46 research outputs found

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a “system-on-a-chip” MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-inthe-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a ``system-on-a-chip'' MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC.This work was supported by EPSRC (Grants EP/G030308/1, EP/G031576/1 and EP/I012036/1) and the EU FP7 Project EMBOCON grant agreement number FP7-ICT-2009-4 248940, as well as industrial support from Xilinx, the Mathworks, and the European Space Agency.This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at: http://dx.doi.org/10.1109/TCST.2013.2271791. Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing [email protected]

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ‘no worse’ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations

    Custom optimization algorithms for efficient hardware implementation

    No full text
    The focus is on real-time optimal decision making with application in advanced control systems. These computationally intensive schemes, which involve the repeated solution of (convex) optimization problems within a sampling interval, require more efficient computational methods than currently available for extending their application to highly dynamical systems and setups with resource-constrained embedded computing platforms. A range of techniques are proposed to exploit synergies between digital hardware, numerical analysis and algorithm design. These techniques build on top of parameterisable hardware code generation tools that generate VHDL code describing custom computing architectures for interior-point methods and a range of first-order constrained optimization methods. Since memory limitations are often important in embedded implementations we develop a custom storage scheme for KKT matrices arising in interior-point methods for control, which reduces memory requirements significantly and prevents I/O bandwidth limitations from affecting the performance in our implementations. To take advantage of the trend towards parallel computing architectures and to exploit the special characteristics of our custom architectures we propose several high-level parallel optimal control schemes that can reduce computation time. A novel optimization formulation was devised for reducing the computational effort in solving certain problems independent of the computing platform used. In order to be able to solve optimization problems in fixed-point arithmetic, which is significantly more resource-efficient than floating-point, tailored linear algebra algorithms were developed for solving the linear systems that form the computational bottleneck in many optimization methods. These methods come with guarantees for reliable operation. We also provide finite-precision error analysis for fixed-point implementations of first-order methods that can be used to minimize the use of resources while meeting accuracy specifications. The suggested techniques are demonstrated on several practical examples, including a hardware-in-the-loop setup for optimization-based control of a large airliner.Open Acces

    A low complexity scaling method for the Lanczos Kernel in fixed-point arithmetic

    No full text
    We consider the problem of enabling fixed-point implementation of linear algebra kernels on low-cost embedded systems, as well as motivating more efficient computational architectures for scientific applications. Fixed-point arithmetic presents additional design challenges compared to floating-point arithmetic, such as having to bound peak values of variables and control their dynamic ranges. Algorithms for solving linear equations or finding eigenvalues are typically nonlinear and iterative, making solving these design challenges a nontrivial task. For these types of algorithms, the bounding problem cannot be automated by current tools. We focus on the Lanczos iteration, the heart of well-known methods such as conjugate gradient and minimum residual. We show how one can modify the algorithm with a low-complexity scaling procedure to allow us to apply standard linear algebra to derive tight analytical bounds on all variables of the process, regardless of the properties of the original matrix. It is shown that the numerical behavior of fixed-point implementations of the modified problem can be chosen to be at least as good as a floating-point implementation, if necessary. The approach is evaluated on field-programmable gate array (FPGA) platforms, highlighting orders of magnitude potential performance and efficiency improvements by moving form floating-point to fixed-point computation

    Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA

    Get PDF
    A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous man{\oe}uvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of man{\oe}uvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet.This work was supported by the Engineering and Physical Sciences Research Council (Grant EP/G030308/1) as well as industrial support from Xilinx, Mathworks and the European Space Agency.European Control Conference 2013 (ECC13), July 17-19, Zurich, Switzerlan

    Nonlinear predictive control on a heterogeneous computing platform

    Get PDF
    Nonlinear Model Predictive Control (NMPC) is an advanced control technique that often relies on computationally demanding optimization and integration algorithms. This paper proposes and investigates a heterogeneous hardware implementation of an NMPC controller based on an interior point algorithm. The proposed implementation provides flexibility of splitting the workload between a general-purpose CPU with a fixed architecture and a field-programmable gate array (FPGA) to trade off contradicting design objectives, namely performance and computational resource usage. A new way of exploiting the structure of the Karush-Kuhn-Tucker (KKT) matrix yields significant memory savings, which is crucial for reconfigurable hardware. For the considered case study, a 10x memory savings compared to existing approaches and a 10x speedup over a software implementation are reported. The proposed implementation can be tested from Matlab using a new release of the Protoip software tool, which is another contribution of the paper. Protoip abstracts many low-level details of heterogeneous hardware programming and allows quick prototyping and processor-in-the-loop verification of heterogeneous hardware implementations
    corecore