1 5 1 32 3 4 1 0 0 14 2 5 4 3 5
3pm-7pm 14 9 6 2 0 1 0 13 1 1 0 0 0 9 0 2 0 1 3
7pm-8pm 4 0 4 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 1
8pm-9pm 4 10 0 4 0 10 0 0 0 0 0 0 4 0 0 0 0 0 1 0 5 4
9pm-lOpm 4 0 2 2 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0
lOpm-1lpm 4 5 0 4 1 4 0 0 0 0 1 2 1 0 0 0 0 0 1 0 2 1
llpm-12pm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bousnd bou nd Se http :llwww.@z .m it. edulprojecqsvsam/ to
view these activity clusters ina Java applet

Figure 4-17: This figure shows how many of the activities were detected on a particular
day. The first two columns correspond to the initial branch. The following four
columns correspond to the next level of the binary classification tree. The last 8
columns are the leaf nodes of the classification tree. Below some of the columns the
primary type of activity for that node is listed. Morning rush hour is highlighted in
green(light gray) and shows traffic moving mostly in one direction. The lunch-time
pedestrian traffic is highlighted in red(gray). The evening rush hour is highlighted in
blue(dark gray) and shows more movement in the opposite direction as the morning
rush hour.
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Figure 4-18: (a) shows the co-occurrence matrix and resulting pmfs. Some of the
prototypes from the person class(b), vehicle class(c), and some prototypes which were
significantly ambiguous(d). In C, the upper left corresponds to silhouettes of people
and the lower right corresponds to silhouettes of vehicles. The vehicles show less
statistical independence because vehicles in this particular scene were only scene as
they passed through particular orientations. If the scene contained vehicles driving
in circles, the corresponding prototypes would exhibit more independence. Note: the
co-occurrence matrix has been ordered to make some of its structure more apparent.

there are some prototype states characteristic of both activities, these two activi-
ties were significantly different and accounted for a significant amount of the data.
Further bifurcations result in classes for: pedestrians on the path; pedestrians and
lawn-mowers on the lawn; activity near the loading dock. cars; trucks; etc. These
classes can be viewed in a Java 1.1 compatible browser at:

http://www.ai.mit.edu/projects/vsam/Classification/Cclasses/.

4.5.2 Classifying motion silhouettes

This example clusters MOSs based on their observation silhouettes. Because of the
dimensionality and sparsity of binary silhouette images, 400 representative prototypes
were estimated that correspond to people, vehicles, and various other moving objects
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or artifacts. After co-occurrence of these prototypes in the MOSs are accumulated,
the hierarchical latent class model is estimated.

The first branch of the hierarchical clustering broke the silhouettes into two rel-
atively discrete classes, people and vehicles. Some of the more blurry prototypes
remained ambiguous because they matched both vehicles and people. These pro-
totypes were shared between the two classes. Figure 4-18 shows the co-occurrence
matrix, the pmfs, and some examples of prototypes from both classes.

Figure 4-19 shows classification of a day of silhouette sequences. After pruning,
the resulting classifier first separated vehicles as they were decisively different from
the other silhouettes. This means that while vehicles appeared at many different
angles within their sequences, few sequences contained both vehicles and people. The
next break was individual pedestrians. The last break separated groups of pedestrians
from clutter and lighting effects. Figure 4-19 shows the distribution of events over a
24 hour period, highlighting the changes in density of pedestrian and vehicular traffic
as a function of time.

The daily activity histograms show some interesting facts. The highest occurrences
of people and cars was in the morning and evening as expected. Groups of people
tended to occur most shortly after noon. The clutter was primarily trees, garbage,
and lighting effects on the side of buildings. The histogram and images show that it
was a very windy morning and the lighting effects occurred near dusk.

4.5.3 MOS classification summary

The previous two examples have shown robust, hierarchical clustering based on shape
and activity. Both examples take advantage of the co-occurrence of observations in
multiple observation sets (MOSs) to estimate probabilistic latent class models. The
next two sections show two additional applications of the MOL framework. First,
by modeling co-occurrence of pixels in regions of regularity in pedestrian images,
we can hierarchically, probabilistically group pixels into regions of regularity closely
corresponding to parts often used for description of individual's appearance. Second,
using spatial co-occurrence of pixel values in magnetic resonance images, we can
estimate latent tissue class models.

4.6 The Similarity Template (ST)

Detection, alignment, and recognition in color images are often approached with
completely different representations of image patches. For detection and alignment
of a class of objects, a representation is sought that is invariant to the color of a
particular object (e.g., edge templates, gray-scale Haar wavelets, etc.). In contrast,
for recognition of a particular instance, often the colors of particular regions are
extremely important in differentiating instances.

An illustrative example is detecting pedestrians as opposed to differentiating
pedestrians. The class of pedestrians can be described as a configuration of a few
regions of regularity surrounded by other regions of regularity. For pedestrians, these
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Figure 4-19: On the left is the 400 silhouette prototypes and the co-occurrence matrix
that resulted from a day's worth of tracking sequences. In the middle is the classifica-
tion hierarchy which resulted, images of all occurrences of each class, and description
of the classes as well as their performance relative to those descriptions. On the right
are 24 hour histograms of the occurrences of each class. See web page for more higher
quality images.
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regions correspond to the shirt, pants, face, and background. But apart from general
characteristics of a person (e.g., size of these regions), the presence or absence of
these regions is not useful in determining which person has been detected. In con-
trast, when trying to describe a particular person in a low-resolution color image, one
would probably describe them with respect to color, e.g., "The white person with
purple hair wearing a white t-shirt, blue jeans, and tennis shoes."

We are interested in modeling such images of classes of objects that are charac-
terized by similarities and differences between image pixels rather than by the values
of those pixels. For instance, images of pedestrians (at a certain scale and pose)
can be characterized by a few regions of regularity that have fixed properties such as
constant color or constant texture within the region, but tend to be different from
each other. We shall refer to sets of images that fit this general description as images
characterized by regions of regularity, or ICRORs.

This section discusses a new representation based on Multiple Observation Learn-
ing (MOL) that models the pairwise similarity between all pixels in an image patch-
Similarity Templates (STs). STs can be used for detection of a class of objects, be-
cause it is invariant to the colors of particular regions. This capability can be used to
align sets of images of similar objects. Further, this representation facilitates decom-
position of the class of images into component regions over which robust statistics of
color can be estimated. These regions can provide a compact factored description of
a class of objects and facilitate recognition as well as refine detection results. Also,
as shown in the following subsection, the factored representation makes occurrence-
based data mining applications more feasible. The generality of similarity templates
makes them an attractive representation for an attention bootstrapping system.

4.6.1 Related work

Object detection refers to detecting an instance of a particular class of object. Some
examples of detection tasks are face detection [46], pedestrian detection [42], and
vehicle detection [42]. Edge templates are often used for class distinctions because of
their invariance to scene lighting and object color. They have similar properties to
similarity templates (STs), but they are based on a measure of local differences as
opposed to global similarities. The Hausdorff and Chamfer distances are mechanisms
for efficiently comparing edge templates with some robustness to slight misalignments
[22].

Principal Component Analysis, Multi-scale Gabor filters, and Haar wavelet func-
tions are examples of projections of images into a lower dimensional space to facilitate
recognition. Generally the coefficients in these spaces show invariance to noise within
regions. Unfortunately, using these to make a general detection mechanism usually
involves a complex supervised training algorithm [42], which is often run on only
gray-scale images. While neglecting color information entirely is arguably ill advised,
many researchers have found that learning on a color image space requires much more
complexity in the classifier and extremely large data sets to train.

Recent work has shown impressive transform-invariant modeling and clustering
for sets of images of objects with similar appearance. We seek to expand these
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capabilities to sets of images of an object class that show considerable variation
across individual instances (e.g. pedestrian images) using a representation based on
pixel-wise similarities, similarity templates.

Jojic and Frey [28] and Miller et al. [38] have investigated transform-invariant
modeling and clustering for images of a particular object (e.g., an individual's face).
Their method can simultaneously converge on a model and align the data to that
model. This method has shown positive results for many types of objects that are
effectively modeled by a Gaussian or a mixture of Gaussians. Their work with trans-
formed component analysis (TCA) shows promise for handling considerable variation
within the images resulting from lighting or slight misalignments. However, because
these models rely on an image set with a fixed mean or mixture of means, they are
not directly applicable to ICRORs.

We would also like to address transform-invariant modeling, but use a model which
is invariant to the particular color of component regions. One simple way to achieve
this is to use edge templates to model local differences in image color. In contrast,
we have chosen to model global similarities in color using a similarity template (ST).

An alternative approach to recognizing an object or class of objects is segment-
ing an image into color regions, representing the regions as nodes in a graph, and
using graph comparison algorithms [47]. This is potentially a more general frame-
work than our system. In our case, we are assuming that the training images are in
rough correspondence as a result of the tracking algorithm. This assumption allows
us to aggregate the similarity statistics across a set of images. Our method does
not require discrete segmentation of each image, avoids the need for a segmentation
threshold, doesn't require a complex graph structure, and has the correspondence
problem implicitly solved.

While representations of pixel similarity have previously been exploited for seg-
mentation of single images [52, 2], we have chosen to use them for aggregate modeling
of image sets. Similarity templates enable alignment of image sets and decomposi-
tion of images into class-specific pixel regions. We note also that registration of two
ICRORs can be accomplished by minimizing the mutual information between corre-
sponding pixels [59]. But, there is no obvious way of extending this method to large
sets of images without a combinatorial explosion.

Subsection 4.6.2 briefly introduces similarity templates in the context of multiple
observation learning (MOL) discussed in the previous chapter. Then, the method of
computing an "ideal" similarity template from perfectly segmented images is covered.
Subsections 4.6.3 covers the mechanics of computing similarity templates without an
ideal segmentation. In Subsection 4.6.4, we cover how to compare and introduce
a method for bootstrapping a static attention mechanism from our motion-based
detection mechanism. Subsection 4.6.6 discusses refining the alignment of the set of
images. Subsection 4.6.7 covers their application to decomposing a class-specific set
of images into component regions. Future avenues of research and conclusions are
discussed Subsection 4.6.11.
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4.6.2 The "ideal" similarity template

A similarity template is functionally equivalent to an object observation co-occurrence
matrix. The primary difference is that rather than representing statistics of equivalent
observations, it represents statistics of equivalent pixels, or pixels that represent the
same region. As we will see later, the same type of decomposition can be used to find
a probabilistic segmentation of the pixels into regions-of regularity.

A similarity template S for an N-pixel image is an NxN matrix. The element Si,
represents the probability that pixel locations pi and pj would result from choosing a
region and drawing (iid) two samples (pixel locations) from it. More formally,

Si Z = p(r)p(piJr)p(pjgr), (4.51)
r

where p(r) is the probability of choosing region r and p(pilr) is the probability of
choosing pixel location pi from region r.

Consider sampling pixel pairs as described above from an N-pixel image of a
particular object (e.g., a pedestrian) segmented by an oracle into disjoint regions

(e.g., shirt, pants, head, feet, background). Assuming each region is equally likely to
be sampled and that the pixels in the region are selected with uniform probability,
then

= (~~± 2  if ri - r(
S 0 otherwise, (4.52)

where R is the number of regions, Sr is the number of pixels in region r, and ri is the
region label of pi. If two pixels are from the same region, the corresponding value is the
product of the probability I of choosing a particular region and the probability (4)2

of drawing that pixel pair. This can be interpreted as a block diagonal co-occurrence
matrix of sampled pixel pairs.

In this ideal case, two images of different pedestrians with the same body size and
shape would result in the same similarity template regardless of the colors of their
clothes, since the ST is a function only of the segmentation. An ST of an image
without a pedestrian would exhibit different statistics. Note that even the ST of
an image of a blank wall (segmented as a single region) would be different because
pixels that are in different regions under the ideal pedestrian ST would be in the same
region.

Unfortunately, images do not typically come with labeled regions, and so com-
putation of a similarity template is impossible. However, we take advantage of the
observation that properties within a region, such as color, are often approximately
constant. Using this observation, we can approximate true similarity templates from
unsegmented images.

4.6.3 Computing similarity templates

Our model for similarity is based solely on color. Since there is a correlation be-
tween color similarity and two pixels being in the same region, we approximate the
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(a) (b)

Figure 4-20: (a) The NxN aggregate similarity template for pedestrian data set. (b)
An alternate view of (a). This view is a width2 xheight2 version of (a). Each sub-
image represents the row of the original AST that corresponds to that pixel. Each
sub-image highlights the pixels that are most similar to the pixel it represents.

corresponding value &, with a measure of color similarity:

= N exp ( j 2), (4.53)NZi

where Ii and Ij are pixel color values, o, is a parameter that adjusts the color sim-
ilarity measure as a function of the pixel color distribution in the image, and Zi is
the sum of the ith row. This normalization is required because large regions have a
disproportionate effect on the ST estimate. The choice of ou had little effect on the
resulting ST.

If each latent region had a constant but unique color and the regions were of
equal size, then as oQ approaches zero this process reconstructs the "ideal" similarity
template defined in Equation 4.51. Although region colors are neither constant nor
unique, this approximation has proven to work well in practice.

It is possible to add a spatial prior based on the relative pixel location to model
the fact that similarities tend to local, but we will rely on the statistics of the images
in our data set to determine whether (and to what extent) this is the case. Also,
it may be possible to achieve better results using a more complex color model (e.g.,
hsv with full covariance) or broadening the measure of similarity to include other
modalities (e.g., texture, motion, depth, etc.).

Figure 4-20 shows two views of the same similarity template. The first view
represents each pixel's similarity to every other pixel. The columns correspond to
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pixels taken in raster order. It is difficult to understand the structure in this template.
The second view contains a sub-image for each pixel which highlights the pixels that
are most likely to have been produced by the same region. Pixels in the shirt tend to
highlight the entire shirt and the pants (to a lesser amount). Pixels in the background
tend to be very dissimilar to all pixels in the foreground.

Aggregate similarity templates (AST)

We assume each estimated ST is a noisy measurement of the true underlying joint
distribution. Hence we compute an aggregate similarity template (AST) as the mean
9 of the ST estimates over an entire class-specific set of K images:

K

si,g = 5k (4.54)
k=1

For this quantity to be meaningful, the RORs must be in at least partial correspon-
dence across the training set. Note that this is a less restrictive assumption than
assuming edges of regions are in correspondence across an image set, since regions
have greater support. Being the mean of a set of probability distributions, the AST
is also a valid joint probability distribution.

4.6.4 Comparing similarity templates

To compare an estimated similarity template S to an aggregate similarity template
S we evaluate their dot product 4:

s(S, 5) = ,353,S. (4.55)

We are currently investigating other measures for comparison. By thresholding the ra-
tio of the dot product of a particular image patch under an AST trained on pedestrian
image patches versus an AST trained on random image patches, we can determine
whether a person is present in the image.

4.6.5 Automatically trained static pedestrian detection

Using our tracking algorithm [55] in our laboratory environment, 32x32 patches cen-
tered on the centroid of walking pedestrians and scaled to include the entire person
were automatically extracted from a live video source. The background images were
extracted from the scenes randomly at approximately the same scale. Examples of
these images are shown in Figure 4-21.

We estimated a single template for the background and a single template for
the pedestrian class. Figure 4-22 shows the aggregate similarity template for the

41n our experimentation KL-divergence, typically used to compare estimates of distributions,

proved less robust.
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Figure 4-21: This figure shows examples of positive and negative training examples
automatically extracted from the tracking system in our laboratory environment.

(a) (b)

Figure 4-22: This is the aggregate similarity template for the pedestrian data set (a)
and for the background data set (b). Pixels are unrolled into a single vector such that
every 32 rows represents the similarities of a single column of the image and the 32
sets of 32 rows represents the entire image's similarity template.
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Figure 4-23: This figure shows the ROC-curve for our detection experiments (a)
with an equal error rate of less that 2%. (b) shows locations of detections for three
images (two of which contain people). To the right of the images are three attention
maps corresponding to: the pedestrian likelihood, the background likelihood, and
the resulting likelihood ratio. The lowest values are black and the highest values are
white in each image.

pedestrian training data set and the background training data set. It is difficult to
infer anything about the structure of the aggregate ST without decomposing it as
discussed in Subsection 4.6.7, but it is possible to observe that the pedestrian ST has
a different structure than the background ST. To those who are more experienced at
observing pairwise image statistics, it may be evident that the background ST shows
little more than that pixels near each other tend to be similar.

A grid of overlapping image patches at the approximate scale of an average pedes-
trian was evaluated based on the ratio of the score (outlined in the previous subsec-
tion) of the current patch on the pedestrian AST versus the score of the current patch
on the background AST.

rs = s(Si, Sped)/ S(SI Sback). (4.56)

When this ratio exceeds a threshold T, a potential pedestrian has been detected.
Figure 4-23 shows an ROC-curve and plots of the likelihood scores for different scenes.
It also shows the locations of the positive detections at the threshold determined by
the equal error rate(EER) of less than 2%. The EER occurs near the threshold of
T that corresponds to the plane where the angle between the sample and the two
models is the same.

Though one might expect even better results for this limited testing domain, we
were pleased by the relative robustness to limb position. Also, detection by density
approximation is difficult and should not be compared to iterative discriminant clas-
sifiers (e.g. SVMs). The reason we have not pursued discriminant methods in this
paper is that they show less promise for multi-class classification and usually require
extensive retraining after any change in the domain (e.g., adding new positive exam-
ples, moving to a new domain with a different type of background, adding a new class
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Figure 4-24: A set of randomly generated "pedestrian" images used in alignment
experiments.

of object to be detected, etc.). Also, it is unclear how to extract the conditional color
model (discussed below) from a discriminant classifier.

By using an iterative learning algorithm which adapted the template in a super-
vised fashion to learn a discriminant function, we could achieve much better results.
Also, it is possible to use the conditional color model to filter some false positives
because the color components are extremely unlikely for pedestrians (e.g., people
wearing orange shirts and orange pants).

The comparison takes approximately one second for each image patch on a Pen-
tium III 500MHz Processor on uncompiled Matlab code. While significant improve-
ments in speed would result from optimized code on better hardware, it is obvious
that this method of detection will have limited usefulness for certain applications
without hardware implementation or hierarchical implementations. We will discuss
optimizations in Subsection 4.6.10.

4.6.6 Data set alignment

Given the ability to detect objects using a Similarity Template, it is possible to in-
vestigate a more difficult problem: alignment of a set of images. To explore this
problem, we created a set of 128x64 images of simulated pedestrians. These pedes-
trians were generated by creating four independently-colored regions corresponding
to shirts, pants, head, and background. Each region was given a random color. The
RGB components were chosen from a uniform distribution [0, 1]. Then, independent
Gaussian noise was added to each pixel (o = .1). Finally the images were translated
uniformly up to 25% of the size of the object. Figure 4-24 shows examples of these
images.

Using the congealing procedure of Miller et al. [38], we iteratively estimated the
latent variables (translations) that maximized the probability of the image STs to the
AST and re-estimated the AST. We were able to align the images to within .5 pixels
on average.

4.6.7 The Conditional Color Model (CCM): Decomposing
the similarity template

This section explains how to derive a factorized representation from the AST that will
be useful for recognition of particular instances of a class and for further refinement of
detection. This representation is also useful in approximating the template to avoid
the O(N 2 ) storage requirements.
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An AST represents the similarity of pixels within an image across an entire class-
specific data set. Pairwise statistics have been used for segmentation previously [52].
As in the previous part of this chapter, our work centers on factoring joint distribu-
tions as in [44, 19, 33, 53]. Rather than estimating two sets of marginals (conditioned
on a latent class) that explain co-occurrence over different types of observations (e.g.
words and documents), we seek a single set of marginals conditioned on a latent vari-
able (the ROR) that explain our co-occurrence data (pixel position pairs). Hence,
it is a density factorization in which the two conditional factors are identical (Equa-
tion 4.51). We refer to this as symmetric factorization of a joint density.

Also, rather than treating pixel brightness (darkness, redness, blueness, or hue) as
a value to be reconstructed in the decomposition, we chose to represent pixel similar-
ity. In contrast to simply treating images as additive mixtures of basis functions [33],
our decomposition will get the same results on a database of images of digits written
in black on white paper or in white on a black board and color images introduce no
difficulties for our method.

As discussed in the previous example, we would like to estimate the factors from
Equation 4.51 that best reconstruct our measured AST, S. Let S be the estimate of
S constructed from these factors. Given the number of regions R, it is possible to
estimate the priors for each region p(r) and the probability of each region producing
each pixel p(pilr). The error function we minimize is the KL-divergence between the
empirically measured S and our parameterized estimate S,

E = $4, log Sj(4.57)
\Sij

as in [19]. Because our model S is symmetric, this case can be updated with only two
rules:

p'(piIr) oc p(pi r) S p(r)p(p Ir)(PiPj, and (4.58)
pip

p'(r) oc p(r) p (pjIr )p (P |r P. (4.59)
p~p p 3Pi Pj (i j

The more underlying regions we allow our model, the closer our estimate will approx-
imate the true joint distribution. These region models tend to represent parts of the
object class. p(pilr) will tend to have high probabilities for a set of pixels belonging
to the same region. We take advantage of the fact that aligned pedestrian images
are symmetric about the vertical axis by adding a "reflected" aggregate similarity
template to the aggregate similarity template. The resulting representation provides
a compact approximation of the AST (O(RN) rather than O(N 2 )).

Rather than performing a straight R-way decomposition of the AST to obtain R
pixel region models, we extracted a hierarchical segmentation in the form of a binary
tree. Given the initial region-conditioned marginals p(plro) and p(pijri), each pixel
was assigned to the region with higher likelihood. This was iteratively applied to the
ASTs defined for each sub-region. Region priors were set to 0.5 and not adapted in
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Figure 4-25: The similarity template and the corresponding automatically generated
binary decomposition of the images in the pedestrian data set. The root node rep-
resents every pixel in the image. The first branch splits foreground vs. background
pixels. Other nodes correspond to shirt, legs, head, and background regions.

order to encourage a balanced cut.
The probabilistic segmentation can be employed to accumulate robust estimates

of statistics of the region. For instance, the mean pixel value can be calculated as a
weighted mean where the pixels are weighted by p(piIr).

4.6.8 Decomposing pedestrian images

Because the data collected at our lab showed limited variability in lighting, back-
ground composition, and clothing, we used the MIT CBCL pedestrian data set which
contains images of 924 unique, roughly aligned pedestrians in a wide variety of en-
vironments to estimate the AST. Figure 4-25 shows the resulting hierarchical seg-
mentation for the pedestrian AST. Since this intuitive representation was derived
automatically with absolutely no knowledge about pedestrians, we hope other classes
of objects can be similarly decomposed into RORs.

In our experience, a color histogram of all the pixels within a pedestrian is not
useful for recognition and was almost useless for data mining applications. Here
we propose a class-conditional color model. It determines a color model over each
region that our algorithm has determined contains similar color information within
this class of objects. This allows us to obtain robust estimates of color in the regions
of regularity. Further, as a result of our probabilistic segmentation, the values of
p(p Ir) indicate which pixels are most regular in a region which enables us to weight
the contribution of each pixel to the color model.

For the case of pedestrian-conditional color models, the regions roughly corre-
spond to shirt color, pant color, feet color, head color, and some background color
regions. The colors in a region of a single image can be modeled by color histograms,
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Figure 4-26: Results of automatic clustering on three components: shirt, pants, and
the background. Each shows the feature, the most unusual examples of that region,
followed by the 12 most likely examples for the eight prototypical colors of that region.

Gaussians, or mixtures of Gaussians. These region models can be clustered across
images to determine a density of shirt colors, pant colors, and other region colors
within a particular environment. This enables not only an efficient factored color
component codebook, but anomaly detection based on particular regions and higher
order models of co-occurrences between particular types of regions. For instance on a
military base, military personnel's clothing may be determined by a number of factors
including the weather, their sex, their rank, and the activity they are intending to
perform.

Application to image indexing

To illustrate the effectiveness of our representation we chose the simplest model for
the colors in each region-a single Gaussian in RGB space. The mean and variance of
each Gaussian was computed by weighting the pixels represented by the corresponding
node by p(piIr). This biases the estimate towards the "most similar" pixels in the
region (e.g., the center of the shirt or the center of the legs). This allows us to
concisely represent the colors of each pedestrian image with 31 means and variances
corresponding to the (2h - 1) nodes in a tree of height h.

We investigated unsupervised clustering on components of the conditional color
model. We fit a mixture of eight Gaussians to the 924 color means for each region.
Figure 4-26 shows the 12 pedestrians with the highest probability under each of the
eight models and the 12 most unusual pedestrians with respect to that region for
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three of the nodes of the tree: shirt color, pant color, and color of the background.
Red, white, blue, and black shirts represent a significant portion of the database.
Blue jeans are also very common in the Boston area (where the CBCL database was
collected). Indoor scenes tended to be very dark, and cement is much more common
than grass. Note: stating that fuchsia, orange, and aqua jackets are statistical outliers
is not meant as a comment on any individual's taste.

Next, we tried some retrieval experiments to verify the effectiveness of the condi-
tional color model. Figure 4-27 shows the responses to some simple manual queries.
The user specified an image and a component of the model. Since the conditional
color model can be precomputed, these queries are performed quickly by a single
evaluation of one mean {R, G, B} value per image. The ROC-curves show that even
these simple queries correspond surprisingly well to very intuitive descriptions of the
images.

4.6.9 Comparison to PCA decomposition

In comparison, a viable alternative to this approach is to use principal components
analysis (PCA) to create a discriminant space. Within the most significant eigenvec-
tors, pixels from the same region will tend to have similar projections. Also, a person
wearing the same clothes would result in similar coefficients as other instances of the
same person.

Unfortunately, there is no obvious way to factor this representation, which makes
it difficult to represent concepts like khaki pants, t-shirt and jeans day, standing on
grass, or Caucasian. Figure 4-28 shows the first 20 eigenvectors of the images in the
data set. Gray-scale images were used because it is difficult to display and interpret
color eigenvectors. The "shirt" is represented in all of the first few eigenvectors either
by its presence or absence (negative coefficients). Beyond the first few eigenvectors,
differences in lighting and correspondence of body parts play a dominant role. Also,
this representation does not enable describing anomalies without complex density
approximation.

4.6.10 Applicability and Future Work

While this representation shows promise, it is not ideal for every problem. First, it
is expensive in both memory and computation. For detection, using a representation
larger 32x32 pixels can be tedious with today's hardware. It is possible to represent
a set of sparse pairwise relationships rather than a full NxN matrix and parallel
hardware would greatly improve this representation. Also, we have discussed above a
way of reducing the memory requirements by factoring the joint into a set of marginal
distributions. Multi-scale templates could potentially reduce the computational cost
of detection experiments. On the other hand, while deriving the conditional color
model is computationally intensive, it only has to be performed once. Once computed,
feature extraction and queries are extremely fast.

A second restriction on the use of similarity templates is that regions must be in
correspondence across a data set. This motivated our use of automatically extracted
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Figure 4-27: This figure shows the results of example manual queries. On the left of
each column are the image and the component that were used for the query. On the
right are the first 9 responses to that query. From top to bottom, the queries can be
described as: standing on grass; standing on cement; faces; non-faces/dark hair; light
blue jeans; blue shirts; and shorts or khakis. ROC-curves illustrate that these simple
queries effectively capture intuitive descriptions of the images: red, blue and white
shirts; red pants, dark pants, blue jeans; and cement/pavement and grass.
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Figure 4-28: This figure shows the first 20 eigenvectors of gray-scale images in the
data set.

pedestrians using motion segmentation to enable static detection. Our detection
mechanism can be used to refine correspondence, but this does not deal with the
variability within the class of objects.

We plan to investigate hierarchical templates that break down a large training set
into sets of templates that have regions in relative correspondence. For instance, three
or four templates should be capable of dealing with the variability in limb position
within a pedestrian's walking cycle. More templates would be needed to handle vari-
ability in viewing angle. This could improve both detection and extraction of factored
models, but is beyond the scope of this paper. We are investigating representing other
classes of objects, such as vehicles and faces, but the inherent variability in shape and
configuration emphasizes the necessity of developing hierarchal templates.

A third restriction is that we are only using a simple measure of pairwise similarity-
color similarity. A completely uniform shirt exhibits similarity between all the shirt
similar to the aggregate model. A black and white checkered shirt exhibits similarity
between the black shirt pixels and similarity between the white shirt pixels, which is
still somewhat similar to the aggregate model. But a "Hawaiian" shirt or camouflage
shirt will exhibit few regularities in the shirt region. In that case, detection would rely
on regularities outside the shirt and lack of regularities between the surroundings and
the shirt. In the future, similarity templates could be applied to different modalities
including texture similarity, depth similarity, or motion similarity.

In order to compete with current object detection mechanisms, we will investigate
applying discriminant methods to similarity templates. While it promises to be a bit
cumbersome, we believe it has the potential to show good generalization. It may also
result in a more understandable representation.

Finally, we will further investigate uses of the conditional color model. First, each
region can be represented by a more complex model like a mixture of Gaussians or a
color histogram. Second, relative values between regions may be useful to determine
features like "is wearing backpack" or "is wearing shorts".

The clustered color model also has application to learning grounded labeling.
Given a set of images of an object type and a set of text or audio descriptions of
those images, the clustered color model will facilitate binding words to concepts as
was done with toys of a single color as in [49].

122



2050

40
100

60
150

80

200 100

250 120
50 100 150 200 250 20 40 60 80 100 120

(a) (b)

Figure 4-29: This figure shows an magnetic resonance image (MRI) (a) and the
corresponding pixel-value co-occurrence matrix measured from Gaussian weighted
image patches (b).

4.6.11 Similarity Template conclusions

While this representation shows promise, it is not ideal for many problems. First,
it is expensive in both memory and computation. Here, we are only using a simple
measure of pairwise similarity-color similarity. In the future, similarity templates
could be applied to different modalities including texture similarity, depth similarity,
and motion similarity.

While computationally intensive, we believe that similarity templates can provide
a unified approach to the extraction of possible class-specific targets from an image
database, alignment of the candidate images, and precomputation of meaningful fea-
tures of that class. For the case of pedestrians, it could detect potential pedestrians
in a database, align them, derive a model of pedestrians, and extract the parameters
for each pedestrian. Once the features are computed, query and retrieval can be done
efficiently.

We have introduced a new image representation based on pixel-wise similarity.
We have shown its application in both alignment and decomposition of pedestrian
images.

4.7 Co-occurrence based tissue class modeling

The final example of Multiple Observation Learning (MOL) is a system which uses
spatially local co-occurrence of pixel values to determine a tissue class model for
magnetic resonance images (MRIs). This final example of MOL shows the generality
of this approach and the promise of this approach for both high-level modeling in
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Figure 4-30: This figure shows four (a), five (b), and six (c) latent tissue class models.

low-level intermediate modeling.
In an ideal situation, an overcomplete segmentation of the MRI could be used to

estimate the probability of pixel-values pairs being drawn from a random segment of
the MRI. Pixel value pairs likely to be produced by the same tissue type would have
higher co-occurrence. Pixel value pairs that were not likely to be produced by any
tissue type would have a low co-occurrence.

Assuming the pixel values in these segments were of one tissue type and exhibited
the expected variation in that tissue type, latent class models estimated from the
measured co-occurrence should correspond to the tissue type models.

Since a tissue-based segmentation is not available, we make the assumption that
the tissue type in a random, local window tends to be uniform. Patches near edges of
tissue regions will contain observations from multiple tissue types, but our assumption
is that these will be statistically insignificant. Figure 4-29 shows an example MRI
image and the co-occurrence of pixel values (1 to 128) in Gaussian weighted image
patches (o- = 5). Because of the large background, dark pixels ([1,7]) have the highest
co-occurrence. The other major peak is in the range of [18,30] which corresponds to
the regions of gray/white matter.

The occurrence values are best fit by two Gaussians. More than two Gaussians
produces unreliable tissue models. Figure 4-30 shows the latent tissue class models
derived from the observed co-occurrences. The four class model roughly corresponds
to models for air, cerebral spinal fluid, white/gray matter, and skin. The addition
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of the fifth model does little to alter the four class model except in splitting the
white and gray matter tissue class into two classes. The addition of the sixth model
introduces another background class while having little effect on the white matter
and gray matter tissue models.

These results are surprising given that no segmentation was available. They show
that the assumption of local uniformity in latent class is reasonable. Since the model is
non-parametric, no scaling or warping of the space would greatly affect these results.
In fact, grayscale pixel values could be replaced by color values or texture values.
This is an area of future work.
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Chapter 5

Meta Modeling

The previous chapters have illustrated how to exploit many different types of structure
in an environment without requiring knowledge about the particular environment
to be specified. We have shown that we can characterize the type of objects, the
activities of the objects, the characteristics of the appearance of particular types of
objects, and other aspects of the environment. This chapter covers automatically
modeling temporal structure as well as characterizing objects and activities that are
not typical of an environment.

Section 5.1 discusses exploiting temporal context. Thus far in this document, the
time an object was observed was not considered. In many environments, the temporal
context of an event can be extremely important. We introduce a system which first
determines temporal context cycles and then exploits the context cycle to characterize
the activity of the scene. In an office setting, we determine that there are 24-hour
and 7-day cycles of activities. Using this information we can characterize activities at
unusual times of the day. We could also characterize days with unusual amounts of
activity (e.g., vacation days and student visit weekends). In a traffic intersection, we
learn the traffic light cycle. This enables detection of events like people running traffic
lights. Section 5.2 introduces four types of anomaly detection: observation anomalies,
co-occurrence anomalies, temporal anomalies, and anomalous activity periods.

5.1 Modeling and exploiting temporal context

The activity model discussed thus far does not incorporate temporal context. In this
section we outline a system to determine and exploit context cycles that result from
repetitive patterns, e.g., traffic cycles, tour schedules, 8-hour factory floor activity
patterns, daily patterns of activity, weekly patterns of activity, etc. Automatically
determining if and when these context cycles exist can facilitate

o Scene classification- Different periods may be characteristic of different classes
of environment. A 75 to 95 second cycle can be indicative of a traffic inter-
section. A two to three minute cycle can be indicitive of a amusement ride.
Strong weekly patterns of activity may be a counter-indication of a natural en-
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vironment. Longer characteristic cycles may be indicitive of different weather
patterns in different areas of the world.

The exact period of a traffic cycle or how that period changes over a daily
cycle could be a very strong indicator of a particular intersection. This would
facilitate the search for pairs of scenes which have direct visual overlap or other
relationships.

" Context-sensitive modeling- It could be advantageous to build seperate
models for different parts of context cycles. The shapes of objects seen dur-
ing the day and at night can be very different (headlights vs. complete vehicle
silhouettes). Other aspects of the model may also vary with the time of the
cycle. Hence, a more articulated model may result from multiple models used
to represent different segments of a context cycle.

We believe that these methods for modeling and exploiting context will also be
useful in modeling other types of context. For instance, weather (e.g. sunny,
cloudy, rainy, etc.) is not cyclic, but it can alter the visual observations of most
objects. Weather can even alter the expectation of the activities that occur in
an environment. For example, people do not have shadows but carry umbrellas
on rainy days. They tend to move faster or loiter in covered spaces.

" Context-sensitive anomaly detection- While some behavior or appearance
can be characterized as unusual regardless of the context, many aspects of
typicality are context sensitive.

For instance, deliveries are typical to most office buildings, but deliveries at 2am
may not be. Also, a person accelerating through a traffic light is not unusual
unless it occurs during the wrong stage of the traffic light cycle. Traffic on a
busy highway may be stop and go during morning rush hour but not in late
evening.

" Finding repetative activities- Often sparse, repeated events occur at certain
times in the periodic cycle of an environment, e.g., food trucks, UPS deliveries,
meter checkers, weekly group meetings, etc. Finding such events would involve
an extremely large search even if only unusual events were used.

Subsection 5.1.1 discusses the method we used to determine the context cycles.
Subsections 5.1.2 and 5.1.3 show examples of daily/weekly patterns of activity in an
office environment and a traffic light cycle in an urban environment shown in Figure
5-1(a) and (b).

5.1.1 Determining the context cycle

In this work, we are assuming that context cycles are locally periodic. A context
cycle with wide variation in cycle timing or extensive drift in the cycle period would
necessitate a more complex model. Our model is well-suited for many significant
types of periodic activity cycles.
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Figure 5-1: This figure shows the two environments used as examples in the cyclic
context modeling experiments. The first is an office environment in which a refrig-
erator was placed that contained inexpensive soft drinks. Most of the activity in
this area was graduate students using the refrigerator or others passing through the
environment. The second example is a traffic intersection in Boston.

First, we define the wrapped distribution of observation activity as

p(iIi-) = E ' (5.1)

where ox is an index of object observations and 6tx,t; is one if the time of the ob-
servation falls within the time interval defined by t3 . For instance, to could indicate
the time interval from midnight to lam in a 24 hour time cycle. To determine if a
probability cycle exists, we evaluate the entropy for an integral number of periods.

e = Z 'PP(i~tD logp(it 3  (5.2)
emax

where T is a set of repeating time intervals which cover the entire period and do not
overlap and emax is the maximum entropy (the entropy for a uniform distribution
over ij-). We used a histogram with 100 equal-sized bins for our experimentation.

Because cycle drift exists even in the most regular cycles (e.g., daylight savings
time), we evaluate average entropy of windows of exactly Q periods. Q must be an
integer value to avoid estimation errors in entropy. If too few periods are used, the
entropy estimates will be too noisy. If too many periods are used, drift will cause
unreliable entropy estimates. In our experiments using three periods produced robust
results.

By evaluating the times that define the minimal entropy configurations, different
potential context cycles can be determined. The following two subsections show
two examples for this process. In the Section 5.2, we will discuss some ways of
taking advantage of the knowledge of the existence and lengths of periods for anomaly
detection.
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Figure 5-2: This figure shows the number of objects detected in the office environment
in uniform time periods over a period of 63 days. The day and night cycles are easily
visible. The weekend days are generally less active than week days. Spikes in activity
result from individuals loitering in the scene for long periods of time.

Figure 5-3: This figure shows the entropy for different activity period lengths in our
office environment. The first significant drop in the entropy is at exactly 24 hours.
Every multiple of 24 hours has nearly the same entropy until the 7 day period.

5.1.2 Office context cycles

Our first experiment involves a camera observing our vision laboratory which contains
a water dispenser, a refrigerator stocked with soft drinks, and a recycle bin. The
empty scene is shown in Figure 5-1(a).

Figure 5-2 shows a plot of the activity levels at that refrigerator for the extent
of the experiment which lasted from February 13, 2002 to present (April 19, 2002).
The 24 hour cycle is readily apparent. Most individuals are in the area for less than
10 seconds. Spikes of activity usually result from individuals who loiter in the area
for long periods of time. Weekend days tend to exhibit less activity except in certain
cases corresponding to our student visit weekend and conference deadlines.

Figure 5-3 shows the entropy for different period lengths. The minimal entropy
corresponds to the 7 day cycle. The next lowest set of minimal entropy periods have
a common factor in the 24 hour cycle. This can be contrasted with the spectra
shown in Figure 5-4. The spectra shows a strong peak for a single day as well as
smaller peaks corresponding to 3.5 days and 7 days. It is less evident that the two
most significant periods could be extracted in this case and it is not obvious that
the frequencies representing the largest amount of power will result in a predictive
model of the amount of activity at different times in the cycle. While the spectra
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Figure 5-4: This figure shows the power spectra of the unwrapped office environment
histogram. After removing the zeroth component that corresponds to the DC offset,
the most significant component is the single day period. The next is the 1/2 week
period. The next is the 1 week period.

shows the desirable property of not representing a cycle at multilples of a cycle, it
may not capture significant power at a particular frequency if the signal is balanced
at that frequency (is not correlated with a sinusoidal signal at the frequency).. For
these reasons, we use the entropy measure to determine the significant periodicities
in the activity histograms.

Figure 5-5 shows the histograms for the activity wrapped in a 24-hour cycle and
a 7-day cycle. The average day shows that the workday at the MIT Artificial Intelli-
gence Laboratory starts after 8am and ends for some at 5pm, for some at 7pm, and
for some in the early morning. There are slight peaks in activity near lunch and a
common afternoon meeting slot. There very little activity from 3am to 7am.

The average week shows less activity on Saturday and Sunday, but probably much
more than in a typical office environment on those days. Friday shows heightened
evening activity due to a open social event on the same floor. The weekend of the third
entire week exhibited heightened activity due to the AI/LCS student visit weekend.
The following two weekends exhibited even less activity than normal due to spring
break.

While the 24 hour and seven day periodicity of tracking data may seem obvious,
there are many situations in which there may be other significant periodicities or
the periodicity may not be significant. Researchers studying the circadium rhythm
of mice with genetic knock-outs are interested in how the activity cycles of these
mice vary when there are no external indications of the diurnal cycle. If our system
was employed to watch wildlife, the 7 day cycle would have no significance. Some
businesses have significant two or three week cycles. Factories often have 8-hour work
cycles. Timed-intersections are an example we will pursue in the next subsection.

5.1.3 Timed-intersection context cycles

Figure 5-1(b) shows an intersection in Cambridge, Massachusetts. Figure 5-6 shows
the amount of activity in this scene for approximately one hour. Unfortunately, the
amount of raw activity does not indicate a strong periodicity for this scene as shown in
Figure 5-7. The minimum entropy is less than 0.35% less than the maximum entropy.
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Figure 5-5: This figure shows wrapped histogram of activity for 24-hour and 7-day
periods and a daily histogram for our office experiment. The amount of activity
is shown in half-hour, one-hour, and one-day blocks respectively. The week period
begins at midnight on Thursday morning. The entire 63 day experiment lasted from
February 13, 2002 to April 19, 2002.
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Figure 5-6: This figure shows the amount of objects that were detected in intersection
environment over a period of approximately and hour. Little can be said about the
periodicity using the class-independent amount of activity.
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Figure 5-7: This figure shows the entropy of the gross activity in the intersection for
different period lengths. Minimal entropy periods correspond to multiple of the 1.25
minute (75 second) period.

This is because the amount of class-independent activity is relatively independent of
the cycle (there are many cars and pedestrians visible during the entire traffic light
cycle). What defines the cycle is the type of activity that occurs during each phase.

After clustering the activities in the scene into eight clusters using a flat 8-way
MOL estimation, a class-conditional entropy can be used to robustly determine that
there is a 75 second activity cycle. The class conditional entropy is the expected
entropy for the activity of each independent class. Figure 5-8 shows the prototype
states for each type of activity as well as the observations that were in MOSs classified
to each of the eight classes.

Classes 3 and 7 are primarily vehicle traffic entering from the east and exiting
west. Class 1 contains primarily vehicle traffic entering from the east and exiting
north. Classes 4 and 6 are primarily vehicle traffic in the opposite direction. Class 2
corresponds to a tight cluster of activity that enters from the west and exits east. Class
8 is primarily traffic exiting east from all directions. Class 5 is primarily pedestrians.

This course clustering of activity results in the activity histograms in Figure 5-9.
The class conditional entropy has a minimum at periods of 1.25 minutes (75 seconds)
and 2.5 minutes (150 seconds). This corresponds to one and two periods of the traffic
light at this intersection during this time of the day. The entropy corresponding to a
single traffic light cycle is more than 6.5% below the maximum entropy.

Figure 5-11 shows the class-conditional wrapped histograms for the 75 second
cycle. Class 6 has a peak at 40 seconds which corresponds to the N-S traffic. Classes
2, 3, and 7 peak after 65 seconds corresponding to E-W traffic. This portion of the
cycle is the longest. Class 5 correspond to pedestrian traffic and shows no periodicity.

5.1.4 Sub-cycle temporal analysis

Within a cycle there are periods of similar activities. We can use the MOL frame-
work to find temporal models of similar activities. Figure 5-12 shows eight sets of 45
histograms corresponding to each activity cluster's activity in each full traffic cycle
in the intersection model. The co-occurrence of similar activities in each of the 75
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Figure 5-8: This figure shows the prototype observations and observations from MOSs
for each cluster of activity. North is up east is to the right. See text for description
of classes.
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Figure 5-10: This figure shows the entropy of the class-conditional activity in the
intersection for different period lengths. Minimal entropy periods correspond to mul-
tiple of the 1.25 minute (75 second) period.
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Figure 5-11: This figure shows the wrapped class-conditional histograms of activity
assuming periodicity of 75 seconds. With only eight clusters of activity to describe
the activity of the scene, the temporal structure is visible. As expected, classes two,
three, and seven seem to operate in phase whereas class 6 is opposite.
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Figure 5-12: This figure shows the amount of activity for within each cycle for all eight
activity clusters (a), which can be used to approximate the temporal co-occurrence
matrix (b). This matrix can be used to determine a soft temporal segmentation of
the traffic cycle into three classes (c).
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seconds can be estimated by using using each histogram as an MOS. Figure 5-12(c)
shows the resulting soft temporal segmentation. Three resulting temporal distribu-
tions represent primarily N-S events, E-W events, and the remainder of the cycle.

5.2 Anomaly detection

Given a new object observation, one can determine the most likely class labels. If a
significant number of similar object observation sets have been observed, the new ob-
ject observation can be characterized by the closest cluster (or its deviation from that
cluster). Unfortunately, most scenes will present events which have never occurred or
occur so rarely that they are not represented in the clustered activities. If the obser-
vation set is not typical for the scene, the closest cluster will not be representative of
that observation set. These observation sets can only be described as anomalous. In
many cases, these anomalous events are of more interest than the regular activities.

We define four types of atypical events. First, an observation anomaly occurs
when an object produces observations that are atypical. Second, a co-occurrence
anomaly occurs when an object produces sets of observations that are well-represented
in the codebook but whose co-occurrence is atypical. Third, a temporal anomaly
occurs when a characteristic activity occurs at an uncharacteristic time. Finally,
anomalous activity periods correspond to periods of heightened or depressed activity
levels relative to what it expected in that context. These four types of anomalies are
covered below.

Not surprisingly, these anomalies correspond to the multiple parts of the prob-
abilistic model of activity in the environment. Each aspect that has been non-
parametrically, probabilistically modeled can be exploited to determine anomalous
activity. The four types of anomalies correspond to outliers with respect to the code-
book, co-occurrence statistics, wrapped histogram, and aggregate histogram.

Observation anomalies

The likelihood of the observations in an MOS is the geometric mean of the likelihood
of the entire set of observations. It is generally easier to compute the log of this
value-the expected log likelihood of the observations.

For the intersection environment the 100 least likely MOSs corresponded to 17 cars
exiting south, 6 pedestrians exiting south, east-west traffic of unusual size(6 buses,
17 trucks, 3 18-wheelers, 4 combinations of vehicles, 11 bicyclists in Boston traffic), 4
groups of pedestrians in crosswalks, 6 individual pedestrians walking/biking/blading
through the center of the intersection, one car nearly exiting south but turning east,
and 26 tracks caused by lighting effects. The fifth and seventh anomalies were staged
activities (walking through the middle of the intersection and back) which were in-
tended to be anomalous. Four other individuals also passed through the middle of the
intersection including two pedestrians, a rollerblader, and a bicyclist. An additional
staged activity (walking over seedling grass) was not detected as anomalous because
it was surprisingly common for that area of the scene.
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Figure 5-13: This figure shows example images
top 100 observation anomaly sets.

and plots of locations and sizes of the

Figure 5-14: This figure shows example images and plots of locations and sizes of the
top 24 co-occurrence anomaly sets.

Images and plots of activities of these are shown in figure 5-13. For the most part,
these anomalies correspond to sequences in which objects were observed where they
were not expected or were of an unexpected size. In some cases, these were the result
of tracking failures. The first four anomalies were lighting variation that was tracked
across the entire scene. Three of the next four were pedestrians moving through the
middle of the intersection. An additional layer of clustering on the anomalies would
allow a quick summarization of many of the major sources of anomalies.

Co-occurrence anomalies

Similarly, the likelihood of the co-occurrence of the MOS is the expected log likelihood
of the observation pairs in an MOS. These anomalies tend to be object state sequences
which show unusual pairs of observations, for instance, a u-turn on a road where cars
don't tend to u-turn. Often these anomalies will highlight tracking failures where two
objects are tracked as the same object. Figure 5-14 shows the top 20 co-occurrence
anomalies at the intersection. Many of them look like regular activities since these
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anomalies can result from hesitation in an unusual place or for an unusual amount
of time. The third and eighth anomalies resulted from tracking failures in which
multiple objects were tracked as a single object.

Temporal anomalies

The likelihood of an MOS can also be characterized by the likelihood of an MOSs of
that class occurring at that time. For a 24-hour periodic environment, the amount
of activity expected at a particular time is the product of the probability of seeing
activity on the corresponding day and probability of seeing activity at that time of
that day. An empiricle estimate of the probability of an activity at the time of a
cycle is the wrapped histogram (e.g., an average day). The probability of activity on
a particular day can be assumed uniform, relative to the amount of activity on that
day, or estimated using a larger context cycle (e.g., a weekly context cycle). We used
a weekly activity model in our experiment.

In our office environment, activity that occurred at unlikely times tended to be on
weekends and early in the morning. Six of the top ten temporal anomalies occurred
on weekends and eight occurred between 11pm and 4am.

Anomalous activity periods

Activity levels can also be used to characterize periods of unusual activity. By evalu-
ating the probability of the locally agregated activity levels, the most atypical activity
periods can be determined. This estimate could be conditioned on temporal context
or an unconditional estimate.

We used a simple context-independent activity model in our office experiment.
Periods of large amounts of activity are most unusual. Other environments may have
an expected level of activity and too much or too little activity would be atypical. In
the office environment, the periods of abnormal accumulated activity corresponded
to individual's who loitered in the region for one reason or another. After grouping
adjacent anomalous periods, the top twenty anomalous periods were primarily people
servicing the equipment, people having technical conversations, and people changing
the environment in some way. Table 5.1 lists descriptions of the top twenty anomalous
periods.

5.2.1 Anomalies on other modalities

These general mechanisms apply to all modalities that can be clustered. For instance,
object silhouette sequences can be characterized by any silhouettes that are of a very
unusual shape, by objects that show variation in shape that is not expected, by an
unexpected shaped object in a particular temporal context, or by aggregate numbers
of objects of different classes in an area.
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Num Description of Anomalous Activity Periods

1 Six people getting water and one person loitering within three minutes.
3 Person #1 and person #2 having conversation about system.
4 Person #1 and person #3 working on the board.
5 Father and boy playing ball.
6 Person #1, person #2, and person #3 talking about system.
7 Person #2 stocking the fridge.
8 Ten people from meeting and two people in conversation research.
9 Person #2 changing the sign and stocking fridge and one conversation.
12 Person #1 stocking the fridge and three person conversation.
13 Person #2 replacing backdrop.

14 Person #2 moving cups and tea supplies to the coffeespace. and making
the first cup of tea.

15 Students getting soda and stocking fridge.
16 Person #2 and person #4 moving water cooler and water into area.
17 Cleaning person taking trash and foosball pilgrimage in background.
18 Eight individuals and two conversations

Person #5 acting suspicious, person #6 sliding on his back across floor,
21 a chair moving across the floor on its own, a hand from behind curtains

and behind chair and under table, person #6 with shirt over head
22 Person #2 in conversation and testing edge of visibility of system.
24 Person #1 and person #7 stocking fridge.
26 Person #8 (not from the building) retrieving the cans for recycling.
29 Person #7 giving demo to young man.
30 Three people in conversation.

Table 5.1: This table lists the top twenty periods of anomalous activity in the office
environment. These periods represent less than .01% of the experiment. (Chris Stauffer
was person #1 and Mike Ross was person #2.)
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Chapter 6

Discussion and future work

The previous chapters have shown general mechanisms for learning and exploiting
the structure of perceptual data. This chapter discusses the motivation and promise
of this type of research.

Section 6.1 covers some of the qualitative motivation for this research. Section 6.2
begins to discuss avenues of future investigation related to or enabled by this research.
This includes improvements in all the major components of the learning system as
well as adding additional capabilities and supervision to the system. Supervision is
useful in enabling a system to communicate its findings as well as allowing a system to
refine its representations to better conform to what operators would expect. Finally,
Section 6.3 covers factors that must be considered when applying these technologies
to different application areas.

6.1 Discussion

Sometimes the reason for a research effort can get lost in the details. This section
discusses some of the issues that motivated this research and will hopefully help
motivate future research in this area. Subsection 6.1.1 discusses some basic motivation
for Perceptual Data Mining. Subsection 6.1.2 casually relates some basic neural
mechanisms to some of the mechanisms discussed in this document.

6.1.1 Motivation

By a modest age, a child has observed more data than the sum total of every exper-
iment in computer vision in history. By some rough calculations, that age may be
as young as one year. The child observes more "pixels" in a few seconds than the
COIL-120 database commonly used for object recognition experiments. The child
observes more "pixels" in a few minutes than the entire FERET database used for
face recognition. The child has a continuous stream of visual input, not individual
observations. Furthermore, that stream of input is highly structured.

The same child is capable of great understanding even before it has had many
objects explicitly labeled for him/her. It is extremely adept at taking advantage
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of implicit supervision available to it. This stands in stark contrast to much of
the research in computer vision where most object detection or object classification
problems are currently approached with a small corpus of explicitly labeled individual
data points and, until recently, little unsupervised data.

The previous paragraph outlines the basic tenets of Perceptual Data Mining.
First-do not try to learn with very little data. Out of necessity in the past, computer
vision researchers collected a few images and manually labelled them. Learning from
such limited amounts of this type of disembodied data is extremely difficult. Anec-
dotally, people say that humans can learn to recognize objects from a single image.
While this statement is true, it must be qualified by "After experiencing more percep-
tual input than has ever been processed by any computer over years of an individual's
life, that individual can ..." This qualification should be applied to most statements
of what a human can do with limited information or training.

Second-use the information available in the continuous stream of data. A funda-
mental characteristic of all intelligent life is that it has exactly one perceptual data
stream available from birth to death. While artificial systems may one day overcome
this limitation, a majority of research in perception today involves data taken com-
pletely out of context. This disembodied data is extremely information poor. This
thesis discussed some of the information available in a continuous stream of data
over extended periods of time. It is not possible to prove that continuous data is
required to develop intelligence, nor is it possible to prove otherwise. Until recently,
the conventional computation, memory, and storage requirements for capturing and
processing real-time video were prohibitive. In the past 5 years, real-time continuous
visual processing has become a reality and enabled this line of research.

Humans innately develop the skill to stabilize moving objects. This is a pre-
attentive process-not requiring active thought. At a very young age by saccading to
an area of interest and stabilizing it, they could receive as input sequences of images
of the same object as the object and its environment change. It is a strong belief of
this researcher that this is a fundamentally enabling mechanism that allows a human
visual system the ability to bootstrap from a primitive state. A significant part of
this thesis centered on quantifying some of the sources of implicit supervision that
can be exploited to create more effective models of the environment.

It is our hypothesis that the visual system cannot develop without continuous
data. Unfortunately, this hypothesis is not provable without horrific experimenta-
tion, but psychophysiological studies on cat visual cortex have proven that without
certain visual stimuli the feline visual system does not develop the ability to repre-
sent those stimuli properly. In particular, it lacks the ability to represent aspects of
the environment which its visual system was deprived of experiencing. What role
continuous visual stimuli play in the development of all known existing visual sys-
tems is not known. We acknowledge that there are other potential requirements for
the development of intelligence that Perceptual Data Mining currently neglects. For
instance, physical interaction and exploration may play an essential role in learning
a powerful, composable representation of objects. This is an area we would like to
investigate in the future.

The final tenet is, in active environments, a large amount of structure of a space

142



can be learned before supervision is used. Any supervised approach is fundamentally
limited by the amount and type of supervision it can acquire. Of course, supervision
and interaction are important in relaying information about what has been learned
about an environment to other entities. But, beginning the process with explicit
supervision is not conducive to a system that learns from very few examples and can
adapt to changes in the task being performed or changing environments.

6.1.2 Biology Aside...

This section will not be satisfying to neuroscientists and is meant only to relate the
elements of MOL to biological artifacts. Two major aspects of the Perceptual Data
Mining system can be simply described as Hebbian learning on a competitive network.
Lateral inhibition and Hebbian learning have been investigated by many biologically
motivated researchers [64, 31].

Codebook generation as competitive learning

Given a set of abstract nodes, F, that represent the values observation features and
a set of nodes, P, that respond to particular local values of them, the node pmax
with the highest response can be adapted to represent its past data as well as the
current observation. After experiencing enough data in this manner, our prototypes
will become more representative and selective to the types of observations in the
particular environment.

We are agnostic to the exact mechanism of competition between the responses of
P and the model of each prototype nodes response. Our only requirement is that an
observation vector is efficiently represented by one of a set of prototypes.

Co-occurrence learning as second order competitive learning

Given aggregate measures of our competitive responses, P, an additional layer of
abstract co-occurrence nodes, C, which respond to distributions of responses on P
could be used to model latent classes. The node cmax which is most characteristic of
the current prototype profile would be adapted to represent its past profiles as well
as the current profile. While this is not as pleasing as the probabilistic model, it may
help one understand how PDM could be implemented in a massively parallel system.

6.2 Future work

This thesis only scratches the surface of Perceptual Data Mining (PDM). This section
discusses many future areas of research related to or enabled by PDM. While they each
will add complexity to a PDM system, they all show promise for adding additional
structure and constraints. This may make some seemingly insurmountable problems
more tractable.
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6.2.1 Attention improvements

Before developing the tracking system discussed in this thesis, we were incapable of
doing any of this research. Once we had a tracking system that was robust enough to
reliably track any object in multiple environments continuously for months, we could
consider types of modeling that would not be reliable with sparse data. The ultimate
tracking system would be a static attention based tracking solution that can track
any object in any video source, but any improvements that result in more reliable and
general tracking would result in greater applicability of the entire Perceptual Data
Mining system. Although we find the results of the tracker encouraging, there are
still opportunities for improvement.

As computers improve and parallel architectures are investigated, this algorithm
can be run faster, on larger images, and using a larger number of Gaussians in the
mixture model. All of these factors will increase performance. A full covariance
matrix would further improve performance. Adding prediction to each Gaussian

(e.g. the Kalman filter approach), may also lead to more robust tracking of lighting
changes.

Beyond these obvious improvements, we are investigating modeling some of the
inter-dependencies of the pixel processes. Relative values of neighboring pixels, cor-
relations with neighboring pixel's distributions, and simple texture measures may be
useful in this regard. This would allow the system to estimate changes in occluded
pixels by observations of some of its neighbors.

Our method has been used on gray-scale, RGB, HSV, and local linear filter re-
sponses. But this method should be capable of modeling any streamed input source
in which our assumptions and heuristics are generally valid. We are investigating use
of this method with frame-rate stereo, IR cameras, and including depth as a fourth
channel(R,G,B,D). Depth is an example where multi-modal distributions are useful,
because while disparity estimates are noisy due to false correspondences, those noisy
values are often relatively predictable when they result from false correspondences in
the background.

Other potential improvements to our single camera system include automated
setting of learning rates, disambiguation of lost tracking sequences using appearance
and behavior models, multi-camera models for correspondence without visual overlap,
and fast scene-wide context switching. If a robust, static attention mechanism could
be bootstrapped, it may facilitate other application areas including database mining
and web mining. To our knowledge, the idea of bootstrapping an attention mechanism
from an active environment is novel.

6.2.2 Incorporating other Modalities

Any sensor can be directly incorporated into the system. Each sensor may introduce
new regularities that can be used to represent the observations. There are many
interesting questions regarding clustering using multiple sources of information.
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Audio

Audio can tell a lot about the type of activity in an environment. Research in Com-
putational Auditory Scene Analysis is centered on the problem of factoring an audio
signal into the components made by different sources. Currently, most CASA systems
run a few orders of magnitude slower than real-time, but simple approaches may work
in the same types of sparse environments where PDM is currently applied.

A system that is capable of segmenting audio from different sources and clustering
that audio could be directly incorporated into the PDM framework. This is an area
that we intend to pursue.

Other sensors

Other sensors that could be used in a PDM system include door sensors, window
sensors, weight pads, motion sensors, beam sensors, IR/Ultrasound tagging sensors,
fingerprint systems, retinal scanners, face recognition systems, voice recognition sys-
tems, ignition sensors, equipment sensors, light sensors, wind/rain indicators, and
temperature sensors. Learning relationships between these sensors and the other
observations may result in a more robust system.

6.2.3 Transferable, factored representations

Our experiments were performed in single environments in which most of the actions
performed were global. There was generally no need to segment the sequences to
effectively represent them. If the object activities were combinations of other actions,
a system that could determine a set of component actions to represent the complex
actions would be a better model for the observations. For instance, segmenting pedes-
trian movement into walking, running, and standing movements may facilitate better
understanding of pedestrian activities.

It would also be advantageous build a representation that can be used in multiple
environments. Not only would such a system be capable of learning from the regular-
ities it observes in all the environments, but it would be able to transfer latent class
models and supervision to the other environments. For instance, if the size and veloc-
ities of objects can be regularized in multiple environments, the scalar factor which
relates sizes in one environment to the other can be estimated. Thus classes based on
size and velocity could transfer if the two scenes contain similar objects performing
similar actions. This could also be used to measure the similarity of different scenes
and cluster scenes which are functionally similar.

6.2.4 Additional context

We have shown how a period context cycle can be exploited to articulate a time-
sensitive model of the objects and activities in a scene. Unfortunately, this will only
work if the context cycles are periodic and regular. A conference room may have
a very regular weekly schedule, but its schedule may include impromptu meetings,
talks, conversations, and passing traffic. Using a timed Hidden Markov Model to
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model different contexts of usage would allow a system to have an understanding of
the major modes of use of an environment and a model of the expected activities
during those contexts.

This context can also be exploited to model the environment. If the major context
modes roughly correspond to different types of usage, the context state has an ad-
ditional information about the environment. This context can be used to determine
when unusual usage occurs. This is also true of the characteristics of the periodic
context cycles. For instance, the timing of a traffic light often changes on a regular
schedule. Two scenes that exhibit the same cycle period at the same times may be
very likely to be related. Also, the existence and parameters of a salient period could
be used to determine the type of scene (e.g., business, nature, traffic light, weekend
getaway, etc.).

6.2.5 Supervision

We have argued that our approach to modeling the active elements of an environ-
ment is general. We have shown numerous different applications of our techniques to
different aspects of perceptual data. We have shown the ability to build a robust, de-
scriptive model of active elements of the environment, but to this point, our approach
has not involved any supervision. Without some supervision our capabilities are lim-
ited to learning models of different types of activities, accumulating statistics of those
activities, learning models for temporal context, and determining unusual activities
under the model. This allows us to compress the data and determine outliers.

This section discusses what can be gained by adding supervision to the system.
First, supervision as a means of evaluating the regularities captured by the model
discussed. Then using supervision to improve the unsupervised model and control
adaptive filtering of tracking events is covered. Finally, eliciting supervision and using
that supervision to enable communication and interaction potentially through basic
language is covered.

Analysis of supervision requirements

One method for evaluating a particular representation is looking at classification
performance as a function of supervision. For some of the hierarchical models we
have shown, a single labeled example from each class is likely to produce reasonable
classification results. Given enough supervision, very simple classification mechanisms
can perform optimally. Because of the high cost of supervision we would like our
system to operate with minimal supervision.

To understand why so much effort was put into unsupervised data mining be-
fore supervision was used consider using the factored representation to solve multiple
tasks. An example of some possible classification tasks in a parking garage envi-
ronment are: vehicle type identification; vehicle color classification; vehicle activity
classification; anomalous activity detection; etc. The information required for some
of these tasks would be considered noise in the other tasks. Any or all of these tasks
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might be useful in different environments. If supervision was used to guide any part
of the process, the intermediate representation may not be of any use for other tasks.

In the future we will investigate properties of graphs of classification performance
vs. supervision. One measure of classification performance is the equal error rate
(EER)'. The supervision could be the number of randomly chosen training examples
from each class. While most current research is concerned with achieving very good
performance with large amounts of supervision, our goal is achieving reasonably good
performance with little supervision (as humans do).

Backpropogating supervision

There is no reason supervision could not be used to improve our unsupervised repre-
sentation. For instance, if a prototype contained two, mutually exclusive class labels,
it could be split or the prototypes could otherwise be altered to increase their purity.
Similarly, if two similar prototypes were functionally equivalent, they could be joined.
Supervision which relates classes could also be applied (e.g., trucks and cars are both
vehicles).

Supervision could also take the form of manually labeling pairs of observation as
equivalent or different. This relational supervision could be useful in cases where
exact class labels are not certain.

The system could also perform exploration. Rather than providing the system
with labeled random examples, the system could ask the operator about particular
examples whose class is uncertain. This is similar to how children tend to learn (e.g.
"Daddy, what's that?" or "Is that a bird?").

Importance and typicality

While we have shown some ability to determine anomalous events, it is apparent that
not all anomalies are interesting and some activities that are not anomalous may of
interest to an operator. An operator could provide two types of supervision about
tagged events-importance and typicality.

If an event occurs that is very similar to a latent class, it could be labeled as
typical of that class. This information could be used to alter the representation to
avoid future misclassification. If an event is labeled as atypical, it should not be
incorporated into the model.

Regardless of the typicality of an event, an operator may or may not place im-
portance on that event. For instance, a delivery may be atypical or typical of a
particular environment but that fact does not bear on whether an operator wishes to
be informed of that event. All typical activities can be easily reported or ignored.

By attempting to estimate these two properties of each incoming observation set,
the most unusual and interesting events can quickly be reported. There may be
situations where multiple sets of typicality or importance functions may be estimated
for different user bases on the same system.

'It is possible to produce surface plots of ROC-curves vs. supervision, but it would be difficult
to compare multiple such surface plots in a single figure.
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Exploration and interaction

As stated earlier, interaction and exploration are important aspects of development.
Our current system is completely passive. A system that can control the sensors,
interact with active elements of the environment, control elements of the environment,
or interact with the the supervision process could create a more effective model of
the environment.

Lexicon mining and binding

Given text or speech segments that describe objects, parts of objects, activities, or
locations, one could learn a lexicon which describes the observations, the binding of
the lexicon to our representation, the grammar for that lexicon, and overall sentence
level meaning. One could determine descriptive words and phrases (e.g. yellow, red,
blue, black, jacket, shirt, shorts, pants, on the grass, on the street, blond, dark hair,
person, man, woman, entering the building, leaving the garage, etc.). One could then
bind these phrases to aspects of our representation while understanding that sets of
phrases describe separate aspects (e.g. color vs. clothing) and that some phrases are
synonyms with respect to our representation (e.g. coat, jacket, shirt).

Deb Roy [49] and Tim Oates[40] have attacked this problem with a bias to-
wards mining the audio representation. Our automatically derived, rich represen-
tation would allow for complex sentences where the grammar becomes important.
For instance, the sentence "a woman standing on the grass with a blue shirt and red
pants." requires knowledge about which component regions the "blue" and "red" are
bound to.

6.3 Applications

There are many potential application areas including security, elder-care, child-care,
wildlife monitoring, home monitoring, traffic statistics, and intelligent environments.
The breadth of these application areas and their conflicting goals accentuates the
importance of Perceptual Data Mining.

6.3.1 Compression and scene statistics

The most straightforward application of Perceptual Data Mining is to record what is
happening in an environment. While this could also be accomplished by a VCR, our
representation can allow us to iteratively reduce the representation while maintaining
most of the information.

Here, we will evaluate the size required to store the tracking information relative
to storing the entire video stream. The size of the video stream is NFT, where N
is the number of pixel in an image, F is the frames per second, and T is the length
of the sequence. By not storing the background, we reduce the storage requirements
by R, the relative number of pixels on moving objects in an average frame. This is
approximately a, where n is the average number of pixels on a moving object and
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d is the "duty cycle" of an object, or the average number of objects on a particular
frame 2. Of course, compression can by applied to the video stream, but compression
can be applied to the tracked objects as well. This is a lossy compression because the
slow changes in the background are lost, therefore it is not possible to reconstruct a
particular image exactly. Fortunately, for all the applications we have considered, the
appearance of the background is usually of little importance in understanding what
is happening.

While this is a significant reduction in storage requirements, it is more interesting
to consider what can be gained using the statistical model we have built. For instance,
if a billion individuals walk across the same path, their object type, appearance, and
activities can be specified parametrically on the model we have estimated. This can
result in more than two orders of magnitude reduction in size of the representation.
This not only allows for massive reduction in storage requirements, but enables data
mining tasks that would not be feasible without such a reduction. While very sub-
tle variations may be lost, this is appropriate for many of the applications we are
considering.

6.3.2 Anomaly detection

For many applications the unusual activities are of most interest. E.g., a vehicle
speeding towards an embassy, a grandmother falling in the bathroom, a child climb-
ing a bookshelf, an accident on a highway, the rare tiger, etc. Unusual patterns of
activities can also be of interest. E.g., deliveries at unusual times, vehicles running
traffic lights, no traffic during morning rush hour, a child getting up in the middle of
the night.

In the future, other types of anomalies could be modeled. Long-term variations
could be of interest. E.g., this year Edna gets up one hour later on average; etc.
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Chapter 7

Conclusions

The Perceptual Data Mining (PDM) framework introduced in this thesis shows promise
in bootstrapping perceptual intelligence. Given a primitive system that detects the
presence of active objects, the PDM system can track objects in multiple sensors,
build models of object shape, build models of activities, build models of object ap-
pearance, build context sensitive models for a given environments, and determine
events that are uncharacteristic of the environment.

The primary contribution of this thesis was to motivate this problem and to ad-
vocate our bottom-up, data-driven framework. Our framework exploits different reg-
ularities of real-world environments in a particular order to build an extremely rich
model of the active objects of an environment. As shown by our broad range of
results, we have achieved this goal while maintaining a generally applicable system.

Secondary contributions include each individual component of the Perceptual Data
Mining framework. The most essential is the adaptive background mixture model.
This general background modeling technique enabled robust tracking of a wide range
of objects in a variety of difficult environments. The presence of this tracker and
the data it produced motivated this research. Our general correspondence framework
incorporated both immediate and continuous correspondence and shows promise for
long-term correspondence.

Multiple Observation Learning (MOL) proved to provide robust, probabilistic
models of many different phenomena including shape clusters, activity clusters, pixel
region clusters, and pixel value clusters. A particular contribution of this work was
the adaptation and analysis of this type of co-occurrence method to continuous ob-
servation spaces. Different methods of representing the continuous observations were
investigated including Associative Mixtures of Gaussians (AMG) which incorporates
our latent class estimates to find a representation of the data which has low entropy
with the latent class.

The strength of Multiple Observation Learning was accentuated by the context-
based analysis and anomaly detection that it enabled. We were able to determine
periodic cycles of activity in multiple environments. We were also able to exploit
these context models to increase our capability of anomaly detection.

The most intriguing aspect of the Perceptual Data Mining framework is the poten-
tial for future investigation and application to real-world problems. Potential applica-
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tions for the Perceptual Data Mining framework have only begun to be investigated.
Improvements in attention and correspondence could allow these techniques to be
applied to everything from personal video to broadcast video. Other modalities will
enable greater depth in the representations built and modeling of interdependencies
between modalities. More general, factored representations will enable more artic-
ulated description of the objects and activities. Supervision would enable directed
adaptation of exploration, faster learning of more difficult concepts, and communica-
tion.
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Appendix A

An efficient, approximate tracker

implementation

This appendix outlines an efficient, approximate version of the single camera tracking
system described in this document.

A.1 Outer loop

Our tracking system involves four components. These component are background es-
timation, connected components, continuous on-line tracking, and storage of tracking
data. The outer processing loop performed for every frame is

1. Background estimation-Determine the foreground pixels.

2. Connected Components-Group pixels into "connnected" regions.

3. Continuous on-line tracking-Track individual objects from frame to frame.

4. Storage of tracking data-Store instances of tracked object each frame.

The following sections describe different aspects of each of the major components
of the tracking system. Each describes how to process an single step corresponding
to a captured frame.

A.2 Background estimation

For each pixel in the frame...

1. Find the first' mixture component that "matches" (is within & of the current
pixel observation).

'The ordering of the components is described later.
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2. If the no match is found, replace the last mixture component with a new com-
ponent centered at the current observation with a large variance and small
standard deviation. This is the new match

3. Determine whether the corresponding mixture component is likely to be a fore-
ground component. If the combined weights of the previous checked components
exceeds a threshold, it is a foreground component.

4. Update the parameters of the components. Increase the weight of the current
component relative to the previous components and adjust the mean and stan-
dard deviation of only the matching component.

5. Reorder the components such that the components that are most likely to be
background are first on the list. We use the value 1 to order the components.

01

This optimizes the search such that most matches take one test.

A.2.1 Notes on adaptive backgrounding

Above is a concise restatement of the information in the previous chapters, but there
are some details that still need to be discussed. Starting from the beginning, the value
of & is dependent on the noise of the camera and the environment. A value of 2.50-
is fairly robust. If the value is too small, the estimated variance mixture component
may decrease until a singularity is reached. If the value is too large, foreground pixel
values may be assigned to the wrong component and corrupt the model. In general
that threshold should be set so there is a small amount of "snow" in the foreground
image. We have considered employing this heuristic to adapt this threshold.

If a match is not found the new component should be initialized at the location
of the current value and the variance should be initializes as larger than a standard
component. If the variance is too large, it will take a large number of frames to
decrease. If it is too small, it may not represent the new pixel observations. Using a
variance that is 2-5 times that of an average adapted component is reasonable.

Updating the components also introduces some complexity. This document de-
scribed two adaptation thresholds for the weight and the parameters (- and A) of
the mixture component. In general, the weight should be adapted more slowly than
the parameters of the component. In fact, it is possible to adapt the mean faster
than the variance to allow for better tracking. It is often advantageous to enforce a
minimum variance. By defining your adaptation coefficient in terms of seconds rather
than frames, these values can be approximated when the framerate is variable.

A.3 Connected Components

Given a foreground image,

1. Pass over the pixel in raster order. If the pixel is a foreground pixel, check
for previously visited pixels within its connection region (usually defined by a
radius) for other (labelled) foreground pixels.
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(a) If no foreground pixels are present, label this foreground pixel with a new
unique label.

(b) If one foreground pixel is present, label this pixel with its unique label.

(c) If more than one foreground pixel is present, label this pixel with the first
label of the first match and record the equivalency of all pixel pairs.

2. Pass over the pixel in raster order again labeling each foreground pixel with the
smallest equivalent unique label. This is also a good time to record sufficient
statistics for moments and bounds of the connected components.

A.3.1 Notes

Bytes are often not sufficient as unique labels. It is important to filter connected
components that are smaller than a few pixels because the background estimation
technique is designed to produce a small amount of white noise.

A.4 Continuous on-line tracking

We have not advocated any particular type of tracking. Thus, we will not elaborate
on what was described in Chapter 3 here.

A.5 Storage of tracking data

Storing completed tracking sequences is more reliable than storing each instance of
each frame. This is because more complex tracking system may alter their unique
labels. For each object in each frame, one can store the image, the foreground image,
the position, velocity, size, and even the depth of pixels if available.
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Appendix B

Estimating homographies

Two corresponding points are related by a homography transformation as follows.

Xh 12 h1 3

y CX h 21 h2 2 h 2 3  y (B.1)
h [ 31 h32 h33  1

To solve for a homography given a set of point pairs, one can represent the three
constraints for each pair of points as three rows row as follows.

XO Yo 1 0 0 0 0 0 -4'O 0
0 0 0 xo Yo 1 0 0 -yO 0
0 0 0 0 0 0 XO Yo -1 0
X1  Yi 1 0 0 0 0 0 0 - X'
0 0 0 xO Yo 1 0 0 0 -y'
0 0 0 0 0 0 X1 Yi

... ... ... ... ... ... ...

yN 1 0 0 0 0 0
0 0 0 XN YN 1 0 0
0 0 0 0 0 0 XN YN

0
0
0
0
0

0 -1 ... 0
... ... ... ...
... ... ... ...
... ... ... ...

S 0 --- -N

0 0 -- yy
0 0 ..- -1

hil
h12

h13
h21

h22
h2 3

h31
h32

a2

CeN

0
0
-1
0
0
-1
0
0

1
0

1

(B.2)

a*b = c (B.3)
(B.4)

If the pairs are weighted into the estimation, a weight matrix can also be computed
as
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w1  0 0 0 0 ...
0 w1  0 0 0 ...
0 0 Wi 0 0 ...
0 0 0 W2 0 ...

0 0 0 0 W2 ...

Thus, the homographies and the alpha values can be computed

b = (Wa)-1 * Wc. (B.6)
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Appendix C

Factorizing joint distributions

Given the estimated distribution, C, and initial estimates of the weights and class-
conditional densities in matrix form (W and Pc) such that W is an NxN matrix
with class weights along the diagonal and P, is an NxK matrix in which each row
corresponds to the pmf of one class. Hence, C = P' * W * Pc.

1. Compute estimated co-occurrence matrix. For example in Matlab,

0=Pc' * W * Pe.

2. Compute estimated element-wise relative error

E = C./C;

3. Re-estimate the parameters of the model.
penew Pc. (Pc E)

CCC

wnew = W.* (Pc *E * Pc)

4. Renormalize weights and conditional pmfs of latent classes.

W = W/sum(sum(W))

P, = Pc./repmat(sum(Pc, 2), [1, K])

C.O.1 Notes

An attempt has been made in this thesis to include aspects of data normalization (see
Chapter 4. In some cases, there is little mention of normalization of co-occurrence
measurements. For instance, document-word co-occurrence matrices are often nor-
malized such that each document represents an equal amount of co-occurrence. Also,
word co-occurrences can similarly normalized, de-emphisized, or removed if the words
are likely to be discriminative or likely to be uninformative.

Also, estimated co-occurrence matricies are often sparse. A zero in the co-occurrence
matrix can cause computation problems.

'If estimated conditional probabilities reach "zero" within the precision of the machine, some
elements of this matrix will be invalid. Invalid elements can be assigned the value of one.
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