research

Predictive control using an FPGA with application to aircraft control

Abstract

Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a “system-on-a-chip” MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-inthe-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC

    Similar works