24 research outputs found

    Сегментация изображений рукописного текста на основе субполосного анализа

    Get PDF
    Предложен метод сегментации изображений сканированного рукописного текста на слова. Метод основан на использовании математического аппарата субполосного анализа и позволяет для заданного изображения разделить области фона и области, занимаемые тексто

    Integrating passive ubiquitous surfaces into human-computer interaction

    Get PDF
    Mobile technologies enable people to interact with computers ubiquitously. This dissertation investigates how ordinary, ubiquitous surfaces can be integrated into human-computer interaction to extend the interaction space beyond the edge of the display. It turns out that acoustic and tactile features generated during an interaction can be combined to identify input events, the user, and the surface. In addition, it is shown that a heterogeneous distribution of different surfaces is particularly suitable for realizing versatile interaction modalities. However, privacy concerns must be considered when selecting sensors, and context can be crucial in determining whether and what interaction to perform.Mobile Technologien ermöglichen den Menschen eine allgegenwärtige Interaktion mit Computern. Diese Dissertation untersucht, wie gewöhnliche, allgegenwärtige Oberflächen in die Mensch-Computer-Interaktion integriert werden können, um den Interaktionsraum über den Rand des Displays hinaus zu erweitern. Es stellt sich heraus, dass akustische und taktile Merkmale, die während einer Interaktion erzeugt werden, kombiniert werden können, um Eingabeereignisse, den Benutzer und die Oberfläche zu identifizieren. Darüber hinaus wird gezeigt, dass eine heterogene Verteilung verschiedener Oberflächen besonders geeignet ist, um vielfältige Interaktionsmodalitäten zu realisieren. Bei der Auswahl der Sensoren müssen jedoch Datenschutzaspekte berücksichtigt werden, und der Kontext kann entscheidend dafür sein, ob und welche Interaktion durchgeführt werden soll

    The Dollar General: Continuous Custom Gesture Recognition Techniques At Everyday Low Prices

    Get PDF
    Humans use gestures to emphasize ideas and disseminate information. Their importance is apparent in how we continuously augment social interactions with motion—gesticulating in harmony with nearly every utterance to ensure observers understand that which we wish to communicate, and their relevance has not escaped the HCI community\u27s attention. For almost as long as computers have been able to sample human motion at the user interface boundary, software systems have been made to understand gestures as command metaphors. Customization, in particular, has great potential to improve user experience, whereby users map specific gestures to specific software functions. However, custom gesture recognition remains a challenging problem, especially when training data is limited, input is continuous, and designers who wish to use customization in their software are limited by mathematical attainment, machine learning experience, domain knowledge, or a combination thereof. Data collection, filtering, segmentation, pattern matching, synthesis, and rejection analysis are all non-trivial problems a gesture recognition system must solve. To address these issues, we introduce The Dollar General (TDG), a complete pipeline composed of several novel continuous custom gesture recognition techniques. Specifically, TDG comprises an automatic low-pass filter tuner that we use to improve signal quality, a segmenter for identifying gesture candidates in a continuous input stream, a classifier for discriminating gesture candidates from non-gesture motions, and a synthetic data generation module we use to train the classifier. Our system achieves high recognition accuracy with as little as one or two training samples per gesture class, is largely input device agnostic, and does not require advanced mathematical knowledge to understand and implement. In this dissertation, we motivate the importance of gestures and customization, describe each pipeline component in detail, and introduce strategies for data collection and prototype selection

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    Adaptive sensorimotor peripersonal space representation and motor learning for a humanoid robot

    Get PDF
    This thesis presents possible computational mechanisms by which a humanoid robot can develop a coherent representation of the space within its reach (its peripersonal space), and use it to control its movements. Those mechanisms are inspired by current theories of peripersonal space representation and motor control in humans, targeting a cross-fertilization between robotics on one side, and cognitive science on the other side. This research addresses the issue of adaptivity the sensorimotor level, at the control level and at the level of simple task learning. First, this work considers the concept of body schema and suggests a computational translation of this concept, appropriate for controlling a humanoid robot. This model of the body schema is adaptive and evolves as a result of the robot sensory experience. It suggests new avenues for understanding various psychophysical and neuropsychological phenomenons of human peripersonal space representation such as adaptation to distorted vision and tool use, fake limbs experiments, body-part centered receptive fields, and multimodal neurons. Second, it is shown how the motor modality can be added to the body schema. The suggested controller is inspired by the dynamical system theory of motor control and allows the robot to simultaneously and robustly control its limbs in joint angles space and in end-effector location space. This amounts to controlling the robot in both proprioceptive and visual modalities. This multimodal control can benefit from the advantages offered by each modality and is better than traditional robotic controllers in several respects. It offers a simple and elegant solution to the singularity and joint limit avoidance problems and can be seen as a generalization of the Damped Least Square approach to robot control. The controller exhibits several properties of human reaching movements, such as quasi-straight hand paths and bell-shaped velocity profiles and non-equifinality. In a third step, the motor modalities is endowed with a statistical learning mechanism, based on Gaussian Mixture Models, that enables the humanoid to learn motor primitives from demonstrations. The robot is thus able to learn simple manipulation tasks and generalize them to various context, in a way that is robust to perturbations occurring during task execution. In addition to simulation results, the whole model has been implemented and validated on two humanoid robots, the Hoap3 and the iCub, enabling them to learn their arm and head geometries, perform reaching movements, adapt to unknown tools, and visual distortions, and learn simple manipulation tasks in a smooth, robust and adaptive way. Finally, this work hints at possible computational interpretations of the concepts of body schema, motor perception and motor primitives

    Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education

    Get PDF
    International audienceThis volume contains the Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (ERME), which took place 9-13 February 2011, at Rzeszñw in Poland

    News from The Catholic Historical Society

    Get PDF
    corecore