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SUMMARY

A field programmable gate array (FPGA)-based model predictive controller (MPC) for two phases of
spacecraft rendezvous is presented. Linear time varying prediction models are used to accommodate
elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer-
range manœuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at
close range. The resulting constrained optimisation problems are solved using a primal dual interior point
algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations
at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a
combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral
to a MicroBlaze soft core processor on the FPGA, on which the remainder of the system is implemented.
Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online,
in order to accommodate the varying problem sizes associated with the variable prediction horizon. The
system is demonstrated in closed loop by linking the FPGA with a simulation of the spacecraft dynamics
running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation
is substantially faster than pure embedded software-based interior point methods running on the same
MicroBlaze, and could be competitive with a pure custom hardware implementation. Copyright c© 2014
John Wiley & Sons, Ltd.
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2 E. N. HARTLEY AND J. M. MACIEJOWSKI

1. INTRODUCTION

Model predictive control (MPC) offers the ability to explicitly handle physical and operational
constraints whilst optimising a given performance metric through repeated solution of a receding
horizon constrained optimal control problem (e.g. [1–3]). As an implicit control law, it is also
particularly suited to scenarios where reconfiguration is necessary, since the prediction model, cost
function and constraints can be updated online to reflect changes in plant parameters or objectives.
This property has evoked recent enthusiasm for the application of MPC to spacecraft manœuvreing
functions such as station and formation keeping [4–8], attitude control [9–14], rendezvous [15–26],
collision avoidance [16–18,27,28] and interplanetary transfer [29,30]. Moreover, [31] documents a
successful in-flight test of MPC for tracking trajectories.

Since MPC relies upon the solution of a constrained optimisation problem at each time
step, the computational demand is heavier than for a classical controller. For larger problem
formulations, a contemporary guidance, navigation and control computer would require a dedicated
co-processor to support the MPC [20]. Whilst the related optimisation problems are usually well
within the capabilities of a contemporary desktop computer, as well as modern high-performance
RISC microprocessors that have become ubiquitous for ground-based embedded applications, the
computer clock rates in space environments are between one and two orders of magnitude slower
due to a need to be robust to solar radiation, low power consumption requirements. Lengthy
clearance procedures also mean that hardware suitable for space applications inevitably lags that for
general purpose usage by a few generations. Rather than using a high-performance general purpose
microprocessor for this purpose, an alternative is to employ a custom peripheral circuit, designed to
carry out all or part of the predictive control function, trading high clock frequencies (which can be
problematic in space applications due to radiation exposure) for parallelism. Custom hardware may
also offer opportunities to affect power consumption.

Field Programmable Gate Arrays (FPGAs) are a form of programmable hardware, with which a
system designer can implement a complex custom digital circuit without recourse to manufacturing
a bespoke silicon chip. These devices are well-suited for prototyping purposes as well as for low
volume but highly specialised applications (such as spacecraft avionics). FPGAs have already been
demonstrated as a viable platform for the most typical form of MPC, which employs a quadratic
cost function, linear constraints and a linear time-invariant (LTI) prediction model [14, 26, 32–42].

This paper instead presents an FPGA-based implementation of a linear time-varying (LTV)
MPC-based controller for spacecraft rendezvous in an elliptical orbit, based on a simplified
version of the inner two mission phases presented in [20]. The first phase consists of impulsive
manœuvres between a sequence of pre-determined holding points. It was shown in [20] that an
MPC-based approach could be beneficial in reducing propellant consumption when compared with
a conventional approach during this phase. The second phase tracks a straight line trajectory from
the final holding point up to a point a few metres away from the target from which final interception
of the target must proceed passively. During this phase, an MPC-based approach with a non-
conventional cost function [43] can yield fuel-saving benefits over a linear feedback law.

The present work is an extension of the preliminary work on implementing an FPGA-based
control system presented in [24], which focuses solely on the impulsive manœuvre phase (although
an alternative FPGA-based strategy for the final tracking phase, applicable only to circular orbits,
is also considered in [26]). The primary contribution of this work is technological rather than
theoretical, and is in addressing challenges in the hardware-acceleration of a non-standard MPC
problem with a time-varying prediction model, and variable prediction horizon as well as mixed `1
and quadratic objectives.

For the first (impulsive) phase, a variable horizon (VH) MPC is implemented by solving a
sequence of convex linear programs (LPs) corresponding to each horizon length up to a defined
maximum. The second (tracking) phase adopts a fixed-length receding horizon, and each MPC
problem is a convex quadratic program (QP). The constrained optimisation problems that arise at
each time step during both phases are solved using a primal-dual interior point (PDIP) quadratic
progamming algorithm. Following a hybrid software-hardware paradigm [32–34], the algorithm is
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FPGA-BASED PREDICTIVE CONTROL SYSTEM FOR SPACECRAFT RENDEZVOUS 3

Table I. Scenario parameters

Central body Target Chaser

Mass Semi-major axis Eccentricity Orbital period Mass Initial separation angle

mMars a e Torb mchs ∆ν

0.64185 × 1024 kg 4643 km 0.20441 9.61 × 103 s 1575 kg 0.00303 rad

co-ordinated by a Xilinx MicroBlaze soft-core processor, and a custom peripheral core (PCORE)
circuit is implemented, using a combination of MathWorks HDL Coder and Xilinx System
Generator for DSP, to assist in the construction and solution of the set of linear equations that
arise at each iteration of the PDIP algorithm, using the minimum residual (MINRES) method. The
MicroBlaze processor is comparable [44] in computational capabilities to the LEON2 processor
often deployed in spacecraft. By posing LPs as QPs with a zero Hessian matrix, the same algorithm
(and PCORE components) can be used with different numerical parameters for both phases.

In deference to convention, a synopsis of the residuum of the paper follows thus: Section 2
summarises key background material on prediction models and cost functions for predictive control
purposes motivating the control design used in the present work, as well as prior examples of
FPGA-based MPC controllers; Section 3 summarises the MPC formulation that has been applied;
Section 4 summarises the algorithms employed; Section 5 describes the custom peripheral core
component implemented on the FPGA to accelerate the solution of the QPs and the methods through
which it was designed as well as analysing hardware resource and power usage; Section 6 presents
the closed-loop simulation with the custom MPC controller implemented on a Xilinx ML605
Evaluation Board [45], using Ethernet to communicate with a nonlinear simulation of the spacecraft
position dynamics, running in Simulink on a PC and comparisons with existing solution methods
are presented. Finally, Section 7 concludes.

2. BACKGROUND AND DESIGN MOTIVATIONS

The control problem considered in this paper is the medium-short range phase of the rendezvous
in the Mars Sample Return mission [20, 46], starting at the point where the controlled spacecraft
(chaser) has been brought into approximately the same orbit as the spacecraft with which it must
rendezvous (target), but with a significant separation in true anomaly (i.e. an in-track separation of
a few tens of kilometres). Key parameters describing the scenario are presented in Table I. (Note
that the scale of the semi-major axis means that the small value of initial separation in terms of true
anomaly, ∆ν corresponds to a sizeable in-track separation.)

For rendezvous in circular Keplerian orbits, the linearised Hill-Clohessy-Wiltshire (HCW)
equations (e.g. [47–49]) can be used to predict the trajectory of the controlled spacecraft in a rotating
reference frame whose origin is at the centre of mass of the target spacecraft. The latter is assumed
to remain in a constant orbit. For elliptical orbits, the HCW equations are not sufficiently accurate,
especially over long time periods (although [21] demonstrates good closed-loop performance
with a probabilistically-constrained robust MPC for terminal phase rendezvous starting from a
separation of 50 m using the LTI HCW equations and accounting for model mismatch due to target
orbital eccentricities in the range 0.05 ≤ e ≤ 0.25 as a bounded disturbance). More accurate state
propagation matrices for relative translational dynamics in elliptical orbits are parameterised by the
true anomaly of the target orbit [50–52]. For a passive target, the true anomaly varies only with time,
so the models are linear time-varying (LTV). Unlike with a general nonlinear model the optimisation
structure within the MPC controller is similar to that with LTI models, except that the prediction
model varies deterministically over the prediction horizon, and between controller evaluations. The
same computational techniques apply as with time invariant systems with the exception that some
matrices must also be recomputed between time steps. In [4], an MPC controller is presented using
an approximate discretisation of the continuous linearised parameter-varying equations of relative
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4 E. N. HARTLEY AND J. M. MACIEJOWSKI

motion. The Yamanaka-Ankersen (YA) state transition matrix (STM) [51] which discretises the
LTV dynamics more accurately has been used to form the prediction model for MPC in [6, 19, 20].
Gauss’s Variational Equations (GVEs), which consider instead the relative position in terms of the
differences in Keplerian orbital elements are also parameterised in terms of the true anomaly of the
target and have been used in MPC by [5, 7, 19, 20].

For the application in the present paper, the YA equations [51] provide a suitable prediction
model of the dynamics of the relative position and velocity of the chaser with respect to the target
in a local-vertical local-horizontal (LVLH) cylindrical reference frame (CRF) centred on the target
(Figure 1(a)), with the zcrf -axis pointing towards the central body, the ycrf -axis normal to the orbital
plane, and the xcrf -axis completing a right-handed set. This is preferred to a Cartesian reference
frame because it reduces linearisation errors at larger in-track separations [47].

2.1. Impulsive phase

During the impulsive phase, the control objective is to guide the chaser towards the vicinity of the
target via a sequence of pre-determined “holding points” at which it must remain pending clearance
to continue (Figure 1(b)). Such trajectories are often informally described as “hopping”, since in
the ideal case (without any parametric or additive uncertainties) they comprise impulsive inputs at
the start and finish separated by a long period of free drift. In the present scenario, the holding
points are defined as being centred at 5000 m, 2000 m, 1000 m, 500 m and 200 m in front of the
target. The time spent at each holding point is unknown a priori, so at a given instant the goal is to
enter (or remain in) the next holding point. Each transfer should take approximately half an orbit,
propellant consumption should be minimised, and short-term accuracy is not too critical. The phase
terminates once the final holding point has been reached. Input constraints can become active during
the acceleration/deceleration impulses at longer ranges from the target.

MPC controllers commonly employ a quadratic cost function of predicted future states and inputs.
However, for longer range manœuvres, minimisation of fuel consumption and completion of the
manœuvre in finite time can be more important than accurate tracking of a reference trajectory.
Accordingly, [15, 19, 20] employ a 1-norm cost function on inputs to reflect the direct correlation
between impulsive accelerations and fuel consumption. Moreover, a variable prediction horizon
(VH) helps facilitate finite-time manœuvre completion [15, 20, 30, 53, 54]. VH-LTV-MPC imposes
a particularly high computational burden, since the prediction model must be updated at each time
step, and the variable horizon optimisation is not convex. Nevertheless, a global optimum can be
obtained by using mixed-integer programming [15, 54, 55] or enumeration of a sequence of convex
problems [19, 20]. The latter strategy is chosen for the impulsive phase in the present paper.

2.2. Tracking phase

In the final tracking phase, the chaser spacecraft starts from the holding point which is centred
approximately 200 m in front of the target in the CRF. The control objective is to maintain a line
of approach parallel to the instantaneous velocity of the target (not in the x direction in the CRF),
offset by a distance of 0.113 m in the z direction. The latter is the approximate distance the chaser

Central body

Target
Chaser

ztofzcrfxcrf

V

(a) Cylindrical reference frame

xcrf

zcrf

Target

Chaser

Holding trajectory

(b) Holding points in cylindrical reference frame

Figure 1. Cylindrical LVLH reference frame
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will travel open-loop in the z direction over 30 s when its in-track velocity is 0.1 ms−1, since at
ranges ≤ 3 m from the target no control must be applied. The MPC regulates the position in the
lateral directions in the moving reference frame, and regulates the velocity in the in-track direction.

MPC with a pure `1-norm cost function can be sensitive to noise and exhibit awkward behaviours
such as dead-beat control at one extreme and idle control at the other [56]. Here, a quadratic cost
function is more desirable. However, MPC with a quadratic cost function will tend to lead to long
periods of relatively low and continuous thrust, whereas for a system propelled by gas thrusters, a
degree of sparsity in the control actions is preferable. Such behaviour can be achieved by combining
the quadratic cost with an additional `1 term on the input, [43, 57, 58], informally dubbed as
`asso-MPC in homage to the Least Absolute Shrinkage and Selection Operator (LASSO) used in
regularised least-squares regression. MPC with this class of cost function has been demonstrated
for the terminal phases of spacecraft rendezvous in circular orbits in [25, 26].

2.3. Hardware implementation of predictive controllers

Recently, interest has arisen in using FPGAs to exploit opportunities for parallelism in the numerical
algorithms used to implement MPC, with a variety of approaches proposed. A hybrid software-
hardware design is advocated by [32–34]. The first uses a primal barrier method and the custom
accelerator is used to calculate the gradient vector and Hessian matrix of the augmented cost
function at each iteration, whilst the latter two use an active set method, with a custom circuit
expediting matrix/vector-vector multiplication. Full hardware implementations of MPC controllers
are documented in [35] (active set), [36–41] (interior point), [26, 42] (first order) although
[26, 40, 41] use a soft-core microprocessor to bridge between the MPC and the outside world.
At the other end of the spectrum, [14] implements MPC using a custom soft-core processor with
non-standard numerical representations to minimise the FPGA resource (and power) requirements.
These implementations consider systems with LTI prediction models, and fixed prediction horizons.
Deviation from these characteristics can considerably complicate the implementation, since it is no
longer feasible to hard-code the prediction model or pre-processed QP matrices in ROM at design
time, as in [39, 40]. Furthermore, certain finite state-machine logic that can be hard-coded for fixed
sized problems will need to be configurable online, in order to accommodate different QP problem
sizes. Nevertheless, these complications are necessary for the proposed application in this work and
thus comprise one of its main technological contributions.

3. PREDICTIVE CONTROL FORMULATION

In predictive control, the control input applied to the plant at each sampling instant is computed by
finding the solution to an optimisation problem, which minimises some function of a prediction of
the future plant state and inputs values, whilst enforcing constraints on these trajectories.

3.1. Generic formulation for variable horizon MPC

Let nx and nu be the number of states and inputs respectively, and define xi ∈ Rnx and ui ∈ Rnu

to denote the predicted state and control input i time steps into the future, x(k) denote the actual
measured (or estimated) state at time k ∈ Z+, and θ(k) , [xT0 , u

T
0 , . . . , x

T
N ]T be a stacked vector

of predicted inputs and states computed at time k. Let Xi ⊆ Rnx and Ui ⊆ Rnu denote the set of
feasible states and inputs respectively, i time steps into the future, and TN (k +N) ⊆ Rnx denote
the (time varying) set of feasible states at the end of the prediction horizon. Let Ai, and Bi denote
the time-varying state update matrices i steps into the future. Letting the scalar valued function
`i(xi, ui) ≥ 0 for all (xi, ui) be a stage cost function, JN (xN ) ≥ 0 for all xN be the terminal cost,
then assuming a variable prediction horizonN ≤ Nmax, (as in the first, impulsive, rendezvous phase
considered) the optimisation problem posed at each time step is:

J∗ = min
N,θ

JN (xN ) +

N−1∑
i=0

`i(xi, ui) (1a)
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6 E. N. HARTLEY AND J. M. MACIEJOWSKI

s.t. x0 = x(k), (1b)
xi+1 = Aixi +Biui, i ∈ {0, . . . , N − 1}, (1c)
xi ∈ Xi, i ∈ {1, . . . , N − 1}, (1d)
ui ∈ Ui, i ∈ {0, . . . , N − 1}, (1e)
xN ∈ TN (k +N) (1f)
N ≤ Nmax. (1g)

The control u(k) = u0 is applied to the plant, the rest of θ(k) is discarded and the process is repeated
at the next sampling instant.

Standard receding (fixed) horizon MPC is a special case, with the additional constraint N = Nfix,
where Nfix ≤ Nmax is the chosen fixed horizon length, and the variable horizon problem can be
solved by consideration of a sequence of Nmax fixed horizon MPC problems (some of which may
be infeasible). In the present context, this is preferable to using mixed integer programming, because
solution of a sequence of convex problems leads to a conceptually simple algorithm, which is more
expedient for an embedded implementation.

3.2. Predictive Control Problem as a QP

Let

`i(xi, ui) =

[
xi
ui

]T
Hi

[
xi
ui

]
+ hTi

[
xi
ui

]
+ ci, (2a)

JN (xN ) = xTNHNxN , (2b)

where Hi ≥ 0, the terminal constraint is an equality constraint of the form FNxN = fN and that
input and state constraints can be written jointly in the form:

Gi

[
xi
ui

]
≤ gi. (2c)

Letting ⊕ denote the direct matrix sum, ⊗ denote the Kronecker product, Ip denote the p-
dimensional identity matrix, 0q×r denote a q × r matrix of zeros and 1q×r denote a q × r matrix of
ones, and let nxu = nx + nu, then let

H =

(
N−1⊕
i=0

Hi

)
⊕HN , h =

[
1N×1 ⊗ hi

hN

]
,

F =

IN ⊗ [−Inx
0nxu

]
0Nnx×nx

0nx×Nnxu −Inx

0nT×Nnxu FN

+

 0nx×N(nxu) 0nx⊕N−1
i=0

[
Ai Bi

]
0Nnx×nx

0nT×Nnxu
0nT×nx


f =

[
−x(k)T (0Nnx×1)T fTN

]T
G =

[(⊕N
i=0Gi

)
,0Nnc×nx

]
, g =

[
1N×1 ⊗ gi

]
.

The QP representation of the MPC controller, with N fixed can be written as:

min
θ

1

2
θTHθ + hT θ +

∑
i

ci (4a)

subject to Fθ = f, Gθ ≤ g (4b)

where θ =
[
xT0 uT0 xT1 uT1 . . . uTN−1 xTN

]T
. This “uncondensed” way of posing the

optimisation problem associated with the MPC scales favourably in terms of prediction horizon
[59–61] and is advantageous for model reconfiguration, since once the time-varying state-space
matrices are computed, the remaining effort in constructing the optimisation problem is data transfer
rather than the multiplication of large, dense matrices.
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3.3. Impulsive phase: Application specific details

During the longer range impulsive phase, fuel economy is important. Therefore a long prediction
horizon is desired to enable complete manœuvres to be predicted. Since position accuracy during
this phase is of secondary importance, a sampling period of Ts = 300 s is used in order to avoid
an excessively large number of prediction steps. To improve numerical conditioning of the matrices
within the PDIP algorithm, the state and input vectors are scaled [40, 41] so that relative positions
are in units of 20 m, velocities in units of 1/60 m/s and input impulses in units of 1/330 m/s. (As
also observed in [40, 41], applying a scaling is crucial to achieving good performance, since the
convergence and solution accuracy of the iterative MINRES method used at each PDIP iteration
is dependent on the conditioning of the set of linear equalities to be solved.) Letting AYA(t1, t2)
denote the Yamanaka-Ankersen [51] state propagation matrix corresponding to the start time t1 and
end time t2 and un-scaled state vector [xcrf , ycrf , zcrf , ẋcrf , ẏcrf , żcrf ]

T , and letting TQ be a diagonal
scaling matrix, TQ = Diag(0.05, 0.05, 0.05, 60, 60, 60), then the time varying state prediction matrix
at time step k in terms of the scaled state vector are:

Ai = TQAYA((k + i)Ts, (k + i+ 1)Ts)T
−1
Q . (5)

The plant inputs are discretised impulsively, corresponding to impulsive changes in velocity (∆V )
at the beginning of the sampling period and split into positive and negative components

Bi = TQAYA((k + i)Ts, (k + i+ 1)Ts)

[
0 0
I3 −I3

]
T−1
R (6)

where TR = I6×6 × 330−1. When the contribution of each is constrained to be non-negative, a 1-
norm of the input vector can be computed by summation of its elements. Defining β ∈ R+ as a
weighting parameter, and umax as a vector of maximum input values, and xT (k,N) as a time varying
terminal point that should be reached at time k +N :

`i(xi, ui) = (1 + β‖ui‖1) (7a)
JN (xN ) = 0 (7b)

Xi = Rnx , (7c)
Ui = {u : 0 ≤ u ≤ umax}, (7d)
TN = xT (k,N). (7e)

Therefore, for the MPC controller during the impulsive phase, ∀i ∈ {0, . . . , N − 1}: Hi =

0nxu×nxu , hi =
[
01×nx

β11×nu

]T
, FN = Inx , fN = xT ,Gi =

[
0nu×nx

−Inu

0nu×nx Inu

]
, gi =

[
0nu×1

umax

]
.

The weighting parameter is chosen by empirical tuning as β = 35/330. The time varying terminal
point is computed as

xT (k,N) = TQ

(
hpρ

[
1 0 −es/ρ2 −k2

oes 0 k2
o

(
ρ− ρ2

)]T)
(8)

where e is the target orbit eccentricity, hp is the nominal in-track distance to the holding point,
ρ = (1 + e cos ν(k +N)), ν(k +N) is the true anomaly of the target predicted at time (k +N)Ts
by propagating the mean anomaly and solving Kepler’s equation by Newton’s method [48], s =
ρ sin(ν(k +N)), k2

o = h/p2, h is the target’s orbital momentum, and p is the semi-latus rectum
(e.g. [47–49]) of the target’s orbit. The maximum thrust constraint is chosen as umax = TR16, i.e. a
maximum ∆V of 1 ms−1 may be delivered at each time step.

3.4. Tracking phase: Application specific details

During the final tracking phase, control accuracy and mitigation of uncertainty is important.
Therefore a much lower sampling period, Ts = 1 s, is used. Define vector yr = [0, 0, zref , vref , 0, 0].
Where zref is the “radial” position setpoint in the rotating reference frame and vref is the in-track
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8 E. N. HARTLEY AND J. M. MACIEJOWSKI

velocity setpoint. Letting γ be the heading angle, defined by

tan γ(k + i) = e sin ν(k + i)/(1 + e cos ν(k + i)) (9)

where e is the orbital eccentricity, and ν(k + i) is the true anomaly of the target at time k + i, define
sγ , sin γ(k + i) and cγ , cos γ(k + i), then let

Ci ,


cγ 0 −sγ
0 −1 0
sγ 0 cγ

cγ 0 −sγ
0 −1 0
sγ 0 cγ

 . (10)

The MPC is a fixed, receding horizon controller with a `asso cost function. Letting diagonal
weighting matrices Q̂ ≥ 0, and diagonal R > 0, Rλ ≥ 0 then for this MPC:

`i(xi, ui) = (Cixi − yr)T Q̂(Cixi − yr) + uTi Rui + ‖Rλui‖1 (11a)

JN (xN ) = xTNQNxN , N = NMPC (11b)
Xi = Rnx , (11c)
Ui = {u : 0 ≤ u ≤ umax}, (11d)
TN = Rnx . (11e)

Again, to improve numerical conditioning of the matrices within the PDIP algorithm, the state and
input vectors are scaled [40, 41] so that relative positions are in units of 1 m, relative velocities are
in units of 1/40 m/s, and input impulses in units of 1/250 m/s. Thus, the state and input scaling
matrices are:

TQ = Diag(1, 1, 1, 40, 40, 40) (12a)
TR = Diag(250, 250, 250, 250, 250, 250). (12b)

Let Qi = T−1
Q CTi Q̂CiT

−1
Q , then for the tracking phase, the same Yamanaka-Ankersen prediction

model is used (but discretised with Ts = 1 s and scaled with the different values of TQ and TR), and
the following changes are made to the QP function:

Hi = Qi ⊕R (13a)

hi =
[
−(T−1

Q CTi Q̂yr)
T Rλ11×nx

]T
(13b)

AN−1 = 0. (13c)

The (appropriately scaled) tuning weights are chosen as follows:

Q̂ = diag(0, 0.3, 0.3, 210, 0, 0) (14a)

R̂ = 15752 × diag(0.0002, 0.0008, 0.0008, 0.0002, 0.0008, 0.0008) (14b)

R = T−1
R R̂T−1

R (14c)

Rλ = 0.5× 1575× T−1
R × diag(0.0448, 0.0082, 0.0082, 0.0448, 0.0082, 0.0082). (14d)

The zero weighting in the “x” position reflects that the controller should regulate to a specific
velocity along a path to the target without concern for the exact position on the path.

In order to simplify the implementation, in particular to avoid the need for additional logic (for
enabling/disabling the terminal equality constraint) the prediction matrix AN−1 is set to 0 in the
“tracking” second MPC phase, thus decoupling the final stage of θ.
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4. PREDICTIVE CONTROL ALGORITHMS

Each of the individual convex QPs is solved using a primal-dual interior point (PDIP) algorithm.
(Note that an LP is a QP with a zero Hessian matrix, and unlike some algorithms for constrained
QPs, the PDIP algorithm for QP does not require a strictly positive definite Hessian matrix.) This
is described in Figure 2(a), to identify the parts of the algorithm accelerated using custom hardware
components implemented in the FPGA fabric. The notation nc is used to denote the total number of
inequality constraints, and in this context, subscripts · k are used to denote the iteration index. As
well as including a maximum number of iterations IIP to ensure that computation time is bounded
(even if this leads to a suboptimal solution), a tolerance on the duality measure µk is also included to
avoid numerical problems due to elements of sk becoming too small (or their reciprocal becoming
too large). Unlike many interior point implementations, but in common with [39–41], Mehrotra’s
Predictor Corrector [62] is not used, since an iterative linear solver (Section 4.1) is used and thus
there are no matrix factorisations to recycle.

Step 9 in Figure 2(a) is where the majority of the computational effort is required — solving
the set of linear simultaneous equations Akck = bk. The multiplications in steps 6 and 10 also
take a considerable amount of time because the prediction matrices used to construct the equality
constraints F change for each problem. Therefore, steps 6–10 are implemented as a custom
peripheral core (PCORE) in the FPGA fabric, whilst the remainder are implemented in software
on the Xilinx MicroBlaze soft core processor. Building the remainder of the structure of the matrix
Ak in step (7) is heavy in terms of RAM accesses, and therefore including this within the custom
PCORE rather than building the large matrix in software and communicating it at a limited data rate
is also beneficial.

Prediction of the future target true anomaly through integration of the mean anomaly rate and
solution of Kepler’s equation using Newton’s method [48] and calculation of the prediction matrices
using the YA equations [51] is performed in the MicroBlaze, and communicated to the custom
PCORE. However, the PCORE is responsible for storing them and building a representation of Ak.

When a variable prediction horizon is used, some of the individual fixed horizon optimisation
problems can be be infeasible for shorter horizons N , and this must be identified. Three heuristics
(implemented in software) are used to identify infeasibility and/or a poor solution, based on methods
used in [63]. The data within interior point algorithms can cover a wide dynamic range (and it is
difficult to obtain a priori bounds on the magnitudes of the primal and dual decision variables and
the step lengths), so in most parts of the implementation, floating-point arithmetic is used. Single
precision (32-bit) is used in preference to the more pervasive double precision (64-bit) type since
empirical evidence indicates that this is gives sufficient accuracy, and the latter would be emulated
(slowly) in software on the MicroBlaze whereas the former can be handled natively. Also, the AXI
communication bus used to transfer data from the MicroBlaze to the custom PCORE only allows 32-
bit word lengths. Finally, single precision arithmetic requires fewer hardware resources than double
precision in the PCORE. The exception to this design decision is within the Lanczos Process, where
fixed point data types are used (together with problem-dependent pre-conditioning to bound the
values [64–66]) to minimise resource usage.

4.1. Iterative solution of linear system using MINRES

As in [39, 40], the system of linear equations is solved using the minimum residual (MINRES)
algorithm. This iterative method can be considered preferable to factorisation-based methods, since
it is dominated by matrix-vector multiplications, which are very easily parallelised, and the number
of iterations (i.e. the solution time) can be traded for solution accuracy. To facilitate description of
how the hardware implementation is partitioned in the present design, the MINRES algorithm is
summarised in Figure 2(b). The majority of the computation in the MINRES algorithm comprises
the Lanczos process (steps 5–11). This method is implemented using fixed-point arithmetic, enabled
by the preconditioner proposed by [64–66], which ensures that key variables are in the range [−1, 1].
Using the notation Zk,mn to denote the nth element of the mth row of matrix Z at iteration k, by
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1: Initialisation: θ0, λ0, s0, z0, σ, IIP
2: while k ≤ IIP − 1 and µk ≥ 10−6 do

. (Linearisation phase)
3: µk = zTk sk/Nnc
4: wk = zk./sk (elementwise)

5: mk =

[
θk
λk

σµk1nc ./sk − diag(wk)gk + zk

]
(Steps 6–10 implemented in custom circuit)

6: Φk = GT diag(wk)G

7: Ak =

[
H + Φk FT

F 0

]
8: bk =

[
−h
f

]
−
[
H + Φk FT GT

F 0 0

]
mk

. (Solution phase)

9: Akck = bk, where ck =

[
∆θk
∆λk

]
10: Calculate G(θk + ∆θk)− g

11: ∆zk = diag(wk)(G(θk + ∆θk)− g) +

σµks
−1
k

12: ∆sk = −G(θk + ∆θk)− sk

. (Line Search)

13: αk = max[0,1] α :

[
λk + α∆λk
sk + α∆sk

]
> 0

. (Update solution)
14: (θ, λ, z, s)k+1 = (θ, λ, z, s)k +

α∆(θ, λ, z, s)k
15: k ← k + 1
16: end while

(a) PDIP

1: v0, v1, β1, β2, η

2: Calculate β2 =
√

vT1 v1 and β−1
2 = 1/β2

3: Set β1 ← β2
4: for k = 0 to kmax do

. Lanczos Process
(fixed point)

5: Calculate β−1
1 Av1

6: Calculate α = β−1
1 vT1 (β−1

1 Av1)

7: Calculate (β−1
1 Av1 − β1v0)

8: Calculate v2 = (Av1 − β1v0)− αβ−1
1 v1

9: Set v0 ← β−1
1 v1

10: Set v1 ← v2

11: Calculate β2 =
√

vT1 v1 and β−1
2 = 1/β2

. QR Factors and Givens Rotations
(single precision floating point)

12: δ = γ1α− γ0σβ1

13: p−1
1 = (δ2 + β2

2)−1/2

14: p2 = σ0α+ γ0γ1β1
15: p3 = σ0β1
16: Set γ0 ← γ1 and σ0 ← σ1

17: Set γ1 = δp−1
1 and σ1 = β2p

−1
1

. Solution Update
(single precision floating point)

18: w0 = p−1
1 (v0 − p3wm2 − p2wm1)

19: x← x + γ1ηw0
20: η ← σ1η
21: end for

(b) MINRES

Figure 2. Primal-dual Interior Point and MINRES Algorithms

letting

Mk,mn =


(∑

p |Ak,mp|
)−1/2

if m = n

0 otherwise
(15)

instead of directly solving Akck = bk, MINRES is used to solve (MkAkMk) c̃k =
(Mkbk) /‖Mkbk‖2, and ck =Mk‖Mkbk‖2c̃k.

5. HARDWARE COMPONENT DESIGN

In this section, the methodology used to design the hardware component is described. In contrast
to prior FPGA-based MPC designs, where register transfer languages (RTL) such as Verilog [33],
VHDL [35, 37, 39, 40], or high level C-like languages (System-C, [36]) have been used, the custom
peripheral core (PCORE) presented here is designed using a combination of MathWorks HDL Coder
2012b and Xilinx System Generator for DSP 14.4.

In [67], a complete interior point QP solver was implemented solely using built-in Simulink
blocks to enable automatic C-code generation. Elsewhere, Simulink Coder/MATLAB Coder
(née Real Time Workshop/Embedded MATLAB (EML)) have been used to compile M-code
implementations of custom QP/LP solvers to C to accelerate simulation and simplify deployment
(e.g. [20, 68, 69]). For FPGA synthesis the process is substantially more complex. It is insufficient
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5.1. Architecture of peripheral core

At a high level, the custom peripheral core (PCORE) is split into two major parts. The first
component performs steps (5-7) of the Algorithm 2, building the linear system, whilst the second,
more complex component performs step 8.

FPGA

Outside
world

Xilinx
MicroBlaze

Ethernet

MINRES solver

Update QR,
Givens Rotn
Update Soln

Lanczos

Linear system
builder and

preconditioner

AXI-lite

Figure 3. High-level architecture of controller implementation

The PCORE is connected to the Xilinx MicroBlaze soft-core processor using the AXI4-lite bus,
which presents data and status registers as shared memory locations (Figure 3).

MINRES was first implemented on an FPGA by [32] using floating point arithmetic, and was
integrated into a primal-dual interior point solver by [33] with a hardware-in-the-loop demonstration
controlling simulation of a substantial-sized system presented in [55]. Unlike in [32, 33, 55], the
present hardware implementation is configurable to solve a variety of different problem sizes.

5.2. Interface

The external interface which allows the problem data to be loaded into the custom circuit, from the
MicroBlaze is implementing using Xilinx System Generator for DSP. This presents the registers
and FIFOs as described in Table II. The “LOCKED” signal should be connected to the “LOCKED”
output of the clock source used to clock the circuit, and when low holds the peripheral in a reset
state. The “TRIG” register is used to indicate that the MINRES algorithm should start runing. The
registers “SUBMODE”, “ADDR0” and shared FIFO “INFIFO” are used to load the problem data

Figure 4. System-level design
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Figure 3. High-level architecture of controller implementation

to generate RTL from the same M-code used for simulation or C generation. Register level timing,
numerical representation and parallelism of computation must also be considered to obtain a design
suitable for an FPGA. Being required to consider these aspects can also be seen as an advantage,
since it gives a fine-grained clock-cycle accurate control of the design, just as with an RTL.
Using a Simulink-driven design approach enables high-level visualisation of connectivity between
components and rapid simulation.

5.1. Architecture of peripheral core

At a high level, the custom PCORE is split into two major parts. The first component performs
steps 6-8 and 10 of the Algorithm in Figure 2(a), building the linear system, whilst the second,
more complex component performs step 9. The PCORE is connected to the Xilinx MicroBlaze soft-
core processor using the AXI4-lite bus, which presents data and status registers as shared memory
locations (Figure 3). The MicroBlaze is clocked at 100 MHz, whilst the custom PCORE is clocked
at 200 MHz.

5.2. Peripheral Core Interface

The interface which allows the problem data to be loaded into the custom circuit from the
MicroBlaze is implementing using Xilinx System Generator for DSP and Xilinx Platform Studio
(XPS). These create the necessary bus interfaces and present the peripheral to the software
component on the MicroBlaze as memory mapped registers and FIFO (First In, First Out) buffers.

5.3. Linear system builder

The rôle of the linear system builder component is to build the matrix Ak and vector bk and to
output their values in a stream, from which the preconditioner (see Section 5.4) can be calculated
and applied. The linear system builder is implemented using Xilinx System Generator for DSP since
floating point arithmetic is desired, and its task is divided into four key sub-tasks:

1. receive the (row-wise) vectorised matrices Ai, Bi, Gi, Hi, i ∈ {0, . . . , Nmax − 1}, FN
and P , communicated from the MicroBlaze (in row major form), as well as the vectors
[θT , λT , (σµ1./s− diag(w)g + z)T ]T , and [−hT , fT ]T ;

2. compute GTdiag(wk)G+H and store this row-wise in a further RAM of size Nmax(nx +
nu)2 + n2

x;
3. construct a sequence of numbers comprising a representation of Ak;
4. compute bk.

The model matrices are initially stored in four separate dual port RAMs. The allocation of the
matrices between the RAMs is described in Table II. Due to the time-varying nature of the model,
the model matrices can be re-used between time steps. To facilitate this, the linear system builder
also includes two additional shared RAMs. These contain the indices to address the first element
of the time varying prediction matrices in the previously mentioned RAMs. Figure 4 explains
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RADDR	
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  element	
  of	
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RADDR	
  
i	
  

DOUT	
  
Ai	
  

(a) Conceptual schematic

Elements Description

0 to Nmax − 1 Address of first element of A0, . . .ANmax − 1.
Nmax to 2Nmax − 1 Address of first element of H0, . . .HNmax − 1.

2Nmax Address of first element of P
2Nmax + 1 Address of first element of FN

(b) Contents of addressing shared RAM

Figure 4. Indexing of time varying prediction matrices

the concept of how these shared RAMs are used. Consequently the time varying matrices do not
need to be stored in their temporal sequence and can even be repeated (e.g. for LTI cases). For
deterministic LTV models, at each time step (apart from the initial one), only a single new model
must be calculated, and the indices in these RAMS can be cycled, rather than having to re-write
each prediction matrix into a new location.

The second sub-task requires computation of Nmax(nx + nu)2 dot products per PD-IP iteration.
To achieve a throughput of one scalar addition per clock cycle within each dot product (after an
initial latency), elementwise multiplication is performed in single precision floating point using a
pipelined IP-core, then converted to 64-bit signed fixed point with a 32-bit fractional part [34]. The
accumulated result is transformed back to single precision floating point.

The matrix Ak is very sparse and has a well-defined structure. Instead of storing all of the
zeros explicitly, the third subtask generates a sequence comprising the rows of a compact block
representation of Ak: 

HΦxx,0 HΦxu,0 −I AT0
HΦux,0 HΦuu,0 0 BT0
HΦxx,1 HΦxu,0 −I AT1
HΦux,1 HΦuu,0 0 BT1

...
...

...
...

HΦxx,N 0 −I [FTN , 0]
−I 0 0 0
A0 B0 −I 0
...

...
...

...
FN 0 0 0


. (16)

This is less generic than interleaving the primal, dual and slack variables corresponding to each
stage of the prediction horizon forming a banded matrix [59]. However with this application-specific
storage structure, computing the dot products of the rows of (16) with appropriately sized vectors
with a throughput of one dot product per clock cycle requires a bank of only (3nx + nu) multipliers
in parallel, in contrast to (2nu + 4nx − 1) if a band structure had been used. This sequence of
numbers is presented on an output of the linear system builder, and at this point is used to construct
a matrix preconditioner (Section 5.4).

Table II. RAM allocations

RAM Contents

1 Ai, Bi, Hi, P , FN

2 Gi

3 [θT , λT , (σµ1./s−Wg + z)T , wT ]T

4 [−hT , f ]T
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Figure 5. Simulink implementation of Lanczos algorithm, for implementation using HDL Coder

5.4. Preconditioner

The preconditioner (15) is computed from the row-wise sequence of the elements of (16) generated
during the third subtask of the linear system builder, and stored simultaneously in a single-port
RAM and an independent dual-port RAM. During the fourth subtask of the linear system builder
(computing bk), the preconditioner is simultaneously applied to bk and to the elements of the
sequence constituting the matrix Ak. A sequence of the preconditioned elements of bk is converted
to a fixed-point data type, and output to the core MINRES solver, whilst the sequence of elements
of Ak are converted to a fixed point representation and written to a bank of block RAMs, each of
which contains a single column of the preconditioned version of (16).

5.5. MINRES Solver (Lanczos)

The circuit implementing the Lanczos algorithm for this application is implemented graphically
using Mathworks HDL Coder 2012b (Figure 5).

As identified in [70], the key operation within the Lanczos process is a matrix-vector
multiplication, (MkAkMk)v, performed at each iteration. Here, this is implemented using a bank
of (3nx + nu) multipliers, a bank of (3nx + nu) single port RAMs comprising the columns of
the preconditioned fixed point copy of (16) and a bank of 2nx dual port RAMs and nu single
port RAMs, containing appropriately ordered elements of v1 (in step 5 of MINRES), allowing
a throughput of one dot-product per clock cycle. Unlike System Generator for DSP (and hence
why it is used for this component) Simulink HDL coder transparently handles element-wise vector
operations and automatically creates the tree-reduction structure for adding the products together,
and perform register balancing between tree stages. However, to efficiently use the 25× 18-bit
hardware multiplier units (DSP48E) on the FPGA and to avoid timing issues at the implementation
stage, the operands are split and long multiplication is performed in stages, with pipeline registers
(delay blocks) inserted in between. Using the notation (u/s)Fixxx yy to denote an (un)signed xx-bit
number with yy-bit fractional part, a data type of sFix25 23 is used for the matrix and sFix35 33
for the elements of v. This uses 2 DSP48Es per vector element.

The Lanczos process also requires a reciprocal square root operation to be performed. This is
implemented as an integer square root operation followed by calculation of the reciprocal of the
result. Due to the word lengths involved (sFix52 50), the Simulink built-in blocks generate a design
with many layers of logic between registers even if automatic register balancing is used in the

Copyright c© 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2014)
Prepared using ocaauth.cls DOI: 10.1002/oca



14 E. N. HARTLEY AND J. M. MACIEJOWSKI

Table III. FPGA Resource Usage Breakdown

Component Register Look-up Table Hardware Multiplier Block RAM
(FF) (LUT) (DSP48E) (BRAM)

MicroBlaze 19714 17633 167 47
Lanczos 9322 9622 89 4
Remainder of PCORE 15712 13975 78 32

Total 44748 41230 173 83

% of Virtex-6 LX240T FPGA 15% 27% 23% 20%

Table IV. Estimated power consumption of implementation on Xilinx ML605 Evaluation Board

On-Chip Power Consumption
Total MicroBlaze PCORE (other) PCORE (Lanczos)

Clocks 0.643 W – – –
Signals 0.100 W 0.021 W 0.043 W 0.037 W
Logic 0.466 W 0.178 W 0.085 W 0.203 W
IOs 1.959 W – – –

Leakage 3.526 W – – –

Total 6.694 W – – –

synthesis tools. These operations need only be performed on scalars and therefore do not need to
be pipelined, so to circumvent this limitation, a standard integer division algorithm and an integer
square root algorithm are implemented as state machines using M-code. The result of this operation
is stored as type sFix64 32.

5.6. MINRES solver (other stages)

Outside of the Lanczos process, the remainder of the algorithm is implemented using floating point
arithmetic since the bounds on the magnitudes are not known a priori. This is designed using Xilinx
System Generator for DSP to instantiate pipelined IP-cores performing floating point operations and
type conversions, with the HDL description of the Lanczos process imported as a “black box”. A
single precision (32-bit) floating point data type is used in preference to the more common double
precision (64-bit) representation, this decision being motivated by FPGA resource usage. Unlike in
the preliminary design [24], steps 12 to 17 of the MINRES algorithm are computed using a state
machine rather than simply chaining arithmetic components in series as a (mostly empty) pipeline.
This reduces the number of dedicated hardware multipliers used in the FPGA.

5.7. System resource and power usage estimates

Optimisations are carried out by the toolchain during synthesis and implementation which do not
necessarily preserve the design hierarchy. Consequently an exact partition is not possible, but an
approximate high-level FPGA resource breakdown analysed using Xilinx PlanAhead is presented
in Table III. Approximately 1/4 of the resources of the mid-range Virtex-6 LX 240T FPGA are used
by the design. The implication is that the design could also fit comfortably inside a smaller, lower
power device, or that the remaining resources could be used for another purpose.

Power consumption is also estimated using Xilinx Power Analyser (XPA) to determine
the allocation of consumption between the components. The results of this are presented in
Table IV, with signal and logic power consumption also partitioned between that consumed by
the MicroBlaze, the fixed-point Lanczos component and the remainder of the custom PCORE. It
should be noted that whilst the values of the figures using this particular FPGA are disappointingly
high, as identified in the analyses of [24] using a smaller or more recent generation FPGA will
substantially reduce power consumption, particularly in terms of leakage. A lower clock frequency
and configuration of the synthesis and implementation toolchain to emphasise power optimisation
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Table V. Sensor noise magnitudes

Range State 3σ Units

r ≤ 100 m x, y, z 3.5 cm
ẋ, ẏ 7.0 mm s−1

ż 9.0 mm s−1

100 m < r ≤ 5 km x, y, z −2.55 + 0.0605r cm
ẋ, ẏ 5.10 + 0.0190r mm s−1

ż 7.14 + 0.0186r mm s−1

5 km < r x, y, z 0.10r cm
ẋ, ẏ, ż 0.03r mm s−1

* r is the numerical value of the Euclidean distance separating target and chaser, measured in metres.

(which will also limit the feasible clock frequency) will also reduce power consumption, as will
integration into a less general system than the ML605 evaluation board.

6. CLOSED LOOP SIMULATION

An FPGA-in-the-loop setup is used to verify the controller, with the chaser and target spacecraft
simulated using Simulink, communicating with the FPGA-based MPC controller using UDP/IP
over Ethernet.

6.1. Simulator and scenario

A nonlinear model of the chaser and target spacecraft are modelled as point masses orbiting a
spherical central body with uniform mass distribution. The trajectories of their respective orbital
elements are modelled using Gauss’ equations [48, 71]. Attitude dynamics are not considered. The
chaser’s relative navigation values (i.e. plant state) are computed based on its own position in
an inertial body-centred body fixed (BCBF) reference frame centred on the central body. Perfect
knowledge of the chaser’s own position is assumed. Relative navigation is based on the relative
position of the target in a LVLH (local vertical, local horizontal) cartesian reference frame centred
on the chaser. The measurements are corrupted by Gaussian white noise with the standard deviations
given in Table V. This is transformed into the BCBF frame and the estimated relative position in
the BCBF frame is used to compute the estimated absolute position of the target in the BCBF
reference frame, from which the target’s orbital elements can be computed. The relative BCBF
position measurements are also used to compute the relative position in a cartesian local orbital
frame centred on the target, from which the relative position in the cylindrical orbital frame (CRF)
is also computed. These transformations are standard (e.g. [48]) and are therefore not explicitly
presented here.

Clearance to “leave” a given holding point is given once the computed solution to the VH-
MPC has given an optimal solution of Nopt ≤ 3 for 6 consecutive time steps. (The triggering
horizon length must be greater than unity due to the terminal equality constraint, and the additive
uncertainty.) This decision logic is implemented as part of the simulator rather than the control
solution.

6.2. Tuning the number of iterations

Since a fixed upper bound on the number of interior point iterations IIP and the number of MINRES
iterations IMR is imposed, appropriate values for these parameters need to be determined.

For the impulsive and tracking phases separately, simulations have been carried for a range of
values of each of these, starting from the initial conditions documented in Table I. For the MINRES
iterations, the value of IMR is chosen based on the number of decision variables and a scaling factor
η such that IMR = η (N(2nx + nu) + 2nx + nT ), rounded to the nearest integer (where nT = nx
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Table VI. Control performance varying maximum iteration numbers

(a) Impulsive Phase

Completion time (multiples of 1000s) ∆V usage (m/s)
IMR scaling, η IMR scaling, η

IIP 0.9 1.0 1.1 1.2 0.9 1.0 1.1 1.2

20 36.0 36.0 36.0 36.0 8.7 8.8 8.8 8.8
22 34.5 34.5 34.5 34.5 7.6 7.6 7.6 7.6
24 34.5 34.5 34.5 34.5 7.6 7.6 7.6 7.6
26 34.5 34.5 34.5 34.5 7.6 7.6 7.6 7.6
28 34.5 34.5 34.5 34.5 7.6 7.6 7.6 7.6

(b) Tracking phase

Completion time (s) ∆V usage (m/s)
IMR scaling, η IMR scaling, η

IIP 0.1 0.2 0.4 0.8 0.9 1.0 0.1 0.2 0.4 0.8 0.9 1.0

12 1302 1304 1304 1304 1304 1304 0.66 0.68 0.69 0.69 0.69 0.69
14 1297 1298 1298 1298 1298 1298 0.61 0.62 0.62 0.62 0.62 0.62
16 1296 1297 1297 1297 1297 1297 0.61 0.62 0.62 0.62 0.62 0.62
18 1297 1297 1297 1297 1297 1297 0.61 0.61 0.61 0.62 0.62 0.62
20 1297 1297 1297 1297 1297 1297 0.61 0.61 0.61 0.61 0.61 0.61
22 1297 1297 1297 1297 1297 1297 0.61 0.61 0.61 0.61 0.61 0.61

Table VII. Computation time (in milliseconds) for a single variable-horizon controller evaluation with
varying maximum iteration numbers

(a) Impulsive phase

IMR scaling, η
IIP 0.9 1.0 1.1 1.2

20 625 654 683 712
22 686 719 750 783
24 748 783 818 853
26 809 848 885 923
28 865 913 953 990

(b) Tracking phase

IMR scaling, η
IIP 0.1 0.2 0.4 0.8 0.9 1.0

12 29 31 35 44 46 48
14 32 35 40 50 52 55
16 36 38 44 56 59 61
18 39 42 49 62 65 68
20 43 46 54 68 71 75
22 46 48 56 71 75 78

Table VIII. Selected iteration bounds

Impulsive phase Tracking phase
Symbol IIP η IIP η

Value 24 1.1 20 0.4

is the number of individual terminal equality constraints). Metrics pertaining to closed-loop control
performance for an instance of each phase are presented in Table VI, whilst maximum computation
times (measured as time between sending a UDP packet to the FPGA and receiving the response)
for each controller evaluation are presented in Table VII. Note, that this corresponds to solution
of the variable horizon problem (1), not just a single horizon. The computation times are small in
comparison to the sampling periods of Ts = 300 s and Ts = 1 s, so implementation at much lower
clock frequencies would be feasible without adversely affecting control performance (although we
do not pursue this here, since the timing results will scale directly).

6.3. Closed-loop end-to-end simulation analysis

Based on the previous analysis, and allowing a conservative additional margin, the parameters
presented in Table VIII are chosen to evaluate the control performance of both mission phases
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Figure 6. End-to-end rendezvous trajectories for 100 scenarios
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Figure 7. Terminal capture accuracy for 100 scenarios

joined together. One hundred end-to-end simulations have been run from the same initial conditions
with varying random number seeds for the additive uncertainties. The trajectories in the x− z plane
are shown in Figure 6, whilst the terminal capture accuracy in the y − z plane is shown in Figure 7.
All scenarios successfully visit the holding points and intercept the target within a 10 cm tolerance.
Whilst the control action applied is determined by the solution obtained from the FPGA, a PC-based
solution is also computed using CPLEX. The distribution of the (base-10 logarithm of the) 2-norm
of the error between the control input obtained by solution with CPLEX and that obtained from
solution on the FPGA evaluated at each time step of each simulation is presented as a histogram in
Figure 8, and compared with 2-norm of the actual applied input. The errors can be seen to be small
in comparison to the input magnitudes, providing confidence in the FPGA-based implementation,
despite the use of low precision arithmetic and iterative methods.

6.4. Timing breakdown

A breakdown of the distribution of compute effort between the different PDIP algorithm phases
(Figure 2)(a)) is presented for the final tracking phase (this analysis is simpler with a fixed horizon)
in Table IX.

Approximately 2/5 of the time spent per evaluation of the MPC control law is accounted for by
the custom linear system builder and MINRES solver. If this time were doubled or quadrupled (by
halving or quartering the clock frequency of the custom circuit), the solution would still be computed
within the sampling period Ts = 1 s. The shortfall between the total for the corresponding timing in
Table VII is accounted for by Ethernet communication time, timing/instrumentation code, and other
overhead of the UDP server function.
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Figure 8. Magnitude of 2-norm error between FPGA-based MPC computed control and “ideal” PC-based
MPC computed control over 100 scenarios (−9 includes magnitudes ≤ 10−9)

Table IX. Detailed computational profiling for tracking phase

Time (ms) Alg. Resource used
Description Runs Once Total Step Microblaze PCORE AXI

Compute/transfer LTV model 1 5.01 5.01 – x x
Initialise PDIP 1 0.04 0.04 1 x
Calc. µk and wk 20 0.14 2.82 3–4 x
Calc. residual 20 0.15 3.05 5 x
Transfer to PCORE 20 0.11 2.15 5 x
Linear system & MINRES 20 1.00 19.94 6–9 x
Transfer ∆θk 20 0.12 2.36 9 x
Wait for next result 20 0.00 0.02 10 x x
Transfer G(θk + ∆θk) − g 20 0.08 1.50 10 x
Sanity check for NaN 20 0.17 3.30 – x
Calc. ∆sk, ∆zk 20 0.10 1.92 11–12 x
Line search 20 0.27 5.44 13 x
Update solution 20 0.16 3.18 14 x
Check iter. infeas. 20 0.01 0.19 x
Check final infeas. 1 0.01 0.01 x

Total 50.94

*Figures are rounded to 2 decimal places after computing totals!

Table X. Estimated solution time if [39, 41] had been used for an LTI system of the same size

Time (ms)
c = 0 c = 20 c = 30 c = 40

fc = 100 MHz 55.43 62.87 66.59 70.31
fc = 200 MHz 27.71 31.43 33.29 35.15

The solution time is comparable with that from pure hardware QP solvers for LTI systems.
Substituting nx, nu, IIP and IMR and a range of frequency fc and candidate sequential/parallel
stage timing offsets c (n.b. c is not a tuning parameter defined by the problem, but must be obtained
experimentally) into Equation 9 of [41] indicates that the speed of the present hybrid implementation
is comparable (Table X). A speedup might be obtained (in exchange for additional resource usage
and complexity of the custom PCORE) by moving more computation to the PCORE. This would be
most efficiently realised through exploiting pipelining and avoidance of communication overhead
rather than massive parallelism.
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Table XI. Solution time comparison with software solvers for tracking phase

Solver # Computation time (ms)
Location Solver Precision Iterations Model computation Total Solve Mean/iteration

PC CPLEX double – 11.46 7.87 –
PC FORCES double 9 11.74 1.82 0.20
PC FORCES single 20 – 4.81 0.24
PC CVXGEN double 7 – 2.04 0.29
PC CVXGEN single 25 – 5.90 0.23

MicroBlaze FORCES double 8 – ≈ 77000 ≈ 9625
MicroBlaze FORCES single 20 – 9527.85 476.39
MicroBlaze CVXGEN double 7 – ≈ 60000 ≈ 8571
MicroBlaze CVXGEN single 12 – 1475.51 122.96

FPGA PDIP/MINRES single/fix 20 5.01 45.94 2.30

6.5. Timing comparison with other tools

Due to the way the control problem has been formed, opportunities for exact comparison with other
embedded solvers are limited. As a representative example, considering the final tracking phase with
fixed control horizon, comparison results are presented for the PC-based CPLEX solver [72] and
the embedded PDIP QP solvers generated using CVXGEN [73] and FORCES [74] tools in double
precision arithmetic and adapted to single precision. The advantages of the proposed design for the
variable horizon phase can be inferred by analogy. We only compare with other uncondensed MPC
methods. (A comprehensive study comparing multiple algorithms, dense and sparse formulations,
with different horizon lengths is well beyond the scope of this paper.) (N.B. To obtain results with
FORCES with single precision arithmetic, we had to regularise our cost matrices by adding 10−6I
to the Q and P matrices. This is numerically small compared to the other values involved. Using
single precision arithmetic, but an otherwise default parameter configuration, the software-based
solvers require more iterations when using single precision arithmetic.)

A sample of the same problem data that triggered the worst-case number of iterations on the PC
for FORCES with single precision arithmetic is used to compare the performance of FORCES and
CVXGEN on the MicroBlaze. Since the data which causes each solver to struggle is different, and
a comparison of the merits of the approaches taken by the software solvers is emphatically not the
motivation for this exercise, a “mean time per iteration” is also presented to provide a level playing
field.

The key “take home message” from the data presented in Table XI is that even without
considering the time to compute the time varying YA prediction model, the 100 MHz MicroBlaze
cannot maintain sufficient throughput for the solvers generated using FORCES and CVXGEN to
meet the sampling period of 1 s imposed for the continuous thrust phase. However the hybrid
software/hardware PDIP/MINRES implementation presented in this work is capable of providing
the requisite solution in substantially less than this period. Since FORCES and CVXGEN both
use variants of PDIP algorithms, one can make the hypothesis that apart from the linear system
construction and solution the types of operations carried out with these will have similar overhead
to the hybrid software/hardware implementation, and that the main factor accounting for the
differences in timings is therefore the construction and solution of the set of linear equations.

The software-based results using double precision arithmetic (emulated, since the MicroBlaze
floating point unit only supports single precision) reinforce the idea that even if custom hardware
is not considered, the use of double precision floating point can be an unaffordable luxury in an
embedded setting.
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7. CONCLUSIONS

This paper has presented an FPGA-based implementation of a controller to perform two phases of
a spacecraft rendezvous in an elliptical orbit for which the dynamics are described by a linear time
varying model. The first phase also employs a variable prediction horizon. By combining software
running on a soft-core MicroBlaze processor instantiated on the FPGA with a custom peripheral
core designed using high level graphical tools, computation times are obtained that are comparable
with those estimated from a pure hardware implementation of a similar algorithm that is restricted
to LTI systems with a fixed prediction horizon. The setup is substantially faster than using a purely
software-based state-of-the-art embedded QP solver in the same MicroBlaze, attempts at which
failed to find a solution in the requisite sampling period. An “FPGA-in-the-loop” setup controlling
a nonlinear simulation of the spacecraft demonstrates that control performance of the implemented
system equivalent to that obtained using a general purpose QP solver is achieved.

Whilst interior point methods have been applied in the present work and demonstrated to work
in a satisfactory manner, it would also be interesting to investigate application of other iterative
algorithms that have attracted recent attention in the MPC literature to this problem, and to
investigate the effectiveness of each method in handling longer range (and implicitly less well
conditioned) rendezvous phases with low precision arithmetic, as well as consideration of a wider
variety of constraints.
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