308 research outputs found

    Development of a 3G Authentication Based Mobile Access of Health Records: A Mobile Telemedicine Application

    Get PDF
    As our country progresses in its aim to be a developed country by the Year 2020, the field of Information and Communications Technology or ICT is fast becoming the forerunner for the vision. The Internet is used in almost all aspects of life. As for the communications sector, according to Global Mobile Subscriber Database December 2002 report, there are 8,814,700 mobile subscribers in Malaysia with an Annual Growth of 16.6%. Withthe adoption of 3G-communication technology in the coming years, compelling high speed services, reaching up to 2 Mb/s together with improved security features would soon be possible. Through these years in the mobile industry, the health sector has always been neglected. Reason being, the technology could not support the application and it is not so much of a revenue generating business compared to mobile games or sports news. With globalization where the society is always on the move across borders, together with degrading environment conditions and the need for time, instant health services are becoming crucial. Looking into these conditions of mobile adoption and health status, the author intends to develop a solution for a mobile telemedicine application. Kevin Hung (2003) defines telemedicine as the utilization of telecommunication technology for medical diagnosis, treatment and patient care. Thus, the main aim of this project was to develop an application that could be used for medical purposes. This project integrates the latest mobile telecommunication technologies together with medical services with the idea of providing a highly secured personalize medical system and database query as mobile handsets are becoming a necessity to individuals. This would make updating and retrieving medical health records hassle free, anytime and anywhere. This project has also laid the groundwork for future expansion by incorporating the basic audio and video streaming features. This report accounts for all the concepts, design works and results of the mobile telemedicine application that has been developed successfully

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio

    DICOM-RT standart in Radiotherapy information systems - A National Study

    Get PDF
    Mestrado em Informática MédicaMaster Programme in Medical Informatic

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Arizona Health Information Exchange

    Get PDF
    abstract: Arizona strives to be the national role model for the secure, interoperable health information exchange to facilitate safe, secure, high quality and cost effective health care. The purpose of the Health Information Exchange in Arizona is to improve the quality, safety and efficiency of wellness in the Arizona population by securely connecting patients and health care providers so that relevant and understandable information is available anytime, anywhere

    An architecture for secure data management in medical research and aided diagnosis

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] O Regulamento Xeral de Proteccion de Datos (GDPR) implantouse o 25 de maio de 2018 e considerase o desenvolvemento mais importante na regulacion da privacidade de datos dos ultimos 20 anos. As multas fortes definense por violar esas regras e non e algo que os centros sanitarios poidan permitirse ignorar. O obxectivo principal desta tese e estudar e proponer unha capa segura/integracion para os curadores de datos sanitarios, onde: a conectividade entre sistemas illados (localizacions), a unificacion de rexistros nunha vision centrada no paciente e a comparticion de datos coa aprobacion do consentimento sexan as pedras angulares de a arquitectura controlar a sua identidade, os perfis de privacidade e as subvencions de acceso. Ten como obxectivo minimizar o medo a responsabilidade legal ao compartir os rexistros medicos mediante o uso da anonimizacion e facendo que os pacientes sexan responsables de protexer os seus propios rexistros medicos, pero preservando a calidade do tratamento do paciente. A nosa hipotese principal e: os conceptos Distributed Ledger e Self-Sovereign Identity son unha simbiose natural para resolver os retos do GDPR no contexto da saude? Requirense solucions para que os medicos e investigadores poidan manter os seus fluxos de traballo de colaboracion sen comprometer as regulacions. A arquitectura proposta logra eses obxectivos nun ambiente descentralizado adoptando perfis de privacidade de datos illados.[Resumen] El Reglamento General de Proteccion de Datos (GDPR) se implemento el 25 de mayo de 2018 y se considera el desarrollo mas importante en la regulacion de privacidad de datos en los ultimos 20 anos. Las fuertes multas estan definidas por violar esas reglas y no es algo que los centros de salud puedan darse el lujo de ignorar. El objetivo principal de esta tesis es estudiar y proponer una capa segura/de integración para curadores de datos de atencion medica, donde: la conectividad entre sistemas aislados (ubicaciones), la unificacion de registros en una vista centrada en el paciente y el intercambio de datos con la aprobacion del consentimiento son los pilares de la arquitectura propuesta. Esta propuesta otorga al titular de los datos un rol central, que le permite controlar su identidad, perfiles de privacidad y permisos de acceso. Su objetivo es minimizar el temor a la responsabilidad legal al compartir registros medicos utilizando el anonimato y haciendo que los pacientes sean responsables de proteger sus propios registros medicos, preservando al mismo tiempo la calidad del tratamiento del paciente. Nuestra hipotesis principal es: .son los conceptos de libro mayor distribuido e identidad autosuficiente una simbiosis natural para resolver los desafios del RGPD en el contexto de la atencion medica? Se requieren soluciones para que los medicos y los investigadores puedan mantener sus flujos de trabajo de colaboracion sin comprometer las regulaciones. La arquitectura propuesta logra esos objetivos en un entorno descentralizado mediante la adopcion de perfiles de privacidad de datos aislados.[Abstract] The General Data Protection Regulation (GDPR) was implemented on 25 May 2018 and is considered the most important development in data privacy regulation in the last 20 years. Heavy fines are defined for violating those rules and is not something that healthcare centers can afford to ignore. The main goal of this thesis is to study and propose a secure/integration layer for healthcare data curators, where: connectivity between isolated systems (locations), unification of records in a patientcentric view and data sharing with consent approval are the cornerstones of the proposed architecture. This proposal empowers the data subject with a central role, which allows to control their identity, privacy profiles and access grants. It aims to minimize the fear of legal liability when sharing medical records by using anonymisation and making patients responsible for securing their own medical records, yet preserving the patient’s quality of treatment. Our main hypothesis is: are the Distributed Ledger and Self-Sovereign Identity concepts a natural symbiosis to solve the GDPR challenges in the context of healthcare? Solutions are required so that clinicians and researchers can maintain their collaboration workflows without compromising regulations. The proposed architecture accomplishes those objectives in a decentralized environment by adopting isolated data privacy profiles

    Development of a 3G Authentication Based Mobile Access of Health Records: A Mobile Telemedicine Application

    Get PDF
    As our country progresses in its aim to be a developed country by the Year 2020, the field of Information and Communications Technology or ICT is fast becoming the forerunner for the vision. The Internet is used in almost all aspects of life. As for the communications sector, according to Global Mobile Subscriber Database December 2002 report, there are 8,814,700 mobile subscribers in Malaysia with an Annual Growth of 16.6%. Withthe adoption of 3G-communication technology in the coming years, compelling high speed services, reaching up to 2 Mb/s together with improved security features would soon be possible. Through these years in the mobile industry, the health sector has always been neglected. Reason being, the technology could not support the application and it is not so much of a revenue generating business compared to mobile games or sports news. With globalization where the society is always on the move across borders, together with degrading environment conditions and the need for time, instant health services are becoming crucial. Looking into these conditions of mobile adoption and health status, the author intends to develop a solution for a mobile telemedicine application. Kevin Hung (2003) defines telemedicine as the utilization of telecommunication technology for medical diagnosis, treatment and patient care. Thus, the main aim of this project was to develop an application that could be used for medical purposes. This project integrates the latest mobile telecommunication technologies together with medical services with the idea of providing a highly secured personalize medical system and database query as mobile handsets are becoming a necessity to individuals. This would make updating and retrieving medical health records hassle free, anytime and anywhere. This project has also laid the groundwork for future expansion by incorporating the basic audio and video streaming features. This report accounts for all the concepts, design works and results of the mobile telemedicine application that has been developed successfully

    Desenvolvimento de uma Infraestrutura baseada em HL7® FHIR® para Interoperabilidade Clínica

    Get PDF
    Throughout the years, the healthcare business knowledge, requirements, and the number of patients seeking medical attention has grown tremendously to a point where sensitive cases needed the input from multiple healthcare institutions in order to track the patient’s medical history and make the most adequate decisions for each situation. Technology and digital information fulfils a great role in addressing these problems and improving healthcare provision. However, due to the immense number of organizations and systems in this business, sharing a patient’s clinical information can be a major problem if the systems are not capable of understanding the data sent to each other. Ensuring interoperability between systems is crucial to guarantee the continuous flow of a patient’s clinical history transmission and to improve the health professionals’ work. As a company working in the field of healthcare, ALERT’s main goal is to help organizations improve in their health business and to help prolong life, by providing the necessary technology that is capable of benefiting the health professional’s work management and sharing the necessary information with other organizations. Thus, the company seeks to constantly improve its product suite, ALERT®, by meeting the worldwide organizations requirements and assuring interoperability based on the existing health standards in the market. This way, the company wants to add in the ALERT suite the latest standard, Fast Healthcare Interoperability Resources (FHIR ® ), which brings great technological innovations for interoperability’s improvement, provided by the standards developing organization, Health Level Seven International (HL7), being also considered to be a suitable standard for mobile applications thanks to its capabilities and ease of implementation. Herewith, thisthesis presents a development and architectural approach to apply FHIR features in the product suite, along with the problem and solution analysis, including the evaluation of suitable frameworks for the implementation phase. Considering the experiments’ results, the implemented FHIR services actually improved the product’s performance, and thanks to the standard’s specification, the implementation of its core features proved to be simple and straightforward while respecting the key criteria for some of the developed services.Ao longo dos anos, o conhecimento, as exigências, e o número de pacientes à procura de cuidados médicos na área de negócio de cuidados de saúde, tem vindo a aumentar drasticamente ao ponto de ser necessária a opinião de outras instituições para casos de maior sensibilidade, de modo a que o historial médico do paciente fosse acompanhado e que servisse para tomar as decisões mais adequadas para o problema em questão. A tecnologia e a informação digital representam um grande papel na resolução de problemas e promoção de entrega de cuidados de saúde. No entanto, devido à imensa quantidade de organizações e sistemas nesta área de negócio, a partilha de informação clínica relativa a um paciente pode vir a ser um grave problema caso os sistemas não sejam capazes de compreender os dados que estão a ser transmitidos entre eles. Deste modo, assegurar interoperabilidade entre sistemas é crucial para garantir um fluxo contínuo de transmissão de informação relativa ao historial clínico de um paciente, e para melhorar o trabalho dos profissionais de saúde. Sendo uma empresa que trabalha na área de cuidados de saúde, a ALERT tem como principal objetivo ajudar as organizações a melhorar o seu negócio de saúde e ajudar a prolongar a vida, fornecendo a tecnologia necessária que beneficie a gestão de trabalho dos profissionais de saúde e que partilhe informação com outras organizações. Portanto, a empresa procura constantemente melhorar o seu produto ALERT®, procurando cumprir com os requisitos de organizações globais e garantindo interoperabilidade baseada nos standards de saúde existentes no mercado. Assim, a empresa pretende adotar o último standard lançado, Fast Healthcare Interoperability Resources (FHIR®), que traz grandes inovações tecnológicas para o aperfeiçoamento da interoperabilidade, fornecida pela organização de desenvolvimento de standards, Health Level Seven International (HL7), sendo também considerado um standard adequado para aplicações móveis graças às suas capacidades e facilidade de implementação. Com isto, esta tese apresenta uma abordagem arquitetural e de desenvolvimento para a aplicação de funcionalidades FHIR no produto, juntamente com a análise do problema e da solução, incluindo a avaliação de ferramentas adequadas para a fase de implementação. Os resultados de teste obtidos para os serviços FHIR implementados, demonstraram uma melhoria na performance do produto, e graças à especificação do standard, a implementação das principais funcionalidades provou ser simples e direta, respeitando os principais critérios para os serviços desenvolvidos

    Sistemas interativos e distribuídos para telemedicina

    Get PDF
    doutoramento Ciências da ComputaçãoDurante as últimas décadas, as organizações de saúde têm vindo a adotar continuadamente as tecnologias de informação para melhorar o funcionamento dos seus serviços. Recentemente, em parte devido à crise financeira, algumas reformas no sector de saúde incentivaram o aparecimento de novas soluções de telemedicina para otimizar a utilização de recursos humanos e de equipamentos. Algumas tecnologias como a computação em nuvem, a computação móvel e os sistemas Web, têm sido importantes para o sucesso destas novas aplicações de telemedicina. As funcionalidades emergentes de computação distribuída facilitam a ligação de comunidades médicas, promovem serviços de telemedicina e a colaboração em tempo real. Também são evidentes algumas vantagens que os dispositivos móveis podem introduzir, tais como facilitar o trabalho remoto a qualquer hora e em qualquer lugar. Por outro lado, muitas funcionalidades que se tornaram comuns nas redes sociais, tais como a partilha de dados, a troca de mensagens, os fóruns de discussão e a videoconferência, têm o potencial para promover a colaboração no sector da saúde. Esta tese teve como objetivo principal investigar soluções computacionais mais ágeis que permitam promover a partilha de dados clínicos e facilitar a criação de fluxos de trabalho colaborativos em radiologia. Através da exploração das atuais tecnologias Web e de computação móvel, concebemos uma solução ubíqua para a visualização de imagens médicas e desenvolvemos um sistema colaborativo para a área de radiologia, baseado na tecnologia da computação em nuvem. Neste percurso, foram investigadas metodologias de mineração de texto, de representação semântica e de recuperação de informação baseada no conteúdo da imagem. Para garantir a privacidade dos pacientes e agilizar o processo de partilha de dados em ambientes colaborativos, propomos ainda uma metodologia que usa aprendizagem automática para anonimizar as imagens médicasDuring the last decades, healthcare organizations have been increasingly relying on information technologies to improve their services. At the same time, the optimization of resources, both professionals and equipment, have promoted the emergence of telemedicine solutions. Some technologies including cloud computing, mobile computing, web systems and distributed computing can be used to facilitate the creation of medical communities, and the promotion of telemedicine services and real-time collaboration. On the other hand, many features that have become commonplace in social networks, such as data sharing, message exchange, discussion forums, and a videoconference, have also the potential to foster collaboration in the health sector. The main objective of this research work was to investigate computational solutions that allow us to promote the sharing of clinical data and to facilitate the creation of collaborative workflows in radiology. By exploring computing and mobile computing technologies, we have designed a solution for medical imaging visualization, and developed a collaborative system for radiology, based on cloud computing technology. To extract more information from data, we investigated several methodologies such as text mining, semantic representation, content-based information retrieval. Finally, to ensure patient privacy and to streamline the data sharing in collaborative environments, we propose a machine learning methodology to anonymize medical images

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases
    corecore